xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision d4b6af2e)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2009 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/workqueue.h>
33 #include <linux/delay.h>
34 #include <linux/clk.h>
35 #include <linux/err.h>
36 #include <linux/amba/bus.h>
37 #include <linux/amba/pl022.h>
38 #include <linux/io.h>
39 #include <linux/slab.h>
40 #include <linux/dmaengine.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/scatterlist.h>
43 #include <linux/pm_runtime.h>
44 
45 /*
46  * This macro is used to define some register default values.
47  * reg is masked with mask, the OR:ed with an (again masked)
48  * val shifted sb steps to the left.
49  */
50 #define SSP_WRITE_BITS(reg, val, mask, sb) \
51  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
52 
53 /*
54  * This macro is also used to define some default values.
55  * It will just shift val by sb steps to the left and mask
56  * the result with mask.
57  */
58 #define GEN_MASK_BITS(val, mask, sb) \
59  (((val)<<(sb)) & (mask))
60 
61 #define DRIVE_TX		0
62 #define DO_NOT_DRIVE_TX		1
63 
64 #define DO_NOT_QUEUE_DMA	0
65 #define QUEUE_DMA		1
66 
67 #define RX_TRANSFER		1
68 #define TX_TRANSFER		2
69 
70 /*
71  * Macros to access SSP Registers with their offsets
72  */
73 #define SSP_CR0(r)	(r + 0x000)
74 #define SSP_CR1(r)	(r + 0x004)
75 #define SSP_DR(r)	(r + 0x008)
76 #define SSP_SR(r)	(r + 0x00C)
77 #define SSP_CPSR(r)	(r + 0x010)
78 #define SSP_IMSC(r)	(r + 0x014)
79 #define SSP_RIS(r)	(r + 0x018)
80 #define SSP_MIS(r)	(r + 0x01C)
81 #define SSP_ICR(r)	(r + 0x020)
82 #define SSP_DMACR(r)	(r + 0x024)
83 #define SSP_ITCR(r)	(r + 0x080)
84 #define SSP_ITIP(r)	(r + 0x084)
85 #define SSP_ITOP(r)	(r + 0x088)
86 #define SSP_TDR(r)	(r + 0x08C)
87 
88 #define SSP_PID0(r)	(r + 0xFE0)
89 #define SSP_PID1(r)	(r + 0xFE4)
90 #define SSP_PID2(r)	(r + 0xFE8)
91 #define SSP_PID3(r)	(r + 0xFEC)
92 
93 #define SSP_CID0(r)	(r + 0xFF0)
94 #define SSP_CID1(r)	(r + 0xFF4)
95 #define SSP_CID2(r)	(r + 0xFF8)
96 #define SSP_CID3(r)	(r + 0xFFC)
97 
98 /*
99  * SSP Control Register 0  - SSP_CR0
100  */
101 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
102 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
103 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
104 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
105 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
106 
107 /*
108  * The ST version of this block moves som bits
109  * in SSP_CR0 and extends it to 32 bits
110  */
111 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
112 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
113 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
114 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
115 
116 /*
117  * SSP Control Register 0  - SSP_CR1
118  */
119 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
120 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
121 #define SSP_CR1_MASK_MS		(0x1UL << 2)
122 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
123 
124 /*
125  * The ST version of this block adds some bits
126  * in SSP_CR1
127  */
128 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
129 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
130 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
131 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
132 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
133 /* This one is only in the PL023 variant */
134 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
135 
136 /*
137  * SSP Status Register - SSP_SR
138  */
139 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
140 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
141 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
142 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
143 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
144 
145 /*
146  * SSP Clock Prescale Register  - SSP_CPSR
147  */
148 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
149 
150 /*
151  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
152  */
153 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
154 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
155 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
156 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
157 
158 /*
159  * SSP Raw Interrupt Status Register - SSP_RIS
160  */
161 /* Receive Overrun Raw Interrupt status */
162 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
163 /* Receive Timeout Raw Interrupt status */
164 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
165 /* Receive FIFO Raw Interrupt status */
166 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
167 /* Transmit FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
169 
170 /*
171  * SSP Masked Interrupt Status Register - SSP_MIS
172  */
173 /* Receive Overrun Masked Interrupt status */
174 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
175 /* Receive Timeout Masked Interrupt status */
176 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
177 /* Receive FIFO Masked Interrupt status */
178 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
179 /* Transmit FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
181 
182 /*
183  * SSP Interrupt Clear Register - SSP_ICR
184  */
185 /* Receive Overrun Raw Clear Interrupt bit */
186 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
187 /* Receive Timeout Clear Interrupt bit */
188 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
189 
190 /*
191  * SSP DMA Control Register - SSP_DMACR
192  */
193 /* Receive DMA Enable bit */
194 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
195 /* Transmit DMA Enable bit */
196 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
197 
198 /*
199  * SSP Integration Test control Register - SSP_ITCR
200  */
201 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
202 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
203 
204 /*
205  * SSP Integration Test Input Register - SSP_ITIP
206  */
207 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
208 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
209 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
210 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
211 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
212 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
213 
214 /*
215  * SSP Integration Test output Register - SSP_ITOP
216  */
217 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
218 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
219 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
220 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
221 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
222 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
223 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
224 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
225 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
226 #define ITOP_MASK_INTR			 (0x1UL << 9)
227 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
228 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
229 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
230 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
231 
232 /*
233  * SSP Test Data Register - SSP_TDR
234  */
235 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
236 
237 /*
238  * Message State
239  * we use the spi_message.state (void *) pointer to
240  * hold a single state value, that's why all this
241  * (void *) casting is done here.
242  */
243 #define STATE_START			((void *) 0)
244 #define STATE_RUNNING			((void *) 1)
245 #define STATE_DONE			((void *) 2)
246 #define STATE_ERROR			((void *) -1)
247 
248 /*
249  * SSP State - Whether Enabled or Disabled
250  */
251 #define SSP_DISABLED			(0)
252 #define SSP_ENABLED			(1)
253 
254 /*
255  * SSP DMA State - Whether DMA Enabled or Disabled
256  */
257 #define SSP_DMA_DISABLED		(0)
258 #define SSP_DMA_ENABLED			(1)
259 
260 /*
261  * SSP Clock Defaults
262  */
263 #define SSP_DEFAULT_CLKRATE 0x2
264 #define SSP_DEFAULT_PRESCALE 0x40
265 
266 /*
267  * SSP Clock Parameter ranges
268  */
269 #define CPSDVR_MIN 0x02
270 #define CPSDVR_MAX 0xFE
271 #define SCR_MIN 0x00
272 #define SCR_MAX 0xFF
273 
274 /*
275  * SSP Interrupt related Macros
276  */
277 #define DEFAULT_SSP_REG_IMSC  0x0UL
278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
280 
281 #define CLEAR_ALL_INTERRUPTS  0x3
282 
283 #define SPI_POLLING_TIMEOUT 1000
284 
285 /*
286  * The type of reading going on on this chip
287  */
288 enum ssp_reading {
289 	READING_NULL,
290 	READING_U8,
291 	READING_U16,
292 	READING_U32
293 };
294 
295 /**
296  * The type of writing going on on this chip
297  */
298 enum ssp_writing {
299 	WRITING_NULL,
300 	WRITING_U8,
301 	WRITING_U16,
302 	WRITING_U32
303 };
304 
305 /**
306  * struct vendor_data - vendor-specific config parameters
307  * for PL022 derivates
308  * @fifodepth: depth of FIFOs (both)
309  * @max_bpw: maximum number of bits per word
310  * @unidir: supports unidirection transfers
311  * @extended_cr: 32 bit wide control register 0 with extra
312  * features and extra features in CR1 as found in the ST variants
313  * @pl023: supports a subset of the ST extensions called "PL023"
314  */
315 struct vendor_data {
316 	int fifodepth;
317 	int max_bpw;
318 	bool unidir;
319 	bool extended_cr;
320 	bool pl023;
321 	bool loopback;
322 };
323 
324 /**
325  * struct pl022 - This is the private SSP driver data structure
326  * @adev: AMBA device model hookup
327  * @vendor: vendor data for the IP block
328  * @phybase: the physical memory where the SSP device resides
329  * @virtbase: the virtual memory where the SSP is mapped
330  * @clk: outgoing clock "SPICLK" for the SPI bus
331  * @master: SPI framework hookup
332  * @master_info: controller-specific data from machine setup
333  * @workqueue: a workqueue on which any spi_message request is queued
334  * @pump_messages: work struct for scheduling work to the workqueue
335  * @queue_lock: spinlock to syncronise access to message queue
336  * @queue: message queue
337  * @busy: workqueue is busy
338  * @running: workqueue is running
339  * @pump_transfers: Tasklet used in Interrupt Transfer mode
340  * @cur_msg: Pointer to current spi_message being processed
341  * @cur_transfer: Pointer to current spi_transfer
342  * @cur_chip: pointer to current clients chip(assigned from controller_state)
343  * @tx: current position in TX buffer to be read
344  * @tx_end: end position in TX buffer to be read
345  * @rx: current position in RX buffer to be written
346  * @rx_end: end position in RX buffer to be written
347  * @read: the type of read currently going on
348  * @write: the type of write currently going on
349  * @exp_fifo_level: expected FIFO level
350  * @dma_rx_channel: optional channel for RX DMA
351  * @dma_tx_channel: optional channel for TX DMA
352  * @sgt_rx: scattertable for the RX transfer
353  * @sgt_tx: scattertable for the TX transfer
354  * @dummypage: a dummy page used for driving data on the bus with DMA
355  */
356 struct pl022 {
357 	struct amba_device		*adev;
358 	struct vendor_data		*vendor;
359 	resource_size_t			phybase;
360 	void __iomem			*virtbase;
361 	struct clk			*clk;
362 	struct spi_master		*master;
363 	struct pl022_ssp_controller	*master_info;
364 	/* Driver message queue */
365 	struct workqueue_struct		*workqueue;
366 	struct work_struct		pump_messages;
367 	spinlock_t			queue_lock;
368 	struct list_head		queue;
369 	bool				busy;
370 	bool				running;
371 	/* Message transfer pump */
372 	struct tasklet_struct		pump_transfers;
373 	struct spi_message		*cur_msg;
374 	struct spi_transfer		*cur_transfer;
375 	struct chip_data		*cur_chip;
376 	void				*tx;
377 	void				*tx_end;
378 	void				*rx;
379 	void				*rx_end;
380 	enum ssp_reading		read;
381 	enum ssp_writing		write;
382 	u32				exp_fifo_level;
383 	enum ssp_rx_level_trig		rx_lev_trig;
384 	enum ssp_tx_level_trig		tx_lev_trig;
385 	/* DMA settings */
386 #ifdef CONFIG_DMA_ENGINE
387 	struct dma_chan			*dma_rx_channel;
388 	struct dma_chan			*dma_tx_channel;
389 	struct sg_table			sgt_rx;
390 	struct sg_table			sgt_tx;
391 	char				*dummypage;
392 #endif
393 };
394 
395 /**
396  * struct chip_data - To maintain runtime state of SSP for each client chip
397  * @cr0: Value of control register CR0 of SSP - on later ST variants this
398  *       register is 32 bits wide rather than just 16
399  * @cr1: Value of control register CR1 of SSP
400  * @dmacr: Value of DMA control Register of SSP
401  * @cpsr: Value of Clock prescale register
402  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
403  * @enable_dma: Whether to enable DMA or not
404  * @read: function ptr to be used to read when doing xfer for this chip
405  * @write: function ptr to be used to write when doing xfer for this chip
406  * @cs_control: chip select callback provided by chip
407  * @xfer_type: polling/interrupt/DMA
408  *
409  * Runtime state of the SSP controller, maintained per chip,
410  * This would be set according to the current message that would be served
411  */
412 struct chip_data {
413 	u32 cr0;
414 	u16 cr1;
415 	u16 dmacr;
416 	u16 cpsr;
417 	u8 n_bytes;
418 	bool enable_dma;
419 	enum ssp_reading read;
420 	enum ssp_writing write;
421 	void (*cs_control) (u32 command);
422 	int xfer_type;
423 };
424 
425 /**
426  * null_cs_control - Dummy chip select function
427  * @command: select/delect the chip
428  *
429  * If no chip select function is provided by client this is used as dummy
430  * chip select
431  */
432 static void null_cs_control(u32 command)
433 {
434 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
435 }
436 
437 /**
438  * giveback - current spi_message is over, schedule next message and call
439  * callback of this message. Assumes that caller already
440  * set message->status; dma and pio irqs are blocked
441  * @pl022: SSP driver private data structure
442  */
443 static void giveback(struct pl022 *pl022)
444 {
445 	struct spi_transfer *last_transfer;
446 	unsigned long flags;
447 	struct spi_message *msg;
448 	void (*curr_cs_control) (u32 command);
449 
450 	/*
451 	 * This local reference to the chip select function
452 	 * is needed because we set curr_chip to NULL
453 	 * as a step toward termininating the message.
454 	 */
455 	curr_cs_control = pl022->cur_chip->cs_control;
456 	spin_lock_irqsave(&pl022->queue_lock, flags);
457 	msg = pl022->cur_msg;
458 	pl022->cur_msg = NULL;
459 	pl022->cur_transfer = NULL;
460 	pl022->cur_chip = NULL;
461 	queue_work(pl022->workqueue, &pl022->pump_messages);
462 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
463 
464 	last_transfer = list_entry(msg->transfers.prev,
465 					struct spi_transfer,
466 					transfer_list);
467 
468 	/* Delay if requested before any change in chip select */
469 	if (last_transfer->delay_usecs)
470 		/*
471 		 * FIXME: This runs in interrupt context.
472 		 * Is this really smart?
473 		 */
474 		udelay(last_transfer->delay_usecs);
475 
476 	/*
477 	 * Drop chip select UNLESS cs_change is true or we are returning
478 	 * a message with an error, or next message is for another chip
479 	 */
480 	if (!last_transfer->cs_change)
481 		curr_cs_control(SSP_CHIP_DESELECT);
482 	else {
483 		struct spi_message *next_msg;
484 
485 		/* Holding of cs was hinted, but we need to make sure
486 		 * the next message is for the same chip.  Don't waste
487 		 * time with the following tests unless this was hinted.
488 		 *
489 		 * We cannot postpone this until pump_messages, because
490 		 * after calling msg->complete (below) the driver that
491 		 * sent the current message could be unloaded, which
492 		 * could invalidate the cs_control() callback...
493 		 */
494 
495 		/* get a pointer to the next message, if any */
496 		spin_lock_irqsave(&pl022->queue_lock, flags);
497 		if (list_empty(&pl022->queue))
498 			next_msg = NULL;
499 		else
500 			next_msg = list_entry(pl022->queue.next,
501 					struct spi_message, queue);
502 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
503 
504 		/* see if the next and current messages point
505 		 * to the same chip
506 		 */
507 		if (next_msg && next_msg->spi != msg->spi)
508 			next_msg = NULL;
509 		if (!next_msg || msg->state == STATE_ERROR)
510 			curr_cs_control(SSP_CHIP_DESELECT);
511 	}
512 	msg->state = NULL;
513 	if (msg->complete)
514 		msg->complete(msg->context);
515 }
516 
517 /**
518  * flush - flush the FIFO to reach a clean state
519  * @pl022: SSP driver private data structure
520  */
521 static int flush(struct pl022 *pl022)
522 {
523 	unsigned long limit = loops_per_jiffy << 1;
524 
525 	dev_dbg(&pl022->adev->dev, "flush\n");
526 	do {
527 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
528 			readw(SSP_DR(pl022->virtbase));
529 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
530 
531 	pl022->exp_fifo_level = 0;
532 
533 	return limit;
534 }
535 
536 /**
537  * restore_state - Load configuration of current chip
538  * @pl022: SSP driver private data structure
539  */
540 static void restore_state(struct pl022 *pl022)
541 {
542 	struct chip_data *chip = pl022->cur_chip;
543 
544 	if (pl022->vendor->extended_cr)
545 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
546 	else
547 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
548 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
549 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
550 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
551 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
552 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
553 }
554 
555 /*
556  * Default SSP Register Values
557  */
558 #define DEFAULT_SSP_REG_CR0 ( \
559 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
560 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
561 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
562 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
563 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
564 )
565 
566 /* ST versions have slightly different bit layout */
567 #define DEFAULT_SSP_REG_CR0_ST ( \
568 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
569 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
570 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
571 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
572 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
573 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
574 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
575 )
576 
577 /* The PL023 version is slightly different again */
578 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
579 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
580 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
581 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
582 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
583 )
584 
585 #define DEFAULT_SSP_REG_CR1 ( \
586 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
587 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
588 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
589 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
590 )
591 
592 /* ST versions extend this register to use all 16 bits */
593 #define DEFAULT_SSP_REG_CR1_ST ( \
594 	DEFAULT_SSP_REG_CR1 | \
595 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
596 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
597 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
598 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
599 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
600 )
601 
602 /*
603  * The PL023 variant has further differences: no loopback mode, no microwire
604  * support, and a new clock feedback delay setting.
605  */
606 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
607 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
608 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
609 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
610 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
611 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
612 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
613 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
614 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
615 )
616 
617 #define DEFAULT_SSP_REG_CPSR ( \
618 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
619 )
620 
621 #define DEFAULT_SSP_REG_DMACR (\
622 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
623 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
624 )
625 
626 /**
627  * load_ssp_default_config - Load default configuration for SSP
628  * @pl022: SSP driver private data structure
629  */
630 static void load_ssp_default_config(struct pl022 *pl022)
631 {
632 	if (pl022->vendor->pl023) {
633 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
634 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
635 	} else if (pl022->vendor->extended_cr) {
636 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
637 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
638 	} else {
639 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
640 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
641 	}
642 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
643 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
644 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
645 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
646 }
647 
648 /**
649  * This will write to TX and read from RX according to the parameters
650  * set in pl022.
651  */
652 static void readwriter(struct pl022 *pl022)
653 {
654 
655 	/*
656 	 * The FIFO depth is different between primecell variants.
657 	 * I believe filling in too much in the FIFO might cause
658 	 * errons in 8bit wide transfers on ARM variants (just 8 words
659 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
660 	 *
661 	 * To prevent this issue, the TX FIFO is only filled to the
662 	 * unused RX FIFO fill length, regardless of what the TX
663 	 * FIFO status flag indicates.
664 	 */
665 	dev_dbg(&pl022->adev->dev,
666 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
667 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
668 
669 	/* Read as much as you can */
670 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
671 	       && (pl022->rx < pl022->rx_end)) {
672 		switch (pl022->read) {
673 		case READING_NULL:
674 			readw(SSP_DR(pl022->virtbase));
675 			break;
676 		case READING_U8:
677 			*(u8 *) (pl022->rx) =
678 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
679 			break;
680 		case READING_U16:
681 			*(u16 *) (pl022->rx) =
682 				(u16) readw(SSP_DR(pl022->virtbase));
683 			break;
684 		case READING_U32:
685 			*(u32 *) (pl022->rx) =
686 				readl(SSP_DR(pl022->virtbase));
687 			break;
688 		}
689 		pl022->rx += (pl022->cur_chip->n_bytes);
690 		pl022->exp_fifo_level--;
691 	}
692 	/*
693 	 * Write as much as possible up to the RX FIFO size
694 	 */
695 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
696 	       && (pl022->tx < pl022->tx_end)) {
697 		switch (pl022->write) {
698 		case WRITING_NULL:
699 			writew(0x0, SSP_DR(pl022->virtbase));
700 			break;
701 		case WRITING_U8:
702 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
703 			break;
704 		case WRITING_U16:
705 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
706 			break;
707 		case WRITING_U32:
708 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
709 			break;
710 		}
711 		pl022->tx += (pl022->cur_chip->n_bytes);
712 		pl022->exp_fifo_level++;
713 		/*
714 		 * This inner reader takes care of things appearing in the RX
715 		 * FIFO as we're transmitting. This will happen a lot since the
716 		 * clock starts running when you put things into the TX FIFO,
717 		 * and then things are continuously clocked into the RX FIFO.
718 		 */
719 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
720 		       && (pl022->rx < pl022->rx_end)) {
721 			switch (pl022->read) {
722 			case READING_NULL:
723 				readw(SSP_DR(pl022->virtbase));
724 				break;
725 			case READING_U8:
726 				*(u8 *) (pl022->rx) =
727 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
728 				break;
729 			case READING_U16:
730 				*(u16 *) (pl022->rx) =
731 					(u16) readw(SSP_DR(pl022->virtbase));
732 				break;
733 			case READING_U32:
734 				*(u32 *) (pl022->rx) =
735 					readl(SSP_DR(pl022->virtbase));
736 				break;
737 			}
738 			pl022->rx += (pl022->cur_chip->n_bytes);
739 			pl022->exp_fifo_level--;
740 		}
741 	}
742 	/*
743 	 * When we exit here the TX FIFO should be full and the RX FIFO
744 	 * should be empty
745 	 */
746 }
747 
748 /**
749  * next_transfer - Move to the Next transfer in the current spi message
750  * @pl022: SSP driver private data structure
751  *
752  * This function moves though the linked list of spi transfers in the
753  * current spi message and returns with the state of current spi
754  * message i.e whether its last transfer is done(STATE_DONE) or
755  * Next transfer is ready(STATE_RUNNING)
756  */
757 static void *next_transfer(struct pl022 *pl022)
758 {
759 	struct spi_message *msg = pl022->cur_msg;
760 	struct spi_transfer *trans = pl022->cur_transfer;
761 
762 	/* Move to next transfer */
763 	if (trans->transfer_list.next != &msg->transfers) {
764 		pl022->cur_transfer =
765 		    list_entry(trans->transfer_list.next,
766 			       struct spi_transfer, transfer_list);
767 		return STATE_RUNNING;
768 	}
769 	return STATE_DONE;
770 }
771 
772 /*
773  * This DMA functionality is only compiled in if we have
774  * access to the generic DMA devices/DMA engine.
775  */
776 #ifdef CONFIG_DMA_ENGINE
777 static void unmap_free_dma_scatter(struct pl022 *pl022)
778 {
779 	/* Unmap and free the SG tables */
780 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
781 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
782 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
783 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
784 	sg_free_table(&pl022->sgt_rx);
785 	sg_free_table(&pl022->sgt_tx);
786 }
787 
788 static void dma_callback(void *data)
789 {
790 	struct pl022 *pl022 = data;
791 	struct spi_message *msg = pl022->cur_msg;
792 
793 	BUG_ON(!pl022->sgt_rx.sgl);
794 
795 #ifdef VERBOSE_DEBUG
796 	/*
797 	 * Optionally dump out buffers to inspect contents, this is
798 	 * good if you want to convince yourself that the loopback
799 	 * read/write contents are the same, when adopting to a new
800 	 * DMA engine.
801 	 */
802 	{
803 		struct scatterlist *sg;
804 		unsigned int i;
805 
806 		dma_sync_sg_for_cpu(&pl022->adev->dev,
807 				    pl022->sgt_rx.sgl,
808 				    pl022->sgt_rx.nents,
809 				    DMA_FROM_DEVICE);
810 
811 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
812 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
813 			print_hex_dump(KERN_ERR, "SPI RX: ",
814 				       DUMP_PREFIX_OFFSET,
815 				       16,
816 				       1,
817 				       sg_virt(sg),
818 				       sg_dma_len(sg),
819 				       1);
820 		}
821 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
822 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
823 			print_hex_dump(KERN_ERR, "SPI TX: ",
824 				       DUMP_PREFIX_OFFSET,
825 				       16,
826 				       1,
827 				       sg_virt(sg),
828 				       sg_dma_len(sg),
829 				       1);
830 		}
831 	}
832 #endif
833 
834 	unmap_free_dma_scatter(pl022);
835 
836 	/* Update total bytes transferred */
837 	msg->actual_length += pl022->cur_transfer->len;
838 	if (pl022->cur_transfer->cs_change)
839 		pl022->cur_chip->
840 			cs_control(SSP_CHIP_DESELECT);
841 
842 	/* Move to next transfer */
843 	msg->state = next_transfer(pl022);
844 	tasklet_schedule(&pl022->pump_transfers);
845 }
846 
847 static void setup_dma_scatter(struct pl022 *pl022,
848 			      void *buffer,
849 			      unsigned int length,
850 			      struct sg_table *sgtab)
851 {
852 	struct scatterlist *sg;
853 	int bytesleft = length;
854 	void *bufp = buffer;
855 	int mapbytes;
856 	int i;
857 
858 	if (buffer) {
859 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
860 			/*
861 			 * If there are less bytes left than what fits
862 			 * in the current page (plus page alignment offset)
863 			 * we just feed in this, else we stuff in as much
864 			 * as we can.
865 			 */
866 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
867 				mapbytes = bytesleft;
868 			else
869 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
870 			sg_set_page(sg, virt_to_page(bufp),
871 				    mapbytes, offset_in_page(bufp));
872 			bufp += mapbytes;
873 			bytesleft -= mapbytes;
874 			dev_dbg(&pl022->adev->dev,
875 				"set RX/TX target page @ %p, %d bytes, %d left\n",
876 				bufp, mapbytes, bytesleft);
877 		}
878 	} else {
879 		/* Map the dummy buffer on every page */
880 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
881 			if (bytesleft < PAGE_SIZE)
882 				mapbytes = bytesleft;
883 			else
884 				mapbytes = PAGE_SIZE;
885 			sg_set_page(sg, virt_to_page(pl022->dummypage),
886 				    mapbytes, 0);
887 			bytesleft -= mapbytes;
888 			dev_dbg(&pl022->adev->dev,
889 				"set RX/TX to dummy page %d bytes, %d left\n",
890 				mapbytes, bytesleft);
891 
892 		}
893 	}
894 	BUG_ON(bytesleft);
895 }
896 
897 /**
898  * configure_dma - configures the channels for the next transfer
899  * @pl022: SSP driver's private data structure
900  */
901 static int configure_dma(struct pl022 *pl022)
902 {
903 	struct dma_slave_config rx_conf = {
904 		.src_addr = SSP_DR(pl022->phybase),
905 		.direction = DMA_FROM_DEVICE,
906 	};
907 	struct dma_slave_config tx_conf = {
908 		.dst_addr = SSP_DR(pl022->phybase),
909 		.direction = DMA_TO_DEVICE,
910 	};
911 	unsigned int pages;
912 	int ret;
913 	int rx_sglen, tx_sglen;
914 	struct dma_chan *rxchan = pl022->dma_rx_channel;
915 	struct dma_chan *txchan = pl022->dma_tx_channel;
916 	struct dma_async_tx_descriptor *rxdesc;
917 	struct dma_async_tx_descriptor *txdesc;
918 
919 	/* Check that the channels are available */
920 	if (!rxchan || !txchan)
921 		return -ENODEV;
922 
923 	/*
924 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
925 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
926 	 * not trigger on 2 elements this needs explicit mapping rather than
927 	 * calculation.
928 	 */
929 	switch (pl022->rx_lev_trig) {
930 	case SSP_RX_1_OR_MORE_ELEM:
931 		rx_conf.src_maxburst = 1;
932 		break;
933 	case SSP_RX_4_OR_MORE_ELEM:
934 		rx_conf.src_maxburst = 4;
935 		break;
936 	case SSP_RX_8_OR_MORE_ELEM:
937 		rx_conf.src_maxburst = 8;
938 		break;
939 	case SSP_RX_16_OR_MORE_ELEM:
940 		rx_conf.src_maxburst = 16;
941 		break;
942 	case SSP_RX_32_OR_MORE_ELEM:
943 		rx_conf.src_maxburst = 32;
944 		break;
945 	default:
946 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
947 		break;
948 	}
949 
950 	switch (pl022->tx_lev_trig) {
951 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
952 		tx_conf.dst_maxburst = 1;
953 		break;
954 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
955 		tx_conf.dst_maxburst = 4;
956 		break;
957 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
958 		tx_conf.dst_maxburst = 8;
959 		break;
960 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
961 		tx_conf.dst_maxburst = 16;
962 		break;
963 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
964 		tx_conf.dst_maxburst = 32;
965 		break;
966 	default:
967 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
968 		break;
969 	}
970 
971 	switch (pl022->read) {
972 	case READING_NULL:
973 		/* Use the same as for writing */
974 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
975 		break;
976 	case READING_U8:
977 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
978 		break;
979 	case READING_U16:
980 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
981 		break;
982 	case READING_U32:
983 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
984 		break;
985 	}
986 
987 	switch (pl022->write) {
988 	case WRITING_NULL:
989 		/* Use the same as for reading */
990 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
991 		break;
992 	case WRITING_U8:
993 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
994 		break;
995 	case WRITING_U16:
996 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
997 		break;
998 	case WRITING_U32:
999 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1000 		break;
1001 	}
1002 
1003 	/* SPI pecularity: we need to read and write the same width */
1004 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1005 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1006 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1007 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1008 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1009 
1010 	dmaengine_slave_config(rxchan, &rx_conf);
1011 	dmaengine_slave_config(txchan, &tx_conf);
1012 
1013 	/* Create sglists for the transfers */
1014 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1015 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1016 
1017 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1018 	if (ret)
1019 		goto err_alloc_rx_sg;
1020 
1021 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1022 	if (ret)
1023 		goto err_alloc_tx_sg;
1024 
1025 	/* Fill in the scatterlists for the RX+TX buffers */
1026 	setup_dma_scatter(pl022, pl022->rx,
1027 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1028 	setup_dma_scatter(pl022, pl022->tx,
1029 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1030 
1031 	/* Map DMA buffers */
1032 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1033 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1034 	if (!rx_sglen)
1035 		goto err_rx_sgmap;
1036 
1037 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1038 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1039 	if (!tx_sglen)
1040 		goto err_tx_sgmap;
1041 
1042 	/* Send both scatterlists */
1043 	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1044 				      pl022->sgt_rx.sgl,
1045 				      rx_sglen,
1046 				      DMA_FROM_DEVICE,
1047 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1048 	if (!rxdesc)
1049 		goto err_rxdesc;
1050 
1051 	txdesc = txchan->device->device_prep_slave_sg(txchan,
1052 				      pl022->sgt_tx.sgl,
1053 				      tx_sglen,
1054 				      DMA_TO_DEVICE,
1055 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1056 	if (!txdesc)
1057 		goto err_txdesc;
1058 
1059 	/* Put the callback on the RX transfer only, that should finish last */
1060 	rxdesc->callback = dma_callback;
1061 	rxdesc->callback_param = pl022;
1062 
1063 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1064 	dmaengine_submit(rxdesc);
1065 	dmaengine_submit(txdesc);
1066 	dma_async_issue_pending(rxchan);
1067 	dma_async_issue_pending(txchan);
1068 
1069 	return 0;
1070 
1071 err_txdesc:
1072 	dmaengine_terminate_all(txchan);
1073 err_rxdesc:
1074 	dmaengine_terminate_all(rxchan);
1075 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1076 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1077 err_tx_sgmap:
1078 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1079 		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1080 err_rx_sgmap:
1081 	sg_free_table(&pl022->sgt_tx);
1082 err_alloc_tx_sg:
1083 	sg_free_table(&pl022->sgt_rx);
1084 err_alloc_rx_sg:
1085 	return -ENOMEM;
1086 }
1087 
1088 static int __init pl022_dma_probe(struct pl022 *pl022)
1089 {
1090 	dma_cap_mask_t mask;
1091 
1092 	/* Try to acquire a generic DMA engine slave channel */
1093 	dma_cap_zero(mask);
1094 	dma_cap_set(DMA_SLAVE, mask);
1095 	/*
1096 	 * We need both RX and TX channels to do DMA, else do none
1097 	 * of them.
1098 	 */
1099 	pl022->dma_rx_channel = dma_request_channel(mask,
1100 					    pl022->master_info->dma_filter,
1101 					    pl022->master_info->dma_rx_param);
1102 	if (!pl022->dma_rx_channel) {
1103 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1104 		goto err_no_rxchan;
1105 	}
1106 
1107 	pl022->dma_tx_channel = dma_request_channel(mask,
1108 					    pl022->master_info->dma_filter,
1109 					    pl022->master_info->dma_tx_param);
1110 	if (!pl022->dma_tx_channel) {
1111 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1112 		goto err_no_txchan;
1113 	}
1114 
1115 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1116 	if (!pl022->dummypage) {
1117 		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1118 		goto err_no_dummypage;
1119 	}
1120 
1121 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1122 		 dma_chan_name(pl022->dma_rx_channel),
1123 		 dma_chan_name(pl022->dma_tx_channel));
1124 
1125 	return 0;
1126 
1127 err_no_dummypage:
1128 	dma_release_channel(pl022->dma_tx_channel);
1129 err_no_txchan:
1130 	dma_release_channel(pl022->dma_rx_channel);
1131 	pl022->dma_rx_channel = NULL;
1132 err_no_rxchan:
1133 	dev_err(&pl022->adev->dev,
1134 			"Failed to work in dma mode, work without dma!\n");
1135 	return -ENODEV;
1136 }
1137 
1138 static void terminate_dma(struct pl022 *pl022)
1139 {
1140 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1141 	struct dma_chan *txchan = pl022->dma_tx_channel;
1142 
1143 	dmaengine_terminate_all(rxchan);
1144 	dmaengine_terminate_all(txchan);
1145 	unmap_free_dma_scatter(pl022);
1146 }
1147 
1148 static void pl022_dma_remove(struct pl022 *pl022)
1149 {
1150 	if (pl022->busy)
1151 		terminate_dma(pl022);
1152 	if (pl022->dma_tx_channel)
1153 		dma_release_channel(pl022->dma_tx_channel);
1154 	if (pl022->dma_rx_channel)
1155 		dma_release_channel(pl022->dma_rx_channel);
1156 	kfree(pl022->dummypage);
1157 }
1158 
1159 #else
1160 static inline int configure_dma(struct pl022 *pl022)
1161 {
1162 	return -ENODEV;
1163 }
1164 
1165 static inline int pl022_dma_probe(struct pl022 *pl022)
1166 {
1167 	return 0;
1168 }
1169 
1170 static inline void pl022_dma_remove(struct pl022 *pl022)
1171 {
1172 }
1173 #endif
1174 
1175 /**
1176  * pl022_interrupt_handler - Interrupt handler for SSP controller
1177  *
1178  * This function handles interrupts generated for an interrupt based transfer.
1179  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1180  * current message's state as STATE_ERROR and schedule the tasklet
1181  * pump_transfers which will do the postprocessing of the current message by
1182  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1183  * more data, and writes data in TX FIFO till it is not full. If we complete
1184  * the transfer we move to the next transfer and schedule the tasklet.
1185  */
1186 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1187 {
1188 	struct pl022 *pl022 = dev_id;
1189 	struct spi_message *msg = pl022->cur_msg;
1190 	u16 irq_status = 0;
1191 	u16 flag = 0;
1192 
1193 	if (unlikely(!msg)) {
1194 		dev_err(&pl022->adev->dev,
1195 			"bad message state in interrupt handler");
1196 		/* Never fail */
1197 		return IRQ_HANDLED;
1198 	}
1199 
1200 	/* Read the Interrupt Status Register */
1201 	irq_status = readw(SSP_MIS(pl022->virtbase));
1202 
1203 	if (unlikely(!irq_status))
1204 		return IRQ_NONE;
1205 
1206 	/*
1207 	 * This handles the FIFO interrupts, the timeout
1208 	 * interrupts are flatly ignored, they cannot be
1209 	 * trusted.
1210 	 */
1211 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1212 		/*
1213 		 * Overrun interrupt - bail out since our Data has been
1214 		 * corrupted
1215 		 */
1216 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1217 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1218 			dev_err(&pl022->adev->dev,
1219 				"RXFIFO is full\n");
1220 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1221 			dev_err(&pl022->adev->dev,
1222 				"TXFIFO is full\n");
1223 
1224 		/*
1225 		 * Disable and clear interrupts, disable SSP,
1226 		 * mark message with bad status so it can be
1227 		 * retried.
1228 		 */
1229 		writew(DISABLE_ALL_INTERRUPTS,
1230 		       SSP_IMSC(pl022->virtbase));
1231 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1232 		writew((readw(SSP_CR1(pl022->virtbase)) &
1233 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1234 		msg->state = STATE_ERROR;
1235 
1236 		/* Schedule message queue handler */
1237 		tasklet_schedule(&pl022->pump_transfers);
1238 		return IRQ_HANDLED;
1239 	}
1240 
1241 	readwriter(pl022);
1242 
1243 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1244 		flag = 1;
1245 		/* Disable Transmit interrupt, enable receive interrupt */
1246 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1247 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1248 		       SSP_IMSC(pl022->virtbase));
1249 	}
1250 
1251 	/*
1252 	 * Since all transactions must write as much as shall be read,
1253 	 * we can conclude the entire transaction once RX is complete.
1254 	 * At this point, all TX will always be finished.
1255 	 */
1256 	if (pl022->rx >= pl022->rx_end) {
1257 		writew(DISABLE_ALL_INTERRUPTS,
1258 		       SSP_IMSC(pl022->virtbase));
1259 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1260 		if (unlikely(pl022->rx > pl022->rx_end)) {
1261 			dev_warn(&pl022->adev->dev, "read %u surplus "
1262 				 "bytes (did you request an odd "
1263 				 "number of bytes on a 16bit bus?)\n",
1264 				 (u32) (pl022->rx - pl022->rx_end));
1265 		}
1266 		/* Update total bytes transferred */
1267 		msg->actual_length += pl022->cur_transfer->len;
1268 		if (pl022->cur_transfer->cs_change)
1269 			pl022->cur_chip->
1270 				cs_control(SSP_CHIP_DESELECT);
1271 		/* Move to next transfer */
1272 		msg->state = next_transfer(pl022);
1273 		tasklet_schedule(&pl022->pump_transfers);
1274 		return IRQ_HANDLED;
1275 	}
1276 
1277 	return IRQ_HANDLED;
1278 }
1279 
1280 /**
1281  * This sets up the pointers to memory for the next message to
1282  * send out on the SPI bus.
1283  */
1284 static int set_up_next_transfer(struct pl022 *pl022,
1285 				struct spi_transfer *transfer)
1286 {
1287 	int residue;
1288 
1289 	/* Sanity check the message for this bus width */
1290 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1291 	if (unlikely(residue != 0)) {
1292 		dev_err(&pl022->adev->dev,
1293 			"message of %u bytes to transmit but the current "
1294 			"chip bus has a data width of %u bytes!\n",
1295 			pl022->cur_transfer->len,
1296 			pl022->cur_chip->n_bytes);
1297 		dev_err(&pl022->adev->dev, "skipping this message\n");
1298 		return -EIO;
1299 	}
1300 	pl022->tx = (void *)transfer->tx_buf;
1301 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1302 	pl022->rx = (void *)transfer->rx_buf;
1303 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1304 	pl022->write =
1305 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1306 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1307 	return 0;
1308 }
1309 
1310 /**
1311  * pump_transfers - Tasklet function which schedules next transfer
1312  * when running in interrupt or DMA transfer mode.
1313  * @data: SSP driver private data structure
1314  *
1315  */
1316 static void pump_transfers(unsigned long data)
1317 {
1318 	struct pl022 *pl022 = (struct pl022 *) data;
1319 	struct spi_message *message = NULL;
1320 	struct spi_transfer *transfer = NULL;
1321 	struct spi_transfer *previous = NULL;
1322 
1323 	/* Get current state information */
1324 	message = pl022->cur_msg;
1325 	transfer = pl022->cur_transfer;
1326 
1327 	/* Handle for abort */
1328 	if (message->state == STATE_ERROR) {
1329 		message->status = -EIO;
1330 		giveback(pl022);
1331 		return;
1332 	}
1333 
1334 	/* Handle end of message */
1335 	if (message->state == STATE_DONE) {
1336 		message->status = 0;
1337 		giveback(pl022);
1338 		return;
1339 	}
1340 
1341 	/* Delay if requested at end of transfer before CS change */
1342 	if (message->state == STATE_RUNNING) {
1343 		previous = list_entry(transfer->transfer_list.prev,
1344 					struct spi_transfer,
1345 					transfer_list);
1346 		if (previous->delay_usecs)
1347 			/*
1348 			 * FIXME: This runs in interrupt context.
1349 			 * Is this really smart?
1350 			 */
1351 			udelay(previous->delay_usecs);
1352 
1353 		/* Drop chip select only if cs_change is requested */
1354 		if (previous->cs_change)
1355 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1356 	} else {
1357 		/* STATE_START */
1358 		message->state = STATE_RUNNING;
1359 	}
1360 
1361 	if (set_up_next_transfer(pl022, transfer)) {
1362 		message->state = STATE_ERROR;
1363 		message->status = -EIO;
1364 		giveback(pl022);
1365 		return;
1366 	}
1367 	/* Flush the FIFOs and let's go! */
1368 	flush(pl022);
1369 
1370 	if (pl022->cur_chip->enable_dma) {
1371 		if (configure_dma(pl022)) {
1372 			dev_dbg(&pl022->adev->dev,
1373 				"configuration of DMA failed, fall back to interrupt mode\n");
1374 			goto err_config_dma;
1375 		}
1376 		return;
1377 	}
1378 
1379 err_config_dma:
1380 	/* enable all interrupts except RX */
1381 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1382 }
1383 
1384 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1385 {
1386 	/*
1387 	 * Default is to enable all interrupts except RX -
1388 	 * this will be enabled once TX is complete
1389 	 */
1390 	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1391 
1392 	/* Enable target chip */
1393 	pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1394 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1395 		/* Error path */
1396 		pl022->cur_msg->state = STATE_ERROR;
1397 		pl022->cur_msg->status = -EIO;
1398 		giveback(pl022);
1399 		return;
1400 	}
1401 	/* If we're using DMA, set up DMA here */
1402 	if (pl022->cur_chip->enable_dma) {
1403 		/* Configure DMA transfer */
1404 		if (configure_dma(pl022)) {
1405 			dev_dbg(&pl022->adev->dev,
1406 				"configuration of DMA failed, fall back to interrupt mode\n");
1407 			goto err_config_dma;
1408 		}
1409 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1410 		irqflags = DISABLE_ALL_INTERRUPTS;
1411 	}
1412 err_config_dma:
1413 	/* Enable SSP, turn on interrupts */
1414 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1415 	       SSP_CR1(pl022->virtbase));
1416 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1417 }
1418 
1419 static void do_polling_transfer(struct pl022 *pl022)
1420 {
1421 	struct spi_message *message = NULL;
1422 	struct spi_transfer *transfer = NULL;
1423 	struct spi_transfer *previous = NULL;
1424 	struct chip_data *chip;
1425 	unsigned long time, timeout;
1426 
1427 	chip = pl022->cur_chip;
1428 	message = pl022->cur_msg;
1429 
1430 	while (message->state != STATE_DONE) {
1431 		/* Handle for abort */
1432 		if (message->state == STATE_ERROR)
1433 			break;
1434 		transfer = pl022->cur_transfer;
1435 
1436 		/* Delay if requested at end of transfer */
1437 		if (message->state == STATE_RUNNING) {
1438 			previous =
1439 			    list_entry(transfer->transfer_list.prev,
1440 				       struct spi_transfer, transfer_list);
1441 			if (previous->delay_usecs)
1442 				udelay(previous->delay_usecs);
1443 			if (previous->cs_change)
1444 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1445 		} else {
1446 			/* STATE_START */
1447 			message->state = STATE_RUNNING;
1448 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1449 		}
1450 
1451 		/* Configuration Changing Per Transfer */
1452 		if (set_up_next_transfer(pl022, transfer)) {
1453 			/* Error path */
1454 			message->state = STATE_ERROR;
1455 			break;
1456 		}
1457 		/* Flush FIFOs and enable SSP */
1458 		flush(pl022);
1459 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1460 		       SSP_CR1(pl022->virtbase));
1461 
1462 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1463 
1464 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1465 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1466 			time = jiffies;
1467 			readwriter(pl022);
1468 			if (time_after(time, timeout)) {
1469 				dev_warn(&pl022->adev->dev,
1470 				"%s: timeout!\n", __func__);
1471 				message->state = STATE_ERROR;
1472 				goto out;
1473 			}
1474 			cpu_relax();
1475 		}
1476 
1477 		/* Update total byte transferred */
1478 		message->actual_length += pl022->cur_transfer->len;
1479 		if (pl022->cur_transfer->cs_change)
1480 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1481 		/* Move to next transfer */
1482 		message->state = next_transfer(pl022);
1483 	}
1484 out:
1485 	/* Handle end of message */
1486 	if (message->state == STATE_DONE)
1487 		message->status = 0;
1488 	else
1489 		message->status = -EIO;
1490 
1491 	giveback(pl022);
1492 	return;
1493 }
1494 
1495 /**
1496  * pump_messages - Workqueue function which processes spi message queue
1497  * @data: pointer to private data of SSP driver
1498  *
1499  * This function checks if there is any spi message in the queue that
1500  * needs processing and delegate control to appropriate function
1501  * do_polling_transfer()/do_interrupt_dma_transfer()
1502  * based on the kind of the transfer
1503  *
1504  */
1505 static void pump_messages(struct work_struct *work)
1506 {
1507 	struct pl022 *pl022 =
1508 		container_of(work, struct pl022, pump_messages);
1509 	unsigned long flags;
1510 	bool was_busy = false;
1511 
1512 	/* Lock queue and check for queue work */
1513 	spin_lock_irqsave(&pl022->queue_lock, flags);
1514 	if (list_empty(&pl022->queue) || !pl022->running) {
1515 		if (pl022->busy)
1516 			pm_runtime_put(&pl022->adev->dev);
1517 		pl022->busy = false;
1518 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1519 		return;
1520 	}
1521 
1522 	/* Make sure we are not already running a message */
1523 	if (pl022->cur_msg) {
1524 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1525 		return;
1526 	}
1527 	/* Extract head of queue */
1528 	pl022->cur_msg =
1529 	    list_entry(pl022->queue.next, struct spi_message, queue);
1530 
1531 	list_del_init(&pl022->cur_msg->queue);
1532 	if (pl022->busy)
1533 		was_busy = true;
1534 	else
1535 		pl022->busy = true;
1536 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1537 
1538 	/* Initial message state */
1539 	pl022->cur_msg->state = STATE_START;
1540 	pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1541 					    struct spi_transfer, transfer_list);
1542 
1543 	/* Setup the SPI using the per chip configuration */
1544 	pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1545 	if (!was_busy)
1546 		/*
1547 		 * We enable the core voltage and clocks here, then the clocks
1548 		 * and core will be disabled when this workqueue is run again
1549 		 * and there is no more work to be done.
1550 		 */
1551 		pm_runtime_get_sync(&pl022->adev->dev);
1552 
1553 	restore_state(pl022);
1554 	flush(pl022);
1555 
1556 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1557 		do_polling_transfer(pl022);
1558 	else
1559 		do_interrupt_dma_transfer(pl022);
1560 }
1561 
1562 static int __init init_queue(struct pl022 *pl022)
1563 {
1564 	INIT_LIST_HEAD(&pl022->queue);
1565 	spin_lock_init(&pl022->queue_lock);
1566 
1567 	pl022->running = false;
1568 	pl022->busy = false;
1569 
1570 	tasklet_init(&pl022->pump_transfers, pump_transfers,
1571 			(unsigned long)pl022);
1572 
1573 	INIT_WORK(&pl022->pump_messages, pump_messages);
1574 	pl022->workqueue = create_singlethread_workqueue(
1575 					dev_name(pl022->master->dev.parent));
1576 	if (pl022->workqueue == NULL)
1577 		return -EBUSY;
1578 
1579 	return 0;
1580 }
1581 
1582 static int start_queue(struct pl022 *pl022)
1583 {
1584 	unsigned long flags;
1585 
1586 	spin_lock_irqsave(&pl022->queue_lock, flags);
1587 
1588 	if (pl022->running || pl022->busy) {
1589 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1590 		return -EBUSY;
1591 	}
1592 
1593 	pl022->running = true;
1594 	pl022->cur_msg = NULL;
1595 	pl022->cur_transfer = NULL;
1596 	pl022->cur_chip = NULL;
1597 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1598 
1599 	queue_work(pl022->workqueue, &pl022->pump_messages);
1600 
1601 	return 0;
1602 }
1603 
1604 static int stop_queue(struct pl022 *pl022)
1605 {
1606 	unsigned long flags;
1607 	unsigned limit = 500;
1608 	int status = 0;
1609 
1610 	spin_lock_irqsave(&pl022->queue_lock, flags);
1611 
1612 	/* This is a bit lame, but is optimized for the common execution path.
1613 	 * A wait_queue on the pl022->busy could be used, but then the common
1614 	 * execution path (pump_messages) would be required to call wake_up or
1615 	 * friends on every SPI message. Do this instead */
1616 	while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
1617 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1618 		msleep(10);
1619 		spin_lock_irqsave(&pl022->queue_lock, flags);
1620 	}
1621 
1622 	if (!list_empty(&pl022->queue) || pl022->busy)
1623 		status = -EBUSY;
1624 	else
1625 		pl022->running = false;
1626 
1627 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1628 
1629 	return status;
1630 }
1631 
1632 static int destroy_queue(struct pl022 *pl022)
1633 {
1634 	int status;
1635 
1636 	status = stop_queue(pl022);
1637 	/* we are unloading the module or failing to load (only two calls
1638 	 * to this routine), and neither call can handle a return value.
1639 	 * However, destroy_workqueue calls flush_workqueue, and that will
1640 	 * block until all work is done.  If the reason that stop_queue
1641 	 * timed out is that the work will never finish, then it does no
1642 	 * good to call destroy_workqueue, so return anyway. */
1643 	if (status != 0)
1644 		return status;
1645 
1646 	destroy_workqueue(pl022->workqueue);
1647 
1648 	return 0;
1649 }
1650 
1651 static int verify_controller_parameters(struct pl022 *pl022,
1652 				struct pl022_config_chip const *chip_info)
1653 {
1654 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1655 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1656 		dev_err(&pl022->adev->dev,
1657 			"interface is configured incorrectly\n");
1658 		return -EINVAL;
1659 	}
1660 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1661 	    (!pl022->vendor->unidir)) {
1662 		dev_err(&pl022->adev->dev,
1663 			"unidirectional mode not supported in this "
1664 			"hardware version\n");
1665 		return -EINVAL;
1666 	}
1667 	if ((chip_info->hierarchy != SSP_MASTER)
1668 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1669 		dev_err(&pl022->adev->dev,
1670 			"hierarchy is configured incorrectly\n");
1671 		return -EINVAL;
1672 	}
1673 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1674 	    && (chip_info->com_mode != DMA_TRANSFER)
1675 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1676 		dev_err(&pl022->adev->dev,
1677 			"Communication mode is configured incorrectly\n");
1678 		return -EINVAL;
1679 	}
1680 	switch (chip_info->rx_lev_trig) {
1681 	case SSP_RX_1_OR_MORE_ELEM:
1682 	case SSP_RX_4_OR_MORE_ELEM:
1683 	case SSP_RX_8_OR_MORE_ELEM:
1684 		/* These are always OK, all variants can handle this */
1685 		break;
1686 	case SSP_RX_16_OR_MORE_ELEM:
1687 		if (pl022->vendor->fifodepth < 16) {
1688 			dev_err(&pl022->adev->dev,
1689 			"RX FIFO Trigger Level is configured incorrectly\n");
1690 			return -EINVAL;
1691 		}
1692 		break;
1693 	case SSP_RX_32_OR_MORE_ELEM:
1694 		if (pl022->vendor->fifodepth < 32) {
1695 			dev_err(&pl022->adev->dev,
1696 			"RX FIFO Trigger Level is configured incorrectly\n");
1697 			return -EINVAL;
1698 		}
1699 		break;
1700 	default:
1701 		dev_err(&pl022->adev->dev,
1702 			"RX FIFO Trigger Level is configured incorrectly\n");
1703 		return -EINVAL;
1704 		break;
1705 	}
1706 	switch (chip_info->tx_lev_trig) {
1707 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1708 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1709 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1710 		/* These are always OK, all variants can handle this */
1711 		break;
1712 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1713 		if (pl022->vendor->fifodepth < 16) {
1714 			dev_err(&pl022->adev->dev,
1715 			"TX FIFO Trigger Level is configured incorrectly\n");
1716 			return -EINVAL;
1717 		}
1718 		break;
1719 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1720 		if (pl022->vendor->fifodepth < 32) {
1721 			dev_err(&pl022->adev->dev,
1722 			"TX FIFO Trigger Level is configured incorrectly\n");
1723 			return -EINVAL;
1724 		}
1725 		break;
1726 	default:
1727 		dev_err(&pl022->adev->dev,
1728 			"TX FIFO Trigger Level is configured incorrectly\n");
1729 		return -EINVAL;
1730 		break;
1731 	}
1732 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1733 		if ((chip_info->ctrl_len < SSP_BITS_4)
1734 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1735 			dev_err(&pl022->adev->dev,
1736 				"CTRL LEN is configured incorrectly\n");
1737 			return -EINVAL;
1738 		}
1739 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1740 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1741 			dev_err(&pl022->adev->dev,
1742 				"Wait State is configured incorrectly\n");
1743 			return -EINVAL;
1744 		}
1745 		/* Half duplex is only available in the ST Micro version */
1746 		if (pl022->vendor->extended_cr) {
1747 			if ((chip_info->duplex !=
1748 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1749 			    && (chip_info->duplex !=
1750 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1751 				dev_err(&pl022->adev->dev,
1752 					"Microwire duplex mode is configured incorrectly\n");
1753 				return -EINVAL;
1754 			}
1755 		} else {
1756 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1757 				dev_err(&pl022->adev->dev,
1758 					"Microwire half duplex mode requested,"
1759 					" but this is only available in the"
1760 					" ST version of PL022\n");
1761 			return -EINVAL;
1762 		}
1763 	}
1764 	return 0;
1765 }
1766 
1767 /**
1768  * pl022_transfer - transfer function registered to SPI master framework
1769  * @spi: spi device which is requesting transfer
1770  * @msg: spi message which is to handled is queued to driver queue
1771  *
1772  * This function is registered to the SPI framework for this SPI master
1773  * controller. It will queue the spi_message in the queue of driver if
1774  * the queue is not stopped and return.
1775  */
1776 static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1777 {
1778 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1779 	unsigned long flags;
1780 
1781 	spin_lock_irqsave(&pl022->queue_lock, flags);
1782 
1783 	if (!pl022->running) {
1784 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1785 		return -ESHUTDOWN;
1786 	}
1787 	msg->actual_length = 0;
1788 	msg->status = -EINPROGRESS;
1789 	msg->state = STATE_START;
1790 
1791 	list_add_tail(&msg->queue, &pl022->queue);
1792 	if (pl022->running && !pl022->busy)
1793 		queue_work(pl022->workqueue, &pl022->pump_messages);
1794 
1795 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1796 	return 0;
1797 }
1798 
1799 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1800 {
1801 	return rate / (cpsdvsr * (1 + scr));
1802 }
1803 
1804 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1805 				    ssp_clock_params * clk_freq)
1806 {
1807 	/* Lets calculate the frequency parameters */
1808 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1809 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1810 		best_scr = 0, tmp, found = 0;
1811 
1812 	rate = clk_get_rate(pl022->clk);
1813 	/* cpsdvscr = 2 & scr 0 */
1814 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1815 	/* cpsdvsr = 254 & scr = 255 */
1816 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1817 
1818 	if (!((freq <= max_tclk) && (freq >= min_tclk))) {
1819 		dev_err(&pl022->adev->dev,
1820 			"controller data is incorrect: out of range frequency");
1821 		return -EINVAL;
1822 	}
1823 
1824 	/*
1825 	 * best_freq will give closest possible available rate (<= requested
1826 	 * freq) for all values of scr & cpsdvsr.
1827 	 */
1828 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1829 		while (scr <= SCR_MAX) {
1830 			tmp = spi_rate(rate, cpsdvsr, scr);
1831 
1832 			if (tmp > freq)
1833 				scr++;
1834 			/*
1835 			 * If found exact value, update and break.
1836 			 * If found more closer value, update and continue.
1837 			 */
1838 			else if ((tmp == freq) || (tmp > best_freq)) {
1839 				best_freq = tmp;
1840 				best_cpsdvsr = cpsdvsr;
1841 				best_scr = scr;
1842 
1843 				if (tmp == freq)
1844 					break;
1845 			}
1846 			scr++;
1847 		}
1848 		cpsdvsr += 2;
1849 		scr = SCR_MIN;
1850 	}
1851 
1852 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1853 	clk_freq->scr = (u8) (best_scr & 0xFF);
1854 	dev_dbg(&pl022->adev->dev,
1855 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1856 		freq, best_freq);
1857 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1858 		clk_freq->cpsdvsr, clk_freq->scr);
1859 
1860 	return 0;
1861 }
1862 
1863 /*
1864  * A piece of default chip info unless the platform
1865  * supplies it.
1866  */
1867 static const struct pl022_config_chip pl022_default_chip_info = {
1868 	.com_mode = POLLING_TRANSFER,
1869 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1870 	.hierarchy = SSP_SLAVE,
1871 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1872 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1873 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1874 	.ctrl_len = SSP_BITS_8,
1875 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1876 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1877 	.cs_control = null_cs_control,
1878 };
1879 
1880 /**
1881  * pl022_setup - setup function registered to SPI master framework
1882  * @spi: spi device which is requesting setup
1883  *
1884  * This function is registered to the SPI framework for this SPI master
1885  * controller. If it is the first time when setup is called by this device,
1886  * this function will initialize the runtime state for this chip and save
1887  * the same in the device structure. Else it will update the runtime info
1888  * with the updated chip info. Nothing is really being written to the
1889  * controller hardware here, that is not done until the actual transfer
1890  * commence.
1891  */
1892 static int pl022_setup(struct spi_device *spi)
1893 {
1894 	struct pl022_config_chip const *chip_info;
1895 	struct chip_data *chip;
1896 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1897 	int status = 0;
1898 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1899 	unsigned int bits = spi->bits_per_word;
1900 	u32 tmp;
1901 
1902 	if (!spi->max_speed_hz)
1903 		return -EINVAL;
1904 
1905 	/* Get controller_state if one is supplied */
1906 	chip = spi_get_ctldata(spi);
1907 
1908 	if (chip == NULL) {
1909 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1910 		if (!chip) {
1911 			dev_err(&spi->dev,
1912 				"cannot allocate controller state\n");
1913 			return -ENOMEM;
1914 		}
1915 		dev_dbg(&spi->dev,
1916 			"allocated memory for controller's runtime state\n");
1917 	}
1918 
1919 	/* Get controller data if one is supplied */
1920 	chip_info = spi->controller_data;
1921 
1922 	if (chip_info == NULL) {
1923 		chip_info = &pl022_default_chip_info;
1924 		/* spi_board_info.controller_data not is supplied */
1925 		dev_dbg(&spi->dev,
1926 			"using default controller_data settings\n");
1927 	} else
1928 		dev_dbg(&spi->dev,
1929 			"using user supplied controller_data settings\n");
1930 
1931 	/*
1932 	 * We can override with custom divisors, else we use the board
1933 	 * frequency setting
1934 	 */
1935 	if ((0 == chip_info->clk_freq.cpsdvsr)
1936 	    && (0 == chip_info->clk_freq.scr)) {
1937 		status = calculate_effective_freq(pl022,
1938 						  spi->max_speed_hz,
1939 						  &clk_freq);
1940 		if (status < 0)
1941 			goto err_config_params;
1942 	} else {
1943 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1944 		if ((clk_freq.cpsdvsr % 2) != 0)
1945 			clk_freq.cpsdvsr =
1946 				clk_freq.cpsdvsr - 1;
1947 	}
1948 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1949 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1950 		status = -EINVAL;
1951 		dev_err(&spi->dev,
1952 			"cpsdvsr is configured incorrectly\n");
1953 		goto err_config_params;
1954 	}
1955 
1956 	status = verify_controller_parameters(pl022, chip_info);
1957 	if (status) {
1958 		dev_err(&spi->dev, "controller data is incorrect");
1959 		goto err_config_params;
1960 	}
1961 
1962 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1963 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1964 
1965 	/* Now set controller state based on controller data */
1966 	chip->xfer_type = chip_info->com_mode;
1967 	if (!chip_info->cs_control) {
1968 		chip->cs_control = null_cs_control;
1969 		dev_warn(&spi->dev,
1970 			 "chip select function is NULL for this chip\n");
1971 	} else
1972 		chip->cs_control = chip_info->cs_control;
1973 
1974 	if (bits <= 3) {
1975 		/* PL022 doesn't support less than 4-bits */
1976 		status = -ENOTSUPP;
1977 		goto err_config_params;
1978 	} else if (bits <= 8) {
1979 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1980 		chip->n_bytes = 1;
1981 		chip->read = READING_U8;
1982 		chip->write = WRITING_U8;
1983 	} else if (bits <= 16) {
1984 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1985 		chip->n_bytes = 2;
1986 		chip->read = READING_U16;
1987 		chip->write = WRITING_U16;
1988 	} else {
1989 		if (pl022->vendor->max_bpw >= 32) {
1990 			dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1991 			chip->n_bytes = 4;
1992 			chip->read = READING_U32;
1993 			chip->write = WRITING_U32;
1994 		} else {
1995 			dev_err(&spi->dev,
1996 				"illegal data size for this controller!\n");
1997 			dev_err(&spi->dev,
1998 				"a standard pl022 can only handle "
1999 				"1 <= n <= 16 bit words\n");
2000 			status = -ENOTSUPP;
2001 			goto err_config_params;
2002 		}
2003 	}
2004 
2005 	/* Now Initialize all register settings required for this chip */
2006 	chip->cr0 = 0;
2007 	chip->cr1 = 0;
2008 	chip->dmacr = 0;
2009 	chip->cpsr = 0;
2010 	if ((chip_info->com_mode == DMA_TRANSFER)
2011 	    && ((pl022->master_info)->enable_dma)) {
2012 		chip->enable_dma = true;
2013 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
2014 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2015 			       SSP_DMACR_MASK_RXDMAE, 0);
2016 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2017 			       SSP_DMACR_MASK_TXDMAE, 1);
2018 	} else {
2019 		chip->enable_dma = false;
2020 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
2021 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2022 			       SSP_DMACR_MASK_RXDMAE, 0);
2023 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2024 			       SSP_DMACR_MASK_TXDMAE, 1);
2025 	}
2026 
2027 	chip->cpsr = clk_freq.cpsdvsr;
2028 
2029 	/* Special setup for the ST micro extended control registers */
2030 	if (pl022->vendor->extended_cr) {
2031 		u32 etx;
2032 
2033 		if (pl022->vendor->pl023) {
2034 			/* These bits are only in the PL023 */
2035 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2036 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2037 		} else {
2038 			/* These bits are in the PL022 but not PL023 */
2039 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2040 				       SSP_CR0_MASK_HALFDUP_ST, 5);
2041 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2042 				       SSP_CR0_MASK_CSS_ST, 16);
2043 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2044 				       SSP_CR0_MASK_FRF_ST, 21);
2045 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2046 				       SSP_CR1_MASK_MWAIT_ST, 6);
2047 		}
2048 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2049 			       SSP_CR0_MASK_DSS_ST, 0);
2050 
2051 		if (spi->mode & SPI_LSB_FIRST) {
2052 			tmp = SSP_RX_LSB;
2053 			etx = SSP_TX_LSB;
2054 		} else {
2055 			tmp = SSP_RX_MSB;
2056 			etx = SSP_TX_MSB;
2057 		}
2058 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2059 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2060 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2061 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2062 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2063 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2064 	} else {
2065 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2066 			       SSP_CR0_MASK_DSS, 0);
2067 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2068 			       SSP_CR0_MASK_FRF, 4);
2069 	}
2070 
2071 	/* Stuff that is common for all versions */
2072 	if (spi->mode & SPI_CPOL)
2073 		tmp = SSP_CLK_POL_IDLE_HIGH;
2074 	else
2075 		tmp = SSP_CLK_POL_IDLE_LOW;
2076 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2077 
2078 	if (spi->mode & SPI_CPHA)
2079 		tmp = SSP_CLK_SECOND_EDGE;
2080 	else
2081 		tmp = SSP_CLK_FIRST_EDGE;
2082 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2083 
2084 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2085 	/* Loopback is available on all versions except PL023 */
2086 	if (pl022->vendor->loopback) {
2087 		if (spi->mode & SPI_LOOP)
2088 			tmp = LOOPBACK_ENABLED;
2089 		else
2090 			tmp = LOOPBACK_DISABLED;
2091 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2092 	}
2093 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2094 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2095 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2096 		3);
2097 
2098 	/* Save controller_state */
2099 	spi_set_ctldata(spi, chip);
2100 	return status;
2101  err_config_params:
2102 	spi_set_ctldata(spi, NULL);
2103 	kfree(chip);
2104 	return status;
2105 }
2106 
2107 /**
2108  * pl022_cleanup - cleanup function registered to SPI master framework
2109  * @spi: spi device which is requesting cleanup
2110  *
2111  * This function is registered to the SPI framework for this SPI master
2112  * controller. It will free the runtime state of chip.
2113  */
2114 static void pl022_cleanup(struct spi_device *spi)
2115 {
2116 	struct chip_data *chip = spi_get_ctldata(spi);
2117 
2118 	spi_set_ctldata(spi, NULL);
2119 	kfree(chip);
2120 }
2121 
2122 static int __devinit
2123 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2124 {
2125 	struct device *dev = &adev->dev;
2126 	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2127 	struct spi_master *master;
2128 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2129 	int status = 0;
2130 
2131 	dev_info(&adev->dev,
2132 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2133 	if (platform_info == NULL) {
2134 		dev_err(&adev->dev, "probe - no platform data supplied\n");
2135 		status = -ENODEV;
2136 		goto err_no_pdata;
2137 	}
2138 
2139 	/* Allocate master with space for data */
2140 	master = spi_alloc_master(dev, sizeof(struct pl022));
2141 	if (master == NULL) {
2142 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2143 		status = -ENOMEM;
2144 		goto err_no_master;
2145 	}
2146 
2147 	pl022 = spi_master_get_devdata(master);
2148 	pl022->master = master;
2149 	pl022->master_info = platform_info;
2150 	pl022->adev = adev;
2151 	pl022->vendor = id->data;
2152 
2153 	/*
2154 	 * Bus Number Which has been Assigned to this SSP controller
2155 	 * on this board
2156 	 */
2157 	master->bus_num = platform_info->bus_id;
2158 	master->num_chipselect = platform_info->num_chipselect;
2159 	master->cleanup = pl022_cleanup;
2160 	master->setup = pl022_setup;
2161 	master->transfer = pl022_transfer;
2162 
2163 	/*
2164 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2165 	 * always MS bit first on the original pl022.
2166 	 */
2167 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2168 	if (pl022->vendor->extended_cr)
2169 		master->mode_bits |= SPI_LSB_FIRST;
2170 
2171 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2172 
2173 	status = amba_request_regions(adev, NULL);
2174 	if (status)
2175 		goto err_no_ioregion;
2176 
2177 	pl022->phybase = adev->res.start;
2178 	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2179 	if (pl022->virtbase == NULL) {
2180 		status = -ENOMEM;
2181 		goto err_no_ioremap;
2182 	}
2183 	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2184 	       adev->res.start, pl022->virtbase);
2185 
2186 	pl022->clk = clk_get(&adev->dev, NULL);
2187 	if (IS_ERR(pl022->clk)) {
2188 		status = PTR_ERR(pl022->clk);
2189 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2190 		goto err_no_clk;
2191 	}
2192 
2193 	status = clk_prepare(pl022->clk);
2194 	if (status) {
2195 		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2196 		goto  err_clk_prep;
2197 	}
2198 
2199 	status = clk_enable(pl022->clk);
2200 	if (status) {
2201 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2202 		goto err_no_clk_en;
2203 	}
2204 
2205 	/* Disable SSP */
2206 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2207 	       SSP_CR1(pl022->virtbase));
2208 	load_ssp_default_config(pl022);
2209 
2210 	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2211 			     pl022);
2212 	if (status < 0) {
2213 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2214 		goto err_no_irq;
2215 	}
2216 
2217 	/* Get DMA channels */
2218 	if (platform_info->enable_dma) {
2219 		status = pl022_dma_probe(pl022);
2220 		if (status != 0)
2221 			platform_info->enable_dma = 0;
2222 	}
2223 
2224 	/* Initialize and start queue */
2225 	status = init_queue(pl022);
2226 	if (status != 0) {
2227 		dev_err(&adev->dev, "probe - problem initializing queue\n");
2228 		goto err_init_queue;
2229 	}
2230 	status = start_queue(pl022);
2231 	if (status != 0) {
2232 		dev_err(&adev->dev, "probe - problem starting queue\n");
2233 		goto err_start_queue;
2234 	}
2235 	/* Register with the SPI framework */
2236 	amba_set_drvdata(adev, pl022);
2237 	status = spi_register_master(master);
2238 	if (status != 0) {
2239 		dev_err(&adev->dev,
2240 			"probe - problem registering spi master\n");
2241 		goto err_spi_register;
2242 	}
2243 	dev_dbg(dev, "probe succeeded\n");
2244 
2245 	/* let runtime pm put suspend */
2246 	pm_runtime_put(dev);
2247 	return 0;
2248 
2249  err_spi_register:
2250  err_start_queue:
2251  err_init_queue:
2252 	destroy_queue(pl022);
2253 	if (platform_info->enable_dma)
2254 		pl022_dma_remove(pl022);
2255 
2256 	free_irq(adev->irq[0], pl022);
2257  err_no_irq:
2258 	clk_disable(pl022->clk);
2259  err_no_clk_en:
2260 	clk_unprepare(pl022->clk);
2261  err_clk_prep:
2262 	clk_put(pl022->clk);
2263  err_no_clk:
2264 	iounmap(pl022->virtbase);
2265  err_no_ioremap:
2266 	amba_release_regions(adev);
2267  err_no_ioregion:
2268 	spi_master_put(master);
2269  err_no_master:
2270  err_no_pdata:
2271 	return status;
2272 }
2273 
2274 static int __devexit
2275 pl022_remove(struct amba_device *adev)
2276 {
2277 	struct pl022 *pl022 = amba_get_drvdata(adev);
2278 
2279 	if (!pl022)
2280 		return 0;
2281 
2282 	/*
2283 	 * undo pm_runtime_put() in probe.  I assume that we're not
2284 	 * accessing the primecell here.
2285 	 */
2286 	pm_runtime_get_noresume(&adev->dev);
2287 
2288 	/* Remove the queue */
2289 	if (destroy_queue(pl022) != 0)
2290 		dev_err(&adev->dev, "queue remove failed\n");
2291 	load_ssp_default_config(pl022);
2292 	if (pl022->master_info->enable_dma)
2293 		pl022_dma_remove(pl022);
2294 
2295 	free_irq(adev->irq[0], pl022);
2296 	clk_disable(pl022->clk);
2297 	clk_unprepare(pl022->clk);
2298 	clk_put(pl022->clk);
2299 	iounmap(pl022->virtbase);
2300 	amba_release_regions(adev);
2301 	tasklet_disable(&pl022->pump_transfers);
2302 	spi_unregister_master(pl022->master);
2303 	spi_master_put(pl022->master);
2304 	amba_set_drvdata(adev, NULL);
2305 	return 0;
2306 }
2307 
2308 #ifdef CONFIG_SUSPEND
2309 static int pl022_suspend(struct device *dev)
2310 {
2311 	struct pl022 *pl022 = dev_get_drvdata(dev);
2312 	int status = 0;
2313 
2314 	status = stop_queue(pl022);
2315 	if (status) {
2316 		dev_warn(dev, "suspend cannot stop queue\n");
2317 		return status;
2318 	}
2319 
2320 	dev_dbg(dev, "suspended\n");
2321 	return 0;
2322 }
2323 
2324 static int pl022_resume(struct device *dev)
2325 {
2326 	struct pl022 *pl022 = dev_get_drvdata(dev);
2327 	int status = 0;
2328 
2329 	/* Start the queue running */
2330 	status = start_queue(pl022);
2331 	if (status)
2332 		dev_err(dev, "problem starting queue (%d)\n", status);
2333 	else
2334 		dev_dbg(dev, "resumed\n");
2335 
2336 	return status;
2337 }
2338 #endif	/* CONFIG_PM */
2339 
2340 #ifdef CONFIG_PM_RUNTIME
2341 static int pl022_runtime_suspend(struct device *dev)
2342 {
2343 	struct pl022 *pl022 = dev_get_drvdata(dev);
2344 
2345 	clk_disable(pl022->clk);
2346 	amba_vcore_disable(pl022->adev);
2347 
2348 	return 0;
2349 }
2350 
2351 static int pl022_runtime_resume(struct device *dev)
2352 {
2353 	struct pl022 *pl022 = dev_get_drvdata(dev);
2354 
2355 	amba_vcore_enable(pl022->adev);
2356 	clk_enable(pl022->clk);
2357 
2358 	return 0;
2359 }
2360 #endif
2361 
2362 static const struct dev_pm_ops pl022_dev_pm_ops = {
2363 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2364 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2365 };
2366 
2367 static struct vendor_data vendor_arm = {
2368 	.fifodepth = 8,
2369 	.max_bpw = 16,
2370 	.unidir = false,
2371 	.extended_cr = false,
2372 	.pl023 = false,
2373 	.loopback = true,
2374 };
2375 
2376 static struct vendor_data vendor_st = {
2377 	.fifodepth = 32,
2378 	.max_bpw = 32,
2379 	.unidir = false,
2380 	.extended_cr = true,
2381 	.pl023 = false,
2382 	.loopback = true,
2383 };
2384 
2385 static struct vendor_data vendor_st_pl023 = {
2386 	.fifodepth = 32,
2387 	.max_bpw = 32,
2388 	.unidir = false,
2389 	.extended_cr = true,
2390 	.pl023 = true,
2391 	.loopback = false,
2392 };
2393 
2394 static struct vendor_data vendor_db5500_pl023 = {
2395 	.fifodepth = 32,
2396 	.max_bpw = 32,
2397 	.unidir = false,
2398 	.extended_cr = true,
2399 	.pl023 = true,
2400 	.loopback = true,
2401 };
2402 
2403 static struct amba_id pl022_ids[] = {
2404 	{
2405 		/*
2406 		 * ARM PL022 variant, this has a 16bit wide
2407 		 * and 8 locations deep TX/RX FIFO
2408 		 */
2409 		.id	= 0x00041022,
2410 		.mask	= 0x000fffff,
2411 		.data	= &vendor_arm,
2412 	},
2413 	{
2414 		/*
2415 		 * ST Micro derivative, this has 32bit wide
2416 		 * and 32 locations deep TX/RX FIFO
2417 		 */
2418 		.id	= 0x01080022,
2419 		.mask	= 0xffffffff,
2420 		.data	= &vendor_st,
2421 	},
2422 	{
2423 		/*
2424 		 * ST-Ericsson derivative "PL023" (this is not
2425 		 * an official ARM number), this is a PL022 SSP block
2426 		 * stripped to SPI mode only, it has 32bit wide
2427 		 * and 32 locations deep TX/RX FIFO but no extended
2428 		 * CR0/CR1 register
2429 		 */
2430 		.id	= 0x00080023,
2431 		.mask	= 0xffffffff,
2432 		.data	= &vendor_st_pl023,
2433 	},
2434 	{
2435 		.id	= 0x10080023,
2436 		.mask	= 0xffffffff,
2437 		.data	= &vendor_db5500_pl023,
2438 	},
2439 	{ 0, 0 },
2440 };
2441 
2442 static struct amba_driver pl022_driver = {
2443 	.drv = {
2444 		.name	= "ssp-pl022",
2445 		.pm	= &pl022_dev_pm_ops,
2446 	},
2447 	.id_table	= pl022_ids,
2448 	.probe		= pl022_probe,
2449 	.remove		= __devexit_p(pl022_remove),
2450 };
2451 
2452 static int __init pl022_init(void)
2453 {
2454 	return amba_driver_register(&pl022_driver);
2455 }
2456 subsys_initcall(pl022_init);
2457 
2458 static void __exit pl022_exit(void)
2459 {
2460 	amba_driver_unregister(&pl022_driver);
2461 }
2462 module_exit(pl022_exit);
2463 
2464 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2465 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2466 MODULE_LICENSE("GPL");
2467