xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision b4b84826)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2009 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 
46 /*
47  * This macro is used to define some register default values.
48  * reg is masked with mask, the OR:ed with an (again masked)
49  * val shifted sb steps to the left.
50  */
51 #define SSP_WRITE_BITS(reg, val, mask, sb) \
52  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
53 
54 /*
55  * This macro is also used to define some default values.
56  * It will just shift val by sb steps to the left and mask
57  * the result with mask.
58  */
59 #define GEN_MASK_BITS(val, mask, sb) \
60  (((val)<<(sb)) & (mask))
61 
62 #define DRIVE_TX		0
63 #define DO_NOT_DRIVE_TX		1
64 
65 #define DO_NOT_QUEUE_DMA	0
66 #define QUEUE_DMA		1
67 
68 #define RX_TRANSFER		1
69 #define TX_TRANSFER		2
70 
71 /*
72  * Macros to access SSP Registers with their offsets
73  */
74 #define SSP_CR0(r)	(r + 0x000)
75 #define SSP_CR1(r)	(r + 0x004)
76 #define SSP_DR(r)	(r + 0x008)
77 #define SSP_SR(r)	(r + 0x00C)
78 #define SSP_CPSR(r)	(r + 0x010)
79 #define SSP_IMSC(r)	(r + 0x014)
80 #define SSP_RIS(r)	(r + 0x018)
81 #define SSP_MIS(r)	(r + 0x01C)
82 #define SSP_ICR(r)	(r + 0x020)
83 #define SSP_DMACR(r)	(r + 0x024)
84 #define SSP_ITCR(r)	(r + 0x080)
85 #define SSP_ITIP(r)	(r + 0x084)
86 #define SSP_ITOP(r)	(r + 0x088)
87 #define SSP_TDR(r)	(r + 0x08C)
88 
89 #define SSP_PID0(r)	(r + 0xFE0)
90 #define SSP_PID1(r)	(r + 0xFE4)
91 #define SSP_PID2(r)	(r + 0xFE8)
92 #define SSP_PID3(r)	(r + 0xFEC)
93 
94 #define SSP_CID0(r)	(r + 0xFF0)
95 #define SSP_CID1(r)	(r + 0xFF4)
96 #define SSP_CID2(r)	(r + 0xFF8)
97 #define SSP_CID3(r)	(r + 0xFFC)
98 
99 /*
100  * SSP Control Register 0  - SSP_CR0
101  */
102 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
103 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
104 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
105 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
106 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
107 
108 /*
109  * The ST version of this block moves som bits
110  * in SSP_CR0 and extends it to 32 bits
111  */
112 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
113 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
114 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
115 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
116 
117 /*
118  * SSP Control Register 0  - SSP_CR1
119  */
120 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
121 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
122 #define SSP_CR1_MASK_MS		(0x1UL << 2)
123 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
124 
125 /*
126  * The ST version of this block adds some bits
127  * in SSP_CR1
128  */
129 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
130 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
131 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
132 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
133 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
134 /* This one is only in the PL023 variant */
135 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
136 
137 /*
138  * SSP Status Register - SSP_SR
139  */
140 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
141 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
142 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
143 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
144 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
145 
146 /*
147  * SSP Clock Prescale Register  - SSP_CPSR
148  */
149 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
150 
151 /*
152  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
153  */
154 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
155 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
156 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
157 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
158 
159 /*
160  * SSP Raw Interrupt Status Register - SSP_RIS
161  */
162 /* Receive Overrun Raw Interrupt status */
163 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
164 /* Receive Timeout Raw Interrupt status */
165 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
166 /* Receive FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
168 /* Transmit FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
170 
171 /*
172  * SSP Masked Interrupt Status Register - SSP_MIS
173  */
174 /* Receive Overrun Masked Interrupt status */
175 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
176 /* Receive Timeout Masked Interrupt status */
177 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
178 /* Receive FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
180 /* Transmit FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
182 
183 /*
184  * SSP Interrupt Clear Register - SSP_ICR
185  */
186 /* Receive Overrun Raw Clear Interrupt bit */
187 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
188 /* Receive Timeout Clear Interrupt bit */
189 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
190 
191 /*
192  * SSP DMA Control Register - SSP_DMACR
193  */
194 /* Receive DMA Enable bit */
195 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
196 /* Transmit DMA Enable bit */
197 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
198 
199 /*
200  * SSP Integration Test control Register - SSP_ITCR
201  */
202 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
203 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
204 
205 /*
206  * SSP Integration Test Input Register - SSP_ITIP
207  */
208 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
209 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
210 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
211 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
212 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
213 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
214 
215 /*
216  * SSP Integration Test output Register - SSP_ITOP
217  */
218 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
219 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
220 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
221 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
222 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
223 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
224 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
225 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
226 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
227 #define ITOP_MASK_INTR			 (0x1UL << 9)
228 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
229 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
230 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
231 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
232 
233 /*
234  * SSP Test Data Register - SSP_TDR
235  */
236 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
237 
238 /*
239  * Message State
240  * we use the spi_message.state (void *) pointer to
241  * hold a single state value, that's why all this
242  * (void *) casting is done here.
243  */
244 #define STATE_START			((void *) 0)
245 #define STATE_RUNNING			((void *) 1)
246 #define STATE_DONE			((void *) 2)
247 #define STATE_ERROR			((void *) -1)
248 
249 /*
250  * SSP State - Whether Enabled or Disabled
251  */
252 #define SSP_DISABLED			(0)
253 #define SSP_ENABLED			(1)
254 
255 /*
256  * SSP DMA State - Whether DMA Enabled or Disabled
257  */
258 #define SSP_DMA_DISABLED		(0)
259 #define SSP_DMA_ENABLED			(1)
260 
261 /*
262  * SSP Clock Defaults
263  */
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
266 
267 /*
268  * SSP Clock Parameter ranges
269  */
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
272 #define SCR_MIN 0x00
273 #define SCR_MAX 0xFF
274 
275 /*
276  * SSP Interrupt related Macros
277  */
278 #define DEFAULT_SSP_REG_IMSC  0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
281 
282 #define CLEAR_ALL_INTERRUPTS  0x3
283 
284 #define SPI_POLLING_TIMEOUT 1000
285 
286 /*
287  * The type of reading going on on this chip
288  */
289 enum ssp_reading {
290 	READING_NULL,
291 	READING_U8,
292 	READING_U16,
293 	READING_U32
294 };
295 
296 /**
297  * The type of writing going on on this chip
298  */
299 enum ssp_writing {
300 	WRITING_NULL,
301 	WRITING_U8,
302 	WRITING_U16,
303 	WRITING_U32
304 };
305 
306 /**
307  * struct vendor_data - vendor-specific config parameters
308  * for PL022 derivates
309  * @fifodepth: depth of FIFOs (both)
310  * @max_bpw: maximum number of bits per word
311  * @unidir: supports unidirection transfers
312  * @extended_cr: 32 bit wide control register 0 with extra
313  * features and extra features in CR1 as found in the ST variants
314  * @pl023: supports a subset of the ST extensions called "PL023"
315  */
316 struct vendor_data {
317 	int fifodepth;
318 	int max_bpw;
319 	bool unidir;
320 	bool extended_cr;
321 	bool pl023;
322 	bool loopback;
323 };
324 
325 /**
326  * struct pl022 - This is the private SSP driver data structure
327  * @adev: AMBA device model hookup
328  * @vendor: vendor data for the IP block
329  * @phybase: the physical memory where the SSP device resides
330  * @virtbase: the virtual memory where the SSP is mapped
331  * @clk: outgoing clock "SPICLK" for the SPI bus
332  * @master: SPI framework hookup
333  * @master_info: controller-specific data from machine setup
334  * @kworker: thread struct for message pump
335  * @kworker_task: pointer to task for message pump kworker thread
336  * @pump_messages: work struct for scheduling work to the message pump
337  * @queue_lock: spinlock to syncronise access to message queue
338  * @queue: message queue
339  * @busy: message pump is busy
340  * @running: message pump is running
341  * @pump_transfers: Tasklet used in Interrupt Transfer mode
342  * @cur_msg: Pointer to current spi_message being processed
343  * @cur_transfer: Pointer to current spi_transfer
344  * @cur_chip: pointer to current clients chip(assigned from controller_state)
345  * @next_msg_cs_active: the next message in the queue has been examined
346  *  and it was found that it uses the same chip select as the previous
347  *  message, so we left it active after the previous transfer, and it's
348  *  active already.
349  * @tx: current position in TX buffer to be read
350  * @tx_end: end position in TX buffer to be read
351  * @rx: current position in RX buffer to be written
352  * @rx_end: end position in RX buffer to be written
353  * @read: the type of read currently going on
354  * @write: the type of write currently going on
355  * @exp_fifo_level: expected FIFO level
356  * @dma_rx_channel: optional channel for RX DMA
357  * @dma_tx_channel: optional channel for TX DMA
358  * @sgt_rx: scattertable for the RX transfer
359  * @sgt_tx: scattertable for the TX transfer
360  * @dummypage: a dummy page used for driving data on the bus with DMA
361  * @cur_cs: current chip select (gpio)
362  * @chipselects: list of chipselects (gpios)
363  */
364 struct pl022 {
365 	struct amba_device		*adev;
366 	struct vendor_data		*vendor;
367 	resource_size_t			phybase;
368 	void __iomem			*virtbase;
369 	struct clk			*clk;
370 	struct spi_master		*master;
371 	struct pl022_ssp_controller	*master_info;
372 	/* Message per-transfer pump */
373 	struct tasklet_struct		pump_transfers;
374 	struct spi_message		*cur_msg;
375 	struct spi_transfer		*cur_transfer;
376 	struct chip_data		*cur_chip;
377 	bool				next_msg_cs_active;
378 	void				*tx;
379 	void				*tx_end;
380 	void				*rx;
381 	void				*rx_end;
382 	enum ssp_reading		read;
383 	enum ssp_writing		write;
384 	u32				exp_fifo_level;
385 	enum ssp_rx_level_trig		rx_lev_trig;
386 	enum ssp_tx_level_trig		tx_lev_trig;
387 	/* DMA settings */
388 #ifdef CONFIG_DMA_ENGINE
389 	struct dma_chan			*dma_rx_channel;
390 	struct dma_chan			*dma_tx_channel;
391 	struct sg_table			sgt_rx;
392 	struct sg_table			sgt_tx;
393 	char				*dummypage;
394 	bool				dma_running;
395 #endif
396 	int cur_cs;
397 	int *chipselects;
398 };
399 
400 /**
401  * struct chip_data - To maintain runtime state of SSP for each client chip
402  * @cr0: Value of control register CR0 of SSP - on later ST variants this
403  *       register is 32 bits wide rather than just 16
404  * @cr1: Value of control register CR1 of SSP
405  * @dmacr: Value of DMA control Register of SSP
406  * @cpsr: Value of Clock prescale register
407  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
408  * @enable_dma: Whether to enable DMA or not
409  * @read: function ptr to be used to read when doing xfer for this chip
410  * @write: function ptr to be used to write when doing xfer for this chip
411  * @cs_control: chip select callback provided by chip
412  * @xfer_type: polling/interrupt/DMA
413  *
414  * Runtime state of the SSP controller, maintained per chip,
415  * This would be set according to the current message that would be served
416  */
417 struct chip_data {
418 	u32 cr0;
419 	u16 cr1;
420 	u16 dmacr;
421 	u16 cpsr;
422 	u8 n_bytes;
423 	bool enable_dma;
424 	enum ssp_reading read;
425 	enum ssp_writing write;
426 	void (*cs_control) (u32 command);
427 	int xfer_type;
428 };
429 
430 /**
431  * null_cs_control - Dummy chip select function
432  * @command: select/delect the chip
433  *
434  * If no chip select function is provided by client this is used as dummy
435  * chip select
436  */
437 static void null_cs_control(u32 command)
438 {
439 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
440 }
441 
442 static void pl022_cs_control(struct pl022 *pl022, u32 command)
443 {
444 	if (gpio_is_valid(pl022->cur_cs))
445 		gpio_set_value(pl022->cur_cs, command);
446 	else
447 		pl022->cur_chip->cs_control(command);
448 }
449 
450 /**
451  * giveback - current spi_message is over, schedule next message and call
452  * callback of this message. Assumes that caller already
453  * set message->status; dma and pio irqs are blocked
454  * @pl022: SSP driver private data structure
455  */
456 static void giveback(struct pl022 *pl022)
457 {
458 	struct spi_transfer *last_transfer;
459 	pl022->next_msg_cs_active = false;
460 
461 	last_transfer = list_entry(pl022->cur_msg->transfers.prev,
462 					struct spi_transfer,
463 					transfer_list);
464 
465 	/* Delay if requested before any change in chip select */
466 	if (last_transfer->delay_usecs)
467 		/*
468 		 * FIXME: This runs in interrupt context.
469 		 * Is this really smart?
470 		 */
471 		udelay(last_transfer->delay_usecs);
472 
473 	if (!last_transfer->cs_change) {
474 		struct spi_message *next_msg;
475 
476 		/*
477 		 * cs_change was not set. We can keep the chip select
478 		 * enabled if there is message in the queue and it is
479 		 * for the same spi device.
480 		 *
481 		 * We cannot postpone this until pump_messages, because
482 		 * after calling msg->complete (below) the driver that
483 		 * sent the current message could be unloaded, which
484 		 * could invalidate the cs_control() callback...
485 		 */
486 		/* get a pointer to the next message, if any */
487 		next_msg = spi_get_next_queued_message(pl022->master);
488 
489 		/*
490 		 * see if the next and current messages point
491 		 * to the same spi device.
492 		 */
493 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
494 			next_msg = NULL;
495 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
496 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
497 		else
498 			pl022->next_msg_cs_active = true;
499 
500 	}
501 
502 	pl022->cur_msg = NULL;
503 	pl022->cur_transfer = NULL;
504 	pl022->cur_chip = NULL;
505 	spi_finalize_current_message(pl022->master);
506 
507 	/* disable the SPI/SSP operation */
508 	writew((readw(SSP_CR1(pl022->virtbase)) &
509 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
510 
511 }
512 
513 /**
514  * flush - flush the FIFO to reach a clean state
515  * @pl022: SSP driver private data structure
516  */
517 static int flush(struct pl022 *pl022)
518 {
519 	unsigned long limit = loops_per_jiffy << 1;
520 
521 	dev_dbg(&pl022->adev->dev, "flush\n");
522 	do {
523 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
524 			readw(SSP_DR(pl022->virtbase));
525 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
526 
527 	pl022->exp_fifo_level = 0;
528 
529 	return limit;
530 }
531 
532 /**
533  * restore_state - Load configuration of current chip
534  * @pl022: SSP driver private data structure
535  */
536 static void restore_state(struct pl022 *pl022)
537 {
538 	struct chip_data *chip = pl022->cur_chip;
539 
540 	if (pl022->vendor->extended_cr)
541 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
542 	else
543 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
544 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
545 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
546 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
547 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
548 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
549 }
550 
551 /*
552  * Default SSP Register Values
553  */
554 #define DEFAULT_SSP_REG_CR0 ( \
555 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
556 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
557 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
558 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
559 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
560 )
561 
562 /* ST versions have slightly different bit layout */
563 #define DEFAULT_SSP_REG_CR0_ST ( \
564 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
565 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
566 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
567 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
568 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
569 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
570 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
571 )
572 
573 /* The PL023 version is slightly different again */
574 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
575 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
576 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
577 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
578 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
579 )
580 
581 #define DEFAULT_SSP_REG_CR1 ( \
582 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
583 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
584 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
585 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
586 )
587 
588 /* ST versions extend this register to use all 16 bits */
589 #define DEFAULT_SSP_REG_CR1_ST ( \
590 	DEFAULT_SSP_REG_CR1 | \
591 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
592 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
593 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
594 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
595 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
596 )
597 
598 /*
599  * The PL023 variant has further differences: no loopback mode, no microwire
600  * support, and a new clock feedback delay setting.
601  */
602 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
603 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
604 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
605 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
606 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
607 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
608 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
609 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
610 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
611 )
612 
613 #define DEFAULT_SSP_REG_CPSR ( \
614 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
615 )
616 
617 #define DEFAULT_SSP_REG_DMACR (\
618 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
619 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
620 )
621 
622 /**
623  * load_ssp_default_config - Load default configuration for SSP
624  * @pl022: SSP driver private data structure
625  */
626 static void load_ssp_default_config(struct pl022 *pl022)
627 {
628 	if (pl022->vendor->pl023) {
629 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
630 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
631 	} else if (pl022->vendor->extended_cr) {
632 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
633 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
634 	} else {
635 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
636 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
637 	}
638 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
639 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
640 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
641 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
642 }
643 
644 /**
645  * This will write to TX and read from RX according to the parameters
646  * set in pl022.
647  */
648 static void readwriter(struct pl022 *pl022)
649 {
650 
651 	/*
652 	 * The FIFO depth is different between primecell variants.
653 	 * I believe filling in too much in the FIFO might cause
654 	 * errons in 8bit wide transfers on ARM variants (just 8 words
655 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
656 	 *
657 	 * To prevent this issue, the TX FIFO is only filled to the
658 	 * unused RX FIFO fill length, regardless of what the TX
659 	 * FIFO status flag indicates.
660 	 */
661 	dev_dbg(&pl022->adev->dev,
662 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
663 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
664 
665 	/* Read as much as you can */
666 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
667 	       && (pl022->rx < pl022->rx_end)) {
668 		switch (pl022->read) {
669 		case READING_NULL:
670 			readw(SSP_DR(pl022->virtbase));
671 			break;
672 		case READING_U8:
673 			*(u8 *) (pl022->rx) =
674 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
675 			break;
676 		case READING_U16:
677 			*(u16 *) (pl022->rx) =
678 				(u16) readw(SSP_DR(pl022->virtbase));
679 			break;
680 		case READING_U32:
681 			*(u32 *) (pl022->rx) =
682 				readl(SSP_DR(pl022->virtbase));
683 			break;
684 		}
685 		pl022->rx += (pl022->cur_chip->n_bytes);
686 		pl022->exp_fifo_level--;
687 	}
688 	/*
689 	 * Write as much as possible up to the RX FIFO size
690 	 */
691 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
692 	       && (pl022->tx < pl022->tx_end)) {
693 		switch (pl022->write) {
694 		case WRITING_NULL:
695 			writew(0x0, SSP_DR(pl022->virtbase));
696 			break;
697 		case WRITING_U8:
698 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
699 			break;
700 		case WRITING_U16:
701 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
702 			break;
703 		case WRITING_U32:
704 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
705 			break;
706 		}
707 		pl022->tx += (pl022->cur_chip->n_bytes);
708 		pl022->exp_fifo_level++;
709 		/*
710 		 * This inner reader takes care of things appearing in the RX
711 		 * FIFO as we're transmitting. This will happen a lot since the
712 		 * clock starts running when you put things into the TX FIFO,
713 		 * and then things are continuously clocked into the RX FIFO.
714 		 */
715 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
716 		       && (pl022->rx < pl022->rx_end)) {
717 			switch (pl022->read) {
718 			case READING_NULL:
719 				readw(SSP_DR(pl022->virtbase));
720 				break;
721 			case READING_U8:
722 				*(u8 *) (pl022->rx) =
723 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
724 				break;
725 			case READING_U16:
726 				*(u16 *) (pl022->rx) =
727 					(u16) readw(SSP_DR(pl022->virtbase));
728 				break;
729 			case READING_U32:
730 				*(u32 *) (pl022->rx) =
731 					readl(SSP_DR(pl022->virtbase));
732 				break;
733 			}
734 			pl022->rx += (pl022->cur_chip->n_bytes);
735 			pl022->exp_fifo_level--;
736 		}
737 	}
738 	/*
739 	 * When we exit here the TX FIFO should be full and the RX FIFO
740 	 * should be empty
741 	 */
742 }
743 
744 /**
745  * next_transfer - Move to the Next transfer in the current spi message
746  * @pl022: SSP driver private data structure
747  *
748  * This function moves though the linked list of spi transfers in the
749  * current spi message and returns with the state of current spi
750  * message i.e whether its last transfer is done(STATE_DONE) or
751  * Next transfer is ready(STATE_RUNNING)
752  */
753 static void *next_transfer(struct pl022 *pl022)
754 {
755 	struct spi_message *msg = pl022->cur_msg;
756 	struct spi_transfer *trans = pl022->cur_transfer;
757 
758 	/* Move to next transfer */
759 	if (trans->transfer_list.next != &msg->transfers) {
760 		pl022->cur_transfer =
761 		    list_entry(trans->transfer_list.next,
762 			       struct spi_transfer, transfer_list);
763 		return STATE_RUNNING;
764 	}
765 	return STATE_DONE;
766 }
767 
768 /*
769  * This DMA functionality is only compiled in if we have
770  * access to the generic DMA devices/DMA engine.
771  */
772 #ifdef CONFIG_DMA_ENGINE
773 static void unmap_free_dma_scatter(struct pl022 *pl022)
774 {
775 	/* Unmap and free the SG tables */
776 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
777 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
778 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
779 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
780 	sg_free_table(&pl022->sgt_rx);
781 	sg_free_table(&pl022->sgt_tx);
782 }
783 
784 static void dma_callback(void *data)
785 {
786 	struct pl022 *pl022 = data;
787 	struct spi_message *msg = pl022->cur_msg;
788 
789 	BUG_ON(!pl022->sgt_rx.sgl);
790 
791 #ifdef VERBOSE_DEBUG
792 	/*
793 	 * Optionally dump out buffers to inspect contents, this is
794 	 * good if you want to convince yourself that the loopback
795 	 * read/write contents are the same, when adopting to a new
796 	 * DMA engine.
797 	 */
798 	{
799 		struct scatterlist *sg;
800 		unsigned int i;
801 
802 		dma_sync_sg_for_cpu(&pl022->adev->dev,
803 				    pl022->sgt_rx.sgl,
804 				    pl022->sgt_rx.nents,
805 				    DMA_FROM_DEVICE);
806 
807 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
808 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
809 			print_hex_dump(KERN_ERR, "SPI RX: ",
810 				       DUMP_PREFIX_OFFSET,
811 				       16,
812 				       1,
813 				       sg_virt(sg),
814 				       sg_dma_len(sg),
815 				       1);
816 		}
817 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
818 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
819 			print_hex_dump(KERN_ERR, "SPI TX: ",
820 				       DUMP_PREFIX_OFFSET,
821 				       16,
822 				       1,
823 				       sg_virt(sg),
824 				       sg_dma_len(sg),
825 				       1);
826 		}
827 	}
828 #endif
829 
830 	unmap_free_dma_scatter(pl022);
831 
832 	/* Update total bytes transferred */
833 	msg->actual_length += pl022->cur_transfer->len;
834 	if (pl022->cur_transfer->cs_change)
835 		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
836 
837 	/* Move to next transfer */
838 	msg->state = next_transfer(pl022);
839 	tasklet_schedule(&pl022->pump_transfers);
840 }
841 
842 static void setup_dma_scatter(struct pl022 *pl022,
843 			      void *buffer,
844 			      unsigned int length,
845 			      struct sg_table *sgtab)
846 {
847 	struct scatterlist *sg;
848 	int bytesleft = length;
849 	void *bufp = buffer;
850 	int mapbytes;
851 	int i;
852 
853 	if (buffer) {
854 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
855 			/*
856 			 * If there are less bytes left than what fits
857 			 * in the current page (plus page alignment offset)
858 			 * we just feed in this, else we stuff in as much
859 			 * as we can.
860 			 */
861 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
862 				mapbytes = bytesleft;
863 			else
864 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
865 			sg_set_page(sg, virt_to_page(bufp),
866 				    mapbytes, offset_in_page(bufp));
867 			bufp += mapbytes;
868 			bytesleft -= mapbytes;
869 			dev_dbg(&pl022->adev->dev,
870 				"set RX/TX target page @ %p, %d bytes, %d left\n",
871 				bufp, mapbytes, bytesleft);
872 		}
873 	} else {
874 		/* Map the dummy buffer on every page */
875 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
876 			if (bytesleft < PAGE_SIZE)
877 				mapbytes = bytesleft;
878 			else
879 				mapbytes = PAGE_SIZE;
880 			sg_set_page(sg, virt_to_page(pl022->dummypage),
881 				    mapbytes, 0);
882 			bytesleft -= mapbytes;
883 			dev_dbg(&pl022->adev->dev,
884 				"set RX/TX to dummy page %d bytes, %d left\n",
885 				mapbytes, bytesleft);
886 
887 		}
888 	}
889 	BUG_ON(bytesleft);
890 }
891 
892 /**
893  * configure_dma - configures the channels for the next transfer
894  * @pl022: SSP driver's private data structure
895  */
896 static int configure_dma(struct pl022 *pl022)
897 {
898 	struct dma_slave_config rx_conf = {
899 		.src_addr = SSP_DR(pl022->phybase),
900 		.direction = DMA_DEV_TO_MEM,
901 		.device_fc = false,
902 	};
903 	struct dma_slave_config tx_conf = {
904 		.dst_addr = SSP_DR(pl022->phybase),
905 		.direction = DMA_MEM_TO_DEV,
906 		.device_fc = false,
907 	};
908 	unsigned int pages;
909 	int ret;
910 	int rx_sglen, tx_sglen;
911 	struct dma_chan *rxchan = pl022->dma_rx_channel;
912 	struct dma_chan *txchan = pl022->dma_tx_channel;
913 	struct dma_async_tx_descriptor *rxdesc;
914 	struct dma_async_tx_descriptor *txdesc;
915 
916 	/* Check that the channels are available */
917 	if (!rxchan || !txchan)
918 		return -ENODEV;
919 
920 	/*
921 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
922 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
923 	 * not trigger on 2 elements this needs explicit mapping rather than
924 	 * calculation.
925 	 */
926 	switch (pl022->rx_lev_trig) {
927 	case SSP_RX_1_OR_MORE_ELEM:
928 		rx_conf.src_maxburst = 1;
929 		break;
930 	case SSP_RX_4_OR_MORE_ELEM:
931 		rx_conf.src_maxburst = 4;
932 		break;
933 	case SSP_RX_8_OR_MORE_ELEM:
934 		rx_conf.src_maxburst = 8;
935 		break;
936 	case SSP_RX_16_OR_MORE_ELEM:
937 		rx_conf.src_maxburst = 16;
938 		break;
939 	case SSP_RX_32_OR_MORE_ELEM:
940 		rx_conf.src_maxburst = 32;
941 		break;
942 	default:
943 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
944 		break;
945 	}
946 
947 	switch (pl022->tx_lev_trig) {
948 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
949 		tx_conf.dst_maxburst = 1;
950 		break;
951 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
952 		tx_conf.dst_maxburst = 4;
953 		break;
954 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
955 		tx_conf.dst_maxburst = 8;
956 		break;
957 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
958 		tx_conf.dst_maxburst = 16;
959 		break;
960 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
961 		tx_conf.dst_maxburst = 32;
962 		break;
963 	default:
964 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
965 		break;
966 	}
967 
968 	switch (pl022->read) {
969 	case READING_NULL:
970 		/* Use the same as for writing */
971 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
972 		break;
973 	case READING_U8:
974 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
975 		break;
976 	case READING_U16:
977 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
978 		break;
979 	case READING_U32:
980 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
981 		break;
982 	}
983 
984 	switch (pl022->write) {
985 	case WRITING_NULL:
986 		/* Use the same as for reading */
987 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
988 		break;
989 	case WRITING_U8:
990 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
991 		break;
992 	case WRITING_U16:
993 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
994 		break;
995 	case WRITING_U32:
996 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
997 		break;
998 	}
999 
1000 	/* SPI pecularity: we need to read and write the same width */
1001 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1002 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1003 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1004 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1005 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1006 
1007 	dmaengine_slave_config(rxchan, &rx_conf);
1008 	dmaengine_slave_config(txchan, &tx_conf);
1009 
1010 	/* Create sglists for the transfers */
1011 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1012 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1013 
1014 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1015 	if (ret)
1016 		goto err_alloc_rx_sg;
1017 
1018 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1019 	if (ret)
1020 		goto err_alloc_tx_sg;
1021 
1022 	/* Fill in the scatterlists for the RX+TX buffers */
1023 	setup_dma_scatter(pl022, pl022->rx,
1024 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1025 	setup_dma_scatter(pl022, pl022->tx,
1026 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1027 
1028 	/* Map DMA buffers */
1029 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1030 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1031 	if (!rx_sglen)
1032 		goto err_rx_sgmap;
1033 
1034 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1035 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1036 	if (!tx_sglen)
1037 		goto err_tx_sgmap;
1038 
1039 	/* Send both scatterlists */
1040 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1041 				      pl022->sgt_rx.sgl,
1042 				      rx_sglen,
1043 				      DMA_DEV_TO_MEM,
1044 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1045 	if (!rxdesc)
1046 		goto err_rxdesc;
1047 
1048 	txdesc = dmaengine_prep_slave_sg(txchan,
1049 				      pl022->sgt_tx.sgl,
1050 				      tx_sglen,
1051 				      DMA_MEM_TO_DEV,
1052 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1053 	if (!txdesc)
1054 		goto err_txdesc;
1055 
1056 	/* Put the callback on the RX transfer only, that should finish last */
1057 	rxdesc->callback = dma_callback;
1058 	rxdesc->callback_param = pl022;
1059 
1060 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1061 	dmaengine_submit(rxdesc);
1062 	dmaengine_submit(txdesc);
1063 	dma_async_issue_pending(rxchan);
1064 	dma_async_issue_pending(txchan);
1065 	pl022->dma_running = true;
1066 
1067 	return 0;
1068 
1069 err_txdesc:
1070 	dmaengine_terminate_all(txchan);
1071 err_rxdesc:
1072 	dmaengine_terminate_all(rxchan);
1073 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1074 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1075 err_tx_sgmap:
1076 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1077 		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1078 err_rx_sgmap:
1079 	sg_free_table(&pl022->sgt_tx);
1080 err_alloc_tx_sg:
1081 	sg_free_table(&pl022->sgt_rx);
1082 err_alloc_rx_sg:
1083 	return -ENOMEM;
1084 }
1085 
1086 static int __devinit pl022_dma_probe(struct pl022 *pl022)
1087 {
1088 	dma_cap_mask_t mask;
1089 
1090 	/* Try to acquire a generic DMA engine slave channel */
1091 	dma_cap_zero(mask);
1092 	dma_cap_set(DMA_SLAVE, mask);
1093 	/*
1094 	 * We need both RX and TX channels to do DMA, else do none
1095 	 * of them.
1096 	 */
1097 	pl022->dma_rx_channel = dma_request_channel(mask,
1098 					    pl022->master_info->dma_filter,
1099 					    pl022->master_info->dma_rx_param);
1100 	if (!pl022->dma_rx_channel) {
1101 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1102 		goto err_no_rxchan;
1103 	}
1104 
1105 	pl022->dma_tx_channel = dma_request_channel(mask,
1106 					    pl022->master_info->dma_filter,
1107 					    pl022->master_info->dma_tx_param);
1108 	if (!pl022->dma_tx_channel) {
1109 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1110 		goto err_no_txchan;
1111 	}
1112 
1113 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1114 	if (!pl022->dummypage) {
1115 		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1116 		goto err_no_dummypage;
1117 	}
1118 
1119 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1120 		 dma_chan_name(pl022->dma_rx_channel),
1121 		 dma_chan_name(pl022->dma_tx_channel));
1122 
1123 	return 0;
1124 
1125 err_no_dummypage:
1126 	dma_release_channel(pl022->dma_tx_channel);
1127 err_no_txchan:
1128 	dma_release_channel(pl022->dma_rx_channel);
1129 	pl022->dma_rx_channel = NULL;
1130 err_no_rxchan:
1131 	dev_err(&pl022->adev->dev,
1132 			"Failed to work in dma mode, work without dma!\n");
1133 	return -ENODEV;
1134 }
1135 
1136 static void terminate_dma(struct pl022 *pl022)
1137 {
1138 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1139 	struct dma_chan *txchan = pl022->dma_tx_channel;
1140 
1141 	dmaengine_terminate_all(rxchan);
1142 	dmaengine_terminate_all(txchan);
1143 	unmap_free_dma_scatter(pl022);
1144 	pl022->dma_running = false;
1145 }
1146 
1147 static void pl022_dma_remove(struct pl022 *pl022)
1148 {
1149 	if (pl022->dma_running)
1150 		terminate_dma(pl022);
1151 	if (pl022->dma_tx_channel)
1152 		dma_release_channel(pl022->dma_tx_channel);
1153 	if (pl022->dma_rx_channel)
1154 		dma_release_channel(pl022->dma_rx_channel);
1155 	kfree(pl022->dummypage);
1156 }
1157 
1158 #else
1159 static inline int configure_dma(struct pl022 *pl022)
1160 {
1161 	return -ENODEV;
1162 }
1163 
1164 static inline int pl022_dma_probe(struct pl022 *pl022)
1165 {
1166 	return 0;
1167 }
1168 
1169 static inline void pl022_dma_remove(struct pl022 *pl022)
1170 {
1171 }
1172 #endif
1173 
1174 /**
1175  * pl022_interrupt_handler - Interrupt handler for SSP controller
1176  *
1177  * This function handles interrupts generated for an interrupt based transfer.
1178  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1179  * current message's state as STATE_ERROR and schedule the tasklet
1180  * pump_transfers which will do the postprocessing of the current message by
1181  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1182  * more data, and writes data in TX FIFO till it is not full. If we complete
1183  * the transfer we move to the next transfer and schedule the tasklet.
1184  */
1185 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1186 {
1187 	struct pl022 *pl022 = dev_id;
1188 	struct spi_message *msg = pl022->cur_msg;
1189 	u16 irq_status = 0;
1190 	u16 flag = 0;
1191 
1192 	if (unlikely(!msg)) {
1193 		dev_err(&pl022->adev->dev,
1194 			"bad message state in interrupt handler");
1195 		/* Never fail */
1196 		return IRQ_HANDLED;
1197 	}
1198 
1199 	/* Read the Interrupt Status Register */
1200 	irq_status = readw(SSP_MIS(pl022->virtbase));
1201 
1202 	if (unlikely(!irq_status))
1203 		return IRQ_NONE;
1204 
1205 	/*
1206 	 * This handles the FIFO interrupts, the timeout
1207 	 * interrupts are flatly ignored, they cannot be
1208 	 * trusted.
1209 	 */
1210 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1211 		/*
1212 		 * Overrun interrupt - bail out since our Data has been
1213 		 * corrupted
1214 		 */
1215 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1216 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1217 			dev_err(&pl022->adev->dev,
1218 				"RXFIFO is full\n");
1219 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1220 			dev_err(&pl022->adev->dev,
1221 				"TXFIFO is full\n");
1222 
1223 		/*
1224 		 * Disable and clear interrupts, disable SSP,
1225 		 * mark message with bad status so it can be
1226 		 * retried.
1227 		 */
1228 		writew(DISABLE_ALL_INTERRUPTS,
1229 		       SSP_IMSC(pl022->virtbase));
1230 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1231 		writew((readw(SSP_CR1(pl022->virtbase)) &
1232 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1233 		msg->state = STATE_ERROR;
1234 
1235 		/* Schedule message queue handler */
1236 		tasklet_schedule(&pl022->pump_transfers);
1237 		return IRQ_HANDLED;
1238 	}
1239 
1240 	readwriter(pl022);
1241 
1242 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1243 		flag = 1;
1244 		/* Disable Transmit interrupt, enable receive interrupt */
1245 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1246 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1247 		       SSP_IMSC(pl022->virtbase));
1248 	}
1249 
1250 	/*
1251 	 * Since all transactions must write as much as shall be read,
1252 	 * we can conclude the entire transaction once RX is complete.
1253 	 * At this point, all TX will always be finished.
1254 	 */
1255 	if (pl022->rx >= pl022->rx_end) {
1256 		writew(DISABLE_ALL_INTERRUPTS,
1257 		       SSP_IMSC(pl022->virtbase));
1258 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1259 		if (unlikely(pl022->rx > pl022->rx_end)) {
1260 			dev_warn(&pl022->adev->dev, "read %u surplus "
1261 				 "bytes (did you request an odd "
1262 				 "number of bytes on a 16bit bus?)\n",
1263 				 (u32) (pl022->rx - pl022->rx_end));
1264 		}
1265 		/* Update total bytes transferred */
1266 		msg->actual_length += pl022->cur_transfer->len;
1267 		if (pl022->cur_transfer->cs_change)
1268 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1269 		/* Move to next transfer */
1270 		msg->state = next_transfer(pl022);
1271 		tasklet_schedule(&pl022->pump_transfers);
1272 		return IRQ_HANDLED;
1273 	}
1274 
1275 	return IRQ_HANDLED;
1276 }
1277 
1278 /**
1279  * This sets up the pointers to memory for the next message to
1280  * send out on the SPI bus.
1281  */
1282 static int set_up_next_transfer(struct pl022 *pl022,
1283 				struct spi_transfer *transfer)
1284 {
1285 	int residue;
1286 
1287 	/* Sanity check the message for this bus width */
1288 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1289 	if (unlikely(residue != 0)) {
1290 		dev_err(&pl022->adev->dev,
1291 			"message of %u bytes to transmit but the current "
1292 			"chip bus has a data width of %u bytes!\n",
1293 			pl022->cur_transfer->len,
1294 			pl022->cur_chip->n_bytes);
1295 		dev_err(&pl022->adev->dev, "skipping this message\n");
1296 		return -EIO;
1297 	}
1298 	pl022->tx = (void *)transfer->tx_buf;
1299 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1300 	pl022->rx = (void *)transfer->rx_buf;
1301 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1302 	pl022->write =
1303 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1304 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1305 	return 0;
1306 }
1307 
1308 /**
1309  * pump_transfers - Tasklet function which schedules next transfer
1310  * when running in interrupt or DMA transfer mode.
1311  * @data: SSP driver private data structure
1312  *
1313  */
1314 static void pump_transfers(unsigned long data)
1315 {
1316 	struct pl022 *pl022 = (struct pl022 *) data;
1317 	struct spi_message *message = NULL;
1318 	struct spi_transfer *transfer = NULL;
1319 	struct spi_transfer *previous = NULL;
1320 
1321 	/* Get current state information */
1322 	message = pl022->cur_msg;
1323 	transfer = pl022->cur_transfer;
1324 
1325 	/* Handle for abort */
1326 	if (message->state == STATE_ERROR) {
1327 		message->status = -EIO;
1328 		giveback(pl022);
1329 		return;
1330 	}
1331 
1332 	/* Handle end of message */
1333 	if (message->state == STATE_DONE) {
1334 		message->status = 0;
1335 		giveback(pl022);
1336 		return;
1337 	}
1338 
1339 	/* Delay if requested at end of transfer before CS change */
1340 	if (message->state == STATE_RUNNING) {
1341 		previous = list_entry(transfer->transfer_list.prev,
1342 					struct spi_transfer,
1343 					transfer_list);
1344 		if (previous->delay_usecs)
1345 			/*
1346 			 * FIXME: This runs in interrupt context.
1347 			 * Is this really smart?
1348 			 */
1349 			udelay(previous->delay_usecs);
1350 
1351 		/* Reselect chip select only if cs_change was requested */
1352 		if (previous->cs_change)
1353 			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1354 	} else {
1355 		/* STATE_START */
1356 		message->state = STATE_RUNNING;
1357 	}
1358 
1359 	if (set_up_next_transfer(pl022, transfer)) {
1360 		message->state = STATE_ERROR;
1361 		message->status = -EIO;
1362 		giveback(pl022);
1363 		return;
1364 	}
1365 	/* Flush the FIFOs and let's go! */
1366 	flush(pl022);
1367 
1368 	if (pl022->cur_chip->enable_dma) {
1369 		if (configure_dma(pl022)) {
1370 			dev_dbg(&pl022->adev->dev,
1371 				"configuration of DMA failed, fall back to interrupt mode\n");
1372 			goto err_config_dma;
1373 		}
1374 		return;
1375 	}
1376 
1377 err_config_dma:
1378 	/* enable all interrupts except RX */
1379 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1380 }
1381 
1382 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1383 {
1384 	/*
1385 	 * Default is to enable all interrupts except RX -
1386 	 * this will be enabled once TX is complete
1387 	 */
1388 	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1389 
1390 	/* Enable target chip, if not already active */
1391 	if (!pl022->next_msg_cs_active)
1392 		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1393 
1394 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1395 		/* Error path */
1396 		pl022->cur_msg->state = STATE_ERROR;
1397 		pl022->cur_msg->status = -EIO;
1398 		giveback(pl022);
1399 		return;
1400 	}
1401 	/* If we're using DMA, set up DMA here */
1402 	if (pl022->cur_chip->enable_dma) {
1403 		/* Configure DMA transfer */
1404 		if (configure_dma(pl022)) {
1405 			dev_dbg(&pl022->adev->dev,
1406 				"configuration of DMA failed, fall back to interrupt mode\n");
1407 			goto err_config_dma;
1408 		}
1409 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1410 		irqflags = DISABLE_ALL_INTERRUPTS;
1411 	}
1412 err_config_dma:
1413 	/* Enable SSP, turn on interrupts */
1414 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1415 	       SSP_CR1(pl022->virtbase));
1416 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1417 }
1418 
1419 static void do_polling_transfer(struct pl022 *pl022)
1420 {
1421 	struct spi_message *message = NULL;
1422 	struct spi_transfer *transfer = NULL;
1423 	struct spi_transfer *previous = NULL;
1424 	struct chip_data *chip;
1425 	unsigned long time, timeout;
1426 
1427 	chip = pl022->cur_chip;
1428 	message = pl022->cur_msg;
1429 
1430 	while (message->state != STATE_DONE) {
1431 		/* Handle for abort */
1432 		if (message->state == STATE_ERROR)
1433 			break;
1434 		transfer = pl022->cur_transfer;
1435 
1436 		/* Delay if requested at end of transfer */
1437 		if (message->state == STATE_RUNNING) {
1438 			previous =
1439 			    list_entry(transfer->transfer_list.prev,
1440 				       struct spi_transfer, transfer_list);
1441 			if (previous->delay_usecs)
1442 				udelay(previous->delay_usecs);
1443 			if (previous->cs_change)
1444 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1445 		} else {
1446 			/* STATE_START */
1447 			message->state = STATE_RUNNING;
1448 			if (!pl022->next_msg_cs_active)
1449 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1450 		}
1451 
1452 		/* Configuration Changing Per Transfer */
1453 		if (set_up_next_transfer(pl022, transfer)) {
1454 			/* Error path */
1455 			message->state = STATE_ERROR;
1456 			break;
1457 		}
1458 		/* Flush FIFOs and enable SSP */
1459 		flush(pl022);
1460 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1461 		       SSP_CR1(pl022->virtbase));
1462 
1463 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1464 
1465 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1466 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1467 			time = jiffies;
1468 			readwriter(pl022);
1469 			if (time_after(time, timeout)) {
1470 				dev_warn(&pl022->adev->dev,
1471 				"%s: timeout!\n", __func__);
1472 				message->state = STATE_ERROR;
1473 				goto out;
1474 			}
1475 			cpu_relax();
1476 		}
1477 
1478 		/* Update total byte transferred */
1479 		message->actual_length += pl022->cur_transfer->len;
1480 		if (pl022->cur_transfer->cs_change)
1481 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1482 		/* Move to next transfer */
1483 		message->state = next_transfer(pl022);
1484 	}
1485 out:
1486 	/* Handle end of message */
1487 	if (message->state == STATE_DONE)
1488 		message->status = 0;
1489 	else
1490 		message->status = -EIO;
1491 
1492 	giveback(pl022);
1493 	return;
1494 }
1495 
1496 static int pl022_transfer_one_message(struct spi_master *master,
1497 				      struct spi_message *msg)
1498 {
1499 	struct pl022 *pl022 = spi_master_get_devdata(master);
1500 
1501 	/* Initial message state */
1502 	pl022->cur_msg = msg;
1503 	msg->state = STATE_START;
1504 
1505 	pl022->cur_transfer = list_entry(msg->transfers.next,
1506 					 struct spi_transfer, transfer_list);
1507 
1508 	/* Setup the SPI using the per chip configuration */
1509 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1510 	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1511 
1512 	restore_state(pl022);
1513 	flush(pl022);
1514 
1515 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1516 		do_polling_transfer(pl022);
1517 	else
1518 		do_interrupt_dma_transfer(pl022);
1519 
1520 	return 0;
1521 }
1522 
1523 static int pl022_prepare_transfer_hardware(struct spi_master *master)
1524 {
1525 	struct pl022 *pl022 = spi_master_get_devdata(master);
1526 
1527 	/*
1528 	 * Just make sure we have all we need to run the transfer by syncing
1529 	 * with the runtime PM framework.
1530 	 */
1531 	pm_runtime_get_sync(&pl022->adev->dev);
1532 	return 0;
1533 }
1534 
1535 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1536 {
1537 	struct pl022 *pl022 = spi_master_get_devdata(master);
1538 
1539 	/* nothing more to do - disable spi/ssp and power off */
1540 	writew((readw(SSP_CR1(pl022->virtbase)) &
1541 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1542 
1543 	if (pl022->master_info->autosuspend_delay > 0) {
1544 		pm_runtime_mark_last_busy(&pl022->adev->dev);
1545 		pm_runtime_put_autosuspend(&pl022->adev->dev);
1546 	} else {
1547 		pm_runtime_put(&pl022->adev->dev);
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static int verify_controller_parameters(struct pl022 *pl022,
1554 				struct pl022_config_chip const *chip_info)
1555 {
1556 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1557 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1558 		dev_err(&pl022->adev->dev,
1559 			"interface is configured incorrectly\n");
1560 		return -EINVAL;
1561 	}
1562 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1563 	    (!pl022->vendor->unidir)) {
1564 		dev_err(&pl022->adev->dev,
1565 			"unidirectional mode not supported in this "
1566 			"hardware version\n");
1567 		return -EINVAL;
1568 	}
1569 	if ((chip_info->hierarchy != SSP_MASTER)
1570 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1571 		dev_err(&pl022->adev->dev,
1572 			"hierarchy is configured incorrectly\n");
1573 		return -EINVAL;
1574 	}
1575 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1576 	    && (chip_info->com_mode != DMA_TRANSFER)
1577 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1578 		dev_err(&pl022->adev->dev,
1579 			"Communication mode is configured incorrectly\n");
1580 		return -EINVAL;
1581 	}
1582 	switch (chip_info->rx_lev_trig) {
1583 	case SSP_RX_1_OR_MORE_ELEM:
1584 	case SSP_RX_4_OR_MORE_ELEM:
1585 	case SSP_RX_8_OR_MORE_ELEM:
1586 		/* These are always OK, all variants can handle this */
1587 		break;
1588 	case SSP_RX_16_OR_MORE_ELEM:
1589 		if (pl022->vendor->fifodepth < 16) {
1590 			dev_err(&pl022->adev->dev,
1591 			"RX FIFO Trigger Level is configured incorrectly\n");
1592 			return -EINVAL;
1593 		}
1594 		break;
1595 	case SSP_RX_32_OR_MORE_ELEM:
1596 		if (pl022->vendor->fifodepth < 32) {
1597 			dev_err(&pl022->adev->dev,
1598 			"RX FIFO Trigger Level is configured incorrectly\n");
1599 			return -EINVAL;
1600 		}
1601 		break;
1602 	default:
1603 		dev_err(&pl022->adev->dev,
1604 			"RX FIFO Trigger Level is configured incorrectly\n");
1605 		return -EINVAL;
1606 		break;
1607 	}
1608 	switch (chip_info->tx_lev_trig) {
1609 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1610 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1611 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1612 		/* These are always OK, all variants can handle this */
1613 		break;
1614 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1615 		if (pl022->vendor->fifodepth < 16) {
1616 			dev_err(&pl022->adev->dev,
1617 			"TX FIFO Trigger Level is configured incorrectly\n");
1618 			return -EINVAL;
1619 		}
1620 		break;
1621 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1622 		if (pl022->vendor->fifodepth < 32) {
1623 			dev_err(&pl022->adev->dev,
1624 			"TX FIFO Trigger Level is configured incorrectly\n");
1625 			return -EINVAL;
1626 		}
1627 		break;
1628 	default:
1629 		dev_err(&pl022->adev->dev,
1630 			"TX FIFO Trigger Level is configured incorrectly\n");
1631 		return -EINVAL;
1632 		break;
1633 	}
1634 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1635 		if ((chip_info->ctrl_len < SSP_BITS_4)
1636 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1637 			dev_err(&pl022->adev->dev,
1638 				"CTRL LEN is configured incorrectly\n");
1639 			return -EINVAL;
1640 		}
1641 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1642 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1643 			dev_err(&pl022->adev->dev,
1644 				"Wait State is configured incorrectly\n");
1645 			return -EINVAL;
1646 		}
1647 		/* Half duplex is only available in the ST Micro version */
1648 		if (pl022->vendor->extended_cr) {
1649 			if ((chip_info->duplex !=
1650 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1651 			    && (chip_info->duplex !=
1652 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1653 				dev_err(&pl022->adev->dev,
1654 					"Microwire duplex mode is configured incorrectly\n");
1655 				return -EINVAL;
1656 			}
1657 		} else {
1658 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1659 				dev_err(&pl022->adev->dev,
1660 					"Microwire half duplex mode requested,"
1661 					" but this is only available in the"
1662 					" ST version of PL022\n");
1663 			return -EINVAL;
1664 		}
1665 	}
1666 	return 0;
1667 }
1668 
1669 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1670 {
1671 	return rate / (cpsdvsr * (1 + scr));
1672 }
1673 
1674 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1675 				    ssp_clock_params * clk_freq)
1676 {
1677 	/* Lets calculate the frequency parameters */
1678 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1679 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1680 		best_scr = 0, tmp, found = 0;
1681 
1682 	rate = clk_get_rate(pl022->clk);
1683 	/* cpsdvscr = 2 & scr 0 */
1684 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1685 	/* cpsdvsr = 254 & scr = 255 */
1686 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1687 
1688 	if (freq > max_tclk)
1689 		dev_warn(&pl022->adev->dev,
1690 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1691 			max_tclk, freq);
1692 
1693 	if (freq < min_tclk) {
1694 		dev_err(&pl022->adev->dev,
1695 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1696 			freq, min_tclk);
1697 		return -EINVAL;
1698 	}
1699 
1700 	/*
1701 	 * best_freq will give closest possible available rate (<= requested
1702 	 * freq) for all values of scr & cpsdvsr.
1703 	 */
1704 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1705 		while (scr <= SCR_MAX) {
1706 			tmp = spi_rate(rate, cpsdvsr, scr);
1707 
1708 			if (tmp > freq) {
1709 				/* we need lower freq */
1710 				scr++;
1711 				continue;
1712 			}
1713 
1714 			/*
1715 			 * If found exact value, mark found and break.
1716 			 * If found more closer value, update and break.
1717 			 */
1718 			if (tmp > best_freq) {
1719 				best_freq = tmp;
1720 				best_cpsdvsr = cpsdvsr;
1721 				best_scr = scr;
1722 
1723 				if (tmp == freq)
1724 					found = 1;
1725 			}
1726 			/*
1727 			 * increased scr will give lower rates, which are not
1728 			 * required
1729 			 */
1730 			break;
1731 		}
1732 		cpsdvsr += 2;
1733 		scr = SCR_MIN;
1734 	}
1735 
1736 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1737 			freq);
1738 
1739 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1740 	clk_freq->scr = (u8) (best_scr & 0xFF);
1741 	dev_dbg(&pl022->adev->dev,
1742 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1743 		freq, best_freq);
1744 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1745 		clk_freq->cpsdvsr, clk_freq->scr);
1746 
1747 	return 0;
1748 }
1749 
1750 /*
1751  * A piece of default chip info unless the platform
1752  * supplies it.
1753  */
1754 static const struct pl022_config_chip pl022_default_chip_info = {
1755 	.com_mode = POLLING_TRANSFER,
1756 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1757 	.hierarchy = SSP_SLAVE,
1758 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1759 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1760 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1761 	.ctrl_len = SSP_BITS_8,
1762 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1763 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1764 	.cs_control = null_cs_control,
1765 };
1766 
1767 /**
1768  * pl022_setup - setup function registered to SPI master framework
1769  * @spi: spi device which is requesting setup
1770  *
1771  * This function is registered to the SPI framework for this SPI master
1772  * controller. If it is the first time when setup is called by this device,
1773  * this function will initialize the runtime state for this chip and save
1774  * the same in the device structure. Else it will update the runtime info
1775  * with the updated chip info. Nothing is really being written to the
1776  * controller hardware here, that is not done until the actual transfer
1777  * commence.
1778  */
1779 static int pl022_setup(struct spi_device *spi)
1780 {
1781 	struct pl022_config_chip const *chip_info;
1782 	struct pl022_config_chip chip_info_dt;
1783 	struct chip_data *chip;
1784 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1785 	int status = 0;
1786 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1787 	unsigned int bits = spi->bits_per_word;
1788 	u32 tmp;
1789 	struct device_node *np = spi->dev.of_node;
1790 
1791 	if (!spi->max_speed_hz)
1792 		return -EINVAL;
1793 
1794 	/* Get controller_state if one is supplied */
1795 	chip = spi_get_ctldata(spi);
1796 
1797 	if (chip == NULL) {
1798 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1799 		if (!chip) {
1800 			dev_err(&spi->dev,
1801 				"cannot allocate controller state\n");
1802 			return -ENOMEM;
1803 		}
1804 		dev_dbg(&spi->dev,
1805 			"allocated memory for controller's runtime state\n");
1806 	}
1807 
1808 	/* Get controller data if one is supplied */
1809 	chip_info = spi->controller_data;
1810 
1811 	if (chip_info == NULL) {
1812 		if (np) {
1813 			chip_info_dt = pl022_default_chip_info;
1814 
1815 			chip_info_dt.hierarchy = SSP_MASTER;
1816 			of_property_read_u32(np, "pl022,interface",
1817 				&chip_info_dt.iface);
1818 			of_property_read_u32(np, "pl022,com-mode",
1819 				&chip_info_dt.com_mode);
1820 			of_property_read_u32(np, "pl022,rx-level-trig",
1821 				&chip_info_dt.rx_lev_trig);
1822 			of_property_read_u32(np, "pl022,tx-level-trig",
1823 				&chip_info_dt.tx_lev_trig);
1824 			of_property_read_u32(np, "pl022,ctrl-len",
1825 				&chip_info_dt.ctrl_len);
1826 			of_property_read_u32(np, "pl022,wait-state",
1827 				&chip_info_dt.wait_state);
1828 			of_property_read_u32(np, "pl022,duplex",
1829 				&chip_info_dt.duplex);
1830 
1831 			chip_info = &chip_info_dt;
1832 		} else {
1833 			chip_info = &pl022_default_chip_info;
1834 			/* spi_board_info.controller_data not is supplied */
1835 			dev_dbg(&spi->dev,
1836 				"using default controller_data settings\n");
1837 		}
1838 	} else
1839 		dev_dbg(&spi->dev,
1840 			"using user supplied controller_data settings\n");
1841 
1842 	/*
1843 	 * We can override with custom divisors, else we use the board
1844 	 * frequency setting
1845 	 */
1846 	if ((0 == chip_info->clk_freq.cpsdvsr)
1847 	    && (0 == chip_info->clk_freq.scr)) {
1848 		status = calculate_effective_freq(pl022,
1849 						  spi->max_speed_hz,
1850 						  &clk_freq);
1851 		if (status < 0)
1852 			goto err_config_params;
1853 	} else {
1854 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1855 		if ((clk_freq.cpsdvsr % 2) != 0)
1856 			clk_freq.cpsdvsr =
1857 				clk_freq.cpsdvsr - 1;
1858 	}
1859 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1860 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1861 		status = -EINVAL;
1862 		dev_err(&spi->dev,
1863 			"cpsdvsr is configured incorrectly\n");
1864 		goto err_config_params;
1865 	}
1866 
1867 	status = verify_controller_parameters(pl022, chip_info);
1868 	if (status) {
1869 		dev_err(&spi->dev, "controller data is incorrect");
1870 		goto err_config_params;
1871 	}
1872 
1873 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1874 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1875 
1876 	/* Now set controller state based on controller data */
1877 	chip->xfer_type = chip_info->com_mode;
1878 	if (!chip_info->cs_control) {
1879 		chip->cs_control = null_cs_control;
1880 		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1881 			dev_warn(&spi->dev,
1882 				 "invalid chip select\n");
1883 	} else
1884 		chip->cs_control = chip_info->cs_control;
1885 
1886 	/* Check bits per word with vendor specific range */
1887 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1888 		status = -ENOTSUPP;
1889 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1890 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1891 				pl022->vendor->max_bpw);
1892 		goto err_config_params;
1893 	} else if (bits <= 8) {
1894 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1895 		chip->n_bytes = 1;
1896 		chip->read = READING_U8;
1897 		chip->write = WRITING_U8;
1898 	} else if (bits <= 16) {
1899 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1900 		chip->n_bytes = 2;
1901 		chip->read = READING_U16;
1902 		chip->write = WRITING_U16;
1903 	} else {
1904 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1905 		chip->n_bytes = 4;
1906 		chip->read = READING_U32;
1907 		chip->write = WRITING_U32;
1908 	}
1909 
1910 	/* Now Initialize all register settings required for this chip */
1911 	chip->cr0 = 0;
1912 	chip->cr1 = 0;
1913 	chip->dmacr = 0;
1914 	chip->cpsr = 0;
1915 	if ((chip_info->com_mode == DMA_TRANSFER)
1916 	    && ((pl022->master_info)->enable_dma)) {
1917 		chip->enable_dma = true;
1918 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1919 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1920 			       SSP_DMACR_MASK_RXDMAE, 0);
1921 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1922 			       SSP_DMACR_MASK_TXDMAE, 1);
1923 	} else {
1924 		chip->enable_dma = false;
1925 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1926 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1927 			       SSP_DMACR_MASK_RXDMAE, 0);
1928 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1929 			       SSP_DMACR_MASK_TXDMAE, 1);
1930 	}
1931 
1932 	chip->cpsr = clk_freq.cpsdvsr;
1933 
1934 	/* Special setup for the ST micro extended control registers */
1935 	if (pl022->vendor->extended_cr) {
1936 		u32 etx;
1937 
1938 		if (pl022->vendor->pl023) {
1939 			/* These bits are only in the PL023 */
1940 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1941 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1942 		} else {
1943 			/* These bits are in the PL022 but not PL023 */
1944 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1945 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1946 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1947 				       SSP_CR0_MASK_CSS_ST, 16);
1948 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1949 				       SSP_CR0_MASK_FRF_ST, 21);
1950 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1951 				       SSP_CR1_MASK_MWAIT_ST, 6);
1952 		}
1953 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1954 			       SSP_CR0_MASK_DSS_ST, 0);
1955 
1956 		if (spi->mode & SPI_LSB_FIRST) {
1957 			tmp = SSP_RX_LSB;
1958 			etx = SSP_TX_LSB;
1959 		} else {
1960 			tmp = SSP_RX_MSB;
1961 			etx = SSP_TX_MSB;
1962 		}
1963 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1964 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1965 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1966 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
1967 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1968 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
1969 	} else {
1970 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1971 			       SSP_CR0_MASK_DSS, 0);
1972 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1973 			       SSP_CR0_MASK_FRF, 4);
1974 	}
1975 
1976 	/* Stuff that is common for all versions */
1977 	if (spi->mode & SPI_CPOL)
1978 		tmp = SSP_CLK_POL_IDLE_HIGH;
1979 	else
1980 		tmp = SSP_CLK_POL_IDLE_LOW;
1981 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1982 
1983 	if (spi->mode & SPI_CPHA)
1984 		tmp = SSP_CLK_SECOND_EDGE;
1985 	else
1986 		tmp = SSP_CLK_FIRST_EDGE;
1987 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1988 
1989 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1990 	/* Loopback is available on all versions except PL023 */
1991 	if (pl022->vendor->loopback) {
1992 		if (spi->mode & SPI_LOOP)
1993 			tmp = LOOPBACK_ENABLED;
1994 		else
1995 			tmp = LOOPBACK_DISABLED;
1996 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1997 	}
1998 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1999 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2000 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2001 		3);
2002 
2003 	/* Save controller_state */
2004 	spi_set_ctldata(spi, chip);
2005 	return status;
2006  err_config_params:
2007 	spi_set_ctldata(spi, NULL);
2008 	kfree(chip);
2009 	return status;
2010 }
2011 
2012 /**
2013  * pl022_cleanup - cleanup function registered to SPI master framework
2014  * @spi: spi device which is requesting cleanup
2015  *
2016  * This function is registered to the SPI framework for this SPI master
2017  * controller. It will free the runtime state of chip.
2018  */
2019 static void pl022_cleanup(struct spi_device *spi)
2020 {
2021 	struct chip_data *chip = spi_get_ctldata(spi);
2022 
2023 	spi_set_ctldata(spi, NULL);
2024 	kfree(chip);
2025 }
2026 
2027 static int __devinit
2028 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2029 {
2030 	struct device *dev = &adev->dev;
2031 	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2032 	struct spi_master *master;
2033 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2034 	struct device_node *np = adev->dev.of_node;
2035 	int status = 0, i, num_cs;
2036 
2037 	dev_info(&adev->dev,
2038 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2039 	if (platform_info == NULL) {
2040 		dev_err(&adev->dev, "probe - no platform data supplied\n");
2041 		status = -ENODEV;
2042 		goto err_no_pdata;
2043 	}
2044 
2045 	if (platform_info->num_chipselect) {
2046 		num_cs = platform_info->num_chipselect;
2047 	} else if (IS_ENABLED(CONFIG_OF)) {
2048 		of_property_read_u32(np, "num-cs", &num_cs);
2049 	} else {
2050 		dev_err(&adev->dev, "probe: no chip select defined\n");
2051 		status = -ENODEV;
2052 		goto err_no_pdata;
2053 	}
2054 
2055 	/* Allocate master with space for data */
2056 	master = spi_alloc_master(dev, sizeof(struct pl022));
2057 	if (master == NULL) {
2058 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2059 		status = -ENOMEM;
2060 		goto err_no_master;
2061 	}
2062 
2063 	pl022 = spi_master_get_devdata(master);
2064 	pl022->master = master;
2065 	pl022->master_info = platform_info;
2066 	pl022->adev = adev;
2067 	pl022->vendor = id->data;
2068 	pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2069 					  GFP_KERNEL);
2070 
2071 	/*
2072 	 * Bus Number Which has been Assigned to this SSP controller
2073 	 * on this board
2074 	 */
2075 	master->bus_num = platform_info->bus_id;
2076 	master->num_chipselect = num_cs;
2077 	master->cleanup = pl022_cleanup;
2078 	master->setup = pl022_setup;
2079 	master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2080 	master->transfer_one_message = pl022_transfer_one_message;
2081 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2082 	master->rt = platform_info->rt;
2083 	master->dev.of_node = dev->of_node;
2084 
2085 	if (platform_info->num_chipselect && platform_info->chipselects) {
2086 		for (i = 0; i < num_cs; i++)
2087 			pl022->chipselects[i] = platform_info->chipselects[i];
2088 	} else if (IS_ENABLED(CONFIG_OF)) {
2089 		for (i = 0; i < num_cs; i++) {
2090 			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2091 
2092 			if (cs_gpio == -EPROBE_DEFER) {
2093 				status = -EPROBE_DEFER;
2094 				goto err_no_gpio;
2095 			}
2096 
2097 			pl022->chipselects[i] = cs_gpio;
2098 
2099 			if (gpio_is_valid(cs_gpio)) {
2100 				if (gpio_request(cs_gpio, "ssp-pl022"))
2101 					dev_err(&adev->dev,
2102 						"could not request %d gpio\n",
2103 						cs_gpio);
2104 				else if (gpio_direction_output(cs_gpio, 1))
2105 					dev_err(&adev->dev,
2106 						"could set gpio %d as output\n",
2107 						cs_gpio);
2108 			}
2109 		}
2110 	}
2111 
2112 	/*
2113 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2114 	 * always MS bit first on the original pl022.
2115 	 */
2116 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2117 	if (pl022->vendor->extended_cr)
2118 		master->mode_bits |= SPI_LSB_FIRST;
2119 
2120 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2121 
2122 	status = amba_request_regions(adev, NULL);
2123 	if (status)
2124 		goto err_no_ioregion;
2125 
2126 	pl022->phybase = adev->res.start;
2127 	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2128 	if (pl022->virtbase == NULL) {
2129 		status = -ENOMEM;
2130 		goto err_no_ioremap;
2131 	}
2132 	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2133 	       adev->res.start, pl022->virtbase);
2134 
2135 	pm_runtime_enable(dev);
2136 	pm_runtime_resume(dev);
2137 
2138 	pl022->clk = clk_get(&adev->dev, NULL);
2139 	if (IS_ERR(pl022->clk)) {
2140 		status = PTR_ERR(pl022->clk);
2141 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2142 		goto err_no_clk;
2143 	}
2144 
2145 	status = clk_prepare(pl022->clk);
2146 	if (status) {
2147 		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2148 		goto  err_clk_prep;
2149 	}
2150 
2151 	status = clk_enable(pl022->clk);
2152 	if (status) {
2153 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2154 		goto err_no_clk_en;
2155 	}
2156 
2157 	/* Initialize transfer pump */
2158 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2159 		     (unsigned long)pl022);
2160 
2161 	/* Disable SSP */
2162 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2163 	       SSP_CR1(pl022->virtbase));
2164 	load_ssp_default_config(pl022);
2165 
2166 	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2167 			     pl022);
2168 	if (status < 0) {
2169 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2170 		goto err_no_irq;
2171 	}
2172 
2173 	/* Get DMA channels */
2174 	if (platform_info->enable_dma) {
2175 		status = pl022_dma_probe(pl022);
2176 		if (status != 0)
2177 			platform_info->enable_dma = 0;
2178 	}
2179 
2180 	/* Register with the SPI framework */
2181 	amba_set_drvdata(adev, pl022);
2182 	status = spi_register_master(master);
2183 	if (status != 0) {
2184 		dev_err(&adev->dev,
2185 			"probe - problem registering spi master\n");
2186 		goto err_spi_register;
2187 	}
2188 	dev_dbg(dev, "probe succeeded\n");
2189 
2190 	/* let runtime pm put suspend */
2191 	if (platform_info->autosuspend_delay > 0) {
2192 		dev_info(&adev->dev,
2193 			"will use autosuspend for runtime pm, delay %dms\n",
2194 			platform_info->autosuspend_delay);
2195 		pm_runtime_set_autosuspend_delay(dev,
2196 			platform_info->autosuspend_delay);
2197 		pm_runtime_use_autosuspend(dev);
2198 		pm_runtime_put_autosuspend(dev);
2199 	} else {
2200 		pm_runtime_put(dev);
2201 	}
2202 	return 0;
2203 
2204  err_spi_register:
2205 	if (platform_info->enable_dma)
2206 		pl022_dma_remove(pl022);
2207 
2208 	free_irq(adev->irq[0], pl022);
2209  err_no_irq:
2210 	clk_disable(pl022->clk);
2211  err_no_clk_en:
2212 	clk_unprepare(pl022->clk);
2213  err_clk_prep:
2214 	clk_put(pl022->clk);
2215  err_no_clk:
2216 	iounmap(pl022->virtbase);
2217  err_no_ioremap:
2218 	amba_release_regions(adev);
2219  err_no_ioregion:
2220  err_no_gpio:
2221 	spi_master_put(master);
2222  err_no_master:
2223  err_no_pdata:
2224 	return status;
2225 }
2226 
2227 static int __devexit
2228 pl022_remove(struct amba_device *adev)
2229 {
2230 	struct pl022 *pl022 = amba_get_drvdata(adev);
2231 
2232 	if (!pl022)
2233 		return 0;
2234 
2235 	/*
2236 	 * undo pm_runtime_put() in probe.  I assume that we're not
2237 	 * accessing the primecell here.
2238 	 */
2239 	pm_runtime_get_noresume(&adev->dev);
2240 
2241 	load_ssp_default_config(pl022);
2242 	if (pl022->master_info->enable_dma)
2243 		pl022_dma_remove(pl022);
2244 
2245 	free_irq(adev->irq[0], pl022);
2246 	clk_disable(pl022->clk);
2247 	clk_unprepare(pl022->clk);
2248 	clk_put(pl022->clk);
2249 	pm_runtime_disable(&adev->dev);
2250 	iounmap(pl022->virtbase);
2251 	amba_release_regions(adev);
2252 	tasklet_disable(&pl022->pump_transfers);
2253 	spi_unregister_master(pl022->master);
2254 	amba_set_drvdata(adev, NULL);
2255 	return 0;
2256 }
2257 
2258 #ifdef CONFIG_SUSPEND
2259 static int pl022_suspend(struct device *dev)
2260 {
2261 	struct pl022 *pl022 = dev_get_drvdata(dev);
2262 	int ret;
2263 
2264 	ret = spi_master_suspend(pl022->master);
2265 	if (ret) {
2266 		dev_warn(dev, "cannot suspend master\n");
2267 		return ret;
2268 	}
2269 
2270 	dev_dbg(dev, "suspended\n");
2271 	return 0;
2272 }
2273 
2274 static int pl022_resume(struct device *dev)
2275 {
2276 	struct pl022 *pl022 = dev_get_drvdata(dev);
2277 	int ret;
2278 
2279 	/* Start the queue running */
2280 	ret = spi_master_resume(pl022->master);
2281 	if (ret)
2282 		dev_err(dev, "problem starting queue (%d)\n", ret);
2283 	else
2284 		dev_dbg(dev, "resumed\n");
2285 
2286 	return ret;
2287 }
2288 #endif	/* CONFIG_PM */
2289 
2290 #ifdef CONFIG_PM_RUNTIME
2291 static int pl022_runtime_suspend(struct device *dev)
2292 {
2293 	struct pl022 *pl022 = dev_get_drvdata(dev);
2294 
2295 	clk_disable(pl022->clk);
2296 
2297 	return 0;
2298 }
2299 
2300 static int pl022_runtime_resume(struct device *dev)
2301 {
2302 	struct pl022 *pl022 = dev_get_drvdata(dev);
2303 
2304 	clk_enable(pl022->clk);
2305 
2306 	return 0;
2307 }
2308 #endif
2309 
2310 static const struct dev_pm_ops pl022_dev_pm_ops = {
2311 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2312 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2313 };
2314 
2315 static struct vendor_data vendor_arm = {
2316 	.fifodepth = 8,
2317 	.max_bpw = 16,
2318 	.unidir = false,
2319 	.extended_cr = false,
2320 	.pl023 = false,
2321 	.loopback = true,
2322 };
2323 
2324 static struct vendor_data vendor_st = {
2325 	.fifodepth = 32,
2326 	.max_bpw = 32,
2327 	.unidir = false,
2328 	.extended_cr = true,
2329 	.pl023 = false,
2330 	.loopback = true,
2331 };
2332 
2333 static struct vendor_data vendor_st_pl023 = {
2334 	.fifodepth = 32,
2335 	.max_bpw = 32,
2336 	.unidir = false,
2337 	.extended_cr = true,
2338 	.pl023 = true,
2339 	.loopback = false,
2340 };
2341 
2342 static struct amba_id pl022_ids[] = {
2343 	{
2344 		/*
2345 		 * ARM PL022 variant, this has a 16bit wide
2346 		 * and 8 locations deep TX/RX FIFO
2347 		 */
2348 		.id	= 0x00041022,
2349 		.mask	= 0x000fffff,
2350 		.data	= &vendor_arm,
2351 	},
2352 	{
2353 		/*
2354 		 * ST Micro derivative, this has 32bit wide
2355 		 * and 32 locations deep TX/RX FIFO
2356 		 */
2357 		.id	= 0x01080022,
2358 		.mask	= 0xffffffff,
2359 		.data	= &vendor_st,
2360 	},
2361 	{
2362 		/*
2363 		 * ST-Ericsson derivative "PL023" (this is not
2364 		 * an official ARM number), this is a PL022 SSP block
2365 		 * stripped to SPI mode only, it has 32bit wide
2366 		 * and 32 locations deep TX/RX FIFO but no extended
2367 		 * CR0/CR1 register
2368 		 */
2369 		.id	= 0x00080023,
2370 		.mask	= 0xffffffff,
2371 		.data	= &vendor_st_pl023,
2372 	},
2373 	{ 0, 0 },
2374 };
2375 
2376 MODULE_DEVICE_TABLE(amba, pl022_ids);
2377 
2378 static struct amba_driver pl022_driver = {
2379 	.drv = {
2380 		.name	= "ssp-pl022",
2381 		.pm	= &pl022_dev_pm_ops,
2382 	},
2383 	.id_table	= pl022_ids,
2384 	.probe		= pl022_probe,
2385 	.remove		= __devexit_p(pl022_remove),
2386 };
2387 
2388 static int __init pl022_init(void)
2389 {
2390 	return amba_driver_register(&pl022_driver);
2391 }
2392 subsys_initcall(pl022_init);
2393 
2394 static void __exit pl022_exit(void)
2395 {
2396 	amba_driver_unregister(&pl022_driver);
2397 }
2398 module_exit(pl022_exit);
2399 
2400 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2401 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2402 MODULE_LICENSE("GPL");
2403