xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision abfbd895)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2012 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
46 
47 /*
48  * This macro is used to define some register default values.
49  * reg is masked with mask, the OR:ed with an (again masked)
50  * val shifted sb steps to the left.
51  */
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 
55 /*
56  * This macro is also used to define some default values.
57  * It will just shift val by sb steps to the left and mask
58  * the result with mask.
59  */
60 #define GEN_MASK_BITS(val, mask, sb) \
61  (((val)<<(sb)) & (mask))
62 
63 #define DRIVE_TX		0
64 #define DO_NOT_DRIVE_TX		1
65 
66 #define DO_NOT_QUEUE_DMA	0
67 #define QUEUE_DMA		1
68 
69 #define RX_TRANSFER		1
70 #define TX_TRANSFER		2
71 
72 /*
73  * Macros to access SSP Registers with their offsets
74  */
75 #define SSP_CR0(r)	(r + 0x000)
76 #define SSP_CR1(r)	(r + 0x004)
77 #define SSP_DR(r)	(r + 0x008)
78 #define SSP_SR(r)	(r + 0x00C)
79 #define SSP_CPSR(r)	(r + 0x010)
80 #define SSP_IMSC(r)	(r + 0x014)
81 #define SSP_RIS(r)	(r + 0x018)
82 #define SSP_MIS(r)	(r + 0x01C)
83 #define SSP_ICR(r)	(r + 0x020)
84 #define SSP_DMACR(r)	(r + 0x024)
85 #define SSP_CSR(r)	(r + 0x030) /* vendor extension */
86 #define SSP_ITCR(r)	(r + 0x080)
87 #define SSP_ITIP(r)	(r + 0x084)
88 #define SSP_ITOP(r)	(r + 0x088)
89 #define SSP_TDR(r)	(r + 0x08C)
90 
91 #define SSP_PID0(r)	(r + 0xFE0)
92 #define SSP_PID1(r)	(r + 0xFE4)
93 #define SSP_PID2(r)	(r + 0xFE8)
94 #define SSP_PID3(r)	(r + 0xFEC)
95 
96 #define SSP_CID0(r)	(r + 0xFF0)
97 #define SSP_CID1(r)	(r + 0xFF4)
98 #define SSP_CID2(r)	(r + 0xFF8)
99 #define SSP_CID3(r)	(r + 0xFFC)
100 
101 /*
102  * SSP Control Register 0  - SSP_CR0
103  */
104 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
105 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
106 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
107 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
108 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
109 
110 /*
111  * The ST version of this block moves som bits
112  * in SSP_CR0 and extends it to 32 bits
113  */
114 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
115 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
116 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
117 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
118 
119 /*
120  * SSP Control Register 0  - SSP_CR1
121  */
122 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
123 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
124 #define SSP_CR1_MASK_MS		(0x1UL << 2)
125 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
126 
127 /*
128  * The ST version of this block adds some bits
129  * in SSP_CR1
130  */
131 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
132 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
133 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
134 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
135 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136 /* This one is only in the PL023 variant */
137 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138 
139 /*
140  * SSP Status Register - SSP_SR
141  */
142 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
143 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
144 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
145 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
146 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
147 
148 /*
149  * SSP Clock Prescale Register  - SSP_CPSR
150  */
151 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
152 
153 /*
154  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155  */
156 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
157 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
158 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
159 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160 
161 /*
162  * SSP Raw Interrupt Status Register - SSP_RIS
163  */
164 /* Receive Overrun Raw Interrupt status */
165 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
166 /* Receive Timeout Raw Interrupt status */
167 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
168 /* Receive FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
170 /* Transmit FIFO Raw Interrupt status */
171 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
172 
173 /*
174  * SSP Masked Interrupt Status Register - SSP_MIS
175  */
176 /* Receive Overrun Masked Interrupt status */
177 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
178 /* Receive Timeout Masked Interrupt status */
179 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
180 /* Receive FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
182 /* Transmit FIFO Masked Interrupt status */
183 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
184 
185 /*
186  * SSP Interrupt Clear Register - SSP_ICR
187  */
188 /* Receive Overrun Raw Clear Interrupt bit */
189 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
190 /* Receive Timeout Clear Interrupt bit */
191 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
192 
193 /*
194  * SSP DMA Control Register - SSP_DMACR
195  */
196 /* Receive DMA Enable bit */
197 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
198 /* Transmit DMA Enable bit */
199 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
200 
201 /*
202  * SSP Chip Select Control Register - SSP_CSR
203  * (vendor extension)
204  */
205 #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
206 
207 /*
208  * SSP Integration Test control Register - SSP_ITCR
209  */
210 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
211 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
212 
213 /*
214  * SSP Integration Test Input Register - SSP_ITIP
215  */
216 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
217 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
218 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
219 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
220 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
221 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
222 
223 /*
224  * SSP Integration Test output Register - SSP_ITOP
225  */
226 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
227 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
228 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
229 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
230 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
231 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
232 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
233 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
234 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
235 #define ITOP_MASK_INTR			 (0x1UL << 9)
236 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
237 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
238 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
239 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
240 
241 /*
242  * SSP Test Data Register - SSP_TDR
243  */
244 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
245 
246 /*
247  * Message State
248  * we use the spi_message.state (void *) pointer to
249  * hold a single state value, that's why all this
250  * (void *) casting is done here.
251  */
252 #define STATE_START			((void *) 0)
253 #define STATE_RUNNING			((void *) 1)
254 #define STATE_DONE			((void *) 2)
255 #define STATE_ERROR			((void *) -1)
256 
257 /*
258  * SSP State - Whether Enabled or Disabled
259  */
260 #define SSP_DISABLED			(0)
261 #define SSP_ENABLED			(1)
262 
263 /*
264  * SSP DMA State - Whether DMA Enabled or Disabled
265  */
266 #define SSP_DMA_DISABLED		(0)
267 #define SSP_DMA_ENABLED			(1)
268 
269 /*
270  * SSP Clock Defaults
271  */
272 #define SSP_DEFAULT_CLKRATE 0x2
273 #define SSP_DEFAULT_PRESCALE 0x40
274 
275 /*
276  * SSP Clock Parameter ranges
277  */
278 #define CPSDVR_MIN 0x02
279 #define CPSDVR_MAX 0xFE
280 #define SCR_MIN 0x00
281 #define SCR_MAX 0xFF
282 
283 /*
284  * SSP Interrupt related Macros
285  */
286 #define DEFAULT_SSP_REG_IMSC  0x0UL
287 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
288 #define ENABLE_ALL_INTERRUPTS ( \
289 	SSP_IMSC_MASK_RORIM | \
290 	SSP_IMSC_MASK_RTIM | \
291 	SSP_IMSC_MASK_RXIM | \
292 	SSP_IMSC_MASK_TXIM \
293 )
294 
295 #define CLEAR_ALL_INTERRUPTS  0x3
296 
297 #define SPI_POLLING_TIMEOUT 1000
298 
299 /*
300  * The type of reading going on on this chip
301  */
302 enum ssp_reading {
303 	READING_NULL,
304 	READING_U8,
305 	READING_U16,
306 	READING_U32
307 };
308 
309 /**
310  * The type of writing going on on this chip
311  */
312 enum ssp_writing {
313 	WRITING_NULL,
314 	WRITING_U8,
315 	WRITING_U16,
316 	WRITING_U32
317 };
318 
319 /**
320  * struct vendor_data - vendor-specific config parameters
321  * for PL022 derivates
322  * @fifodepth: depth of FIFOs (both)
323  * @max_bpw: maximum number of bits per word
324  * @unidir: supports unidirection transfers
325  * @extended_cr: 32 bit wide control register 0 with extra
326  * features and extra features in CR1 as found in the ST variants
327  * @pl023: supports a subset of the ST extensions called "PL023"
328  * @internal_cs_ctrl: supports chip select control register
329  */
330 struct vendor_data {
331 	int fifodepth;
332 	int max_bpw;
333 	bool unidir;
334 	bool extended_cr;
335 	bool pl023;
336 	bool loopback;
337 	bool internal_cs_ctrl;
338 };
339 
340 /**
341  * struct pl022 - This is the private SSP driver data structure
342  * @adev: AMBA device model hookup
343  * @vendor: vendor data for the IP block
344  * @phybase: the physical memory where the SSP device resides
345  * @virtbase: the virtual memory where the SSP is mapped
346  * @clk: outgoing clock "SPICLK" for the SPI bus
347  * @master: SPI framework hookup
348  * @master_info: controller-specific data from machine setup
349  * @kworker: thread struct for message pump
350  * @kworker_task: pointer to task for message pump kworker thread
351  * @pump_messages: work struct for scheduling work to the message pump
352  * @queue_lock: spinlock to syncronise access to message queue
353  * @queue: message queue
354  * @busy: message pump is busy
355  * @running: message pump is running
356  * @pump_transfers: Tasklet used in Interrupt Transfer mode
357  * @cur_msg: Pointer to current spi_message being processed
358  * @cur_transfer: Pointer to current spi_transfer
359  * @cur_chip: pointer to current clients chip(assigned from controller_state)
360  * @next_msg_cs_active: the next message in the queue has been examined
361  *  and it was found that it uses the same chip select as the previous
362  *  message, so we left it active after the previous transfer, and it's
363  *  active already.
364  * @tx: current position in TX buffer to be read
365  * @tx_end: end position in TX buffer to be read
366  * @rx: current position in RX buffer to be written
367  * @rx_end: end position in RX buffer to be written
368  * @read: the type of read currently going on
369  * @write: the type of write currently going on
370  * @exp_fifo_level: expected FIFO level
371  * @dma_rx_channel: optional channel for RX DMA
372  * @dma_tx_channel: optional channel for TX DMA
373  * @sgt_rx: scattertable for the RX transfer
374  * @sgt_tx: scattertable for the TX transfer
375  * @dummypage: a dummy page used for driving data on the bus with DMA
376  * @cur_cs: current chip select (gpio)
377  * @chipselects: list of chipselects (gpios)
378  */
379 struct pl022 {
380 	struct amba_device		*adev;
381 	struct vendor_data		*vendor;
382 	resource_size_t			phybase;
383 	void __iomem			*virtbase;
384 	struct clk			*clk;
385 	struct spi_master		*master;
386 	struct pl022_ssp_controller	*master_info;
387 	/* Message per-transfer pump */
388 	struct tasklet_struct		pump_transfers;
389 	struct spi_message		*cur_msg;
390 	struct spi_transfer		*cur_transfer;
391 	struct chip_data		*cur_chip;
392 	bool				next_msg_cs_active;
393 	void				*tx;
394 	void				*tx_end;
395 	void				*rx;
396 	void				*rx_end;
397 	enum ssp_reading		read;
398 	enum ssp_writing		write;
399 	u32				exp_fifo_level;
400 	enum ssp_rx_level_trig		rx_lev_trig;
401 	enum ssp_tx_level_trig		tx_lev_trig;
402 	/* DMA settings */
403 #ifdef CONFIG_DMA_ENGINE
404 	struct dma_chan			*dma_rx_channel;
405 	struct dma_chan			*dma_tx_channel;
406 	struct sg_table			sgt_rx;
407 	struct sg_table			sgt_tx;
408 	char				*dummypage;
409 	bool				dma_running;
410 #endif
411 	int cur_cs;
412 	int *chipselects;
413 };
414 
415 /**
416  * struct chip_data - To maintain runtime state of SSP for each client chip
417  * @cr0: Value of control register CR0 of SSP - on later ST variants this
418  *       register is 32 bits wide rather than just 16
419  * @cr1: Value of control register CR1 of SSP
420  * @dmacr: Value of DMA control Register of SSP
421  * @cpsr: Value of Clock prescale register
422  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
423  * @enable_dma: Whether to enable DMA or not
424  * @read: function ptr to be used to read when doing xfer for this chip
425  * @write: function ptr to be used to write when doing xfer for this chip
426  * @cs_control: chip select callback provided by chip
427  * @xfer_type: polling/interrupt/DMA
428  *
429  * Runtime state of the SSP controller, maintained per chip,
430  * This would be set according to the current message that would be served
431  */
432 struct chip_data {
433 	u32 cr0;
434 	u16 cr1;
435 	u16 dmacr;
436 	u16 cpsr;
437 	u8 n_bytes;
438 	bool enable_dma;
439 	enum ssp_reading read;
440 	enum ssp_writing write;
441 	void (*cs_control) (u32 command);
442 	int xfer_type;
443 };
444 
445 /**
446  * null_cs_control - Dummy chip select function
447  * @command: select/delect the chip
448  *
449  * If no chip select function is provided by client this is used as dummy
450  * chip select
451  */
452 static void null_cs_control(u32 command)
453 {
454 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
455 }
456 
457 /**
458  * internal_cs_control - Control chip select signals via SSP_CSR.
459  * @pl022: SSP driver private data structure
460  * @command: select/delect the chip
461  *
462  * Used on controller with internal chip select control via SSP_CSR register
463  * (vendor extension). Each of the 5 LSB in the register controls one chip
464  * select signal.
465  */
466 static void internal_cs_control(struct pl022 *pl022, u32 command)
467 {
468 	u32 tmp;
469 
470 	tmp = readw(SSP_CSR(pl022->virtbase));
471 	if (command == SSP_CHIP_SELECT)
472 		tmp &= ~BIT(pl022->cur_cs);
473 	else
474 		tmp |= BIT(pl022->cur_cs);
475 	writew(tmp, SSP_CSR(pl022->virtbase));
476 }
477 
478 static void pl022_cs_control(struct pl022 *pl022, u32 command)
479 {
480 	if (pl022->vendor->internal_cs_ctrl)
481 		internal_cs_control(pl022, command);
482 	else if (gpio_is_valid(pl022->cur_cs))
483 		gpio_set_value(pl022->cur_cs, command);
484 	else
485 		pl022->cur_chip->cs_control(command);
486 }
487 
488 /**
489  * giveback - current spi_message is over, schedule next message and call
490  * callback of this message. Assumes that caller already
491  * set message->status; dma and pio irqs are blocked
492  * @pl022: SSP driver private data structure
493  */
494 static void giveback(struct pl022 *pl022)
495 {
496 	struct spi_transfer *last_transfer;
497 	pl022->next_msg_cs_active = false;
498 
499 	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
500 					struct spi_transfer, transfer_list);
501 
502 	/* Delay if requested before any change in chip select */
503 	if (last_transfer->delay_usecs)
504 		/*
505 		 * FIXME: This runs in interrupt context.
506 		 * Is this really smart?
507 		 */
508 		udelay(last_transfer->delay_usecs);
509 
510 	if (!last_transfer->cs_change) {
511 		struct spi_message *next_msg;
512 
513 		/*
514 		 * cs_change was not set. We can keep the chip select
515 		 * enabled if there is message in the queue and it is
516 		 * for the same spi device.
517 		 *
518 		 * We cannot postpone this until pump_messages, because
519 		 * after calling msg->complete (below) the driver that
520 		 * sent the current message could be unloaded, which
521 		 * could invalidate the cs_control() callback...
522 		 */
523 		/* get a pointer to the next message, if any */
524 		next_msg = spi_get_next_queued_message(pl022->master);
525 
526 		/*
527 		 * see if the next and current messages point
528 		 * to the same spi device.
529 		 */
530 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
531 			next_msg = NULL;
532 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
533 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
534 		else
535 			pl022->next_msg_cs_active = true;
536 
537 	}
538 
539 	pl022->cur_msg = NULL;
540 	pl022->cur_transfer = NULL;
541 	pl022->cur_chip = NULL;
542 
543 	/* disable the SPI/SSP operation */
544 	writew((readw(SSP_CR1(pl022->virtbase)) &
545 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
546 
547 	spi_finalize_current_message(pl022->master);
548 }
549 
550 /**
551  * flush - flush the FIFO to reach a clean state
552  * @pl022: SSP driver private data structure
553  */
554 static int flush(struct pl022 *pl022)
555 {
556 	unsigned long limit = loops_per_jiffy << 1;
557 
558 	dev_dbg(&pl022->adev->dev, "flush\n");
559 	do {
560 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
561 			readw(SSP_DR(pl022->virtbase));
562 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
563 
564 	pl022->exp_fifo_level = 0;
565 
566 	return limit;
567 }
568 
569 /**
570  * restore_state - Load configuration of current chip
571  * @pl022: SSP driver private data structure
572  */
573 static void restore_state(struct pl022 *pl022)
574 {
575 	struct chip_data *chip = pl022->cur_chip;
576 
577 	if (pl022->vendor->extended_cr)
578 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
579 	else
580 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
581 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
582 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
583 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
584 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
585 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
586 }
587 
588 /*
589  * Default SSP Register Values
590  */
591 #define DEFAULT_SSP_REG_CR0 ( \
592 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
593 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
594 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
595 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
596 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
597 )
598 
599 /* ST versions have slightly different bit layout */
600 #define DEFAULT_SSP_REG_CR0_ST ( \
601 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
602 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
603 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
604 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
605 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
606 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
607 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
608 )
609 
610 /* The PL023 version is slightly different again */
611 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
612 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
613 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
614 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
615 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
616 )
617 
618 #define DEFAULT_SSP_REG_CR1 ( \
619 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
620 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
621 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
622 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
623 )
624 
625 /* ST versions extend this register to use all 16 bits */
626 #define DEFAULT_SSP_REG_CR1_ST ( \
627 	DEFAULT_SSP_REG_CR1 | \
628 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
629 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
630 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
631 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
632 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
633 )
634 
635 /*
636  * The PL023 variant has further differences: no loopback mode, no microwire
637  * support, and a new clock feedback delay setting.
638  */
639 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
640 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
641 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
642 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
643 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
644 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
645 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
646 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
647 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
648 )
649 
650 #define DEFAULT_SSP_REG_CPSR ( \
651 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
652 )
653 
654 #define DEFAULT_SSP_REG_DMACR (\
655 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
656 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
657 )
658 
659 /**
660  * load_ssp_default_config - Load default configuration for SSP
661  * @pl022: SSP driver private data structure
662  */
663 static void load_ssp_default_config(struct pl022 *pl022)
664 {
665 	if (pl022->vendor->pl023) {
666 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
667 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
668 	} else if (pl022->vendor->extended_cr) {
669 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
670 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
671 	} else {
672 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
673 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
674 	}
675 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
676 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
677 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
678 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
679 }
680 
681 /**
682  * This will write to TX and read from RX according to the parameters
683  * set in pl022.
684  */
685 static void readwriter(struct pl022 *pl022)
686 {
687 
688 	/*
689 	 * The FIFO depth is different between primecell variants.
690 	 * I believe filling in too much in the FIFO might cause
691 	 * errons in 8bit wide transfers on ARM variants (just 8 words
692 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
693 	 *
694 	 * To prevent this issue, the TX FIFO is only filled to the
695 	 * unused RX FIFO fill length, regardless of what the TX
696 	 * FIFO status flag indicates.
697 	 */
698 	dev_dbg(&pl022->adev->dev,
699 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
700 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
701 
702 	/* Read as much as you can */
703 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
704 	       && (pl022->rx < pl022->rx_end)) {
705 		switch (pl022->read) {
706 		case READING_NULL:
707 			readw(SSP_DR(pl022->virtbase));
708 			break;
709 		case READING_U8:
710 			*(u8 *) (pl022->rx) =
711 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
712 			break;
713 		case READING_U16:
714 			*(u16 *) (pl022->rx) =
715 				(u16) readw(SSP_DR(pl022->virtbase));
716 			break;
717 		case READING_U32:
718 			*(u32 *) (pl022->rx) =
719 				readl(SSP_DR(pl022->virtbase));
720 			break;
721 		}
722 		pl022->rx += (pl022->cur_chip->n_bytes);
723 		pl022->exp_fifo_level--;
724 	}
725 	/*
726 	 * Write as much as possible up to the RX FIFO size
727 	 */
728 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
729 	       && (pl022->tx < pl022->tx_end)) {
730 		switch (pl022->write) {
731 		case WRITING_NULL:
732 			writew(0x0, SSP_DR(pl022->virtbase));
733 			break;
734 		case WRITING_U8:
735 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
736 			break;
737 		case WRITING_U16:
738 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
739 			break;
740 		case WRITING_U32:
741 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
742 			break;
743 		}
744 		pl022->tx += (pl022->cur_chip->n_bytes);
745 		pl022->exp_fifo_level++;
746 		/*
747 		 * This inner reader takes care of things appearing in the RX
748 		 * FIFO as we're transmitting. This will happen a lot since the
749 		 * clock starts running when you put things into the TX FIFO,
750 		 * and then things are continuously clocked into the RX FIFO.
751 		 */
752 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
753 		       && (pl022->rx < pl022->rx_end)) {
754 			switch (pl022->read) {
755 			case READING_NULL:
756 				readw(SSP_DR(pl022->virtbase));
757 				break;
758 			case READING_U8:
759 				*(u8 *) (pl022->rx) =
760 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
761 				break;
762 			case READING_U16:
763 				*(u16 *) (pl022->rx) =
764 					(u16) readw(SSP_DR(pl022->virtbase));
765 				break;
766 			case READING_U32:
767 				*(u32 *) (pl022->rx) =
768 					readl(SSP_DR(pl022->virtbase));
769 				break;
770 			}
771 			pl022->rx += (pl022->cur_chip->n_bytes);
772 			pl022->exp_fifo_level--;
773 		}
774 	}
775 	/*
776 	 * When we exit here the TX FIFO should be full and the RX FIFO
777 	 * should be empty
778 	 */
779 }
780 
781 /**
782  * next_transfer - Move to the Next transfer in the current spi message
783  * @pl022: SSP driver private data structure
784  *
785  * This function moves though the linked list of spi transfers in the
786  * current spi message and returns with the state of current spi
787  * message i.e whether its last transfer is done(STATE_DONE) or
788  * Next transfer is ready(STATE_RUNNING)
789  */
790 static void *next_transfer(struct pl022 *pl022)
791 {
792 	struct spi_message *msg = pl022->cur_msg;
793 	struct spi_transfer *trans = pl022->cur_transfer;
794 
795 	/* Move to next transfer */
796 	if (trans->transfer_list.next != &msg->transfers) {
797 		pl022->cur_transfer =
798 		    list_entry(trans->transfer_list.next,
799 			       struct spi_transfer, transfer_list);
800 		return STATE_RUNNING;
801 	}
802 	return STATE_DONE;
803 }
804 
805 /*
806  * This DMA functionality is only compiled in if we have
807  * access to the generic DMA devices/DMA engine.
808  */
809 #ifdef CONFIG_DMA_ENGINE
810 static void unmap_free_dma_scatter(struct pl022 *pl022)
811 {
812 	/* Unmap and free the SG tables */
813 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
814 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
815 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
816 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
817 	sg_free_table(&pl022->sgt_rx);
818 	sg_free_table(&pl022->sgt_tx);
819 }
820 
821 static void dma_callback(void *data)
822 {
823 	struct pl022 *pl022 = data;
824 	struct spi_message *msg = pl022->cur_msg;
825 
826 	BUG_ON(!pl022->sgt_rx.sgl);
827 
828 #ifdef VERBOSE_DEBUG
829 	/*
830 	 * Optionally dump out buffers to inspect contents, this is
831 	 * good if you want to convince yourself that the loopback
832 	 * read/write contents are the same, when adopting to a new
833 	 * DMA engine.
834 	 */
835 	{
836 		struct scatterlist *sg;
837 		unsigned int i;
838 
839 		dma_sync_sg_for_cpu(&pl022->adev->dev,
840 				    pl022->sgt_rx.sgl,
841 				    pl022->sgt_rx.nents,
842 				    DMA_FROM_DEVICE);
843 
844 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
845 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
846 			print_hex_dump(KERN_ERR, "SPI RX: ",
847 				       DUMP_PREFIX_OFFSET,
848 				       16,
849 				       1,
850 				       sg_virt(sg),
851 				       sg_dma_len(sg),
852 				       1);
853 		}
854 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
855 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
856 			print_hex_dump(KERN_ERR, "SPI TX: ",
857 				       DUMP_PREFIX_OFFSET,
858 				       16,
859 				       1,
860 				       sg_virt(sg),
861 				       sg_dma_len(sg),
862 				       1);
863 		}
864 	}
865 #endif
866 
867 	unmap_free_dma_scatter(pl022);
868 
869 	/* Update total bytes transferred */
870 	msg->actual_length += pl022->cur_transfer->len;
871 	if (pl022->cur_transfer->cs_change)
872 		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
873 
874 	/* Move to next transfer */
875 	msg->state = next_transfer(pl022);
876 	tasklet_schedule(&pl022->pump_transfers);
877 }
878 
879 static void setup_dma_scatter(struct pl022 *pl022,
880 			      void *buffer,
881 			      unsigned int length,
882 			      struct sg_table *sgtab)
883 {
884 	struct scatterlist *sg;
885 	int bytesleft = length;
886 	void *bufp = buffer;
887 	int mapbytes;
888 	int i;
889 
890 	if (buffer) {
891 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
892 			/*
893 			 * If there are less bytes left than what fits
894 			 * in the current page (plus page alignment offset)
895 			 * we just feed in this, else we stuff in as much
896 			 * as we can.
897 			 */
898 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
899 				mapbytes = bytesleft;
900 			else
901 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
902 			sg_set_page(sg, virt_to_page(bufp),
903 				    mapbytes, offset_in_page(bufp));
904 			bufp += mapbytes;
905 			bytesleft -= mapbytes;
906 			dev_dbg(&pl022->adev->dev,
907 				"set RX/TX target page @ %p, %d bytes, %d left\n",
908 				bufp, mapbytes, bytesleft);
909 		}
910 	} else {
911 		/* Map the dummy buffer on every page */
912 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
913 			if (bytesleft < PAGE_SIZE)
914 				mapbytes = bytesleft;
915 			else
916 				mapbytes = PAGE_SIZE;
917 			sg_set_page(sg, virt_to_page(pl022->dummypage),
918 				    mapbytes, 0);
919 			bytesleft -= mapbytes;
920 			dev_dbg(&pl022->adev->dev,
921 				"set RX/TX to dummy page %d bytes, %d left\n",
922 				mapbytes, bytesleft);
923 
924 		}
925 	}
926 	BUG_ON(bytesleft);
927 }
928 
929 /**
930  * configure_dma - configures the channels for the next transfer
931  * @pl022: SSP driver's private data structure
932  */
933 static int configure_dma(struct pl022 *pl022)
934 {
935 	struct dma_slave_config rx_conf = {
936 		.src_addr = SSP_DR(pl022->phybase),
937 		.direction = DMA_DEV_TO_MEM,
938 		.device_fc = false,
939 	};
940 	struct dma_slave_config tx_conf = {
941 		.dst_addr = SSP_DR(pl022->phybase),
942 		.direction = DMA_MEM_TO_DEV,
943 		.device_fc = false,
944 	};
945 	unsigned int pages;
946 	int ret;
947 	int rx_sglen, tx_sglen;
948 	struct dma_chan *rxchan = pl022->dma_rx_channel;
949 	struct dma_chan *txchan = pl022->dma_tx_channel;
950 	struct dma_async_tx_descriptor *rxdesc;
951 	struct dma_async_tx_descriptor *txdesc;
952 
953 	/* Check that the channels are available */
954 	if (!rxchan || !txchan)
955 		return -ENODEV;
956 
957 	/*
958 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
959 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
960 	 * not trigger on 2 elements this needs explicit mapping rather than
961 	 * calculation.
962 	 */
963 	switch (pl022->rx_lev_trig) {
964 	case SSP_RX_1_OR_MORE_ELEM:
965 		rx_conf.src_maxburst = 1;
966 		break;
967 	case SSP_RX_4_OR_MORE_ELEM:
968 		rx_conf.src_maxburst = 4;
969 		break;
970 	case SSP_RX_8_OR_MORE_ELEM:
971 		rx_conf.src_maxburst = 8;
972 		break;
973 	case SSP_RX_16_OR_MORE_ELEM:
974 		rx_conf.src_maxburst = 16;
975 		break;
976 	case SSP_RX_32_OR_MORE_ELEM:
977 		rx_conf.src_maxburst = 32;
978 		break;
979 	default:
980 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
981 		break;
982 	}
983 
984 	switch (pl022->tx_lev_trig) {
985 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
986 		tx_conf.dst_maxburst = 1;
987 		break;
988 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
989 		tx_conf.dst_maxburst = 4;
990 		break;
991 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
992 		tx_conf.dst_maxburst = 8;
993 		break;
994 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
995 		tx_conf.dst_maxburst = 16;
996 		break;
997 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
998 		tx_conf.dst_maxburst = 32;
999 		break;
1000 	default:
1001 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
1002 		break;
1003 	}
1004 
1005 	switch (pl022->read) {
1006 	case READING_NULL:
1007 		/* Use the same as for writing */
1008 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1009 		break;
1010 	case READING_U8:
1011 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1012 		break;
1013 	case READING_U16:
1014 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1015 		break;
1016 	case READING_U32:
1017 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1018 		break;
1019 	}
1020 
1021 	switch (pl022->write) {
1022 	case WRITING_NULL:
1023 		/* Use the same as for reading */
1024 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1025 		break;
1026 	case WRITING_U8:
1027 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1028 		break;
1029 	case WRITING_U16:
1030 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1031 		break;
1032 	case WRITING_U32:
1033 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1034 		break;
1035 	}
1036 
1037 	/* SPI pecularity: we need to read and write the same width */
1038 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1039 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1040 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1041 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1042 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1043 
1044 	dmaengine_slave_config(rxchan, &rx_conf);
1045 	dmaengine_slave_config(txchan, &tx_conf);
1046 
1047 	/* Create sglists for the transfers */
1048 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1049 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1050 
1051 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1052 	if (ret)
1053 		goto err_alloc_rx_sg;
1054 
1055 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1056 	if (ret)
1057 		goto err_alloc_tx_sg;
1058 
1059 	/* Fill in the scatterlists for the RX+TX buffers */
1060 	setup_dma_scatter(pl022, pl022->rx,
1061 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1062 	setup_dma_scatter(pl022, pl022->tx,
1063 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1064 
1065 	/* Map DMA buffers */
1066 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1067 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1068 	if (!rx_sglen)
1069 		goto err_rx_sgmap;
1070 
1071 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1072 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1073 	if (!tx_sglen)
1074 		goto err_tx_sgmap;
1075 
1076 	/* Send both scatterlists */
1077 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1078 				      pl022->sgt_rx.sgl,
1079 				      rx_sglen,
1080 				      DMA_DEV_TO_MEM,
1081 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1082 	if (!rxdesc)
1083 		goto err_rxdesc;
1084 
1085 	txdesc = dmaengine_prep_slave_sg(txchan,
1086 				      pl022->sgt_tx.sgl,
1087 				      tx_sglen,
1088 				      DMA_MEM_TO_DEV,
1089 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1090 	if (!txdesc)
1091 		goto err_txdesc;
1092 
1093 	/* Put the callback on the RX transfer only, that should finish last */
1094 	rxdesc->callback = dma_callback;
1095 	rxdesc->callback_param = pl022;
1096 
1097 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1098 	dmaengine_submit(rxdesc);
1099 	dmaengine_submit(txdesc);
1100 	dma_async_issue_pending(rxchan);
1101 	dma_async_issue_pending(txchan);
1102 	pl022->dma_running = true;
1103 
1104 	return 0;
1105 
1106 err_txdesc:
1107 	dmaengine_terminate_all(txchan);
1108 err_rxdesc:
1109 	dmaengine_terminate_all(rxchan);
1110 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1111 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1112 err_tx_sgmap:
1113 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1114 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1115 err_rx_sgmap:
1116 	sg_free_table(&pl022->sgt_tx);
1117 err_alloc_tx_sg:
1118 	sg_free_table(&pl022->sgt_rx);
1119 err_alloc_rx_sg:
1120 	return -ENOMEM;
1121 }
1122 
1123 static int pl022_dma_probe(struct pl022 *pl022)
1124 {
1125 	dma_cap_mask_t mask;
1126 
1127 	/* Try to acquire a generic DMA engine slave channel */
1128 	dma_cap_zero(mask);
1129 	dma_cap_set(DMA_SLAVE, mask);
1130 	/*
1131 	 * We need both RX and TX channels to do DMA, else do none
1132 	 * of them.
1133 	 */
1134 	pl022->dma_rx_channel = dma_request_channel(mask,
1135 					    pl022->master_info->dma_filter,
1136 					    pl022->master_info->dma_rx_param);
1137 	if (!pl022->dma_rx_channel) {
1138 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1139 		goto err_no_rxchan;
1140 	}
1141 
1142 	pl022->dma_tx_channel = dma_request_channel(mask,
1143 					    pl022->master_info->dma_filter,
1144 					    pl022->master_info->dma_tx_param);
1145 	if (!pl022->dma_tx_channel) {
1146 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1147 		goto err_no_txchan;
1148 	}
1149 
1150 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1151 	if (!pl022->dummypage)
1152 		goto err_no_dummypage;
1153 
1154 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1155 		 dma_chan_name(pl022->dma_rx_channel),
1156 		 dma_chan_name(pl022->dma_tx_channel));
1157 
1158 	return 0;
1159 
1160 err_no_dummypage:
1161 	dma_release_channel(pl022->dma_tx_channel);
1162 err_no_txchan:
1163 	dma_release_channel(pl022->dma_rx_channel);
1164 	pl022->dma_rx_channel = NULL;
1165 err_no_rxchan:
1166 	dev_err(&pl022->adev->dev,
1167 			"Failed to work in dma mode, work without dma!\n");
1168 	return -ENODEV;
1169 }
1170 
1171 static int pl022_dma_autoprobe(struct pl022 *pl022)
1172 {
1173 	struct device *dev = &pl022->adev->dev;
1174 	struct dma_chan *chan;
1175 	int err;
1176 
1177 	/* automatically configure DMA channels from platform, normally using DT */
1178 	chan = dma_request_slave_channel_reason(dev, "rx");
1179 	if (IS_ERR(chan)) {
1180 		err = PTR_ERR(chan);
1181 		goto err_no_rxchan;
1182 	}
1183 
1184 	pl022->dma_rx_channel = chan;
1185 
1186 	chan = dma_request_slave_channel_reason(dev, "tx");
1187 	if (IS_ERR(chan)) {
1188 		err = PTR_ERR(chan);
1189 		goto err_no_txchan;
1190 	}
1191 
1192 	pl022->dma_tx_channel = chan;
1193 
1194 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1195 	if (!pl022->dummypage) {
1196 		err = -ENOMEM;
1197 		goto err_no_dummypage;
1198 	}
1199 
1200 	return 0;
1201 
1202 err_no_dummypage:
1203 	dma_release_channel(pl022->dma_tx_channel);
1204 	pl022->dma_tx_channel = NULL;
1205 err_no_txchan:
1206 	dma_release_channel(pl022->dma_rx_channel);
1207 	pl022->dma_rx_channel = NULL;
1208 err_no_rxchan:
1209 	return err;
1210 }
1211 
1212 static void terminate_dma(struct pl022 *pl022)
1213 {
1214 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1215 	struct dma_chan *txchan = pl022->dma_tx_channel;
1216 
1217 	dmaengine_terminate_all(rxchan);
1218 	dmaengine_terminate_all(txchan);
1219 	unmap_free_dma_scatter(pl022);
1220 	pl022->dma_running = false;
1221 }
1222 
1223 static void pl022_dma_remove(struct pl022 *pl022)
1224 {
1225 	if (pl022->dma_running)
1226 		terminate_dma(pl022);
1227 	if (pl022->dma_tx_channel)
1228 		dma_release_channel(pl022->dma_tx_channel);
1229 	if (pl022->dma_rx_channel)
1230 		dma_release_channel(pl022->dma_rx_channel);
1231 	kfree(pl022->dummypage);
1232 }
1233 
1234 #else
1235 static inline int configure_dma(struct pl022 *pl022)
1236 {
1237 	return -ENODEV;
1238 }
1239 
1240 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1241 {
1242 	return 0;
1243 }
1244 
1245 static inline int pl022_dma_probe(struct pl022 *pl022)
1246 {
1247 	return 0;
1248 }
1249 
1250 static inline void pl022_dma_remove(struct pl022 *pl022)
1251 {
1252 }
1253 #endif
1254 
1255 /**
1256  * pl022_interrupt_handler - Interrupt handler for SSP controller
1257  *
1258  * This function handles interrupts generated for an interrupt based transfer.
1259  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1260  * current message's state as STATE_ERROR and schedule the tasklet
1261  * pump_transfers which will do the postprocessing of the current message by
1262  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1263  * more data, and writes data in TX FIFO till it is not full. If we complete
1264  * the transfer we move to the next transfer and schedule the tasklet.
1265  */
1266 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1267 {
1268 	struct pl022 *pl022 = dev_id;
1269 	struct spi_message *msg = pl022->cur_msg;
1270 	u16 irq_status = 0;
1271 
1272 	if (unlikely(!msg)) {
1273 		dev_err(&pl022->adev->dev,
1274 			"bad message state in interrupt handler");
1275 		/* Never fail */
1276 		return IRQ_HANDLED;
1277 	}
1278 
1279 	/* Read the Interrupt Status Register */
1280 	irq_status = readw(SSP_MIS(pl022->virtbase));
1281 
1282 	if (unlikely(!irq_status))
1283 		return IRQ_NONE;
1284 
1285 	/*
1286 	 * This handles the FIFO interrupts, the timeout
1287 	 * interrupts are flatly ignored, they cannot be
1288 	 * trusted.
1289 	 */
1290 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1291 		/*
1292 		 * Overrun interrupt - bail out since our Data has been
1293 		 * corrupted
1294 		 */
1295 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1296 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1297 			dev_err(&pl022->adev->dev,
1298 				"RXFIFO is full\n");
1299 
1300 		/*
1301 		 * Disable and clear interrupts, disable SSP,
1302 		 * mark message with bad status so it can be
1303 		 * retried.
1304 		 */
1305 		writew(DISABLE_ALL_INTERRUPTS,
1306 		       SSP_IMSC(pl022->virtbase));
1307 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1308 		writew((readw(SSP_CR1(pl022->virtbase)) &
1309 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1310 		msg->state = STATE_ERROR;
1311 
1312 		/* Schedule message queue handler */
1313 		tasklet_schedule(&pl022->pump_transfers);
1314 		return IRQ_HANDLED;
1315 	}
1316 
1317 	readwriter(pl022);
1318 
1319 	if (pl022->tx == pl022->tx_end) {
1320 		/* Disable Transmit interrupt, enable receive interrupt */
1321 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1322 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1323 		       SSP_IMSC(pl022->virtbase));
1324 	}
1325 
1326 	/*
1327 	 * Since all transactions must write as much as shall be read,
1328 	 * we can conclude the entire transaction once RX is complete.
1329 	 * At this point, all TX will always be finished.
1330 	 */
1331 	if (pl022->rx >= pl022->rx_end) {
1332 		writew(DISABLE_ALL_INTERRUPTS,
1333 		       SSP_IMSC(pl022->virtbase));
1334 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1335 		if (unlikely(pl022->rx > pl022->rx_end)) {
1336 			dev_warn(&pl022->adev->dev, "read %u surplus "
1337 				 "bytes (did you request an odd "
1338 				 "number of bytes on a 16bit bus?)\n",
1339 				 (u32) (pl022->rx - pl022->rx_end));
1340 		}
1341 		/* Update total bytes transferred */
1342 		msg->actual_length += pl022->cur_transfer->len;
1343 		if (pl022->cur_transfer->cs_change)
1344 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1345 		/* Move to next transfer */
1346 		msg->state = next_transfer(pl022);
1347 		tasklet_schedule(&pl022->pump_transfers);
1348 		return IRQ_HANDLED;
1349 	}
1350 
1351 	return IRQ_HANDLED;
1352 }
1353 
1354 /**
1355  * This sets up the pointers to memory for the next message to
1356  * send out on the SPI bus.
1357  */
1358 static int set_up_next_transfer(struct pl022 *pl022,
1359 				struct spi_transfer *transfer)
1360 {
1361 	int residue;
1362 
1363 	/* Sanity check the message for this bus width */
1364 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1365 	if (unlikely(residue != 0)) {
1366 		dev_err(&pl022->adev->dev,
1367 			"message of %u bytes to transmit but the current "
1368 			"chip bus has a data width of %u bytes!\n",
1369 			pl022->cur_transfer->len,
1370 			pl022->cur_chip->n_bytes);
1371 		dev_err(&pl022->adev->dev, "skipping this message\n");
1372 		return -EIO;
1373 	}
1374 	pl022->tx = (void *)transfer->tx_buf;
1375 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1376 	pl022->rx = (void *)transfer->rx_buf;
1377 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1378 	pl022->write =
1379 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1380 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1381 	return 0;
1382 }
1383 
1384 /**
1385  * pump_transfers - Tasklet function which schedules next transfer
1386  * when running in interrupt or DMA transfer mode.
1387  * @data: SSP driver private data structure
1388  *
1389  */
1390 static void pump_transfers(unsigned long data)
1391 {
1392 	struct pl022 *pl022 = (struct pl022 *) data;
1393 	struct spi_message *message = NULL;
1394 	struct spi_transfer *transfer = NULL;
1395 	struct spi_transfer *previous = NULL;
1396 
1397 	/* Get current state information */
1398 	message = pl022->cur_msg;
1399 	transfer = pl022->cur_transfer;
1400 
1401 	/* Handle for abort */
1402 	if (message->state == STATE_ERROR) {
1403 		message->status = -EIO;
1404 		giveback(pl022);
1405 		return;
1406 	}
1407 
1408 	/* Handle end of message */
1409 	if (message->state == STATE_DONE) {
1410 		message->status = 0;
1411 		giveback(pl022);
1412 		return;
1413 	}
1414 
1415 	/* Delay if requested at end of transfer before CS change */
1416 	if (message->state == STATE_RUNNING) {
1417 		previous = list_entry(transfer->transfer_list.prev,
1418 					struct spi_transfer,
1419 					transfer_list);
1420 		if (previous->delay_usecs)
1421 			/*
1422 			 * FIXME: This runs in interrupt context.
1423 			 * Is this really smart?
1424 			 */
1425 			udelay(previous->delay_usecs);
1426 
1427 		/* Reselect chip select only if cs_change was requested */
1428 		if (previous->cs_change)
1429 			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1430 	} else {
1431 		/* STATE_START */
1432 		message->state = STATE_RUNNING;
1433 	}
1434 
1435 	if (set_up_next_transfer(pl022, transfer)) {
1436 		message->state = STATE_ERROR;
1437 		message->status = -EIO;
1438 		giveback(pl022);
1439 		return;
1440 	}
1441 	/* Flush the FIFOs and let's go! */
1442 	flush(pl022);
1443 
1444 	if (pl022->cur_chip->enable_dma) {
1445 		if (configure_dma(pl022)) {
1446 			dev_dbg(&pl022->adev->dev,
1447 				"configuration of DMA failed, fall back to interrupt mode\n");
1448 			goto err_config_dma;
1449 		}
1450 		return;
1451 	}
1452 
1453 err_config_dma:
1454 	/* enable all interrupts except RX */
1455 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1456 }
1457 
1458 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1459 {
1460 	/*
1461 	 * Default is to enable all interrupts except RX -
1462 	 * this will be enabled once TX is complete
1463 	 */
1464 	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1465 
1466 	/* Enable target chip, if not already active */
1467 	if (!pl022->next_msg_cs_active)
1468 		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1469 
1470 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1471 		/* Error path */
1472 		pl022->cur_msg->state = STATE_ERROR;
1473 		pl022->cur_msg->status = -EIO;
1474 		giveback(pl022);
1475 		return;
1476 	}
1477 	/* If we're using DMA, set up DMA here */
1478 	if (pl022->cur_chip->enable_dma) {
1479 		/* Configure DMA transfer */
1480 		if (configure_dma(pl022)) {
1481 			dev_dbg(&pl022->adev->dev,
1482 				"configuration of DMA failed, fall back to interrupt mode\n");
1483 			goto err_config_dma;
1484 		}
1485 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1486 		irqflags = DISABLE_ALL_INTERRUPTS;
1487 	}
1488 err_config_dma:
1489 	/* Enable SSP, turn on interrupts */
1490 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1491 	       SSP_CR1(pl022->virtbase));
1492 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1493 }
1494 
1495 static void do_polling_transfer(struct pl022 *pl022)
1496 {
1497 	struct spi_message *message = NULL;
1498 	struct spi_transfer *transfer = NULL;
1499 	struct spi_transfer *previous = NULL;
1500 	struct chip_data *chip;
1501 	unsigned long time, timeout;
1502 
1503 	chip = pl022->cur_chip;
1504 	message = pl022->cur_msg;
1505 
1506 	while (message->state != STATE_DONE) {
1507 		/* Handle for abort */
1508 		if (message->state == STATE_ERROR)
1509 			break;
1510 		transfer = pl022->cur_transfer;
1511 
1512 		/* Delay if requested at end of transfer */
1513 		if (message->state == STATE_RUNNING) {
1514 			previous =
1515 			    list_entry(transfer->transfer_list.prev,
1516 				       struct spi_transfer, transfer_list);
1517 			if (previous->delay_usecs)
1518 				udelay(previous->delay_usecs);
1519 			if (previous->cs_change)
1520 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1521 		} else {
1522 			/* STATE_START */
1523 			message->state = STATE_RUNNING;
1524 			if (!pl022->next_msg_cs_active)
1525 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1526 		}
1527 
1528 		/* Configuration Changing Per Transfer */
1529 		if (set_up_next_transfer(pl022, transfer)) {
1530 			/* Error path */
1531 			message->state = STATE_ERROR;
1532 			break;
1533 		}
1534 		/* Flush FIFOs and enable SSP */
1535 		flush(pl022);
1536 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1537 		       SSP_CR1(pl022->virtbase));
1538 
1539 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1540 
1541 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1542 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1543 			time = jiffies;
1544 			readwriter(pl022);
1545 			if (time_after(time, timeout)) {
1546 				dev_warn(&pl022->adev->dev,
1547 				"%s: timeout!\n", __func__);
1548 				message->state = STATE_ERROR;
1549 				goto out;
1550 			}
1551 			cpu_relax();
1552 		}
1553 
1554 		/* Update total byte transferred */
1555 		message->actual_length += pl022->cur_transfer->len;
1556 		if (pl022->cur_transfer->cs_change)
1557 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1558 		/* Move to next transfer */
1559 		message->state = next_transfer(pl022);
1560 	}
1561 out:
1562 	/* Handle end of message */
1563 	if (message->state == STATE_DONE)
1564 		message->status = 0;
1565 	else
1566 		message->status = -EIO;
1567 
1568 	giveback(pl022);
1569 	return;
1570 }
1571 
1572 static int pl022_transfer_one_message(struct spi_master *master,
1573 				      struct spi_message *msg)
1574 {
1575 	struct pl022 *pl022 = spi_master_get_devdata(master);
1576 
1577 	/* Initial message state */
1578 	pl022->cur_msg = msg;
1579 	msg->state = STATE_START;
1580 
1581 	pl022->cur_transfer = list_entry(msg->transfers.next,
1582 					 struct spi_transfer, transfer_list);
1583 
1584 	/* Setup the SPI using the per chip configuration */
1585 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1586 	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1587 
1588 	restore_state(pl022);
1589 	flush(pl022);
1590 
1591 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1592 		do_polling_transfer(pl022);
1593 	else
1594 		do_interrupt_dma_transfer(pl022);
1595 
1596 	return 0;
1597 }
1598 
1599 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1600 {
1601 	struct pl022 *pl022 = spi_master_get_devdata(master);
1602 
1603 	/* nothing more to do - disable spi/ssp and power off */
1604 	writew((readw(SSP_CR1(pl022->virtbase)) &
1605 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1606 
1607 	return 0;
1608 }
1609 
1610 static int verify_controller_parameters(struct pl022 *pl022,
1611 				struct pl022_config_chip const *chip_info)
1612 {
1613 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1614 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1615 		dev_err(&pl022->adev->dev,
1616 			"interface is configured incorrectly\n");
1617 		return -EINVAL;
1618 	}
1619 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1620 	    (!pl022->vendor->unidir)) {
1621 		dev_err(&pl022->adev->dev,
1622 			"unidirectional mode not supported in this "
1623 			"hardware version\n");
1624 		return -EINVAL;
1625 	}
1626 	if ((chip_info->hierarchy != SSP_MASTER)
1627 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1628 		dev_err(&pl022->adev->dev,
1629 			"hierarchy is configured incorrectly\n");
1630 		return -EINVAL;
1631 	}
1632 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1633 	    && (chip_info->com_mode != DMA_TRANSFER)
1634 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1635 		dev_err(&pl022->adev->dev,
1636 			"Communication mode is configured incorrectly\n");
1637 		return -EINVAL;
1638 	}
1639 	switch (chip_info->rx_lev_trig) {
1640 	case SSP_RX_1_OR_MORE_ELEM:
1641 	case SSP_RX_4_OR_MORE_ELEM:
1642 	case SSP_RX_8_OR_MORE_ELEM:
1643 		/* These are always OK, all variants can handle this */
1644 		break;
1645 	case SSP_RX_16_OR_MORE_ELEM:
1646 		if (pl022->vendor->fifodepth < 16) {
1647 			dev_err(&pl022->adev->dev,
1648 			"RX FIFO Trigger Level is configured incorrectly\n");
1649 			return -EINVAL;
1650 		}
1651 		break;
1652 	case SSP_RX_32_OR_MORE_ELEM:
1653 		if (pl022->vendor->fifodepth < 32) {
1654 			dev_err(&pl022->adev->dev,
1655 			"RX FIFO Trigger Level is configured incorrectly\n");
1656 			return -EINVAL;
1657 		}
1658 		break;
1659 	default:
1660 		dev_err(&pl022->adev->dev,
1661 			"RX FIFO Trigger Level is configured incorrectly\n");
1662 		return -EINVAL;
1663 	}
1664 	switch (chip_info->tx_lev_trig) {
1665 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1666 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1667 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1668 		/* These are always OK, all variants can handle this */
1669 		break;
1670 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1671 		if (pl022->vendor->fifodepth < 16) {
1672 			dev_err(&pl022->adev->dev,
1673 			"TX FIFO Trigger Level is configured incorrectly\n");
1674 			return -EINVAL;
1675 		}
1676 		break;
1677 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1678 		if (pl022->vendor->fifodepth < 32) {
1679 			dev_err(&pl022->adev->dev,
1680 			"TX FIFO Trigger Level is configured incorrectly\n");
1681 			return -EINVAL;
1682 		}
1683 		break;
1684 	default:
1685 		dev_err(&pl022->adev->dev,
1686 			"TX FIFO Trigger Level is configured incorrectly\n");
1687 		return -EINVAL;
1688 	}
1689 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1690 		if ((chip_info->ctrl_len < SSP_BITS_4)
1691 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1692 			dev_err(&pl022->adev->dev,
1693 				"CTRL LEN is configured incorrectly\n");
1694 			return -EINVAL;
1695 		}
1696 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1697 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1698 			dev_err(&pl022->adev->dev,
1699 				"Wait State is configured incorrectly\n");
1700 			return -EINVAL;
1701 		}
1702 		/* Half duplex is only available in the ST Micro version */
1703 		if (pl022->vendor->extended_cr) {
1704 			if ((chip_info->duplex !=
1705 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1706 			    && (chip_info->duplex !=
1707 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1708 				dev_err(&pl022->adev->dev,
1709 					"Microwire duplex mode is configured incorrectly\n");
1710 				return -EINVAL;
1711 			}
1712 		} else {
1713 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1714 				dev_err(&pl022->adev->dev,
1715 					"Microwire half duplex mode requested,"
1716 					" but this is only available in the"
1717 					" ST version of PL022\n");
1718 			return -EINVAL;
1719 		}
1720 	}
1721 	return 0;
1722 }
1723 
1724 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1725 {
1726 	return rate / (cpsdvsr * (1 + scr));
1727 }
1728 
1729 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1730 				    ssp_clock_params * clk_freq)
1731 {
1732 	/* Lets calculate the frequency parameters */
1733 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1734 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1735 		best_scr = 0, tmp, found = 0;
1736 
1737 	rate = clk_get_rate(pl022->clk);
1738 	/* cpsdvscr = 2 & scr 0 */
1739 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1740 	/* cpsdvsr = 254 & scr = 255 */
1741 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1742 
1743 	if (freq > max_tclk)
1744 		dev_warn(&pl022->adev->dev,
1745 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1746 			max_tclk, freq);
1747 
1748 	if (freq < min_tclk) {
1749 		dev_err(&pl022->adev->dev,
1750 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1751 			freq, min_tclk);
1752 		return -EINVAL;
1753 	}
1754 
1755 	/*
1756 	 * best_freq will give closest possible available rate (<= requested
1757 	 * freq) for all values of scr & cpsdvsr.
1758 	 */
1759 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1760 		while (scr <= SCR_MAX) {
1761 			tmp = spi_rate(rate, cpsdvsr, scr);
1762 
1763 			if (tmp > freq) {
1764 				/* we need lower freq */
1765 				scr++;
1766 				continue;
1767 			}
1768 
1769 			/*
1770 			 * If found exact value, mark found and break.
1771 			 * If found more closer value, update and break.
1772 			 */
1773 			if (tmp > best_freq) {
1774 				best_freq = tmp;
1775 				best_cpsdvsr = cpsdvsr;
1776 				best_scr = scr;
1777 
1778 				if (tmp == freq)
1779 					found = 1;
1780 			}
1781 			/*
1782 			 * increased scr will give lower rates, which are not
1783 			 * required
1784 			 */
1785 			break;
1786 		}
1787 		cpsdvsr += 2;
1788 		scr = SCR_MIN;
1789 	}
1790 
1791 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1792 			freq);
1793 
1794 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1795 	clk_freq->scr = (u8) (best_scr & 0xFF);
1796 	dev_dbg(&pl022->adev->dev,
1797 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1798 		freq, best_freq);
1799 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1800 		clk_freq->cpsdvsr, clk_freq->scr);
1801 
1802 	return 0;
1803 }
1804 
1805 /*
1806  * A piece of default chip info unless the platform
1807  * supplies it.
1808  */
1809 static const struct pl022_config_chip pl022_default_chip_info = {
1810 	.com_mode = POLLING_TRANSFER,
1811 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1812 	.hierarchy = SSP_SLAVE,
1813 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1814 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1815 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1816 	.ctrl_len = SSP_BITS_8,
1817 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1818 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1819 	.cs_control = null_cs_control,
1820 };
1821 
1822 /**
1823  * pl022_setup - setup function registered to SPI master framework
1824  * @spi: spi device which is requesting setup
1825  *
1826  * This function is registered to the SPI framework for this SPI master
1827  * controller. If it is the first time when setup is called by this device,
1828  * this function will initialize the runtime state for this chip and save
1829  * the same in the device structure. Else it will update the runtime info
1830  * with the updated chip info. Nothing is really being written to the
1831  * controller hardware here, that is not done until the actual transfer
1832  * commence.
1833  */
1834 static int pl022_setup(struct spi_device *spi)
1835 {
1836 	struct pl022_config_chip const *chip_info;
1837 	struct pl022_config_chip chip_info_dt;
1838 	struct chip_data *chip;
1839 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1840 	int status = 0;
1841 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1842 	unsigned int bits = spi->bits_per_word;
1843 	u32 tmp;
1844 	struct device_node *np = spi->dev.of_node;
1845 
1846 	if (!spi->max_speed_hz)
1847 		return -EINVAL;
1848 
1849 	/* Get controller_state if one is supplied */
1850 	chip = spi_get_ctldata(spi);
1851 
1852 	if (chip == NULL) {
1853 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1854 		if (!chip)
1855 			return -ENOMEM;
1856 		dev_dbg(&spi->dev,
1857 			"allocated memory for controller's runtime state\n");
1858 	}
1859 
1860 	/* Get controller data if one is supplied */
1861 	chip_info = spi->controller_data;
1862 
1863 	if (chip_info == NULL) {
1864 		if (np) {
1865 			chip_info_dt = pl022_default_chip_info;
1866 
1867 			chip_info_dt.hierarchy = SSP_MASTER;
1868 			of_property_read_u32(np, "pl022,interface",
1869 				&chip_info_dt.iface);
1870 			of_property_read_u32(np, "pl022,com-mode",
1871 				&chip_info_dt.com_mode);
1872 			of_property_read_u32(np, "pl022,rx-level-trig",
1873 				&chip_info_dt.rx_lev_trig);
1874 			of_property_read_u32(np, "pl022,tx-level-trig",
1875 				&chip_info_dt.tx_lev_trig);
1876 			of_property_read_u32(np, "pl022,ctrl-len",
1877 				&chip_info_dt.ctrl_len);
1878 			of_property_read_u32(np, "pl022,wait-state",
1879 				&chip_info_dt.wait_state);
1880 			of_property_read_u32(np, "pl022,duplex",
1881 				&chip_info_dt.duplex);
1882 
1883 			chip_info = &chip_info_dt;
1884 		} else {
1885 			chip_info = &pl022_default_chip_info;
1886 			/* spi_board_info.controller_data not is supplied */
1887 			dev_dbg(&spi->dev,
1888 				"using default controller_data settings\n");
1889 		}
1890 	} else
1891 		dev_dbg(&spi->dev,
1892 			"using user supplied controller_data settings\n");
1893 
1894 	/*
1895 	 * We can override with custom divisors, else we use the board
1896 	 * frequency setting
1897 	 */
1898 	if ((0 == chip_info->clk_freq.cpsdvsr)
1899 	    && (0 == chip_info->clk_freq.scr)) {
1900 		status = calculate_effective_freq(pl022,
1901 						  spi->max_speed_hz,
1902 						  &clk_freq);
1903 		if (status < 0)
1904 			goto err_config_params;
1905 	} else {
1906 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1907 		if ((clk_freq.cpsdvsr % 2) != 0)
1908 			clk_freq.cpsdvsr =
1909 				clk_freq.cpsdvsr - 1;
1910 	}
1911 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1912 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1913 		status = -EINVAL;
1914 		dev_err(&spi->dev,
1915 			"cpsdvsr is configured incorrectly\n");
1916 		goto err_config_params;
1917 	}
1918 
1919 	status = verify_controller_parameters(pl022, chip_info);
1920 	if (status) {
1921 		dev_err(&spi->dev, "controller data is incorrect");
1922 		goto err_config_params;
1923 	}
1924 
1925 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1926 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1927 
1928 	/* Now set controller state based on controller data */
1929 	chip->xfer_type = chip_info->com_mode;
1930 	if (!chip_info->cs_control) {
1931 		chip->cs_control = null_cs_control;
1932 		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1933 			dev_warn(&spi->dev,
1934 				 "invalid chip select\n");
1935 	} else
1936 		chip->cs_control = chip_info->cs_control;
1937 
1938 	/* Check bits per word with vendor specific range */
1939 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1940 		status = -ENOTSUPP;
1941 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1942 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1943 				pl022->vendor->max_bpw);
1944 		goto err_config_params;
1945 	} else if (bits <= 8) {
1946 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1947 		chip->n_bytes = 1;
1948 		chip->read = READING_U8;
1949 		chip->write = WRITING_U8;
1950 	} else if (bits <= 16) {
1951 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1952 		chip->n_bytes = 2;
1953 		chip->read = READING_U16;
1954 		chip->write = WRITING_U16;
1955 	} else {
1956 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1957 		chip->n_bytes = 4;
1958 		chip->read = READING_U32;
1959 		chip->write = WRITING_U32;
1960 	}
1961 
1962 	/* Now Initialize all register settings required for this chip */
1963 	chip->cr0 = 0;
1964 	chip->cr1 = 0;
1965 	chip->dmacr = 0;
1966 	chip->cpsr = 0;
1967 	if ((chip_info->com_mode == DMA_TRANSFER)
1968 	    && ((pl022->master_info)->enable_dma)) {
1969 		chip->enable_dma = true;
1970 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1971 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1972 			       SSP_DMACR_MASK_RXDMAE, 0);
1973 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1974 			       SSP_DMACR_MASK_TXDMAE, 1);
1975 	} else {
1976 		chip->enable_dma = false;
1977 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1978 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1979 			       SSP_DMACR_MASK_RXDMAE, 0);
1980 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1981 			       SSP_DMACR_MASK_TXDMAE, 1);
1982 	}
1983 
1984 	chip->cpsr = clk_freq.cpsdvsr;
1985 
1986 	/* Special setup for the ST micro extended control registers */
1987 	if (pl022->vendor->extended_cr) {
1988 		u32 etx;
1989 
1990 		if (pl022->vendor->pl023) {
1991 			/* These bits are only in the PL023 */
1992 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1993 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1994 		} else {
1995 			/* These bits are in the PL022 but not PL023 */
1996 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1997 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1998 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1999 				       SSP_CR0_MASK_CSS_ST, 16);
2000 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2001 				       SSP_CR0_MASK_FRF_ST, 21);
2002 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2003 				       SSP_CR1_MASK_MWAIT_ST, 6);
2004 		}
2005 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2006 			       SSP_CR0_MASK_DSS_ST, 0);
2007 
2008 		if (spi->mode & SPI_LSB_FIRST) {
2009 			tmp = SSP_RX_LSB;
2010 			etx = SSP_TX_LSB;
2011 		} else {
2012 			tmp = SSP_RX_MSB;
2013 			etx = SSP_TX_MSB;
2014 		}
2015 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2016 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2017 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2018 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2019 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2020 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2021 	} else {
2022 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2023 			       SSP_CR0_MASK_DSS, 0);
2024 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2025 			       SSP_CR0_MASK_FRF, 4);
2026 	}
2027 
2028 	/* Stuff that is common for all versions */
2029 	if (spi->mode & SPI_CPOL)
2030 		tmp = SSP_CLK_POL_IDLE_HIGH;
2031 	else
2032 		tmp = SSP_CLK_POL_IDLE_LOW;
2033 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2034 
2035 	if (spi->mode & SPI_CPHA)
2036 		tmp = SSP_CLK_SECOND_EDGE;
2037 	else
2038 		tmp = SSP_CLK_FIRST_EDGE;
2039 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2040 
2041 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2042 	/* Loopback is available on all versions except PL023 */
2043 	if (pl022->vendor->loopback) {
2044 		if (spi->mode & SPI_LOOP)
2045 			tmp = LOOPBACK_ENABLED;
2046 		else
2047 			tmp = LOOPBACK_DISABLED;
2048 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2049 	}
2050 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2051 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2052 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2053 		3);
2054 
2055 	/* Save controller_state */
2056 	spi_set_ctldata(spi, chip);
2057 	return status;
2058  err_config_params:
2059 	spi_set_ctldata(spi, NULL);
2060 	kfree(chip);
2061 	return status;
2062 }
2063 
2064 /**
2065  * pl022_cleanup - cleanup function registered to SPI master framework
2066  * @spi: spi device which is requesting cleanup
2067  *
2068  * This function is registered to the SPI framework for this SPI master
2069  * controller. It will free the runtime state of chip.
2070  */
2071 static void pl022_cleanup(struct spi_device *spi)
2072 {
2073 	struct chip_data *chip = spi_get_ctldata(spi);
2074 
2075 	spi_set_ctldata(spi, NULL);
2076 	kfree(chip);
2077 }
2078 
2079 static struct pl022_ssp_controller *
2080 pl022_platform_data_dt_get(struct device *dev)
2081 {
2082 	struct device_node *np = dev->of_node;
2083 	struct pl022_ssp_controller *pd;
2084 	u32 tmp;
2085 
2086 	if (!np) {
2087 		dev_err(dev, "no dt node defined\n");
2088 		return NULL;
2089 	}
2090 
2091 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2092 	if (!pd)
2093 		return NULL;
2094 
2095 	pd->bus_id = -1;
2096 	pd->enable_dma = 1;
2097 	of_property_read_u32(np, "num-cs", &tmp);
2098 	pd->num_chipselect = tmp;
2099 	of_property_read_u32(np, "pl022,autosuspend-delay",
2100 			     &pd->autosuspend_delay);
2101 	pd->rt = of_property_read_bool(np, "pl022,rt");
2102 
2103 	return pd;
2104 }
2105 
2106 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2107 {
2108 	struct device *dev = &adev->dev;
2109 	struct pl022_ssp_controller *platform_info =
2110 			dev_get_platdata(&adev->dev);
2111 	struct spi_master *master;
2112 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2113 	struct device_node *np = adev->dev.of_node;
2114 	int status = 0, i, num_cs;
2115 
2116 	dev_info(&adev->dev,
2117 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2118 	if (!platform_info && IS_ENABLED(CONFIG_OF))
2119 		platform_info = pl022_platform_data_dt_get(dev);
2120 
2121 	if (!platform_info) {
2122 		dev_err(dev, "probe: no platform data defined\n");
2123 		return -ENODEV;
2124 	}
2125 
2126 	if (platform_info->num_chipselect) {
2127 		num_cs = platform_info->num_chipselect;
2128 	} else {
2129 		dev_err(dev, "probe: no chip select defined\n");
2130 		return -ENODEV;
2131 	}
2132 
2133 	/* Allocate master with space for data */
2134 	master = spi_alloc_master(dev, sizeof(struct pl022));
2135 	if (master == NULL) {
2136 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2137 		return -ENOMEM;
2138 	}
2139 
2140 	pl022 = spi_master_get_devdata(master);
2141 	pl022->master = master;
2142 	pl022->master_info = platform_info;
2143 	pl022->adev = adev;
2144 	pl022->vendor = id->data;
2145 	pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2146 					  GFP_KERNEL);
2147 	if (!pl022->chipselects) {
2148 		status = -ENOMEM;
2149 		goto err_no_mem;
2150 	}
2151 
2152 	/*
2153 	 * Bus Number Which has been Assigned to this SSP controller
2154 	 * on this board
2155 	 */
2156 	master->bus_num = platform_info->bus_id;
2157 	master->num_chipselect = num_cs;
2158 	master->cleanup = pl022_cleanup;
2159 	master->setup = pl022_setup;
2160 	master->auto_runtime_pm = true;
2161 	master->transfer_one_message = pl022_transfer_one_message;
2162 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2163 	master->rt = platform_info->rt;
2164 	master->dev.of_node = dev->of_node;
2165 
2166 	if (platform_info->num_chipselect && platform_info->chipselects) {
2167 		for (i = 0; i < num_cs; i++)
2168 			pl022->chipselects[i] = platform_info->chipselects[i];
2169 	} else if (pl022->vendor->internal_cs_ctrl) {
2170 		for (i = 0; i < num_cs; i++)
2171 			pl022->chipselects[i] = i;
2172 	} else if (IS_ENABLED(CONFIG_OF)) {
2173 		for (i = 0; i < num_cs; i++) {
2174 			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2175 
2176 			if (cs_gpio == -EPROBE_DEFER) {
2177 				status = -EPROBE_DEFER;
2178 				goto err_no_gpio;
2179 			}
2180 
2181 			pl022->chipselects[i] = cs_gpio;
2182 
2183 			if (gpio_is_valid(cs_gpio)) {
2184 				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2185 					dev_err(&adev->dev,
2186 						"could not request %d gpio\n",
2187 						cs_gpio);
2188 				else if (gpio_direction_output(cs_gpio, 1))
2189 					dev_err(&adev->dev,
2190 						"could not set gpio %d as output\n",
2191 						cs_gpio);
2192 			}
2193 		}
2194 	}
2195 
2196 	/*
2197 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2198 	 * always MS bit first on the original pl022.
2199 	 */
2200 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2201 	if (pl022->vendor->extended_cr)
2202 		master->mode_bits |= SPI_LSB_FIRST;
2203 
2204 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2205 
2206 	status = amba_request_regions(adev, NULL);
2207 	if (status)
2208 		goto err_no_ioregion;
2209 
2210 	pl022->phybase = adev->res.start;
2211 	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2212 				       resource_size(&adev->res));
2213 	if (pl022->virtbase == NULL) {
2214 		status = -ENOMEM;
2215 		goto err_no_ioremap;
2216 	}
2217 	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2218 		&adev->res.start, pl022->virtbase);
2219 
2220 	pl022->clk = devm_clk_get(&adev->dev, NULL);
2221 	if (IS_ERR(pl022->clk)) {
2222 		status = PTR_ERR(pl022->clk);
2223 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2224 		goto err_no_clk;
2225 	}
2226 
2227 	status = clk_prepare_enable(pl022->clk);
2228 	if (status) {
2229 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2230 		goto err_no_clk_en;
2231 	}
2232 
2233 	/* Initialize transfer pump */
2234 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2235 		     (unsigned long)pl022);
2236 
2237 	/* Disable SSP */
2238 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2239 	       SSP_CR1(pl022->virtbase));
2240 	load_ssp_default_config(pl022);
2241 
2242 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2243 				  0, "pl022", pl022);
2244 	if (status < 0) {
2245 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2246 		goto err_no_irq;
2247 	}
2248 
2249 	/* Get DMA channels, try autoconfiguration first */
2250 	status = pl022_dma_autoprobe(pl022);
2251 	if (status == -EPROBE_DEFER) {
2252 		dev_dbg(dev, "deferring probe to get DMA channel\n");
2253 		goto err_no_irq;
2254 	}
2255 
2256 	/* If that failed, use channels from platform_info */
2257 	if (status == 0)
2258 		platform_info->enable_dma = 1;
2259 	else if (platform_info->enable_dma) {
2260 		status = pl022_dma_probe(pl022);
2261 		if (status != 0)
2262 			platform_info->enable_dma = 0;
2263 	}
2264 
2265 	/* Register with the SPI framework */
2266 	amba_set_drvdata(adev, pl022);
2267 	status = devm_spi_register_master(&adev->dev, master);
2268 	if (status != 0) {
2269 		dev_err(&adev->dev,
2270 			"probe - problem registering spi master\n");
2271 		goto err_spi_register;
2272 	}
2273 	dev_dbg(dev, "probe succeeded\n");
2274 
2275 	/* let runtime pm put suspend */
2276 	if (platform_info->autosuspend_delay > 0) {
2277 		dev_info(&adev->dev,
2278 			"will use autosuspend for runtime pm, delay %dms\n",
2279 			platform_info->autosuspend_delay);
2280 		pm_runtime_set_autosuspend_delay(dev,
2281 			platform_info->autosuspend_delay);
2282 		pm_runtime_use_autosuspend(dev);
2283 	}
2284 	pm_runtime_put(dev);
2285 
2286 	return 0;
2287 
2288  err_spi_register:
2289 	if (platform_info->enable_dma)
2290 		pl022_dma_remove(pl022);
2291  err_no_irq:
2292 	clk_disable_unprepare(pl022->clk);
2293  err_no_clk_en:
2294  err_no_clk:
2295  err_no_ioremap:
2296 	amba_release_regions(adev);
2297  err_no_ioregion:
2298  err_no_gpio:
2299  err_no_mem:
2300 	spi_master_put(master);
2301 	return status;
2302 }
2303 
2304 static int
2305 pl022_remove(struct amba_device *adev)
2306 {
2307 	struct pl022 *pl022 = amba_get_drvdata(adev);
2308 
2309 	if (!pl022)
2310 		return 0;
2311 
2312 	/*
2313 	 * undo pm_runtime_put() in probe.  I assume that we're not
2314 	 * accessing the primecell here.
2315 	 */
2316 	pm_runtime_get_noresume(&adev->dev);
2317 
2318 	load_ssp_default_config(pl022);
2319 	if (pl022->master_info->enable_dma)
2320 		pl022_dma_remove(pl022);
2321 
2322 	clk_disable_unprepare(pl022->clk);
2323 	amba_release_regions(adev);
2324 	tasklet_disable(&pl022->pump_transfers);
2325 	return 0;
2326 }
2327 
2328 #ifdef CONFIG_PM_SLEEP
2329 static int pl022_suspend(struct device *dev)
2330 {
2331 	struct pl022 *pl022 = dev_get_drvdata(dev);
2332 	int ret;
2333 
2334 	ret = spi_master_suspend(pl022->master);
2335 	if (ret) {
2336 		dev_warn(dev, "cannot suspend master\n");
2337 		return ret;
2338 	}
2339 
2340 	ret = pm_runtime_force_suspend(dev);
2341 	if (ret) {
2342 		spi_master_resume(pl022->master);
2343 		return ret;
2344 	}
2345 
2346 	pinctrl_pm_select_sleep_state(dev);
2347 
2348 	dev_dbg(dev, "suspended\n");
2349 	return 0;
2350 }
2351 
2352 static int pl022_resume(struct device *dev)
2353 {
2354 	struct pl022 *pl022 = dev_get_drvdata(dev);
2355 	int ret;
2356 
2357 	ret = pm_runtime_force_resume(dev);
2358 	if (ret)
2359 		dev_err(dev, "problem resuming\n");
2360 
2361 	/* Start the queue running */
2362 	ret = spi_master_resume(pl022->master);
2363 	if (ret)
2364 		dev_err(dev, "problem starting queue (%d)\n", ret);
2365 	else
2366 		dev_dbg(dev, "resumed\n");
2367 
2368 	return ret;
2369 }
2370 #endif
2371 
2372 #ifdef CONFIG_PM
2373 static int pl022_runtime_suspend(struct device *dev)
2374 {
2375 	struct pl022 *pl022 = dev_get_drvdata(dev);
2376 
2377 	clk_disable_unprepare(pl022->clk);
2378 	pinctrl_pm_select_idle_state(dev);
2379 
2380 	return 0;
2381 }
2382 
2383 static int pl022_runtime_resume(struct device *dev)
2384 {
2385 	struct pl022 *pl022 = dev_get_drvdata(dev);
2386 
2387 	pinctrl_pm_select_default_state(dev);
2388 	clk_prepare_enable(pl022->clk);
2389 
2390 	return 0;
2391 }
2392 #endif
2393 
2394 static const struct dev_pm_ops pl022_dev_pm_ops = {
2395 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2396 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2397 };
2398 
2399 static struct vendor_data vendor_arm = {
2400 	.fifodepth = 8,
2401 	.max_bpw = 16,
2402 	.unidir = false,
2403 	.extended_cr = false,
2404 	.pl023 = false,
2405 	.loopback = true,
2406 	.internal_cs_ctrl = false,
2407 };
2408 
2409 static struct vendor_data vendor_st = {
2410 	.fifodepth = 32,
2411 	.max_bpw = 32,
2412 	.unidir = false,
2413 	.extended_cr = true,
2414 	.pl023 = false,
2415 	.loopback = true,
2416 	.internal_cs_ctrl = false,
2417 };
2418 
2419 static struct vendor_data vendor_st_pl023 = {
2420 	.fifodepth = 32,
2421 	.max_bpw = 32,
2422 	.unidir = false,
2423 	.extended_cr = true,
2424 	.pl023 = true,
2425 	.loopback = false,
2426 	.internal_cs_ctrl = false,
2427 };
2428 
2429 static struct vendor_data vendor_lsi = {
2430 	.fifodepth = 8,
2431 	.max_bpw = 16,
2432 	.unidir = false,
2433 	.extended_cr = false,
2434 	.pl023 = false,
2435 	.loopback = true,
2436 	.internal_cs_ctrl = true,
2437 };
2438 
2439 static struct amba_id pl022_ids[] = {
2440 	{
2441 		/*
2442 		 * ARM PL022 variant, this has a 16bit wide
2443 		 * and 8 locations deep TX/RX FIFO
2444 		 */
2445 		.id	= 0x00041022,
2446 		.mask	= 0x000fffff,
2447 		.data	= &vendor_arm,
2448 	},
2449 	{
2450 		/*
2451 		 * ST Micro derivative, this has 32bit wide
2452 		 * and 32 locations deep TX/RX FIFO
2453 		 */
2454 		.id	= 0x01080022,
2455 		.mask	= 0xffffffff,
2456 		.data	= &vendor_st,
2457 	},
2458 	{
2459 		/*
2460 		 * ST-Ericsson derivative "PL023" (this is not
2461 		 * an official ARM number), this is a PL022 SSP block
2462 		 * stripped to SPI mode only, it has 32bit wide
2463 		 * and 32 locations deep TX/RX FIFO but no extended
2464 		 * CR0/CR1 register
2465 		 */
2466 		.id	= 0x00080023,
2467 		.mask	= 0xffffffff,
2468 		.data	= &vendor_st_pl023,
2469 	},
2470 	{
2471 		/*
2472 		 * PL022 variant that has a chip select control register whih
2473 		 * allows control of 5 output signals nCS[0:4].
2474 		 */
2475 		.id	= 0x000b6022,
2476 		.mask	= 0x000fffff,
2477 		.data	= &vendor_lsi,
2478 	},
2479 	{ 0, 0 },
2480 };
2481 
2482 MODULE_DEVICE_TABLE(amba, pl022_ids);
2483 
2484 static struct amba_driver pl022_driver = {
2485 	.drv = {
2486 		.name	= "ssp-pl022",
2487 		.pm	= &pl022_dev_pm_ops,
2488 	},
2489 	.id_table	= pl022_ids,
2490 	.probe		= pl022_probe,
2491 	.remove		= pl022_remove,
2492 };
2493 
2494 static int __init pl022_init(void)
2495 {
2496 	return amba_driver_register(&pl022_driver);
2497 }
2498 subsys_initcall(pl022_init);
2499 
2500 static void __exit pl022_exit(void)
2501 {
2502 	amba_driver_unregister(&pl022_driver);
2503 }
2504 module_exit(pl022_exit);
2505 
2506 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2507 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2508 MODULE_LICENSE("GPL");
2509