1 /* 2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master. 3 * 4 * Copyright (C) 2008-2012 ST-Ericsson AB 5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd. 6 * 7 * Author: Linus Walleij <linus.walleij@stericsson.com> 8 * 9 * Initial version inspired by: 10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c 11 * Initial adoption to PL022 by: 12 * Sachin Verma <sachin.verma@st.com> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or 17 * (at your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/ioport.h> 29 #include <linux/errno.h> 30 #include <linux/interrupt.h> 31 #include <linux/spi/spi.h> 32 #include <linux/delay.h> 33 #include <linux/clk.h> 34 #include <linux/err.h> 35 #include <linux/amba/bus.h> 36 #include <linux/amba/pl022.h> 37 #include <linux/io.h> 38 #include <linux/slab.h> 39 #include <linux/dmaengine.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/scatterlist.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/gpio.h> 44 #include <linux/of_gpio.h> 45 #include <linux/pinctrl/consumer.h> 46 47 /* 48 * This macro is used to define some register default values. 49 * reg is masked with mask, the OR:ed with an (again masked) 50 * val shifted sb steps to the left. 51 */ 52 #define SSP_WRITE_BITS(reg, val, mask, sb) \ 53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask)))) 54 55 /* 56 * This macro is also used to define some default values. 57 * It will just shift val by sb steps to the left and mask 58 * the result with mask. 59 */ 60 #define GEN_MASK_BITS(val, mask, sb) \ 61 (((val)<<(sb)) & (mask)) 62 63 #define DRIVE_TX 0 64 #define DO_NOT_DRIVE_TX 1 65 66 #define DO_NOT_QUEUE_DMA 0 67 #define QUEUE_DMA 1 68 69 #define RX_TRANSFER 1 70 #define TX_TRANSFER 2 71 72 /* 73 * Macros to access SSP Registers with their offsets 74 */ 75 #define SSP_CR0(r) (r + 0x000) 76 #define SSP_CR1(r) (r + 0x004) 77 #define SSP_DR(r) (r + 0x008) 78 #define SSP_SR(r) (r + 0x00C) 79 #define SSP_CPSR(r) (r + 0x010) 80 #define SSP_IMSC(r) (r + 0x014) 81 #define SSP_RIS(r) (r + 0x018) 82 #define SSP_MIS(r) (r + 0x01C) 83 #define SSP_ICR(r) (r + 0x020) 84 #define SSP_DMACR(r) (r + 0x024) 85 #define SSP_ITCR(r) (r + 0x080) 86 #define SSP_ITIP(r) (r + 0x084) 87 #define SSP_ITOP(r) (r + 0x088) 88 #define SSP_TDR(r) (r + 0x08C) 89 90 #define SSP_PID0(r) (r + 0xFE0) 91 #define SSP_PID1(r) (r + 0xFE4) 92 #define SSP_PID2(r) (r + 0xFE8) 93 #define SSP_PID3(r) (r + 0xFEC) 94 95 #define SSP_CID0(r) (r + 0xFF0) 96 #define SSP_CID1(r) (r + 0xFF4) 97 #define SSP_CID2(r) (r + 0xFF8) 98 #define SSP_CID3(r) (r + 0xFFC) 99 100 /* 101 * SSP Control Register 0 - SSP_CR0 102 */ 103 #define SSP_CR0_MASK_DSS (0x0FUL << 0) 104 #define SSP_CR0_MASK_FRF (0x3UL << 4) 105 #define SSP_CR0_MASK_SPO (0x1UL << 6) 106 #define SSP_CR0_MASK_SPH (0x1UL << 7) 107 #define SSP_CR0_MASK_SCR (0xFFUL << 8) 108 109 /* 110 * The ST version of this block moves som bits 111 * in SSP_CR0 and extends it to 32 bits 112 */ 113 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0) 114 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5) 115 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16) 116 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21) 117 118 /* 119 * SSP Control Register 0 - SSP_CR1 120 */ 121 #define SSP_CR1_MASK_LBM (0x1UL << 0) 122 #define SSP_CR1_MASK_SSE (0x1UL << 1) 123 #define SSP_CR1_MASK_MS (0x1UL << 2) 124 #define SSP_CR1_MASK_SOD (0x1UL << 3) 125 126 /* 127 * The ST version of this block adds some bits 128 * in SSP_CR1 129 */ 130 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4) 131 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5) 132 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6) 133 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7) 134 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10) 135 /* This one is only in the PL023 variant */ 136 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13) 137 138 /* 139 * SSP Status Register - SSP_SR 140 */ 141 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */ 142 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */ 143 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */ 144 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */ 145 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */ 146 147 /* 148 * SSP Clock Prescale Register - SSP_CPSR 149 */ 150 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0) 151 152 /* 153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC 154 */ 155 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */ 156 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */ 157 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */ 158 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */ 159 160 /* 161 * SSP Raw Interrupt Status Register - SSP_RIS 162 */ 163 /* Receive Overrun Raw Interrupt status */ 164 #define SSP_RIS_MASK_RORRIS (0x1UL << 0) 165 /* Receive Timeout Raw Interrupt status */ 166 #define SSP_RIS_MASK_RTRIS (0x1UL << 1) 167 /* Receive FIFO Raw Interrupt status */ 168 #define SSP_RIS_MASK_RXRIS (0x1UL << 2) 169 /* Transmit FIFO Raw Interrupt status */ 170 #define SSP_RIS_MASK_TXRIS (0x1UL << 3) 171 172 /* 173 * SSP Masked Interrupt Status Register - SSP_MIS 174 */ 175 /* Receive Overrun Masked Interrupt status */ 176 #define SSP_MIS_MASK_RORMIS (0x1UL << 0) 177 /* Receive Timeout Masked Interrupt status */ 178 #define SSP_MIS_MASK_RTMIS (0x1UL << 1) 179 /* Receive FIFO Masked Interrupt status */ 180 #define SSP_MIS_MASK_RXMIS (0x1UL << 2) 181 /* Transmit FIFO Masked Interrupt status */ 182 #define SSP_MIS_MASK_TXMIS (0x1UL << 3) 183 184 /* 185 * SSP Interrupt Clear Register - SSP_ICR 186 */ 187 /* Receive Overrun Raw Clear Interrupt bit */ 188 #define SSP_ICR_MASK_RORIC (0x1UL << 0) 189 /* Receive Timeout Clear Interrupt bit */ 190 #define SSP_ICR_MASK_RTIC (0x1UL << 1) 191 192 /* 193 * SSP DMA Control Register - SSP_DMACR 194 */ 195 /* Receive DMA Enable bit */ 196 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0) 197 /* Transmit DMA Enable bit */ 198 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1) 199 200 /* 201 * SSP Integration Test control Register - SSP_ITCR 202 */ 203 #define SSP_ITCR_MASK_ITEN (0x1UL << 0) 204 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1) 205 206 /* 207 * SSP Integration Test Input Register - SSP_ITIP 208 */ 209 #define ITIP_MASK_SSPRXD (0x1UL << 0) 210 #define ITIP_MASK_SSPFSSIN (0x1UL << 1) 211 #define ITIP_MASK_SSPCLKIN (0x1UL << 2) 212 #define ITIP_MASK_RXDMAC (0x1UL << 3) 213 #define ITIP_MASK_TXDMAC (0x1UL << 4) 214 #define ITIP_MASK_SSPTXDIN (0x1UL << 5) 215 216 /* 217 * SSP Integration Test output Register - SSP_ITOP 218 */ 219 #define ITOP_MASK_SSPTXD (0x1UL << 0) 220 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1) 221 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2) 222 #define ITOP_MASK_SSPOEn (0x1UL << 3) 223 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4) 224 #define ITOP_MASK_RORINTR (0x1UL << 5) 225 #define ITOP_MASK_RTINTR (0x1UL << 6) 226 #define ITOP_MASK_RXINTR (0x1UL << 7) 227 #define ITOP_MASK_TXINTR (0x1UL << 8) 228 #define ITOP_MASK_INTR (0x1UL << 9) 229 #define ITOP_MASK_RXDMABREQ (0x1UL << 10) 230 #define ITOP_MASK_RXDMASREQ (0x1UL << 11) 231 #define ITOP_MASK_TXDMABREQ (0x1UL << 12) 232 #define ITOP_MASK_TXDMASREQ (0x1UL << 13) 233 234 /* 235 * SSP Test Data Register - SSP_TDR 236 */ 237 #define TDR_MASK_TESTDATA (0xFFFFFFFF) 238 239 /* 240 * Message State 241 * we use the spi_message.state (void *) pointer to 242 * hold a single state value, that's why all this 243 * (void *) casting is done here. 244 */ 245 #define STATE_START ((void *) 0) 246 #define STATE_RUNNING ((void *) 1) 247 #define STATE_DONE ((void *) 2) 248 #define STATE_ERROR ((void *) -1) 249 250 /* 251 * SSP State - Whether Enabled or Disabled 252 */ 253 #define SSP_DISABLED (0) 254 #define SSP_ENABLED (1) 255 256 /* 257 * SSP DMA State - Whether DMA Enabled or Disabled 258 */ 259 #define SSP_DMA_DISABLED (0) 260 #define SSP_DMA_ENABLED (1) 261 262 /* 263 * SSP Clock Defaults 264 */ 265 #define SSP_DEFAULT_CLKRATE 0x2 266 #define SSP_DEFAULT_PRESCALE 0x40 267 268 /* 269 * SSP Clock Parameter ranges 270 */ 271 #define CPSDVR_MIN 0x02 272 #define CPSDVR_MAX 0xFE 273 #define SCR_MIN 0x00 274 #define SCR_MAX 0xFF 275 276 /* 277 * SSP Interrupt related Macros 278 */ 279 #define DEFAULT_SSP_REG_IMSC 0x0UL 280 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC 281 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC) 282 283 #define CLEAR_ALL_INTERRUPTS 0x3 284 285 #define SPI_POLLING_TIMEOUT 1000 286 287 /* 288 * The type of reading going on on this chip 289 */ 290 enum ssp_reading { 291 READING_NULL, 292 READING_U8, 293 READING_U16, 294 READING_U32 295 }; 296 297 /** 298 * The type of writing going on on this chip 299 */ 300 enum ssp_writing { 301 WRITING_NULL, 302 WRITING_U8, 303 WRITING_U16, 304 WRITING_U32 305 }; 306 307 /** 308 * struct vendor_data - vendor-specific config parameters 309 * for PL022 derivates 310 * @fifodepth: depth of FIFOs (both) 311 * @max_bpw: maximum number of bits per word 312 * @unidir: supports unidirection transfers 313 * @extended_cr: 32 bit wide control register 0 with extra 314 * features and extra features in CR1 as found in the ST variants 315 * @pl023: supports a subset of the ST extensions called "PL023" 316 */ 317 struct vendor_data { 318 int fifodepth; 319 int max_bpw; 320 bool unidir; 321 bool extended_cr; 322 bool pl023; 323 bool loopback; 324 }; 325 326 /** 327 * struct pl022 - This is the private SSP driver data structure 328 * @adev: AMBA device model hookup 329 * @vendor: vendor data for the IP block 330 * @phybase: the physical memory where the SSP device resides 331 * @virtbase: the virtual memory where the SSP is mapped 332 * @clk: outgoing clock "SPICLK" for the SPI bus 333 * @master: SPI framework hookup 334 * @master_info: controller-specific data from machine setup 335 * @kworker: thread struct for message pump 336 * @kworker_task: pointer to task for message pump kworker thread 337 * @pump_messages: work struct for scheduling work to the message pump 338 * @queue_lock: spinlock to syncronise access to message queue 339 * @queue: message queue 340 * @busy: message pump is busy 341 * @running: message pump is running 342 * @pump_transfers: Tasklet used in Interrupt Transfer mode 343 * @cur_msg: Pointer to current spi_message being processed 344 * @cur_transfer: Pointer to current spi_transfer 345 * @cur_chip: pointer to current clients chip(assigned from controller_state) 346 * @next_msg_cs_active: the next message in the queue has been examined 347 * and it was found that it uses the same chip select as the previous 348 * message, so we left it active after the previous transfer, and it's 349 * active already. 350 * @tx: current position in TX buffer to be read 351 * @tx_end: end position in TX buffer to be read 352 * @rx: current position in RX buffer to be written 353 * @rx_end: end position in RX buffer to be written 354 * @read: the type of read currently going on 355 * @write: the type of write currently going on 356 * @exp_fifo_level: expected FIFO level 357 * @dma_rx_channel: optional channel for RX DMA 358 * @dma_tx_channel: optional channel for TX DMA 359 * @sgt_rx: scattertable for the RX transfer 360 * @sgt_tx: scattertable for the TX transfer 361 * @dummypage: a dummy page used for driving data on the bus with DMA 362 * @cur_cs: current chip select (gpio) 363 * @chipselects: list of chipselects (gpios) 364 */ 365 struct pl022 { 366 struct amba_device *adev; 367 struct vendor_data *vendor; 368 resource_size_t phybase; 369 void __iomem *virtbase; 370 struct clk *clk; 371 struct spi_master *master; 372 struct pl022_ssp_controller *master_info; 373 /* Message per-transfer pump */ 374 struct tasklet_struct pump_transfers; 375 struct spi_message *cur_msg; 376 struct spi_transfer *cur_transfer; 377 struct chip_data *cur_chip; 378 bool next_msg_cs_active; 379 void *tx; 380 void *tx_end; 381 void *rx; 382 void *rx_end; 383 enum ssp_reading read; 384 enum ssp_writing write; 385 u32 exp_fifo_level; 386 enum ssp_rx_level_trig rx_lev_trig; 387 enum ssp_tx_level_trig tx_lev_trig; 388 /* DMA settings */ 389 #ifdef CONFIG_DMA_ENGINE 390 struct dma_chan *dma_rx_channel; 391 struct dma_chan *dma_tx_channel; 392 struct sg_table sgt_rx; 393 struct sg_table sgt_tx; 394 char *dummypage; 395 bool dma_running; 396 #endif 397 int cur_cs; 398 int *chipselects; 399 }; 400 401 /** 402 * struct chip_data - To maintain runtime state of SSP for each client chip 403 * @cr0: Value of control register CR0 of SSP - on later ST variants this 404 * register is 32 bits wide rather than just 16 405 * @cr1: Value of control register CR1 of SSP 406 * @dmacr: Value of DMA control Register of SSP 407 * @cpsr: Value of Clock prescale register 408 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client 409 * @enable_dma: Whether to enable DMA or not 410 * @read: function ptr to be used to read when doing xfer for this chip 411 * @write: function ptr to be used to write when doing xfer for this chip 412 * @cs_control: chip select callback provided by chip 413 * @xfer_type: polling/interrupt/DMA 414 * 415 * Runtime state of the SSP controller, maintained per chip, 416 * This would be set according to the current message that would be served 417 */ 418 struct chip_data { 419 u32 cr0; 420 u16 cr1; 421 u16 dmacr; 422 u16 cpsr; 423 u8 n_bytes; 424 bool enable_dma; 425 enum ssp_reading read; 426 enum ssp_writing write; 427 void (*cs_control) (u32 command); 428 int xfer_type; 429 }; 430 431 /** 432 * null_cs_control - Dummy chip select function 433 * @command: select/delect the chip 434 * 435 * If no chip select function is provided by client this is used as dummy 436 * chip select 437 */ 438 static void null_cs_control(u32 command) 439 { 440 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command); 441 } 442 443 static void pl022_cs_control(struct pl022 *pl022, u32 command) 444 { 445 if (gpio_is_valid(pl022->cur_cs)) 446 gpio_set_value(pl022->cur_cs, command); 447 else 448 pl022->cur_chip->cs_control(command); 449 } 450 451 /** 452 * giveback - current spi_message is over, schedule next message and call 453 * callback of this message. Assumes that caller already 454 * set message->status; dma and pio irqs are blocked 455 * @pl022: SSP driver private data structure 456 */ 457 static void giveback(struct pl022 *pl022) 458 { 459 struct spi_transfer *last_transfer; 460 pl022->next_msg_cs_active = false; 461 462 last_transfer = list_last_entry(&pl022->cur_msg->transfers, 463 struct spi_transfer, transfer_list); 464 465 /* Delay if requested before any change in chip select */ 466 if (last_transfer->delay_usecs) 467 /* 468 * FIXME: This runs in interrupt context. 469 * Is this really smart? 470 */ 471 udelay(last_transfer->delay_usecs); 472 473 if (!last_transfer->cs_change) { 474 struct spi_message *next_msg; 475 476 /* 477 * cs_change was not set. We can keep the chip select 478 * enabled if there is message in the queue and it is 479 * for the same spi device. 480 * 481 * We cannot postpone this until pump_messages, because 482 * after calling msg->complete (below) the driver that 483 * sent the current message could be unloaded, which 484 * could invalidate the cs_control() callback... 485 */ 486 /* get a pointer to the next message, if any */ 487 next_msg = spi_get_next_queued_message(pl022->master); 488 489 /* 490 * see if the next and current messages point 491 * to the same spi device. 492 */ 493 if (next_msg && next_msg->spi != pl022->cur_msg->spi) 494 next_msg = NULL; 495 if (!next_msg || pl022->cur_msg->state == STATE_ERROR) 496 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 497 else 498 pl022->next_msg_cs_active = true; 499 500 } 501 502 pl022->cur_msg = NULL; 503 pl022->cur_transfer = NULL; 504 pl022->cur_chip = NULL; 505 spi_finalize_current_message(pl022->master); 506 507 /* disable the SPI/SSP operation */ 508 writew((readw(SSP_CR1(pl022->virtbase)) & 509 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 510 511 } 512 513 /** 514 * flush - flush the FIFO to reach a clean state 515 * @pl022: SSP driver private data structure 516 */ 517 static int flush(struct pl022 *pl022) 518 { 519 unsigned long limit = loops_per_jiffy << 1; 520 521 dev_dbg(&pl022->adev->dev, "flush\n"); 522 do { 523 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 524 readw(SSP_DR(pl022->virtbase)); 525 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--); 526 527 pl022->exp_fifo_level = 0; 528 529 return limit; 530 } 531 532 /** 533 * restore_state - Load configuration of current chip 534 * @pl022: SSP driver private data structure 535 */ 536 static void restore_state(struct pl022 *pl022) 537 { 538 struct chip_data *chip = pl022->cur_chip; 539 540 if (pl022->vendor->extended_cr) 541 writel(chip->cr0, SSP_CR0(pl022->virtbase)); 542 else 543 writew(chip->cr0, SSP_CR0(pl022->virtbase)); 544 writew(chip->cr1, SSP_CR1(pl022->virtbase)); 545 writew(chip->dmacr, SSP_DMACR(pl022->virtbase)); 546 writew(chip->cpsr, SSP_CPSR(pl022->virtbase)); 547 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); 548 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 549 } 550 551 /* 552 * Default SSP Register Values 553 */ 554 #define DEFAULT_SSP_REG_CR0 ( \ 555 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \ 556 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \ 557 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 558 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 559 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ 560 ) 561 562 /* ST versions have slightly different bit layout */ 563 #define DEFAULT_SSP_REG_CR0_ST ( \ 564 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ 565 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \ 566 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 567 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 568 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \ 569 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \ 570 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \ 571 ) 572 573 /* The PL023 version is slightly different again */ 574 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \ 575 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ 576 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 577 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 578 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ 579 ) 580 581 #define DEFAULT_SSP_REG_CR1 ( \ 582 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \ 583 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ 584 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ 585 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \ 586 ) 587 588 /* ST versions extend this register to use all 16 bits */ 589 #define DEFAULT_SSP_REG_CR1_ST ( \ 590 DEFAULT_SSP_REG_CR1 | \ 591 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ 592 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ 593 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\ 594 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ 595 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \ 596 ) 597 598 /* 599 * The PL023 variant has further differences: no loopback mode, no microwire 600 * support, and a new clock feedback delay setting. 601 */ 602 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \ 603 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ 604 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ 605 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \ 606 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ 607 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ 608 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ 609 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \ 610 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \ 611 ) 612 613 #define DEFAULT_SSP_REG_CPSR ( \ 614 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \ 615 ) 616 617 #define DEFAULT_SSP_REG_DMACR (\ 618 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \ 619 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \ 620 ) 621 622 /** 623 * load_ssp_default_config - Load default configuration for SSP 624 * @pl022: SSP driver private data structure 625 */ 626 static void load_ssp_default_config(struct pl022 *pl022) 627 { 628 if (pl022->vendor->pl023) { 629 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase)); 630 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase)); 631 } else if (pl022->vendor->extended_cr) { 632 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase)); 633 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase)); 634 } else { 635 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase)); 636 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase)); 637 } 638 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase)); 639 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase)); 640 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); 641 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 642 } 643 644 /** 645 * This will write to TX and read from RX according to the parameters 646 * set in pl022. 647 */ 648 static void readwriter(struct pl022 *pl022) 649 { 650 651 /* 652 * The FIFO depth is different between primecell variants. 653 * I believe filling in too much in the FIFO might cause 654 * errons in 8bit wide transfers on ARM variants (just 8 words 655 * FIFO, means only 8x8 = 64 bits in FIFO) at least. 656 * 657 * To prevent this issue, the TX FIFO is only filled to the 658 * unused RX FIFO fill length, regardless of what the TX 659 * FIFO status flag indicates. 660 */ 661 dev_dbg(&pl022->adev->dev, 662 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n", 663 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end); 664 665 /* Read as much as you can */ 666 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 667 && (pl022->rx < pl022->rx_end)) { 668 switch (pl022->read) { 669 case READING_NULL: 670 readw(SSP_DR(pl022->virtbase)); 671 break; 672 case READING_U8: 673 *(u8 *) (pl022->rx) = 674 readw(SSP_DR(pl022->virtbase)) & 0xFFU; 675 break; 676 case READING_U16: 677 *(u16 *) (pl022->rx) = 678 (u16) readw(SSP_DR(pl022->virtbase)); 679 break; 680 case READING_U32: 681 *(u32 *) (pl022->rx) = 682 readl(SSP_DR(pl022->virtbase)); 683 break; 684 } 685 pl022->rx += (pl022->cur_chip->n_bytes); 686 pl022->exp_fifo_level--; 687 } 688 /* 689 * Write as much as possible up to the RX FIFO size 690 */ 691 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth) 692 && (pl022->tx < pl022->tx_end)) { 693 switch (pl022->write) { 694 case WRITING_NULL: 695 writew(0x0, SSP_DR(pl022->virtbase)); 696 break; 697 case WRITING_U8: 698 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase)); 699 break; 700 case WRITING_U16: 701 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase)); 702 break; 703 case WRITING_U32: 704 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase)); 705 break; 706 } 707 pl022->tx += (pl022->cur_chip->n_bytes); 708 pl022->exp_fifo_level++; 709 /* 710 * This inner reader takes care of things appearing in the RX 711 * FIFO as we're transmitting. This will happen a lot since the 712 * clock starts running when you put things into the TX FIFO, 713 * and then things are continuously clocked into the RX FIFO. 714 */ 715 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 716 && (pl022->rx < pl022->rx_end)) { 717 switch (pl022->read) { 718 case READING_NULL: 719 readw(SSP_DR(pl022->virtbase)); 720 break; 721 case READING_U8: 722 *(u8 *) (pl022->rx) = 723 readw(SSP_DR(pl022->virtbase)) & 0xFFU; 724 break; 725 case READING_U16: 726 *(u16 *) (pl022->rx) = 727 (u16) readw(SSP_DR(pl022->virtbase)); 728 break; 729 case READING_U32: 730 *(u32 *) (pl022->rx) = 731 readl(SSP_DR(pl022->virtbase)); 732 break; 733 } 734 pl022->rx += (pl022->cur_chip->n_bytes); 735 pl022->exp_fifo_level--; 736 } 737 } 738 /* 739 * When we exit here the TX FIFO should be full and the RX FIFO 740 * should be empty 741 */ 742 } 743 744 /** 745 * next_transfer - Move to the Next transfer in the current spi message 746 * @pl022: SSP driver private data structure 747 * 748 * This function moves though the linked list of spi transfers in the 749 * current spi message and returns with the state of current spi 750 * message i.e whether its last transfer is done(STATE_DONE) or 751 * Next transfer is ready(STATE_RUNNING) 752 */ 753 static void *next_transfer(struct pl022 *pl022) 754 { 755 struct spi_message *msg = pl022->cur_msg; 756 struct spi_transfer *trans = pl022->cur_transfer; 757 758 /* Move to next transfer */ 759 if (trans->transfer_list.next != &msg->transfers) { 760 pl022->cur_transfer = 761 list_entry(trans->transfer_list.next, 762 struct spi_transfer, transfer_list); 763 return STATE_RUNNING; 764 } 765 return STATE_DONE; 766 } 767 768 /* 769 * This DMA functionality is only compiled in if we have 770 * access to the generic DMA devices/DMA engine. 771 */ 772 #ifdef CONFIG_DMA_ENGINE 773 static void unmap_free_dma_scatter(struct pl022 *pl022) 774 { 775 /* Unmap and free the SG tables */ 776 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl, 777 pl022->sgt_tx.nents, DMA_TO_DEVICE); 778 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl, 779 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 780 sg_free_table(&pl022->sgt_rx); 781 sg_free_table(&pl022->sgt_tx); 782 } 783 784 static void dma_callback(void *data) 785 { 786 struct pl022 *pl022 = data; 787 struct spi_message *msg = pl022->cur_msg; 788 789 BUG_ON(!pl022->sgt_rx.sgl); 790 791 #ifdef VERBOSE_DEBUG 792 /* 793 * Optionally dump out buffers to inspect contents, this is 794 * good if you want to convince yourself that the loopback 795 * read/write contents are the same, when adopting to a new 796 * DMA engine. 797 */ 798 { 799 struct scatterlist *sg; 800 unsigned int i; 801 802 dma_sync_sg_for_cpu(&pl022->adev->dev, 803 pl022->sgt_rx.sgl, 804 pl022->sgt_rx.nents, 805 DMA_FROM_DEVICE); 806 807 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) { 808 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i); 809 print_hex_dump(KERN_ERR, "SPI RX: ", 810 DUMP_PREFIX_OFFSET, 811 16, 812 1, 813 sg_virt(sg), 814 sg_dma_len(sg), 815 1); 816 } 817 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) { 818 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i); 819 print_hex_dump(KERN_ERR, "SPI TX: ", 820 DUMP_PREFIX_OFFSET, 821 16, 822 1, 823 sg_virt(sg), 824 sg_dma_len(sg), 825 1); 826 } 827 } 828 #endif 829 830 unmap_free_dma_scatter(pl022); 831 832 /* Update total bytes transferred */ 833 msg->actual_length += pl022->cur_transfer->len; 834 if (pl022->cur_transfer->cs_change) 835 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 836 837 /* Move to next transfer */ 838 msg->state = next_transfer(pl022); 839 tasklet_schedule(&pl022->pump_transfers); 840 } 841 842 static void setup_dma_scatter(struct pl022 *pl022, 843 void *buffer, 844 unsigned int length, 845 struct sg_table *sgtab) 846 { 847 struct scatterlist *sg; 848 int bytesleft = length; 849 void *bufp = buffer; 850 int mapbytes; 851 int i; 852 853 if (buffer) { 854 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { 855 /* 856 * If there are less bytes left than what fits 857 * in the current page (plus page alignment offset) 858 * we just feed in this, else we stuff in as much 859 * as we can. 860 */ 861 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp))) 862 mapbytes = bytesleft; 863 else 864 mapbytes = PAGE_SIZE - offset_in_page(bufp); 865 sg_set_page(sg, virt_to_page(bufp), 866 mapbytes, offset_in_page(bufp)); 867 bufp += mapbytes; 868 bytesleft -= mapbytes; 869 dev_dbg(&pl022->adev->dev, 870 "set RX/TX target page @ %p, %d bytes, %d left\n", 871 bufp, mapbytes, bytesleft); 872 } 873 } else { 874 /* Map the dummy buffer on every page */ 875 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { 876 if (bytesleft < PAGE_SIZE) 877 mapbytes = bytesleft; 878 else 879 mapbytes = PAGE_SIZE; 880 sg_set_page(sg, virt_to_page(pl022->dummypage), 881 mapbytes, 0); 882 bytesleft -= mapbytes; 883 dev_dbg(&pl022->adev->dev, 884 "set RX/TX to dummy page %d bytes, %d left\n", 885 mapbytes, bytesleft); 886 887 } 888 } 889 BUG_ON(bytesleft); 890 } 891 892 /** 893 * configure_dma - configures the channels for the next transfer 894 * @pl022: SSP driver's private data structure 895 */ 896 static int configure_dma(struct pl022 *pl022) 897 { 898 struct dma_slave_config rx_conf = { 899 .src_addr = SSP_DR(pl022->phybase), 900 .direction = DMA_DEV_TO_MEM, 901 .device_fc = false, 902 }; 903 struct dma_slave_config tx_conf = { 904 .dst_addr = SSP_DR(pl022->phybase), 905 .direction = DMA_MEM_TO_DEV, 906 .device_fc = false, 907 }; 908 unsigned int pages; 909 int ret; 910 int rx_sglen, tx_sglen; 911 struct dma_chan *rxchan = pl022->dma_rx_channel; 912 struct dma_chan *txchan = pl022->dma_tx_channel; 913 struct dma_async_tx_descriptor *rxdesc; 914 struct dma_async_tx_descriptor *txdesc; 915 916 /* Check that the channels are available */ 917 if (!rxchan || !txchan) 918 return -ENODEV; 919 920 /* 921 * If supplied, the DMA burstsize should equal the FIFO trigger level. 922 * Notice that the DMA engine uses one-to-one mapping. Since we can 923 * not trigger on 2 elements this needs explicit mapping rather than 924 * calculation. 925 */ 926 switch (pl022->rx_lev_trig) { 927 case SSP_RX_1_OR_MORE_ELEM: 928 rx_conf.src_maxburst = 1; 929 break; 930 case SSP_RX_4_OR_MORE_ELEM: 931 rx_conf.src_maxburst = 4; 932 break; 933 case SSP_RX_8_OR_MORE_ELEM: 934 rx_conf.src_maxburst = 8; 935 break; 936 case SSP_RX_16_OR_MORE_ELEM: 937 rx_conf.src_maxburst = 16; 938 break; 939 case SSP_RX_32_OR_MORE_ELEM: 940 rx_conf.src_maxburst = 32; 941 break; 942 default: 943 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1; 944 break; 945 } 946 947 switch (pl022->tx_lev_trig) { 948 case SSP_TX_1_OR_MORE_EMPTY_LOC: 949 tx_conf.dst_maxburst = 1; 950 break; 951 case SSP_TX_4_OR_MORE_EMPTY_LOC: 952 tx_conf.dst_maxburst = 4; 953 break; 954 case SSP_TX_8_OR_MORE_EMPTY_LOC: 955 tx_conf.dst_maxburst = 8; 956 break; 957 case SSP_TX_16_OR_MORE_EMPTY_LOC: 958 tx_conf.dst_maxburst = 16; 959 break; 960 case SSP_TX_32_OR_MORE_EMPTY_LOC: 961 tx_conf.dst_maxburst = 32; 962 break; 963 default: 964 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1; 965 break; 966 } 967 968 switch (pl022->read) { 969 case READING_NULL: 970 /* Use the same as for writing */ 971 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 972 break; 973 case READING_U8: 974 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 975 break; 976 case READING_U16: 977 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 978 break; 979 case READING_U32: 980 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 981 break; 982 } 983 984 switch (pl022->write) { 985 case WRITING_NULL: 986 /* Use the same as for reading */ 987 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 988 break; 989 case WRITING_U8: 990 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 991 break; 992 case WRITING_U16: 993 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 994 break; 995 case WRITING_U32: 996 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 997 break; 998 } 999 1000 /* SPI pecularity: we need to read and write the same width */ 1001 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 1002 rx_conf.src_addr_width = tx_conf.dst_addr_width; 1003 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 1004 tx_conf.dst_addr_width = rx_conf.src_addr_width; 1005 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width); 1006 1007 dmaengine_slave_config(rxchan, &rx_conf); 1008 dmaengine_slave_config(txchan, &tx_conf); 1009 1010 /* Create sglists for the transfers */ 1011 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE); 1012 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages); 1013 1014 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC); 1015 if (ret) 1016 goto err_alloc_rx_sg; 1017 1018 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC); 1019 if (ret) 1020 goto err_alloc_tx_sg; 1021 1022 /* Fill in the scatterlists for the RX+TX buffers */ 1023 setup_dma_scatter(pl022, pl022->rx, 1024 pl022->cur_transfer->len, &pl022->sgt_rx); 1025 setup_dma_scatter(pl022, pl022->tx, 1026 pl022->cur_transfer->len, &pl022->sgt_tx); 1027 1028 /* Map DMA buffers */ 1029 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl, 1030 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 1031 if (!rx_sglen) 1032 goto err_rx_sgmap; 1033 1034 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl, 1035 pl022->sgt_tx.nents, DMA_TO_DEVICE); 1036 if (!tx_sglen) 1037 goto err_tx_sgmap; 1038 1039 /* Send both scatterlists */ 1040 rxdesc = dmaengine_prep_slave_sg(rxchan, 1041 pl022->sgt_rx.sgl, 1042 rx_sglen, 1043 DMA_DEV_TO_MEM, 1044 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1045 if (!rxdesc) 1046 goto err_rxdesc; 1047 1048 txdesc = dmaengine_prep_slave_sg(txchan, 1049 pl022->sgt_tx.sgl, 1050 tx_sglen, 1051 DMA_MEM_TO_DEV, 1052 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1053 if (!txdesc) 1054 goto err_txdesc; 1055 1056 /* Put the callback on the RX transfer only, that should finish last */ 1057 rxdesc->callback = dma_callback; 1058 rxdesc->callback_param = pl022; 1059 1060 /* Submit and fire RX and TX with TX last so we're ready to read! */ 1061 dmaengine_submit(rxdesc); 1062 dmaengine_submit(txdesc); 1063 dma_async_issue_pending(rxchan); 1064 dma_async_issue_pending(txchan); 1065 pl022->dma_running = true; 1066 1067 return 0; 1068 1069 err_txdesc: 1070 dmaengine_terminate_all(txchan); 1071 err_rxdesc: 1072 dmaengine_terminate_all(rxchan); 1073 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl, 1074 pl022->sgt_tx.nents, DMA_TO_DEVICE); 1075 err_tx_sgmap: 1076 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl, 1077 pl022->sgt_tx.nents, DMA_FROM_DEVICE); 1078 err_rx_sgmap: 1079 sg_free_table(&pl022->sgt_tx); 1080 err_alloc_tx_sg: 1081 sg_free_table(&pl022->sgt_rx); 1082 err_alloc_rx_sg: 1083 return -ENOMEM; 1084 } 1085 1086 static int pl022_dma_probe(struct pl022 *pl022) 1087 { 1088 dma_cap_mask_t mask; 1089 1090 /* Try to acquire a generic DMA engine slave channel */ 1091 dma_cap_zero(mask); 1092 dma_cap_set(DMA_SLAVE, mask); 1093 /* 1094 * We need both RX and TX channels to do DMA, else do none 1095 * of them. 1096 */ 1097 pl022->dma_rx_channel = dma_request_channel(mask, 1098 pl022->master_info->dma_filter, 1099 pl022->master_info->dma_rx_param); 1100 if (!pl022->dma_rx_channel) { 1101 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n"); 1102 goto err_no_rxchan; 1103 } 1104 1105 pl022->dma_tx_channel = dma_request_channel(mask, 1106 pl022->master_info->dma_filter, 1107 pl022->master_info->dma_tx_param); 1108 if (!pl022->dma_tx_channel) { 1109 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n"); 1110 goto err_no_txchan; 1111 } 1112 1113 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); 1114 if (!pl022->dummypage) { 1115 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n"); 1116 goto err_no_dummypage; 1117 } 1118 1119 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n", 1120 dma_chan_name(pl022->dma_rx_channel), 1121 dma_chan_name(pl022->dma_tx_channel)); 1122 1123 return 0; 1124 1125 err_no_dummypage: 1126 dma_release_channel(pl022->dma_tx_channel); 1127 err_no_txchan: 1128 dma_release_channel(pl022->dma_rx_channel); 1129 pl022->dma_rx_channel = NULL; 1130 err_no_rxchan: 1131 dev_err(&pl022->adev->dev, 1132 "Failed to work in dma mode, work without dma!\n"); 1133 return -ENODEV; 1134 } 1135 1136 static int pl022_dma_autoprobe(struct pl022 *pl022) 1137 { 1138 struct device *dev = &pl022->adev->dev; 1139 1140 /* automatically configure DMA channels from platform, normally using DT */ 1141 pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx"); 1142 if (!pl022->dma_rx_channel) 1143 goto err_no_rxchan; 1144 1145 pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx"); 1146 if (!pl022->dma_tx_channel) 1147 goto err_no_txchan; 1148 1149 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); 1150 if (!pl022->dummypage) 1151 goto err_no_dummypage; 1152 1153 return 0; 1154 1155 err_no_dummypage: 1156 dma_release_channel(pl022->dma_tx_channel); 1157 pl022->dma_tx_channel = NULL; 1158 err_no_txchan: 1159 dma_release_channel(pl022->dma_rx_channel); 1160 pl022->dma_rx_channel = NULL; 1161 err_no_rxchan: 1162 return -ENODEV; 1163 } 1164 1165 static void terminate_dma(struct pl022 *pl022) 1166 { 1167 struct dma_chan *rxchan = pl022->dma_rx_channel; 1168 struct dma_chan *txchan = pl022->dma_tx_channel; 1169 1170 dmaengine_terminate_all(rxchan); 1171 dmaengine_terminate_all(txchan); 1172 unmap_free_dma_scatter(pl022); 1173 pl022->dma_running = false; 1174 } 1175 1176 static void pl022_dma_remove(struct pl022 *pl022) 1177 { 1178 if (pl022->dma_running) 1179 terminate_dma(pl022); 1180 if (pl022->dma_tx_channel) 1181 dma_release_channel(pl022->dma_tx_channel); 1182 if (pl022->dma_rx_channel) 1183 dma_release_channel(pl022->dma_rx_channel); 1184 kfree(pl022->dummypage); 1185 } 1186 1187 #else 1188 static inline int configure_dma(struct pl022 *pl022) 1189 { 1190 return -ENODEV; 1191 } 1192 1193 static inline int pl022_dma_autoprobe(struct pl022 *pl022) 1194 { 1195 return 0; 1196 } 1197 1198 static inline int pl022_dma_probe(struct pl022 *pl022) 1199 { 1200 return 0; 1201 } 1202 1203 static inline void pl022_dma_remove(struct pl022 *pl022) 1204 { 1205 } 1206 #endif 1207 1208 /** 1209 * pl022_interrupt_handler - Interrupt handler for SSP controller 1210 * 1211 * This function handles interrupts generated for an interrupt based transfer. 1212 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the 1213 * current message's state as STATE_ERROR and schedule the tasklet 1214 * pump_transfers which will do the postprocessing of the current message by 1215 * calling giveback(). Otherwise it reads data from RX FIFO till there is no 1216 * more data, and writes data in TX FIFO till it is not full. If we complete 1217 * the transfer we move to the next transfer and schedule the tasklet. 1218 */ 1219 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id) 1220 { 1221 struct pl022 *pl022 = dev_id; 1222 struct spi_message *msg = pl022->cur_msg; 1223 u16 irq_status = 0; 1224 u16 flag = 0; 1225 1226 if (unlikely(!msg)) { 1227 dev_err(&pl022->adev->dev, 1228 "bad message state in interrupt handler"); 1229 /* Never fail */ 1230 return IRQ_HANDLED; 1231 } 1232 1233 /* Read the Interrupt Status Register */ 1234 irq_status = readw(SSP_MIS(pl022->virtbase)); 1235 1236 if (unlikely(!irq_status)) 1237 return IRQ_NONE; 1238 1239 /* 1240 * This handles the FIFO interrupts, the timeout 1241 * interrupts are flatly ignored, they cannot be 1242 * trusted. 1243 */ 1244 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) { 1245 /* 1246 * Overrun interrupt - bail out since our Data has been 1247 * corrupted 1248 */ 1249 dev_err(&pl022->adev->dev, "FIFO overrun\n"); 1250 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF) 1251 dev_err(&pl022->adev->dev, 1252 "RXFIFO is full\n"); 1253 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF) 1254 dev_err(&pl022->adev->dev, 1255 "TXFIFO is full\n"); 1256 1257 /* 1258 * Disable and clear interrupts, disable SSP, 1259 * mark message with bad status so it can be 1260 * retried. 1261 */ 1262 writew(DISABLE_ALL_INTERRUPTS, 1263 SSP_IMSC(pl022->virtbase)); 1264 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 1265 writew((readw(SSP_CR1(pl022->virtbase)) & 1266 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 1267 msg->state = STATE_ERROR; 1268 1269 /* Schedule message queue handler */ 1270 tasklet_schedule(&pl022->pump_transfers); 1271 return IRQ_HANDLED; 1272 } 1273 1274 readwriter(pl022); 1275 1276 if ((pl022->tx == pl022->tx_end) && (flag == 0)) { 1277 flag = 1; 1278 /* Disable Transmit interrupt, enable receive interrupt */ 1279 writew((readw(SSP_IMSC(pl022->virtbase)) & 1280 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM, 1281 SSP_IMSC(pl022->virtbase)); 1282 } 1283 1284 /* 1285 * Since all transactions must write as much as shall be read, 1286 * we can conclude the entire transaction once RX is complete. 1287 * At this point, all TX will always be finished. 1288 */ 1289 if (pl022->rx >= pl022->rx_end) { 1290 writew(DISABLE_ALL_INTERRUPTS, 1291 SSP_IMSC(pl022->virtbase)); 1292 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 1293 if (unlikely(pl022->rx > pl022->rx_end)) { 1294 dev_warn(&pl022->adev->dev, "read %u surplus " 1295 "bytes (did you request an odd " 1296 "number of bytes on a 16bit bus?)\n", 1297 (u32) (pl022->rx - pl022->rx_end)); 1298 } 1299 /* Update total bytes transferred */ 1300 msg->actual_length += pl022->cur_transfer->len; 1301 if (pl022->cur_transfer->cs_change) 1302 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 1303 /* Move to next transfer */ 1304 msg->state = next_transfer(pl022); 1305 tasklet_schedule(&pl022->pump_transfers); 1306 return IRQ_HANDLED; 1307 } 1308 1309 return IRQ_HANDLED; 1310 } 1311 1312 /** 1313 * This sets up the pointers to memory for the next message to 1314 * send out on the SPI bus. 1315 */ 1316 static int set_up_next_transfer(struct pl022 *pl022, 1317 struct spi_transfer *transfer) 1318 { 1319 int residue; 1320 1321 /* Sanity check the message for this bus width */ 1322 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes; 1323 if (unlikely(residue != 0)) { 1324 dev_err(&pl022->adev->dev, 1325 "message of %u bytes to transmit but the current " 1326 "chip bus has a data width of %u bytes!\n", 1327 pl022->cur_transfer->len, 1328 pl022->cur_chip->n_bytes); 1329 dev_err(&pl022->adev->dev, "skipping this message\n"); 1330 return -EIO; 1331 } 1332 pl022->tx = (void *)transfer->tx_buf; 1333 pl022->tx_end = pl022->tx + pl022->cur_transfer->len; 1334 pl022->rx = (void *)transfer->rx_buf; 1335 pl022->rx_end = pl022->rx + pl022->cur_transfer->len; 1336 pl022->write = 1337 pl022->tx ? pl022->cur_chip->write : WRITING_NULL; 1338 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL; 1339 return 0; 1340 } 1341 1342 /** 1343 * pump_transfers - Tasklet function which schedules next transfer 1344 * when running in interrupt or DMA transfer mode. 1345 * @data: SSP driver private data structure 1346 * 1347 */ 1348 static void pump_transfers(unsigned long data) 1349 { 1350 struct pl022 *pl022 = (struct pl022 *) data; 1351 struct spi_message *message = NULL; 1352 struct spi_transfer *transfer = NULL; 1353 struct spi_transfer *previous = NULL; 1354 1355 /* Get current state information */ 1356 message = pl022->cur_msg; 1357 transfer = pl022->cur_transfer; 1358 1359 /* Handle for abort */ 1360 if (message->state == STATE_ERROR) { 1361 message->status = -EIO; 1362 giveback(pl022); 1363 return; 1364 } 1365 1366 /* Handle end of message */ 1367 if (message->state == STATE_DONE) { 1368 message->status = 0; 1369 giveback(pl022); 1370 return; 1371 } 1372 1373 /* Delay if requested at end of transfer before CS change */ 1374 if (message->state == STATE_RUNNING) { 1375 previous = list_entry(transfer->transfer_list.prev, 1376 struct spi_transfer, 1377 transfer_list); 1378 if (previous->delay_usecs) 1379 /* 1380 * FIXME: This runs in interrupt context. 1381 * Is this really smart? 1382 */ 1383 udelay(previous->delay_usecs); 1384 1385 /* Reselect chip select only if cs_change was requested */ 1386 if (previous->cs_change) 1387 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1388 } else { 1389 /* STATE_START */ 1390 message->state = STATE_RUNNING; 1391 } 1392 1393 if (set_up_next_transfer(pl022, transfer)) { 1394 message->state = STATE_ERROR; 1395 message->status = -EIO; 1396 giveback(pl022); 1397 return; 1398 } 1399 /* Flush the FIFOs and let's go! */ 1400 flush(pl022); 1401 1402 if (pl022->cur_chip->enable_dma) { 1403 if (configure_dma(pl022)) { 1404 dev_dbg(&pl022->adev->dev, 1405 "configuration of DMA failed, fall back to interrupt mode\n"); 1406 goto err_config_dma; 1407 } 1408 return; 1409 } 1410 1411 err_config_dma: 1412 /* enable all interrupts except RX */ 1413 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase)); 1414 } 1415 1416 static void do_interrupt_dma_transfer(struct pl022 *pl022) 1417 { 1418 /* 1419 * Default is to enable all interrupts except RX - 1420 * this will be enabled once TX is complete 1421 */ 1422 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM; 1423 1424 /* Enable target chip, if not already active */ 1425 if (!pl022->next_msg_cs_active) 1426 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1427 1428 if (set_up_next_transfer(pl022, pl022->cur_transfer)) { 1429 /* Error path */ 1430 pl022->cur_msg->state = STATE_ERROR; 1431 pl022->cur_msg->status = -EIO; 1432 giveback(pl022); 1433 return; 1434 } 1435 /* If we're using DMA, set up DMA here */ 1436 if (pl022->cur_chip->enable_dma) { 1437 /* Configure DMA transfer */ 1438 if (configure_dma(pl022)) { 1439 dev_dbg(&pl022->adev->dev, 1440 "configuration of DMA failed, fall back to interrupt mode\n"); 1441 goto err_config_dma; 1442 } 1443 /* Disable interrupts in DMA mode, IRQ from DMA controller */ 1444 irqflags = DISABLE_ALL_INTERRUPTS; 1445 } 1446 err_config_dma: 1447 /* Enable SSP, turn on interrupts */ 1448 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), 1449 SSP_CR1(pl022->virtbase)); 1450 writew(irqflags, SSP_IMSC(pl022->virtbase)); 1451 } 1452 1453 static void do_polling_transfer(struct pl022 *pl022) 1454 { 1455 struct spi_message *message = NULL; 1456 struct spi_transfer *transfer = NULL; 1457 struct spi_transfer *previous = NULL; 1458 struct chip_data *chip; 1459 unsigned long time, timeout; 1460 1461 chip = pl022->cur_chip; 1462 message = pl022->cur_msg; 1463 1464 while (message->state != STATE_DONE) { 1465 /* Handle for abort */ 1466 if (message->state == STATE_ERROR) 1467 break; 1468 transfer = pl022->cur_transfer; 1469 1470 /* Delay if requested at end of transfer */ 1471 if (message->state == STATE_RUNNING) { 1472 previous = 1473 list_entry(transfer->transfer_list.prev, 1474 struct spi_transfer, transfer_list); 1475 if (previous->delay_usecs) 1476 udelay(previous->delay_usecs); 1477 if (previous->cs_change) 1478 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1479 } else { 1480 /* STATE_START */ 1481 message->state = STATE_RUNNING; 1482 if (!pl022->next_msg_cs_active) 1483 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1484 } 1485 1486 /* Configuration Changing Per Transfer */ 1487 if (set_up_next_transfer(pl022, transfer)) { 1488 /* Error path */ 1489 message->state = STATE_ERROR; 1490 break; 1491 } 1492 /* Flush FIFOs and enable SSP */ 1493 flush(pl022); 1494 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), 1495 SSP_CR1(pl022->virtbase)); 1496 1497 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n"); 1498 1499 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT); 1500 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) { 1501 time = jiffies; 1502 readwriter(pl022); 1503 if (time_after(time, timeout)) { 1504 dev_warn(&pl022->adev->dev, 1505 "%s: timeout!\n", __func__); 1506 message->state = STATE_ERROR; 1507 goto out; 1508 } 1509 cpu_relax(); 1510 } 1511 1512 /* Update total byte transferred */ 1513 message->actual_length += pl022->cur_transfer->len; 1514 if (pl022->cur_transfer->cs_change) 1515 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 1516 /* Move to next transfer */ 1517 message->state = next_transfer(pl022); 1518 } 1519 out: 1520 /* Handle end of message */ 1521 if (message->state == STATE_DONE) 1522 message->status = 0; 1523 else 1524 message->status = -EIO; 1525 1526 giveback(pl022); 1527 return; 1528 } 1529 1530 static int pl022_transfer_one_message(struct spi_master *master, 1531 struct spi_message *msg) 1532 { 1533 struct pl022 *pl022 = spi_master_get_devdata(master); 1534 1535 /* Initial message state */ 1536 pl022->cur_msg = msg; 1537 msg->state = STATE_START; 1538 1539 pl022->cur_transfer = list_entry(msg->transfers.next, 1540 struct spi_transfer, transfer_list); 1541 1542 /* Setup the SPI using the per chip configuration */ 1543 pl022->cur_chip = spi_get_ctldata(msg->spi); 1544 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select]; 1545 1546 restore_state(pl022); 1547 flush(pl022); 1548 1549 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER) 1550 do_polling_transfer(pl022); 1551 else 1552 do_interrupt_dma_transfer(pl022); 1553 1554 return 0; 1555 } 1556 1557 static int pl022_unprepare_transfer_hardware(struct spi_master *master) 1558 { 1559 struct pl022 *pl022 = spi_master_get_devdata(master); 1560 1561 /* nothing more to do - disable spi/ssp and power off */ 1562 writew((readw(SSP_CR1(pl022->virtbase)) & 1563 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 1564 1565 return 0; 1566 } 1567 1568 static int verify_controller_parameters(struct pl022 *pl022, 1569 struct pl022_config_chip const *chip_info) 1570 { 1571 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI) 1572 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) { 1573 dev_err(&pl022->adev->dev, 1574 "interface is configured incorrectly\n"); 1575 return -EINVAL; 1576 } 1577 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) && 1578 (!pl022->vendor->unidir)) { 1579 dev_err(&pl022->adev->dev, 1580 "unidirectional mode not supported in this " 1581 "hardware version\n"); 1582 return -EINVAL; 1583 } 1584 if ((chip_info->hierarchy != SSP_MASTER) 1585 && (chip_info->hierarchy != SSP_SLAVE)) { 1586 dev_err(&pl022->adev->dev, 1587 "hierarchy is configured incorrectly\n"); 1588 return -EINVAL; 1589 } 1590 if ((chip_info->com_mode != INTERRUPT_TRANSFER) 1591 && (chip_info->com_mode != DMA_TRANSFER) 1592 && (chip_info->com_mode != POLLING_TRANSFER)) { 1593 dev_err(&pl022->adev->dev, 1594 "Communication mode is configured incorrectly\n"); 1595 return -EINVAL; 1596 } 1597 switch (chip_info->rx_lev_trig) { 1598 case SSP_RX_1_OR_MORE_ELEM: 1599 case SSP_RX_4_OR_MORE_ELEM: 1600 case SSP_RX_8_OR_MORE_ELEM: 1601 /* These are always OK, all variants can handle this */ 1602 break; 1603 case SSP_RX_16_OR_MORE_ELEM: 1604 if (pl022->vendor->fifodepth < 16) { 1605 dev_err(&pl022->adev->dev, 1606 "RX FIFO Trigger Level is configured incorrectly\n"); 1607 return -EINVAL; 1608 } 1609 break; 1610 case SSP_RX_32_OR_MORE_ELEM: 1611 if (pl022->vendor->fifodepth < 32) { 1612 dev_err(&pl022->adev->dev, 1613 "RX FIFO Trigger Level is configured incorrectly\n"); 1614 return -EINVAL; 1615 } 1616 break; 1617 default: 1618 dev_err(&pl022->adev->dev, 1619 "RX FIFO Trigger Level is configured incorrectly\n"); 1620 return -EINVAL; 1621 } 1622 switch (chip_info->tx_lev_trig) { 1623 case SSP_TX_1_OR_MORE_EMPTY_LOC: 1624 case SSP_TX_4_OR_MORE_EMPTY_LOC: 1625 case SSP_TX_8_OR_MORE_EMPTY_LOC: 1626 /* These are always OK, all variants can handle this */ 1627 break; 1628 case SSP_TX_16_OR_MORE_EMPTY_LOC: 1629 if (pl022->vendor->fifodepth < 16) { 1630 dev_err(&pl022->adev->dev, 1631 "TX FIFO Trigger Level is configured incorrectly\n"); 1632 return -EINVAL; 1633 } 1634 break; 1635 case SSP_TX_32_OR_MORE_EMPTY_LOC: 1636 if (pl022->vendor->fifodepth < 32) { 1637 dev_err(&pl022->adev->dev, 1638 "TX FIFO Trigger Level is configured incorrectly\n"); 1639 return -EINVAL; 1640 } 1641 break; 1642 default: 1643 dev_err(&pl022->adev->dev, 1644 "TX FIFO Trigger Level is configured incorrectly\n"); 1645 return -EINVAL; 1646 } 1647 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) { 1648 if ((chip_info->ctrl_len < SSP_BITS_4) 1649 || (chip_info->ctrl_len > SSP_BITS_32)) { 1650 dev_err(&pl022->adev->dev, 1651 "CTRL LEN is configured incorrectly\n"); 1652 return -EINVAL; 1653 } 1654 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO) 1655 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) { 1656 dev_err(&pl022->adev->dev, 1657 "Wait State is configured incorrectly\n"); 1658 return -EINVAL; 1659 } 1660 /* Half duplex is only available in the ST Micro version */ 1661 if (pl022->vendor->extended_cr) { 1662 if ((chip_info->duplex != 1663 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) 1664 && (chip_info->duplex != 1665 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) { 1666 dev_err(&pl022->adev->dev, 1667 "Microwire duplex mode is configured incorrectly\n"); 1668 return -EINVAL; 1669 } 1670 } else { 1671 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) 1672 dev_err(&pl022->adev->dev, 1673 "Microwire half duplex mode requested," 1674 " but this is only available in the" 1675 " ST version of PL022\n"); 1676 return -EINVAL; 1677 } 1678 } 1679 return 0; 1680 } 1681 1682 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr) 1683 { 1684 return rate / (cpsdvsr * (1 + scr)); 1685 } 1686 1687 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct 1688 ssp_clock_params * clk_freq) 1689 { 1690 /* Lets calculate the frequency parameters */ 1691 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN; 1692 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0, 1693 best_scr = 0, tmp, found = 0; 1694 1695 rate = clk_get_rate(pl022->clk); 1696 /* cpsdvscr = 2 & scr 0 */ 1697 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN); 1698 /* cpsdvsr = 254 & scr = 255 */ 1699 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX); 1700 1701 if (freq > max_tclk) 1702 dev_warn(&pl022->adev->dev, 1703 "Max speed that can be programmed is %d Hz, you requested %d\n", 1704 max_tclk, freq); 1705 1706 if (freq < min_tclk) { 1707 dev_err(&pl022->adev->dev, 1708 "Requested frequency: %d Hz is less than minimum possible %d Hz\n", 1709 freq, min_tclk); 1710 return -EINVAL; 1711 } 1712 1713 /* 1714 * best_freq will give closest possible available rate (<= requested 1715 * freq) for all values of scr & cpsdvsr. 1716 */ 1717 while ((cpsdvsr <= CPSDVR_MAX) && !found) { 1718 while (scr <= SCR_MAX) { 1719 tmp = spi_rate(rate, cpsdvsr, scr); 1720 1721 if (tmp > freq) { 1722 /* we need lower freq */ 1723 scr++; 1724 continue; 1725 } 1726 1727 /* 1728 * If found exact value, mark found and break. 1729 * If found more closer value, update and break. 1730 */ 1731 if (tmp > best_freq) { 1732 best_freq = tmp; 1733 best_cpsdvsr = cpsdvsr; 1734 best_scr = scr; 1735 1736 if (tmp == freq) 1737 found = 1; 1738 } 1739 /* 1740 * increased scr will give lower rates, which are not 1741 * required 1742 */ 1743 break; 1744 } 1745 cpsdvsr += 2; 1746 scr = SCR_MIN; 1747 } 1748 1749 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n", 1750 freq); 1751 1752 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF); 1753 clk_freq->scr = (u8) (best_scr & 0xFF); 1754 dev_dbg(&pl022->adev->dev, 1755 "SSP Target Frequency is: %u, Effective Frequency is %u\n", 1756 freq, best_freq); 1757 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n", 1758 clk_freq->cpsdvsr, clk_freq->scr); 1759 1760 return 0; 1761 } 1762 1763 /* 1764 * A piece of default chip info unless the platform 1765 * supplies it. 1766 */ 1767 static const struct pl022_config_chip pl022_default_chip_info = { 1768 .com_mode = POLLING_TRANSFER, 1769 .iface = SSP_INTERFACE_MOTOROLA_SPI, 1770 .hierarchy = SSP_SLAVE, 1771 .slave_tx_disable = DO_NOT_DRIVE_TX, 1772 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM, 1773 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC, 1774 .ctrl_len = SSP_BITS_8, 1775 .wait_state = SSP_MWIRE_WAIT_ZERO, 1776 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, 1777 .cs_control = null_cs_control, 1778 }; 1779 1780 /** 1781 * pl022_setup - setup function registered to SPI master framework 1782 * @spi: spi device which is requesting setup 1783 * 1784 * This function is registered to the SPI framework for this SPI master 1785 * controller. If it is the first time when setup is called by this device, 1786 * this function will initialize the runtime state for this chip and save 1787 * the same in the device structure. Else it will update the runtime info 1788 * with the updated chip info. Nothing is really being written to the 1789 * controller hardware here, that is not done until the actual transfer 1790 * commence. 1791 */ 1792 static int pl022_setup(struct spi_device *spi) 1793 { 1794 struct pl022_config_chip const *chip_info; 1795 struct pl022_config_chip chip_info_dt; 1796 struct chip_data *chip; 1797 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0}; 1798 int status = 0; 1799 struct pl022 *pl022 = spi_master_get_devdata(spi->master); 1800 unsigned int bits = spi->bits_per_word; 1801 u32 tmp; 1802 struct device_node *np = spi->dev.of_node; 1803 1804 if (!spi->max_speed_hz) 1805 return -EINVAL; 1806 1807 /* Get controller_state if one is supplied */ 1808 chip = spi_get_ctldata(spi); 1809 1810 if (chip == NULL) { 1811 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1812 if (!chip) { 1813 dev_err(&spi->dev, 1814 "cannot allocate controller state\n"); 1815 return -ENOMEM; 1816 } 1817 dev_dbg(&spi->dev, 1818 "allocated memory for controller's runtime state\n"); 1819 } 1820 1821 /* Get controller data if one is supplied */ 1822 chip_info = spi->controller_data; 1823 1824 if (chip_info == NULL) { 1825 if (np) { 1826 chip_info_dt = pl022_default_chip_info; 1827 1828 chip_info_dt.hierarchy = SSP_MASTER; 1829 of_property_read_u32(np, "pl022,interface", 1830 &chip_info_dt.iface); 1831 of_property_read_u32(np, "pl022,com-mode", 1832 &chip_info_dt.com_mode); 1833 of_property_read_u32(np, "pl022,rx-level-trig", 1834 &chip_info_dt.rx_lev_trig); 1835 of_property_read_u32(np, "pl022,tx-level-trig", 1836 &chip_info_dt.tx_lev_trig); 1837 of_property_read_u32(np, "pl022,ctrl-len", 1838 &chip_info_dt.ctrl_len); 1839 of_property_read_u32(np, "pl022,wait-state", 1840 &chip_info_dt.wait_state); 1841 of_property_read_u32(np, "pl022,duplex", 1842 &chip_info_dt.duplex); 1843 1844 chip_info = &chip_info_dt; 1845 } else { 1846 chip_info = &pl022_default_chip_info; 1847 /* spi_board_info.controller_data not is supplied */ 1848 dev_dbg(&spi->dev, 1849 "using default controller_data settings\n"); 1850 } 1851 } else 1852 dev_dbg(&spi->dev, 1853 "using user supplied controller_data settings\n"); 1854 1855 /* 1856 * We can override with custom divisors, else we use the board 1857 * frequency setting 1858 */ 1859 if ((0 == chip_info->clk_freq.cpsdvsr) 1860 && (0 == chip_info->clk_freq.scr)) { 1861 status = calculate_effective_freq(pl022, 1862 spi->max_speed_hz, 1863 &clk_freq); 1864 if (status < 0) 1865 goto err_config_params; 1866 } else { 1867 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq)); 1868 if ((clk_freq.cpsdvsr % 2) != 0) 1869 clk_freq.cpsdvsr = 1870 clk_freq.cpsdvsr - 1; 1871 } 1872 if ((clk_freq.cpsdvsr < CPSDVR_MIN) 1873 || (clk_freq.cpsdvsr > CPSDVR_MAX)) { 1874 status = -EINVAL; 1875 dev_err(&spi->dev, 1876 "cpsdvsr is configured incorrectly\n"); 1877 goto err_config_params; 1878 } 1879 1880 status = verify_controller_parameters(pl022, chip_info); 1881 if (status) { 1882 dev_err(&spi->dev, "controller data is incorrect"); 1883 goto err_config_params; 1884 } 1885 1886 pl022->rx_lev_trig = chip_info->rx_lev_trig; 1887 pl022->tx_lev_trig = chip_info->tx_lev_trig; 1888 1889 /* Now set controller state based on controller data */ 1890 chip->xfer_type = chip_info->com_mode; 1891 if (!chip_info->cs_control) { 1892 chip->cs_control = null_cs_control; 1893 if (!gpio_is_valid(pl022->chipselects[spi->chip_select])) 1894 dev_warn(&spi->dev, 1895 "invalid chip select\n"); 1896 } else 1897 chip->cs_control = chip_info->cs_control; 1898 1899 /* Check bits per word with vendor specific range */ 1900 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) { 1901 status = -ENOTSUPP; 1902 dev_err(&spi->dev, "illegal data size for this controller!\n"); 1903 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n", 1904 pl022->vendor->max_bpw); 1905 goto err_config_params; 1906 } else if (bits <= 8) { 1907 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n"); 1908 chip->n_bytes = 1; 1909 chip->read = READING_U8; 1910 chip->write = WRITING_U8; 1911 } else if (bits <= 16) { 1912 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n"); 1913 chip->n_bytes = 2; 1914 chip->read = READING_U16; 1915 chip->write = WRITING_U16; 1916 } else { 1917 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n"); 1918 chip->n_bytes = 4; 1919 chip->read = READING_U32; 1920 chip->write = WRITING_U32; 1921 } 1922 1923 /* Now Initialize all register settings required for this chip */ 1924 chip->cr0 = 0; 1925 chip->cr1 = 0; 1926 chip->dmacr = 0; 1927 chip->cpsr = 0; 1928 if ((chip_info->com_mode == DMA_TRANSFER) 1929 && ((pl022->master_info)->enable_dma)) { 1930 chip->enable_dma = true; 1931 dev_dbg(&spi->dev, "DMA mode set in controller state\n"); 1932 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, 1933 SSP_DMACR_MASK_RXDMAE, 0); 1934 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, 1935 SSP_DMACR_MASK_TXDMAE, 1); 1936 } else { 1937 chip->enable_dma = false; 1938 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n"); 1939 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, 1940 SSP_DMACR_MASK_RXDMAE, 0); 1941 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, 1942 SSP_DMACR_MASK_TXDMAE, 1); 1943 } 1944 1945 chip->cpsr = clk_freq.cpsdvsr; 1946 1947 /* Special setup for the ST micro extended control registers */ 1948 if (pl022->vendor->extended_cr) { 1949 u32 etx; 1950 1951 if (pl022->vendor->pl023) { 1952 /* These bits are only in the PL023 */ 1953 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay, 1954 SSP_CR1_MASK_FBCLKDEL_ST, 13); 1955 } else { 1956 /* These bits are in the PL022 but not PL023 */ 1957 SSP_WRITE_BITS(chip->cr0, chip_info->duplex, 1958 SSP_CR0_MASK_HALFDUP_ST, 5); 1959 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len, 1960 SSP_CR0_MASK_CSS_ST, 16); 1961 SSP_WRITE_BITS(chip->cr0, chip_info->iface, 1962 SSP_CR0_MASK_FRF_ST, 21); 1963 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state, 1964 SSP_CR1_MASK_MWAIT_ST, 6); 1965 } 1966 SSP_WRITE_BITS(chip->cr0, bits - 1, 1967 SSP_CR0_MASK_DSS_ST, 0); 1968 1969 if (spi->mode & SPI_LSB_FIRST) { 1970 tmp = SSP_RX_LSB; 1971 etx = SSP_TX_LSB; 1972 } else { 1973 tmp = SSP_RX_MSB; 1974 etx = SSP_TX_MSB; 1975 } 1976 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4); 1977 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5); 1978 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig, 1979 SSP_CR1_MASK_RXIFLSEL_ST, 7); 1980 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig, 1981 SSP_CR1_MASK_TXIFLSEL_ST, 10); 1982 } else { 1983 SSP_WRITE_BITS(chip->cr0, bits - 1, 1984 SSP_CR0_MASK_DSS, 0); 1985 SSP_WRITE_BITS(chip->cr0, chip_info->iface, 1986 SSP_CR0_MASK_FRF, 4); 1987 } 1988 1989 /* Stuff that is common for all versions */ 1990 if (spi->mode & SPI_CPOL) 1991 tmp = SSP_CLK_POL_IDLE_HIGH; 1992 else 1993 tmp = SSP_CLK_POL_IDLE_LOW; 1994 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6); 1995 1996 if (spi->mode & SPI_CPHA) 1997 tmp = SSP_CLK_SECOND_EDGE; 1998 else 1999 tmp = SSP_CLK_FIRST_EDGE; 2000 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7); 2001 2002 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8); 2003 /* Loopback is available on all versions except PL023 */ 2004 if (pl022->vendor->loopback) { 2005 if (spi->mode & SPI_LOOP) 2006 tmp = LOOPBACK_ENABLED; 2007 else 2008 tmp = LOOPBACK_DISABLED; 2009 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0); 2010 } 2011 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1); 2012 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2); 2013 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 2014 3); 2015 2016 /* Save controller_state */ 2017 spi_set_ctldata(spi, chip); 2018 return status; 2019 err_config_params: 2020 spi_set_ctldata(spi, NULL); 2021 kfree(chip); 2022 return status; 2023 } 2024 2025 /** 2026 * pl022_cleanup - cleanup function registered to SPI master framework 2027 * @spi: spi device which is requesting cleanup 2028 * 2029 * This function is registered to the SPI framework for this SPI master 2030 * controller. It will free the runtime state of chip. 2031 */ 2032 static void pl022_cleanup(struct spi_device *spi) 2033 { 2034 struct chip_data *chip = spi_get_ctldata(spi); 2035 2036 spi_set_ctldata(spi, NULL); 2037 kfree(chip); 2038 } 2039 2040 static struct pl022_ssp_controller * 2041 pl022_platform_data_dt_get(struct device *dev) 2042 { 2043 struct device_node *np = dev->of_node; 2044 struct pl022_ssp_controller *pd; 2045 u32 tmp; 2046 2047 if (!np) { 2048 dev_err(dev, "no dt node defined\n"); 2049 return NULL; 2050 } 2051 2052 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL); 2053 if (!pd) { 2054 dev_err(dev, "cannot allocate platform data memory\n"); 2055 return NULL; 2056 } 2057 2058 pd->bus_id = -1; 2059 pd->enable_dma = 1; 2060 of_property_read_u32(np, "num-cs", &tmp); 2061 pd->num_chipselect = tmp; 2062 of_property_read_u32(np, "pl022,autosuspend-delay", 2063 &pd->autosuspend_delay); 2064 pd->rt = of_property_read_bool(np, "pl022,rt"); 2065 2066 return pd; 2067 } 2068 2069 static int pl022_probe(struct amba_device *adev, const struct amba_id *id) 2070 { 2071 struct device *dev = &adev->dev; 2072 struct pl022_ssp_controller *platform_info = 2073 dev_get_platdata(&adev->dev); 2074 struct spi_master *master; 2075 struct pl022 *pl022 = NULL; /*Data for this driver */ 2076 struct device_node *np = adev->dev.of_node; 2077 int status = 0, i, num_cs; 2078 2079 dev_info(&adev->dev, 2080 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid); 2081 if (!platform_info && IS_ENABLED(CONFIG_OF)) 2082 platform_info = pl022_platform_data_dt_get(dev); 2083 2084 if (!platform_info) { 2085 dev_err(dev, "probe: no platform data defined\n"); 2086 return -ENODEV; 2087 } 2088 2089 if (platform_info->num_chipselect) { 2090 num_cs = platform_info->num_chipselect; 2091 } else { 2092 dev_err(dev, "probe: no chip select defined\n"); 2093 return -ENODEV; 2094 } 2095 2096 /* Allocate master with space for data */ 2097 master = spi_alloc_master(dev, sizeof(struct pl022)); 2098 if (master == NULL) { 2099 dev_err(&adev->dev, "probe - cannot alloc SPI master\n"); 2100 return -ENOMEM; 2101 } 2102 2103 pl022 = spi_master_get_devdata(master); 2104 pl022->master = master; 2105 pl022->master_info = platform_info; 2106 pl022->adev = adev; 2107 pl022->vendor = id->data; 2108 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int), 2109 GFP_KERNEL); 2110 2111 /* 2112 * Bus Number Which has been Assigned to this SSP controller 2113 * on this board 2114 */ 2115 master->bus_num = platform_info->bus_id; 2116 master->num_chipselect = num_cs; 2117 master->cleanup = pl022_cleanup; 2118 master->setup = pl022_setup; 2119 master->auto_runtime_pm = true; 2120 master->transfer_one_message = pl022_transfer_one_message; 2121 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware; 2122 master->rt = platform_info->rt; 2123 master->dev.of_node = dev->of_node; 2124 2125 if (platform_info->num_chipselect && platform_info->chipselects) { 2126 for (i = 0; i < num_cs; i++) 2127 pl022->chipselects[i] = platform_info->chipselects[i]; 2128 } else if (IS_ENABLED(CONFIG_OF)) { 2129 for (i = 0; i < num_cs; i++) { 2130 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i); 2131 2132 if (cs_gpio == -EPROBE_DEFER) { 2133 status = -EPROBE_DEFER; 2134 goto err_no_gpio; 2135 } 2136 2137 pl022->chipselects[i] = cs_gpio; 2138 2139 if (gpio_is_valid(cs_gpio)) { 2140 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022")) 2141 dev_err(&adev->dev, 2142 "could not request %d gpio\n", 2143 cs_gpio); 2144 else if (gpio_direction_output(cs_gpio, 1)) 2145 dev_err(&adev->dev, 2146 "could set gpio %d as output\n", 2147 cs_gpio); 2148 } 2149 } 2150 } 2151 2152 /* 2153 * Supports mode 0-3, loopback, and active low CS. Transfers are 2154 * always MS bit first on the original pl022. 2155 */ 2156 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 2157 if (pl022->vendor->extended_cr) 2158 master->mode_bits |= SPI_LSB_FIRST; 2159 2160 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num); 2161 2162 status = amba_request_regions(adev, NULL); 2163 if (status) 2164 goto err_no_ioregion; 2165 2166 pl022->phybase = adev->res.start; 2167 pl022->virtbase = devm_ioremap(dev, adev->res.start, 2168 resource_size(&adev->res)); 2169 if (pl022->virtbase == NULL) { 2170 status = -ENOMEM; 2171 goto err_no_ioremap; 2172 } 2173 dev_info(&adev->dev, "mapped registers from %pa to %p\n", 2174 &adev->res.start, pl022->virtbase); 2175 2176 pl022->clk = devm_clk_get(&adev->dev, NULL); 2177 if (IS_ERR(pl022->clk)) { 2178 status = PTR_ERR(pl022->clk); 2179 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n"); 2180 goto err_no_clk; 2181 } 2182 2183 status = clk_prepare_enable(pl022->clk); 2184 if (status) { 2185 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n"); 2186 goto err_no_clk_en; 2187 } 2188 2189 /* Initialize transfer pump */ 2190 tasklet_init(&pl022->pump_transfers, pump_transfers, 2191 (unsigned long)pl022); 2192 2193 /* Disable SSP */ 2194 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)), 2195 SSP_CR1(pl022->virtbase)); 2196 load_ssp_default_config(pl022); 2197 2198 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler, 2199 0, "pl022", pl022); 2200 if (status < 0) { 2201 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status); 2202 goto err_no_irq; 2203 } 2204 2205 /* Get DMA channels, try autoconfiguration first */ 2206 status = pl022_dma_autoprobe(pl022); 2207 2208 /* If that failed, use channels from platform_info */ 2209 if (status == 0) 2210 platform_info->enable_dma = 1; 2211 else if (platform_info->enable_dma) { 2212 status = pl022_dma_probe(pl022); 2213 if (status != 0) 2214 platform_info->enable_dma = 0; 2215 } 2216 2217 /* Register with the SPI framework */ 2218 amba_set_drvdata(adev, pl022); 2219 status = devm_spi_register_master(&adev->dev, master); 2220 if (status != 0) { 2221 dev_err(&adev->dev, 2222 "probe - problem registering spi master\n"); 2223 goto err_spi_register; 2224 } 2225 dev_dbg(dev, "probe succeeded\n"); 2226 2227 /* let runtime pm put suspend */ 2228 if (platform_info->autosuspend_delay > 0) { 2229 dev_info(&adev->dev, 2230 "will use autosuspend for runtime pm, delay %dms\n", 2231 platform_info->autosuspend_delay); 2232 pm_runtime_set_autosuspend_delay(dev, 2233 platform_info->autosuspend_delay); 2234 pm_runtime_use_autosuspend(dev); 2235 } 2236 pm_runtime_put(dev); 2237 2238 return 0; 2239 2240 err_spi_register: 2241 if (platform_info->enable_dma) 2242 pl022_dma_remove(pl022); 2243 err_no_irq: 2244 clk_disable_unprepare(pl022->clk); 2245 err_no_clk_en: 2246 err_no_clk: 2247 err_no_ioremap: 2248 amba_release_regions(adev); 2249 err_no_ioregion: 2250 err_no_gpio: 2251 spi_master_put(master); 2252 return status; 2253 } 2254 2255 static int 2256 pl022_remove(struct amba_device *adev) 2257 { 2258 struct pl022 *pl022 = amba_get_drvdata(adev); 2259 2260 if (!pl022) 2261 return 0; 2262 2263 /* 2264 * undo pm_runtime_put() in probe. I assume that we're not 2265 * accessing the primecell here. 2266 */ 2267 pm_runtime_get_noresume(&adev->dev); 2268 2269 load_ssp_default_config(pl022); 2270 if (pl022->master_info->enable_dma) 2271 pl022_dma_remove(pl022); 2272 2273 clk_disable_unprepare(pl022->clk); 2274 amba_release_regions(adev); 2275 tasklet_disable(&pl022->pump_transfers); 2276 return 0; 2277 } 2278 2279 #ifdef CONFIG_PM_SLEEP 2280 static int pl022_suspend(struct device *dev) 2281 { 2282 struct pl022 *pl022 = dev_get_drvdata(dev); 2283 int ret; 2284 2285 ret = spi_master_suspend(pl022->master); 2286 if (ret) { 2287 dev_warn(dev, "cannot suspend master\n"); 2288 return ret; 2289 } 2290 2291 ret = pm_runtime_force_suspend(dev); 2292 if (ret) { 2293 spi_master_resume(pl022->master); 2294 return ret; 2295 } 2296 2297 pinctrl_pm_select_sleep_state(dev); 2298 2299 dev_dbg(dev, "suspended\n"); 2300 return 0; 2301 } 2302 2303 static int pl022_resume(struct device *dev) 2304 { 2305 struct pl022 *pl022 = dev_get_drvdata(dev); 2306 int ret; 2307 2308 ret = pm_runtime_force_resume(dev); 2309 if (ret) 2310 dev_err(dev, "problem resuming\n"); 2311 2312 /* Start the queue running */ 2313 ret = spi_master_resume(pl022->master); 2314 if (ret) 2315 dev_err(dev, "problem starting queue (%d)\n", ret); 2316 else 2317 dev_dbg(dev, "resumed\n"); 2318 2319 return ret; 2320 } 2321 #endif 2322 2323 #ifdef CONFIG_PM 2324 static int pl022_runtime_suspend(struct device *dev) 2325 { 2326 struct pl022 *pl022 = dev_get_drvdata(dev); 2327 2328 clk_disable_unprepare(pl022->clk); 2329 pinctrl_pm_select_idle_state(dev); 2330 2331 return 0; 2332 } 2333 2334 static int pl022_runtime_resume(struct device *dev) 2335 { 2336 struct pl022 *pl022 = dev_get_drvdata(dev); 2337 2338 pinctrl_pm_select_default_state(dev); 2339 clk_prepare_enable(pl022->clk); 2340 2341 return 0; 2342 } 2343 #endif 2344 2345 static const struct dev_pm_ops pl022_dev_pm_ops = { 2346 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume) 2347 SET_PM_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL) 2348 }; 2349 2350 static struct vendor_data vendor_arm = { 2351 .fifodepth = 8, 2352 .max_bpw = 16, 2353 .unidir = false, 2354 .extended_cr = false, 2355 .pl023 = false, 2356 .loopback = true, 2357 }; 2358 2359 static struct vendor_data vendor_st = { 2360 .fifodepth = 32, 2361 .max_bpw = 32, 2362 .unidir = false, 2363 .extended_cr = true, 2364 .pl023 = false, 2365 .loopback = true, 2366 }; 2367 2368 static struct vendor_data vendor_st_pl023 = { 2369 .fifodepth = 32, 2370 .max_bpw = 32, 2371 .unidir = false, 2372 .extended_cr = true, 2373 .pl023 = true, 2374 .loopback = false, 2375 }; 2376 2377 static struct amba_id pl022_ids[] = { 2378 { 2379 /* 2380 * ARM PL022 variant, this has a 16bit wide 2381 * and 8 locations deep TX/RX FIFO 2382 */ 2383 .id = 0x00041022, 2384 .mask = 0x000fffff, 2385 .data = &vendor_arm, 2386 }, 2387 { 2388 /* 2389 * ST Micro derivative, this has 32bit wide 2390 * and 32 locations deep TX/RX FIFO 2391 */ 2392 .id = 0x01080022, 2393 .mask = 0xffffffff, 2394 .data = &vendor_st, 2395 }, 2396 { 2397 /* 2398 * ST-Ericsson derivative "PL023" (this is not 2399 * an official ARM number), this is a PL022 SSP block 2400 * stripped to SPI mode only, it has 32bit wide 2401 * and 32 locations deep TX/RX FIFO but no extended 2402 * CR0/CR1 register 2403 */ 2404 .id = 0x00080023, 2405 .mask = 0xffffffff, 2406 .data = &vendor_st_pl023, 2407 }, 2408 { 0, 0 }, 2409 }; 2410 2411 MODULE_DEVICE_TABLE(amba, pl022_ids); 2412 2413 static struct amba_driver pl022_driver = { 2414 .drv = { 2415 .name = "ssp-pl022", 2416 .pm = &pl022_dev_pm_ops, 2417 }, 2418 .id_table = pl022_ids, 2419 .probe = pl022_probe, 2420 .remove = pl022_remove, 2421 }; 2422 2423 static int __init pl022_init(void) 2424 { 2425 return amba_driver_register(&pl022_driver); 2426 } 2427 subsys_initcall(pl022_init); 2428 2429 static void __exit pl022_exit(void) 2430 { 2431 amba_driver_unregister(&pl022_driver); 2432 } 2433 module_exit(pl022_exit); 2434 2435 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>"); 2436 MODULE_DESCRIPTION("PL022 SSP Controller Driver"); 2437 MODULE_LICENSE("GPL"); 2438