xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision a485df4b)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2009 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/workqueue.h>
33 #include <linux/delay.h>
34 #include <linux/clk.h>
35 #include <linux/err.h>
36 #include <linux/amba/bus.h>
37 #include <linux/amba/pl022.h>
38 #include <linux/io.h>
39 #include <linux/slab.h>
40 #include <linux/dmaengine.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/scatterlist.h>
43 #include <linux/pm_runtime.h>
44 
45 /*
46  * This macro is used to define some register default values.
47  * reg is masked with mask, the OR:ed with an (again masked)
48  * val shifted sb steps to the left.
49  */
50 #define SSP_WRITE_BITS(reg, val, mask, sb) \
51  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
52 
53 /*
54  * This macro is also used to define some default values.
55  * It will just shift val by sb steps to the left and mask
56  * the result with mask.
57  */
58 #define GEN_MASK_BITS(val, mask, sb) \
59  (((val)<<(sb)) & (mask))
60 
61 #define DRIVE_TX		0
62 #define DO_NOT_DRIVE_TX		1
63 
64 #define DO_NOT_QUEUE_DMA	0
65 #define QUEUE_DMA		1
66 
67 #define RX_TRANSFER		1
68 #define TX_TRANSFER		2
69 
70 /*
71  * Macros to access SSP Registers with their offsets
72  */
73 #define SSP_CR0(r)	(r + 0x000)
74 #define SSP_CR1(r)	(r + 0x004)
75 #define SSP_DR(r)	(r + 0x008)
76 #define SSP_SR(r)	(r + 0x00C)
77 #define SSP_CPSR(r)	(r + 0x010)
78 #define SSP_IMSC(r)	(r + 0x014)
79 #define SSP_RIS(r)	(r + 0x018)
80 #define SSP_MIS(r)	(r + 0x01C)
81 #define SSP_ICR(r)	(r + 0x020)
82 #define SSP_DMACR(r)	(r + 0x024)
83 #define SSP_ITCR(r)	(r + 0x080)
84 #define SSP_ITIP(r)	(r + 0x084)
85 #define SSP_ITOP(r)	(r + 0x088)
86 #define SSP_TDR(r)	(r + 0x08C)
87 
88 #define SSP_PID0(r)	(r + 0xFE0)
89 #define SSP_PID1(r)	(r + 0xFE4)
90 #define SSP_PID2(r)	(r + 0xFE8)
91 #define SSP_PID3(r)	(r + 0xFEC)
92 
93 #define SSP_CID0(r)	(r + 0xFF0)
94 #define SSP_CID1(r)	(r + 0xFF4)
95 #define SSP_CID2(r)	(r + 0xFF8)
96 #define SSP_CID3(r)	(r + 0xFFC)
97 
98 /*
99  * SSP Control Register 0  - SSP_CR0
100  */
101 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
102 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
103 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
104 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
105 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
106 
107 /*
108  * The ST version of this block moves som bits
109  * in SSP_CR0 and extends it to 32 bits
110  */
111 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
112 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
113 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
114 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
115 
116 
117 /*
118  * SSP Control Register 0  - SSP_CR1
119  */
120 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
121 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
122 #define SSP_CR1_MASK_MS		(0x1UL << 2)
123 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
124 
125 /*
126  * The ST version of this block adds some bits
127  * in SSP_CR1
128  */
129 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
130 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
131 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
132 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
133 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
134 /* This one is only in the PL023 variant */
135 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
136 
137 /*
138  * SSP Status Register - SSP_SR
139  */
140 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
141 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
142 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
143 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
144 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
145 
146 /*
147  * SSP Clock Prescale Register  - SSP_CPSR
148  */
149 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
150 
151 /*
152  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
153  */
154 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
155 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
156 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
157 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
158 
159 /*
160  * SSP Raw Interrupt Status Register - SSP_RIS
161  */
162 /* Receive Overrun Raw Interrupt status */
163 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
164 /* Receive Timeout Raw Interrupt status */
165 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
166 /* Receive FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
168 /* Transmit FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
170 
171 /*
172  * SSP Masked Interrupt Status Register - SSP_MIS
173  */
174 /* Receive Overrun Masked Interrupt status */
175 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
176 /* Receive Timeout Masked Interrupt status */
177 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
178 /* Receive FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
180 /* Transmit FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
182 
183 /*
184  * SSP Interrupt Clear Register - SSP_ICR
185  */
186 /* Receive Overrun Raw Clear Interrupt bit */
187 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
188 /* Receive Timeout Clear Interrupt bit */
189 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
190 
191 /*
192  * SSP DMA Control Register - SSP_DMACR
193  */
194 /* Receive DMA Enable bit */
195 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
196 /* Transmit DMA Enable bit */
197 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
198 
199 /*
200  * SSP Integration Test control Register - SSP_ITCR
201  */
202 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
203 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
204 
205 /*
206  * SSP Integration Test Input Register - SSP_ITIP
207  */
208 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
209 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
210 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
211 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
212 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
213 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
214 
215 /*
216  * SSP Integration Test output Register - SSP_ITOP
217  */
218 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
219 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
220 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
221 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
222 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
223 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
224 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
225 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
226 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
227 #define ITOP_MASK_INTR			 (0x1UL << 9)
228 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
229 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
230 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
231 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
232 
233 /*
234  * SSP Test Data Register - SSP_TDR
235  */
236 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
237 
238 /*
239  * Message State
240  * we use the spi_message.state (void *) pointer to
241  * hold a single state value, that's why all this
242  * (void *) casting is done here.
243  */
244 #define STATE_START			((void *) 0)
245 #define STATE_RUNNING			((void *) 1)
246 #define STATE_DONE			((void *) 2)
247 #define STATE_ERROR			((void *) -1)
248 
249 /*
250  * SSP State - Whether Enabled or Disabled
251  */
252 #define SSP_DISABLED			(0)
253 #define SSP_ENABLED			(1)
254 
255 /*
256  * SSP DMA State - Whether DMA Enabled or Disabled
257  */
258 #define SSP_DMA_DISABLED		(0)
259 #define SSP_DMA_ENABLED			(1)
260 
261 /*
262  * SSP Clock Defaults
263  */
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
266 
267 /*
268  * SSP Clock Parameter ranges
269  */
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
272 #define SCR_MIN 0x00
273 #define SCR_MAX 0xFF
274 
275 /*
276  * SSP Interrupt related Macros
277  */
278 #define DEFAULT_SSP_REG_IMSC  0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
281 
282 #define CLEAR_ALL_INTERRUPTS  0x3
283 
284 #define SPI_POLLING_TIMEOUT 1000
285 
286 
287 /*
288  * The type of reading going on on this chip
289  */
290 enum ssp_reading {
291 	READING_NULL,
292 	READING_U8,
293 	READING_U16,
294 	READING_U32
295 };
296 
297 /**
298  * The type of writing going on on this chip
299  */
300 enum ssp_writing {
301 	WRITING_NULL,
302 	WRITING_U8,
303 	WRITING_U16,
304 	WRITING_U32
305 };
306 
307 /**
308  * struct vendor_data - vendor-specific config parameters
309  * for PL022 derivates
310  * @fifodepth: depth of FIFOs (both)
311  * @max_bpw: maximum number of bits per word
312  * @unidir: supports unidirection transfers
313  * @extended_cr: 32 bit wide control register 0 with extra
314  * features and extra features in CR1 as found in the ST variants
315  * @pl023: supports a subset of the ST extensions called "PL023"
316  */
317 struct vendor_data {
318 	int fifodepth;
319 	int max_bpw;
320 	bool unidir;
321 	bool extended_cr;
322 	bool pl023;
323 	bool loopback;
324 };
325 
326 /**
327  * struct pl022 - This is the private SSP driver data structure
328  * @adev: AMBA device model hookup
329  * @vendor: vendor data for the IP block
330  * @phybase: the physical memory where the SSP device resides
331  * @virtbase: the virtual memory where the SSP is mapped
332  * @clk: outgoing clock "SPICLK" for the SPI bus
333  * @master: SPI framework hookup
334  * @master_info: controller-specific data from machine setup
335  * @workqueue: a workqueue on which any spi_message request is queued
336  * @pump_messages: work struct for scheduling work to the workqueue
337  * @queue_lock: spinlock to syncronise access to message queue
338  * @queue: message queue
339  * @busy: workqueue is busy
340  * @running: workqueue is running
341  * @pump_transfers: Tasklet used in Interrupt Transfer mode
342  * @cur_msg: Pointer to current spi_message being processed
343  * @cur_transfer: Pointer to current spi_transfer
344  * @cur_chip: pointer to current clients chip(assigned from controller_state)
345  * @tx: current position in TX buffer to be read
346  * @tx_end: end position in TX buffer to be read
347  * @rx: current position in RX buffer to be written
348  * @rx_end: end position in RX buffer to be written
349  * @read: the type of read currently going on
350  * @write: the type of write currently going on
351  * @exp_fifo_level: expected FIFO level
352  * @dma_rx_channel: optional channel for RX DMA
353  * @dma_tx_channel: optional channel for TX DMA
354  * @sgt_rx: scattertable for the RX transfer
355  * @sgt_tx: scattertable for the TX transfer
356  * @dummypage: a dummy page used for driving data on the bus with DMA
357  */
358 struct pl022 {
359 	struct amba_device		*adev;
360 	struct vendor_data		*vendor;
361 	resource_size_t			phybase;
362 	void __iomem			*virtbase;
363 	struct clk			*clk;
364 	struct spi_master		*master;
365 	struct pl022_ssp_controller	*master_info;
366 	/* Driver message queue */
367 	struct workqueue_struct		*workqueue;
368 	struct work_struct		pump_messages;
369 	spinlock_t			queue_lock;
370 	struct list_head		queue;
371 	bool				busy;
372 	bool				running;
373 	/* Message transfer pump */
374 	struct tasklet_struct		pump_transfers;
375 	struct spi_message		*cur_msg;
376 	struct spi_transfer		*cur_transfer;
377 	struct chip_data		*cur_chip;
378 	void				*tx;
379 	void				*tx_end;
380 	void				*rx;
381 	void				*rx_end;
382 	enum ssp_reading		read;
383 	enum ssp_writing		write;
384 	u32				exp_fifo_level;
385 	enum ssp_rx_level_trig		rx_lev_trig;
386 	enum ssp_tx_level_trig		tx_lev_trig;
387 	/* DMA settings */
388 #ifdef CONFIG_DMA_ENGINE
389 	struct dma_chan			*dma_rx_channel;
390 	struct dma_chan			*dma_tx_channel;
391 	struct sg_table			sgt_rx;
392 	struct sg_table			sgt_tx;
393 	char				*dummypage;
394 #endif
395 };
396 
397 /**
398  * struct chip_data - To maintain runtime state of SSP for each client chip
399  * @cr0: Value of control register CR0 of SSP - on later ST variants this
400  *       register is 32 bits wide rather than just 16
401  * @cr1: Value of control register CR1 of SSP
402  * @dmacr: Value of DMA control Register of SSP
403  * @cpsr: Value of Clock prescale register
404  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
405  * @enable_dma: Whether to enable DMA or not
406  * @read: function ptr to be used to read when doing xfer for this chip
407  * @write: function ptr to be used to write when doing xfer for this chip
408  * @cs_control: chip select callback provided by chip
409  * @xfer_type: polling/interrupt/DMA
410  *
411  * Runtime state of the SSP controller, maintained per chip,
412  * This would be set according to the current message that would be served
413  */
414 struct chip_data {
415 	u32 cr0;
416 	u16 cr1;
417 	u16 dmacr;
418 	u16 cpsr;
419 	u8 n_bytes;
420 	bool enable_dma;
421 	enum ssp_reading read;
422 	enum ssp_writing write;
423 	void (*cs_control) (u32 command);
424 	int xfer_type;
425 };
426 
427 /**
428  * null_cs_control - Dummy chip select function
429  * @command: select/delect the chip
430  *
431  * If no chip select function is provided by client this is used as dummy
432  * chip select
433  */
434 static void null_cs_control(u32 command)
435 {
436 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
437 }
438 
439 /**
440  * giveback - current spi_message is over, schedule next message and call
441  * callback of this message. Assumes that caller already
442  * set message->status; dma and pio irqs are blocked
443  * @pl022: SSP driver private data structure
444  */
445 static void giveback(struct pl022 *pl022)
446 {
447 	struct spi_transfer *last_transfer;
448 	unsigned long flags;
449 	struct spi_message *msg;
450 	void (*curr_cs_control) (u32 command);
451 
452 	/*
453 	 * This local reference to the chip select function
454 	 * is needed because we set curr_chip to NULL
455 	 * as a step toward termininating the message.
456 	 */
457 	curr_cs_control = pl022->cur_chip->cs_control;
458 	spin_lock_irqsave(&pl022->queue_lock, flags);
459 	msg = pl022->cur_msg;
460 	pl022->cur_msg = NULL;
461 	pl022->cur_transfer = NULL;
462 	pl022->cur_chip = NULL;
463 	queue_work(pl022->workqueue, &pl022->pump_messages);
464 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
465 
466 	last_transfer = list_entry(msg->transfers.prev,
467 					struct spi_transfer,
468 					transfer_list);
469 
470 	/* Delay if requested before any change in chip select */
471 	if (last_transfer->delay_usecs)
472 		/*
473 		 * FIXME: This runs in interrupt context.
474 		 * Is this really smart?
475 		 */
476 		udelay(last_transfer->delay_usecs);
477 
478 	/*
479 	 * Drop chip select UNLESS cs_change is true or we are returning
480 	 * a message with an error, or next message is for another chip
481 	 */
482 	if (!last_transfer->cs_change)
483 		curr_cs_control(SSP_CHIP_DESELECT);
484 	else {
485 		struct spi_message *next_msg;
486 
487 		/* Holding of cs was hinted, but we need to make sure
488 		 * the next message is for the same chip.  Don't waste
489 		 * time with the following tests unless this was hinted.
490 		 *
491 		 * We cannot postpone this until pump_messages, because
492 		 * after calling msg->complete (below) the driver that
493 		 * sent the current message could be unloaded, which
494 		 * could invalidate the cs_control() callback...
495 		 */
496 
497 		/* get a pointer to the next message, if any */
498 		spin_lock_irqsave(&pl022->queue_lock, flags);
499 		if (list_empty(&pl022->queue))
500 			next_msg = NULL;
501 		else
502 			next_msg = list_entry(pl022->queue.next,
503 					struct spi_message, queue);
504 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
505 
506 		/* see if the next and current messages point
507 		 * to the same chip
508 		 */
509 		if (next_msg && next_msg->spi != msg->spi)
510 			next_msg = NULL;
511 		if (!next_msg || msg->state == STATE_ERROR)
512 			curr_cs_control(SSP_CHIP_DESELECT);
513 	}
514 	msg->state = NULL;
515 	if (msg->complete)
516 		msg->complete(msg->context);
517 	/* This message is completed, so let's turn off the clocks & power */
518 	clk_disable(pl022->clk);
519 	amba_pclk_disable(pl022->adev);
520 	amba_vcore_disable(pl022->adev);
521 	pm_runtime_put(&pl022->adev->dev);
522 }
523 
524 /**
525  * flush - flush the FIFO to reach a clean state
526  * @pl022: SSP driver private data structure
527  */
528 static int flush(struct pl022 *pl022)
529 {
530 	unsigned long limit = loops_per_jiffy << 1;
531 
532 	dev_dbg(&pl022->adev->dev, "flush\n");
533 	do {
534 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
535 			readw(SSP_DR(pl022->virtbase));
536 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
537 
538 	pl022->exp_fifo_level = 0;
539 
540 	return limit;
541 }
542 
543 /**
544  * restore_state - Load configuration of current chip
545  * @pl022: SSP driver private data structure
546  */
547 static void restore_state(struct pl022 *pl022)
548 {
549 	struct chip_data *chip = pl022->cur_chip;
550 
551 	if (pl022->vendor->extended_cr)
552 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
553 	else
554 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
555 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
556 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
557 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
558 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
559 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
560 }
561 
562 /*
563  * Default SSP Register Values
564  */
565 #define DEFAULT_SSP_REG_CR0 ( \
566 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
567 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
568 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
569 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
570 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
571 )
572 
573 /* ST versions have slightly different bit layout */
574 #define DEFAULT_SSP_REG_CR0_ST ( \
575 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
576 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
577 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
578 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
579 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
580 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
581 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
582 )
583 
584 /* The PL023 version is slightly different again */
585 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
586 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
587 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
590 )
591 
592 #define DEFAULT_SSP_REG_CR1 ( \
593 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
594 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
595 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
596 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
597 )
598 
599 /* ST versions extend this register to use all 16 bits */
600 #define DEFAULT_SSP_REG_CR1_ST ( \
601 	DEFAULT_SSP_REG_CR1 | \
602 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
603 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
604 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
605 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
606 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
607 )
608 
609 /*
610  * The PL023 variant has further differences: no loopback mode, no microwire
611  * support, and a new clock feedback delay setting.
612  */
613 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
614 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
615 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
616 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
617 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
618 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
619 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
621 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
622 )
623 
624 #define DEFAULT_SSP_REG_CPSR ( \
625 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
626 )
627 
628 #define DEFAULT_SSP_REG_DMACR (\
629 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
630 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
631 )
632 
633 /**
634  * load_ssp_default_config - Load default configuration for SSP
635  * @pl022: SSP driver private data structure
636  */
637 static void load_ssp_default_config(struct pl022 *pl022)
638 {
639 	if (pl022->vendor->pl023) {
640 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
641 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
642 	} else if (pl022->vendor->extended_cr) {
643 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
644 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
645 	} else {
646 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
647 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
648 	}
649 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
650 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
651 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
652 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
653 }
654 
655 /**
656  * This will write to TX and read from RX according to the parameters
657  * set in pl022.
658  */
659 static void readwriter(struct pl022 *pl022)
660 {
661 
662 	/*
663 	 * The FIFO depth is different between primecell variants.
664 	 * I believe filling in too much in the FIFO might cause
665 	 * errons in 8bit wide transfers on ARM variants (just 8 words
666 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
667 	 *
668 	 * To prevent this issue, the TX FIFO is only filled to the
669 	 * unused RX FIFO fill length, regardless of what the TX
670 	 * FIFO status flag indicates.
671 	 */
672 	dev_dbg(&pl022->adev->dev,
673 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
674 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
675 
676 	/* Read as much as you can */
677 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
678 	       && (pl022->rx < pl022->rx_end)) {
679 		switch (pl022->read) {
680 		case READING_NULL:
681 			readw(SSP_DR(pl022->virtbase));
682 			break;
683 		case READING_U8:
684 			*(u8 *) (pl022->rx) =
685 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
686 			break;
687 		case READING_U16:
688 			*(u16 *) (pl022->rx) =
689 				(u16) readw(SSP_DR(pl022->virtbase));
690 			break;
691 		case READING_U32:
692 			*(u32 *) (pl022->rx) =
693 				readl(SSP_DR(pl022->virtbase));
694 			break;
695 		}
696 		pl022->rx += (pl022->cur_chip->n_bytes);
697 		pl022->exp_fifo_level--;
698 	}
699 	/*
700 	 * Write as much as possible up to the RX FIFO size
701 	 */
702 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
703 	       && (pl022->tx < pl022->tx_end)) {
704 		switch (pl022->write) {
705 		case WRITING_NULL:
706 			writew(0x0, SSP_DR(pl022->virtbase));
707 			break;
708 		case WRITING_U8:
709 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
710 			break;
711 		case WRITING_U16:
712 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
713 			break;
714 		case WRITING_U32:
715 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
716 			break;
717 		}
718 		pl022->tx += (pl022->cur_chip->n_bytes);
719 		pl022->exp_fifo_level++;
720 		/*
721 		 * This inner reader takes care of things appearing in the RX
722 		 * FIFO as we're transmitting. This will happen a lot since the
723 		 * clock starts running when you put things into the TX FIFO,
724 		 * and then things are continuously clocked into the RX FIFO.
725 		 */
726 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
727 		       && (pl022->rx < pl022->rx_end)) {
728 			switch (pl022->read) {
729 			case READING_NULL:
730 				readw(SSP_DR(pl022->virtbase));
731 				break;
732 			case READING_U8:
733 				*(u8 *) (pl022->rx) =
734 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
735 				break;
736 			case READING_U16:
737 				*(u16 *) (pl022->rx) =
738 					(u16) readw(SSP_DR(pl022->virtbase));
739 				break;
740 			case READING_U32:
741 				*(u32 *) (pl022->rx) =
742 					readl(SSP_DR(pl022->virtbase));
743 				break;
744 			}
745 			pl022->rx += (pl022->cur_chip->n_bytes);
746 			pl022->exp_fifo_level--;
747 		}
748 	}
749 	/*
750 	 * When we exit here the TX FIFO should be full and the RX FIFO
751 	 * should be empty
752 	 */
753 }
754 
755 
756 /**
757  * next_transfer - Move to the Next transfer in the current spi message
758  * @pl022: SSP driver private data structure
759  *
760  * This function moves though the linked list of spi transfers in the
761  * current spi message and returns with the state of current spi
762  * message i.e whether its last transfer is done(STATE_DONE) or
763  * Next transfer is ready(STATE_RUNNING)
764  */
765 static void *next_transfer(struct pl022 *pl022)
766 {
767 	struct spi_message *msg = pl022->cur_msg;
768 	struct spi_transfer *trans = pl022->cur_transfer;
769 
770 	/* Move to next transfer */
771 	if (trans->transfer_list.next != &msg->transfers) {
772 		pl022->cur_transfer =
773 		    list_entry(trans->transfer_list.next,
774 			       struct spi_transfer, transfer_list);
775 		return STATE_RUNNING;
776 	}
777 	return STATE_DONE;
778 }
779 
780 /*
781  * This DMA functionality is only compiled in if we have
782  * access to the generic DMA devices/DMA engine.
783  */
784 #ifdef CONFIG_DMA_ENGINE
785 static void unmap_free_dma_scatter(struct pl022 *pl022)
786 {
787 	/* Unmap and free the SG tables */
788 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
789 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
790 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
791 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
792 	sg_free_table(&pl022->sgt_rx);
793 	sg_free_table(&pl022->sgt_tx);
794 }
795 
796 static void dma_callback(void *data)
797 {
798 	struct pl022 *pl022 = data;
799 	struct spi_message *msg = pl022->cur_msg;
800 
801 	BUG_ON(!pl022->sgt_rx.sgl);
802 
803 #ifdef VERBOSE_DEBUG
804 	/*
805 	 * Optionally dump out buffers to inspect contents, this is
806 	 * good if you want to convince yourself that the loopback
807 	 * read/write contents are the same, when adopting to a new
808 	 * DMA engine.
809 	 */
810 	{
811 		struct scatterlist *sg;
812 		unsigned int i;
813 
814 		dma_sync_sg_for_cpu(&pl022->adev->dev,
815 				    pl022->sgt_rx.sgl,
816 				    pl022->sgt_rx.nents,
817 				    DMA_FROM_DEVICE);
818 
819 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
820 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
821 			print_hex_dump(KERN_ERR, "SPI RX: ",
822 				       DUMP_PREFIX_OFFSET,
823 				       16,
824 				       1,
825 				       sg_virt(sg),
826 				       sg_dma_len(sg),
827 				       1);
828 		}
829 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
830 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
831 			print_hex_dump(KERN_ERR, "SPI TX: ",
832 				       DUMP_PREFIX_OFFSET,
833 				       16,
834 				       1,
835 				       sg_virt(sg),
836 				       sg_dma_len(sg),
837 				       1);
838 		}
839 	}
840 #endif
841 
842 	unmap_free_dma_scatter(pl022);
843 
844 	/* Update total bytes transferred */
845 	msg->actual_length += pl022->cur_transfer->len;
846 	if (pl022->cur_transfer->cs_change)
847 		pl022->cur_chip->
848 			cs_control(SSP_CHIP_DESELECT);
849 
850 	/* Move to next transfer */
851 	msg->state = next_transfer(pl022);
852 	tasklet_schedule(&pl022->pump_transfers);
853 }
854 
855 static void setup_dma_scatter(struct pl022 *pl022,
856 			      void *buffer,
857 			      unsigned int length,
858 			      struct sg_table *sgtab)
859 {
860 	struct scatterlist *sg;
861 	int bytesleft = length;
862 	void *bufp = buffer;
863 	int mapbytes;
864 	int i;
865 
866 	if (buffer) {
867 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
868 			/*
869 			 * If there are less bytes left than what fits
870 			 * in the current page (plus page alignment offset)
871 			 * we just feed in this, else we stuff in as much
872 			 * as we can.
873 			 */
874 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
875 				mapbytes = bytesleft;
876 			else
877 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
878 			sg_set_page(sg, virt_to_page(bufp),
879 				    mapbytes, offset_in_page(bufp));
880 			bufp += mapbytes;
881 			bytesleft -= mapbytes;
882 			dev_dbg(&pl022->adev->dev,
883 				"set RX/TX target page @ %p, %d bytes, %d left\n",
884 				bufp, mapbytes, bytesleft);
885 		}
886 	} else {
887 		/* Map the dummy buffer on every page */
888 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
889 			if (bytesleft < PAGE_SIZE)
890 				mapbytes = bytesleft;
891 			else
892 				mapbytes = PAGE_SIZE;
893 			sg_set_page(sg, virt_to_page(pl022->dummypage),
894 				    mapbytes, 0);
895 			bytesleft -= mapbytes;
896 			dev_dbg(&pl022->adev->dev,
897 				"set RX/TX to dummy page %d bytes, %d left\n",
898 				mapbytes, bytesleft);
899 
900 		}
901 	}
902 	BUG_ON(bytesleft);
903 }
904 
905 /**
906  * configure_dma - configures the channels for the next transfer
907  * @pl022: SSP driver's private data structure
908  */
909 static int configure_dma(struct pl022 *pl022)
910 {
911 	struct dma_slave_config rx_conf = {
912 		.src_addr = SSP_DR(pl022->phybase),
913 		.direction = DMA_DEV_TO_MEM,
914 	};
915 	struct dma_slave_config tx_conf = {
916 		.dst_addr = SSP_DR(pl022->phybase),
917 		.direction = DMA_MEM_TO_DEV,
918 	};
919 	unsigned int pages;
920 	int ret;
921 	int rx_sglen, tx_sglen;
922 	struct dma_chan *rxchan = pl022->dma_rx_channel;
923 	struct dma_chan *txchan = pl022->dma_tx_channel;
924 	struct dma_async_tx_descriptor *rxdesc;
925 	struct dma_async_tx_descriptor *txdesc;
926 
927 	/* Check that the channels are available */
928 	if (!rxchan || !txchan)
929 		return -ENODEV;
930 
931 	/*
932 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
933 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
934 	 * not trigger on 2 elements this needs explicit mapping rather than
935 	 * calculation.
936 	 */
937 	switch (pl022->rx_lev_trig) {
938 	case SSP_RX_1_OR_MORE_ELEM:
939 		rx_conf.src_maxburst = 1;
940 		break;
941 	case SSP_RX_4_OR_MORE_ELEM:
942 		rx_conf.src_maxburst = 4;
943 		break;
944 	case SSP_RX_8_OR_MORE_ELEM:
945 		rx_conf.src_maxburst = 8;
946 		break;
947 	case SSP_RX_16_OR_MORE_ELEM:
948 		rx_conf.src_maxburst = 16;
949 		break;
950 	case SSP_RX_32_OR_MORE_ELEM:
951 		rx_conf.src_maxburst = 32;
952 		break;
953 	default:
954 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
955 		break;
956 	}
957 
958 	switch (pl022->tx_lev_trig) {
959 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
960 		tx_conf.dst_maxburst = 1;
961 		break;
962 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
963 		tx_conf.dst_maxburst = 4;
964 		break;
965 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
966 		tx_conf.dst_maxburst = 8;
967 		break;
968 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
969 		tx_conf.dst_maxburst = 16;
970 		break;
971 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
972 		tx_conf.dst_maxburst = 32;
973 		break;
974 	default:
975 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
976 		break;
977 	}
978 
979 	switch (pl022->read) {
980 	case READING_NULL:
981 		/* Use the same as for writing */
982 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
983 		break;
984 	case READING_U8:
985 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
986 		break;
987 	case READING_U16:
988 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
989 		break;
990 	case READING_U32:
991 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
992 		break;
993 	}
994 
995 	switch (pl022->write) {
996 	case WRITING_NULL:
997 		/* Use the same as for reading */
998 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
999 		break;
1000 	case WRITING_U8:
1001 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1002 		break;
1003 	case WRITING_U16:
1004 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1005 		break;
1006 	case WRITING_U32:
1007 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1008 		break;
1009 	}
1010 
1011 	/* SPI pecularity: we need to read and write the same width */
1012 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1013 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1014 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1015 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1016 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1017 
1018 	dmaengine_slave_config(rxchan, &rx_conf);
1019 	dmaengine_slave_config(txchan, &tx_conf);
1020 
1021 	/* Create sglists for the transfers */
1022 	pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
1023 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1024 
1025 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
1026 	if (ret)
1027 		goto err_alloc_rx_sg;
1028 
1029 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
1030 	if (ret)
1031 		goto err_alloc_tx_sg;
1032 
1033 	/* Fill in the scatterlists for the RX+TX buffers */
1034 	setup_dma_scatter(pl022, pl022->rx,
1035 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1036 	setup_dma_scatter(pl022, pl022->tx,
1037 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1038 
1039 	/* Map DMA buffers */
1040 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1041 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1042 	if (!rx_sglen)
1043 		goto err_rx_sgmap;
1044 
1045 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1046 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1047 	if (!tx_sglen)
1048 		goto err_tx_sgmap;
1049 
1050 	/* Send both scatterlists */
1051 	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1052 				      pl022->sgt_rx.sgl,
1053 				      rx_sglen,
1054 				      DMA_DEV_TO_MEM,
1055 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1056 	if (!rxdesc)
1057 		goto err_rxdesc;
1058 
1059 	txdesc = txchan->device->device_prep_slave_sg(txchan,
1060 				      pl022->sgt_tx.sgl,
1061 				      tx_sglen,
1062 				      DMA_MEM_TO_DEV,
1063 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1064 	if (!txdesc)
1065 		goto err_txdesc;
1066 
1067 	/* Put the callback on the RX transfer only, that should finish last */
1068 	rxdesc->callback = dma_callback;
1069 	rxdesc->callback_param = pl022;
1070 
1071 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1072 	dmaengine_submit(rxdesc);
1073 	dmaengine_submit(txdesc);
1074 	dma_async_issue_pending(rxchan);
1075 	dma_async_issue_pending(txchan);
1076 
1077 	return 0;
1078 
1079 err_txdesc:
1080 	dmaengine_terminate_all(txchan);
1081 err_rxdesc:
1082 	dmaengine_terminate_all(rxchan);
1083 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1084 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1085 err_tx_sgmap:
1086 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1087 		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1088 err_rx_sgmap:
1089 	sg_free_table(&pl022->sgt_tx);
1090 err_alloc_tx_sg:
1091 	sg_free_table(&pl022->sgt_rx);
1092 err_alloc_rx_sg:
1093 	return -ENOMEM;
1094 }
1095 
1096 static int __init pl022_dma_probe(struct pl022 *pl022)
1097 {
1098 	dma_cap_mask_t mask;
1099 
1100 	/* Try to acquire a generic DMA engine slave channel */
1101 	dma_cap_zero(mask);
1102 	dma_cap_set(DMA_SLAVE, mask);
1103 	/*
1104 	 * We need both RX and TX channels to do DMA, else do none
1105 	 * of them.
1106 	 */
1107 	pl022->dma_rx_channel = dma_request_channel(mask,
1108 					    pl022->master_info->dma_filter,
1109 					    pl022->master_info->dma_rx_param);
1110 	if (!pl022->dma_rx_channel) {
1111 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1112 		goto err_no_rxchan;
1113 	}
1114 
1115 	pl022->dma_tx_channel = dma_request_channel(mask,
1116 					    pl022->master_info->dma_filter,
1117 					    pl022->master_info->dma_tx_param);
1118 	if (!pl022->dma_tx_channel) {
1119 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1120 		goto err_no_txchan;
1121 	}
1122 
1123 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1124 	if (!pl022->dummypage) {
1125 		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1126 		goto err_no_dummypage;
1127 	}
1128 
1129 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1130 		 dma_chan_name(pl022->dma_rx_channel),
1131 		 dma_chan_name(pl022->dma_tx_channel));
1132 
1133 	return 0;
1134 
1135 err_no_dummypage:
1136 	dma_release_channel(pl022->dma_tx_channel);
1137 err_no_txchan:
1138 	dma_release_channel(pl022->dma_rx_channel);
1139 	pl022->dma_rx_channel = NULL;
1140 err_no_rxchan:
1141 	dev_err(&pl022->adev->dev,
1142 			"Failed to work in dma mode, work without dma!\n");
1143 	return -ENODEV;
1144 }
1145 
1146 static void terminate_dma(struct pl022 *pl022)
1147 {
1148 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1149 	struct dma_chan *txchan = pl022->dma_tx_channel;
1150 
1151 	dmaengine_terminate_all(rxchan);
1152 	dmaengine_terminate_all(txchan);
1153 	unmap_free_dma_scatter(pl022);
1154 }
1155 
1156 static void pl022_dma_remove(struct pl022 *pl022)
1157 {
1158 	if (pl022->busy)
1159 		terminate_dma(pl022);
1160 	if (pl022->dma_tx_channel)
1161 		dma_release_channel(pl022->dma_tx_channel);
1162 	if (pl022->dma_rx_channel)
1163 		dma_release_channel(pl022->dma_rx_channel);
1164 	kfree(pl022->dummypage);
1165 }
1166 
1167 #else
1168 static inline int configure_dma(struct pl022 *pl022)
1169 {
1170 	return -ENODEV;
1171 }
1172 
1173 static inline int pl022_dma_probe(struct pl022 *pl022)
1174 {
1175 	return 0;
1176 }
1177 
1178 static inline void pl022_dma_remove(struct pl022 *pl022)
1179 {
1180 }
1181 #endif
1182 
1183 /**
1184  * pl022_interrupt_handler - Interrupt handler for SSP controller
1185  *
1186  * This function handles interrupts generated for an interrupt based transfer.
1187  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1188  * current message's state as STATE_ERROR and schedule the tasklet
1189  * pump_transfers which will do the postprocessing of the current message by
1190  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1191  * more data, and writes data in TX FIFO till it is not full. If we complete
1192  * the transfer we move to the next transfer and schedule the tasklet.
1193  */
1194 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1195 {
1196 	struct pl022 *pl022 = dev_id;
1197 	struct spi_message *msg = pl022->cur_msg;
1198 	u16 irq_status = 0;
1199 	u16 flag = 0;
1200 
1201 	if (unlikely(!msg)) {
1202 		dev_err(&pl022->adev->dev,
1203 			"bad message state in interrupt handler");
1204 		/* Never fail */
1205 		return IRQ_HANDLED;
1206 	}
1207 
1208 	/* Read the Interrupt Status Register */
1209 	irq_status = readw(SSP_MIS(pl022->virtbase));
1210 
1211 	if (unlikely(!irq_status))
1212 		return IRQ_NONE;
1213 
1214 	/*
1215 	 * This handles the FIFO interrupts, the timeout
1216 	 * interrupts are flatly ignored, they cannot be
1217 	 * trusted.
1218 	 */
1219 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1220 		/*
1221 		 * Overrun interrupt - bail out since our Data has been
1222 		 * corrupted
1223 		 */
1224 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1225 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1226 			dev_err(&pl022->adev->dev,
1227 				"RXFIFO is full\n");
1228 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1229 			dev_err(&pl022->adev->dev,
1230 				"TXFIFO is full\n");
1231 
1232 		/*
1233 		 * Disable and clear interrupts, disable SSP,
1234 		 * mark message with bad status so it can be
1235 		 * retried.
1236 		 */
1237 		writew(DISABLE_ALL_INTERRUPTS,
1238 		       SSP_IMSC(pl022->virtbase));
1239 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1240 		writew((readw(SSP_CR1(pl022->virtbase)) &
1241 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1242 		msg->state = STATE_ERROR;
1243 
1244 		/* Schedule message queue handler */
1245 		tasklet_schedule(&pl022->pump_transfers);
1246 		return IRQ_HANDLED;
1247 	}
1248 
1249 	readwriter(pl022);
1250 
1251 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1252 		flag = 1;
1253 		/* Disable Transmit interrupt */
1254 		writew(readw(SSP_IMSC(pl022->virtbase)) &
1255 		       (~SSP_IMSC_MASK_TXIM),
1256 		       SSP_IMSC(pl022->virtbase));
1257 	}
1258 
1259 	/*
1260 	 * Since all transactions must write as much as shall be read,
1261 	 * we can conclude the entire transaction once RX is complete.
1262 	 * At this point, all TX will always be finished.
1263 	 */
1264 	if (pl022->rx >= pl022->rx_end) {
1265 		writew(DISABLE_ALL_INTERRUPTS,
1266 		       SSP_IMSC(pl022->virtbase));
1267 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1268 		if (unlikely(pl022->rx > pl022->rx_end)) {
1269 			dev_warn(&pl022->adev->dev, "read %u surplus "
1270 				 "bytes (did you request an odd "
1271 				 "number of bytes on a 16bit bus?)\n",
1272 				 (u32) (pl022->rx - pl022->rx_end));
1273 		}
1274 		/* Update total bytes transferred */
1275 		msg->actual_length += pl022->cur_transfer->len;
1276 		if (pl022->cur_transfer->cs_change)
1277 			pl022->cur_chip->
1278 				cs_control(SSP_CHIP_DESELECT);
1279 		/* Move to next transfer */
1280 		msg->state = next_transfer(pl022);
1281 		tasklet_schedule(&pl022->pump_transfers);
1282 		return IRQ_HANDLED;
1283 	}
1284 
1285 	return IRQ_HANDLED;
1286 }
1287 
1288 /**
1289  * This sets up the pointers to memory for the next message to
1290  * send out on the SPI bus.
1291  */
1292 static int set_up_next_transfer(struct pl022 *pl022,
1293 				struct spi_transfer *transfer)
1294 {
1295 	int residue;
1296 
1297 	/* Sanity check the message for this bus width */
1298 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1299 	if (unlikely(residue != 0)) {
1300 		dev_err(&pl022->adev->dev,
1301 			"message of %u bytes to transmit but the current "
1302 			"chip bus has a data width of %u bytes!\n",
1303 			pl022->cur_transfer->len,
1304 			pl022->cur_chip->n_bytes);
1305 		dev_err(&pl022->adev->dev, "skipping this message\n");
1306 		return -EIO;
1307 	}
1308 	pl022->tx = (void *)transfer->tx_buf;
1309 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1310 	pl022->rx = (void *)transfer->rx_buf;
1311 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1312 	pl022->write =
1313 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1314 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1315 	return 0;
1316 }
1317 
1318 /**
1319  * pump_transfers - Tasklet function which schedules next transfer
1320  * when running in interrupt or DMA transfer mode.
1321  * @data: SSP driver private data structure
1322  *
1323  */
1324 static void pump_transfers(unsigned long data)
1325 {
1326 	struct pl022 *pl022 = (struct pl022 *) data;
1327 	struct spi_message *message = NULL;
1328 	struct spi_transfer *transfer = NULL;
1329 	struct spi_transfer *previous = NULL;
1330 
1331 	/* Get current state information */
1332 	message = pl022->cur_msg;
1333 	transfer = pl022->cur_transfer;
1334 
1335 	/* Handle for abort */
1336 	if (message->state == STATE_ERROR) {
1337 		message->status = -EIO;
1338 		giveback(pl022);
1339 		return;
1340 	}
1341 
1342 	/* Handle end of message */
1343 	if (message->state == STATE_DONE) {
1344 		message->status = 0;
1345 		giveback(pl022);
1346 		return;
1347 	}
1348 
1349 	/* Delay if requested at end of transfer before CS change */
1350 	if (message->state == STATE_RUNNING) {
1351 		previous = list_entry(transfer->transfer_list.prev,
1352 					struct spi_transfer,
1353 					transfer_list);
1354 		if (previous->delay_usecs)
1355 			/*
1356 			 * FIXME: This runs in interrupt context.
1357 			 * Is this really smart?
1358 			 */
1359 			udelay(previous->delay_usecs);
1360 
1361 		/* Drop chip select only if cs_change is requested */
1362 		if (previous->cs_change)
1363 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1364 	} else {
1365 		/* STATE_START */
1366 		message->state = STATE_RUNNING;
1367 	}
1368 
1369 	if (set_up_next_transfer(pl022, transfer)) {
1370 		message->state = STATE_ERROR;
1371 		message->status = -EIO;
1372 		giveback(pl022);
1373 		return;
1374 	}
1375 	/* Flush the FIFOs and let's go! */
1376 	flush(pl022);
1377 
1378 	if (pl022->cur_chip->enable_dma) {
1379 		if (configure_dma(pl022)) {
1380 			dev_dbg(&pl022->adev->dev,
1381 				"configuration of DMA failed, fall back to interrupt mode\n");
1382 			goto err_config_dma;
1383 		}
1384 		return;
1385 	}
1386 
1387 err_config_dma:
1388 	writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1389 }
1390 
1391 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1392 {
1393 	u32 irqflags = ENABLE_ALL_INTERRUPTS;
1394 
1395 	/* Enable target chip */
1396 	pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1397 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1398 		/* Error path */
1399 		pl022->cur_msg->state = STATE_ERROR;
1400 		pl022->cur_msg->status = -EIO;
1401 		giveback(pl022);
1402 		return;
1403 	}
1404 	/* If we're using DMA, set up DMA here */
1405 	if (pl022->cur_chip->enable_dma) {
1406 		/* Configure DMA transfer */
1407 		if (configure_dma(pl022)) {
1408 			dev_dbg(&pl022->adev->dev,
1409 				"configuration of DMA failed, fall back to interrupt mode\n");
1410 			goto err_config_dma;
1411 		}
1412 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1413 		irqflags = DISABLE_ALL_INTERRUPTS;
1414 	}
1415 err_config_dma:
1416 	/* Enable SSP, turn on interrupts */
1417 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1418 	       SSP_CR1(pl022->virtbase));
1419 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1420 }
1421 
1422 static void do_polling_transfer(struct pl022 *pl022)
1423 {
1424 	struct spi_message *message = NULL;
1425 	struct spi_transfer *transfer = NULL;
1426 	struct spi_transfer *previous = NULL;
1427 	struct chip_data *chip;
1428 	unsigned long time, timeout;
1429 
1430 	chip = pl022->cur_chip;
1431 	message = pl022->cur_msg;
1432 
1433 	while (message->state != STATE_DONE) {
1434 		/* Handle for abort */
1435 		if (message->state == STATE_ERROR)
1436 			break;
1437 		transfer = pl022->cur_transfer;
1438 
1439 		/* Delay if requested at end of transfer */
1440 		if (message->state == STATE_RUNNING) {
1441 			previous =
1442 			    list_entry(transfer->transfer_list.prev,
1443 				       struct spi_transfer, transfer_list);
1444 			if (previous->delay_usecs)
1445 				udelay(previous->delay_usecs);
1446 			if (previous->cs_change)
1447 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1448 		} else {
1449 			/* STATE_START */
1450 			message->state = STATE_RUNNING;
1451 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1452 		}
1453 
1454 		/* Configuration Changing Per Transfer */
1455 		if (set_up_next_transfer(pl022, transfer)) {
1456 			/* Error path */
1457 			message->state = STATE_ERROR;
1458 			break;
1459 		}
1460 		/* Flush FIFOs and enable SSP */
1461 		flush(pl022);
1462 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1463 		       SSP_CR1(pl022->virtbase));
1464 
1465 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1466 
1467 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1468 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1469 			time = jiffies;
1470 			readwriter(pl022);
1471 			if (time_after(time, timeout)) {
1472 				dev_warn(&pl022->adev->dev,
1473 				"%s: timeout!\n", __func__);
1474 				message->state = STATE_ERROR;
1475 				goto out;
1476 			}
1477 			cpu_relax();
1478 		}
1479 
1480 		/* Update total byte transferred */
1481 		message->actual_length += pl022->cur_transfer->len;
1482 		if (pl022->cur_transfer->cs_change)
1483 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1484 		/* Move to next transfer */
1485 		message->state = next_transfer(pl022);
1486 	}
1487 out:
1488 	/* Handle end of message */
1489 	if (message->state == STATE_DONE)
1490 		message->status = 0;
1491 	else
1492 		message->status = -EIO;
1493 
1494 	giveback(pl022);
1495 	return;
1496 }
1497 
1498 /**
1499  * pump_messages - Workqueue function which processes spi message queue
1500  * @data: pointer to private data of SSP driver
1501  *
1502  * This function checks if there is any spi message in the queue that
1503  * needs processing and delegate control to appropriate function
1504  * do_polling_transfer()/do_interrupt_dma_transfer()
1505  * based on the kind of the transfer
1506  *
1507  */
1508 static void pump_messages(struct work_struct *work)
1509 {
1510 	struct pl022 *pl022 =
1511 		container_of(work, struct pl022, pump_messages);
1512 	unsigned long flags;
1513 
1514 	/* Lock queue and check for queue work */
1515 	spin_lock_irqsave(&pl022->queue_lock, flags);
1516 	if (list_empty(&pl022->queue) || !pl022->running) {
1517 		pl022->busy = false;
1518 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1519 		return;
1520 	}
1521 	/* Make sure we are not already running a message */
1522 	if (pl022->cur_msg) {
1523 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1524 		return;
1525 	}
1526 	/* Extract head of queue */
1527 	pl022->cur_msg =
1528 	    list_entry(pl022->queue.next, struct spi_message, queue);
1529 
1530 	list_del_init(&pl022->cur_msg->queue);
1531 	pl022->busy = true;
1532 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1533 
1534 	/* Initial message state */
1535 	pl022->cur_msg->state = STATE_START;
1536 	pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1537 					    struct spi_transfer,
1538 					    transfer_list);
1539 
1540 	/* Setup the SPI using the per chip configuration */
1541 	pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1542 	/*
1543 	 * We enable the core voltage and clocks here, then the clocks
1544 	 * and core will be disabled when giveback() is called in each method
1545 	 * (poll/interrupt/DMA)
1546 	 */
1547 	pm_runtime_get_sync(&pl022->adev->dev);
1548 	amba_vcore_enable(pl022->adev);
1549 	amba_pclk_enable(pl022->adev);
1550 	clk_enable(pl022->clk);
1551 	restore_state(pl022);
1552 	flush(pl022);
1553 
1554 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1555 		do_polling_transfer(pl022);
1556 	else
1557 		do_interrupt_dma_transfer(pl022);
1558 }
1559 
1560 
1561 static int __init init_queue(struct pl022 *pl022)
1562 {
1563 	INIT_LIST_HEAD(&pl022->queue);
1564 	spin_lock_init(&pl022->queue_lock);
1565 
1566 	pl022->running = false;
1567 	pl022->busy = false;
1568 
1569 	tasklet_init(&pl022->pump_transfers,
1570 			pump_transfers,	(unsigned long)pl022);
1571 
1572 	INIT_WORK(&pl022->pump_messages, pump_messages);
1573 	pl022->workqueue = create_singlethread_workqueue(
1574 					dev_name(pl022->master->dev.parent));
1575 	if (pl022->workqueue == NULL)
1576 		return -EBUSY;
1577 
1578 	return 0;
1579 }
1580 
1581 
1582 static int start_queue(struct pl022 *pl022)
1583 {
1584 	unsigned long flags;
1585 
1586 	spin_lock_irqsave(&pl022->queue_lock, flags);
1587 
1588 	if (pl022->running || pl022->busy) {
1589 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1590 		return -EBUSY;
1591 	}
1592 
1593 	pl022->running = true;
1594 	pl022->cur_msg = NULL;
1595 	pl022->cur_transfer = NULL;
1596 	pl022->cur_chip = NULL;
1597 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1598 
1599 	queue_work(pl022->workqueue, &pl022->pump_messages);
1600 
1601 	return 0;
1602 }
1603 
1604 
1605 static int stop_queue(struct pl022 *pl022)
1606 {
1607 	unsigned long flags;
1608 	unsigned limit = 500;
1609 	int status = 0;
1610 
1611 	spin_lock_irqsave(&pl022->queue_lock, flags);
1612 
1613 	/* This is a bit lame, but is optimized for the common execution path.
1614 	 * A wait_queue on the pl022->busy could be used, but then the common
1615 	 * execution path (pump_messages) would be required to call wake_up or
1616 	 * friends on every SPI message. Do this instead */
1617 	while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
1618 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1619 		msleep(10);
1620 		spin_lock_irqsave(&pl022->queue_lock, flags);
1621 	}
1622 
1623 	if (!list_empty(&pl022->queue) || pl022->busy)
1624 		status = -EBUSY;
1625 	else
1626 		pl022->running = false;
1627 
1628 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1629 
1630 	return status;
1631 }
1632 
1633 static int destroy_queue(struct pl022 *pl022)
1634 {
1635 	int status;
1636 
1637 	status = stop_queue(pl022);
1638 	/* we are unloading the module or failing to load (only two calls
1639 	 * to this routine), and neither call can handle a return value.
1640 	 * However, destroy_workqueue calls flush_workqueue, and that will
1641 	 * block until all work is done.  If the reason that stop_queue
1642 	 * timed out is that the work will never finish, then it does no
1643 	 * good to call destroy_workqueue, so return anyway. */
1644 	if (status != 0)
1645 		return status;
1646 
1647 	destroy_workqueue(pl022->workqueue);
1648 
1649 	return 0;
1650 }
1651 
1652 static int verify_controller_parameters(struct pl022 *pl022,
1653 				struct pl022_config_chip const *chip_info)
1654 {
1655 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1656 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1657 		dev_err(&pl022->adev->dev,
1658 			"interface is configured incorrectly\n");
1659 		return -EINVAL;
1660 	}
1661 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1662 	    (!pl022->vendor->unidir)) {
1663 		dev_err(&pl022->adev->dev,
1664 			"unidirectional mode not supported in this "
1665 			"hardware version\n");
1666 		return -EINVAL;
1667 	}
1668 	if ((chip_info->hierarchy != SSP_MASTER)
1669 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1670 		dev_err(&pl022->adev->dev,
1671 			"hierarchy is configured incorrectly\n");
1672 		return -EINVAL;
1673 	}
1674 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1675 	    && (chip_info->com_mode != DMA_TRANSFER)
1676 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1677 		dev_err(&pl022->adev->dev,
1678 			"Communication mode is configured incorrectly\n");
1679 		return -EINVAL;
1680 	}
1681 	switch (chip_info->rx_lev_trig) {
1682 	case SSP_RX_1_OR_MORE_ELEM:
1683 	case SSP_RX_4_OR_MORE_ELEM:
1684 	case SSP_RX_8_OR_MORE_ELEM:
1685 		/* These are always OK, all variants can handle this */
1686 		break;
1687 	case SSP_RX_16_OR_MORE_ELEM:
1688 		if (pl022->vendor->fifodepth < 16) {
1689 			dev_err(&pl022->adev->dev,
1690 			"RX FIFO Trigger Level is configured incorrectly\n");
1691 			return -EINVAL;
1692 		}
1693 		break;
1694 	case SSP_RX_32_OR_MORE_ELEM:
1695 		if (pl022->vendor->fifodepth < 32) {
1696 			dev_err(&pl022->adev->dev,
1697 			"RX FIFO Trigger Level is configured incorrectly\n");
1698 			return -EINVAL;
1699 		}
1700 		break;
1701 	default:
1702 		dev_err(&pl022->adev->dev,
1703 			"RX FIFO Trigger Level is configured incorrectly\n");
1704 		return -EINVAL;
1705 		break;
1706 	}
1707 	switch (chip_info->tx_lev_trig) {
1708 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1709 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1710 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1711 		/* These are always OK, all variants can handle this */
1712 		break;
1713 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1714 		if (pl022->vendor->fifodepth < 16) {
1715 			dev_err(&pl022->adev->dev,
1716 			"TX FIFO Trigger Level is configured incorrectly\n");
1717 			return -EINVAL;
1718 		}
1719 		break;
1720 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1721 		if (pl022->vendor->fifodepth < 32) {
1722 			dev_err(&pl022->adev->dev,
1723 			"TX FIFO Trigger Level is configured incorrectly\n");
1724 			return -EINVAL;
1725 		}
1726 		break;
1727 	default:
1728 		dev_err(&pl022->adev->dev,
1729 			"TX FIFO Trigger Level is configured incorrectly\n");
1730 		return -EINVAL;
1731 		break;
1732 	}
1733 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1734 		if ((chip_info->ctrl_len < SSP_BITS_4)
1735 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1736 			dev_err(&pl022->adev->dev,
1737 				"CTRL LEN is configured incorrectly\n");
1738 			return -EINVAL;
1739 		}
1740 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1741 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1742 			dev_err(&pl022->adev->dev,
1743 				"Wait State is configured incorrectly\n");
1744 			return -EINVAL;
1745 		}
1746 		/* Half duplex is only available in the ST Micro version */
1747 		if (pl022->vendor->extended_cr) {
1748 			if ((chip_info->duplex !=
1749 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1750 			    && (chip_info->duplex !=
1751 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1752 				dev_err(&pl022->adev->dev,
1753 					"Microwire duplex mode is configured incorrectly\n");
1754 				return -EINVAL;
1755 			}
1756 		} else {
1757 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1758 				dev_err(&pl022->adev->dev,
1759 					"Microwire half duplex mode requested,"
1760 					" but this is only available in the"
1761 					" ST version of PL022\n");
1762 			return -EINVAL;
1763 		}
1764 	}
1765 	return 0;
1766 }
1767 
1768 /**
1769  * pl022_transfer - transfer function registered to SPI master framework
1770  * @spi: spi device which is requesting transfer
1771  * @msg: spi message which is to handled is queued to driver queue
1772  *
1773  * This function is registered to the SPI framework for this SPI master
1774  * controller. It will queue the spi_message in the queue of driver if
1775  * the queue is not stopped and return.
1776  */
1777 static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1778 {
1779 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1780 	unsigned long flags;
1781 
1782 	spin_lock_irqsave(&pl022->queue_lock, flags);
1783 
1784 	if (!pl022->running) {
1785 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1786 		return -ESHUTDOWN;
1787 	}
1788 	msg->actual_length = 0;
1789 	msg->status = -EINPROGRESS;
1790 	msg->state = STATE_START;
1791 
1792 	list_add_tail(&msg->queue, &pl022->queue);
1793 	if (pl022->running && !pl022->busy)
1794 		queue_work(pl022->workqueue, &pl022->pump_messages);
1795 
1796 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1797 	return 0;
1798 }
1799 
1800 static int calculate_effective_freq(struct pl022 *pl022,
1801 				    int freq,
1802 				    struct ssp_clock_params *clk_freq)
1803 {
1804 	/* Lets calculate the frequency parameters */
1805 	u16 cpsdvsr = 2;
1806 	u16 scr = 0;
1807 	bool freq_found = false;
1808 	u32 rate;
1809 	u32 max_tclk;
1810 	u32 min_tclk;
1811 
1812 	rate = clk_get_rate(pl022->clk);
1813 	/* cpsdvscr = 2 & scr 0 */
1814 	max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1815 	/* cpsdvsr = 254 & scr = 255 */
1816 	min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1817 
1818 	if ((freq <= max_tclk) && (freq >= min_tclk)) {
1819 		while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1820 			while (scr <= SCR_MAX && !freq_found) {
1821 				if ((rate /
1822 				     (cpsdvsr * (1 + scr))) > freq)
1823 					scr += 1;
1824 				else {
1825 					/*
1826 					 * This bool is made true when
1827 					 * effective frequency >=
1828 					 * target frequency is found
1829 					 */
1830 					freq_found = true;
1831 					if ((rate /
1832 					     (cpsdvsr * (1 + scr))) != freq) {
1833 						if (scr == SCR_MIN) {
1834 							cpsdvsr -= 2;
1835 							scr = SCR_MAX;
1836 						} else
1837 							scr -= 1;
1838 					}
1839 				}
1840 			}
1841 			if (!freq_found) {
1842 				cpsdvsr += 2;
1843 				scr = SCR_MIN;
1844 			}
1845 		}
1846 		if (cpsdvsr != 0) {
1847 			dev_dbg(&pl022->adev->dev,
1848 				"SSP Effective Frequency is %u\n",
1849 				(rate / (cpsdvsr * (1 + scr))));
1850 			clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1851 			clk_freq->scr = (u8) (scr & 0xFF);
1852 			dev_dbg(&pl022->adev->dev,
1853 				"SSP cpsdvsr = %d, scr = %d\n",
1854 				clk_freq->cpsdvsr, clk_freq->scr);
1855 		}
1856 	} else {
1857 		dev_err(&pl022->adev->dev,
1858 			"controller data is incorrect: out of range frequency");
1859 		return -EINVAL;
1860 	}
1861 	return 0;
1862 }
1863 
1864 
1865 /*
1866  * A piece of default chip info unless the platform
1867  * supplies it.
1868  */
1869 static const struct pl022_config_chip pl022_default_chip_info = {
1870 	.com_mode = POLLING_TRANSFER,
1871 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1872 	.hierarchy = SSP_SLAVE,
1873 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1874 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1875 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1876 	.ctrl_len = SSP_BITS_8,
1877 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1878 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1879 	.cs_control = null_cs_control,
1880 };
1881 
1882 
1883 /**
1884  * pl022_setup - setup function registered to SPI master framework
1885  * @spi: spi device which is requesting setup
1886  *
1887  * This function is registered to the SPI framework for this SPI master
1888  * controller. If it is the first time when setup is called by this device,
1889  * this function will initialize the runtime state for this chip and save
1890  * the same in the device structure. Else it will update the runtime info
1891  * with the updated chip info. Nothing is really being written to the
1892  * controller hardware here, that is not done until the actual transfer
1893  * commence.
1894  */
1895 static int pl022_setup(struct spi_device *spi)
1896 {
1897 	struct pl022_config_chip const *chip_info;
1898 	struct chip_data *chip;
1899 	struct ssp_clock_params clk_freq = {0, };
1900 	int status = 0;
1901 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1902 	unsigned int bits = spi->bits_per_word;
1903 	u32 tmp;
1904 
1905 	if (!spi->max_speed_hz)
1906 		return -EINVAL;
1907 
1908 	/* Get controller_state if one is supplied */
1909 	chip = spi_get_ctldata(spi);
1910 
1911 	if (chip == NULL) {
1912 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1913 		if (!chip) {
1914 			dev_err(&spi->dev,
1915 				"cannot allocate controller state\n");
1916 			return -ENOMEM;
1917 		}
1918 		dev_dbg(&spi->dev,
1919 			"allocated memory for controller's runtime state\n");
1920 	}
1921 
1922 	/* Get controller data if one is supplied */
1923 	chip_info = spi->controller_data;
1924 
1925 	if (chip_info == NULL) {
1926 		chip_info = &pl022_default_chip_info;
1927 		/* spi_board_info.controller_data not is supplied */
1928 		dev_dbg(&spi->dev,
1929 			"using default controller_data settings\n");
1930 	} else
1931 		dev_dbg(&spi->dev,
1932 			"using user supplied controller_data settings\n");
1933 
1934 	/*
1935 	 * We can override with custom divisors, else we use the board
1936 	 * frequency setting
1937 	 */
1938 	if ((0 == chip_info->clk_freq.cpsdvsr)
1939 	    && (0 == chip_info->clk_freq.scr)) {
1940 		status = calculate_effective_freq(pl022,
1941 						  spi->max_speed_hz,
1942 						  &clk_freq);
1943 		if (status < 0)
1944 			goto err_config_params;
1945 	} else {
1946 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1947 		if ((clk_freq.cpsdvsr % 2) != 0)
1948 			clk_freq.cpsdvsr =
1949 				clk_freq.cpsdvsr - 1;
1950 	}
1951 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1952 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1953 		status = -EINVAL;
1954 		dev_err(&spi->dev,
1955 			"cpsdvsr is configured incorrectly\n");
1956 		goto err_config_params;
1957 	}
1958 
1959 
1960 	status = verify_controller_parameters(pl022, chip_info);
1961 	if (status) {
1962 		dev_err(&spi->dev, "controller data is incorrect");
1963 		goto err_config_params;
1964 	}
1965 
1966 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1967 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1968 
1969 	/* Now set controller state based on controller data */
1970 	chip->xfer_type = chip_info->com_mode;
1971 	if (!chip_info->cs_control) {
1972 		chip->cs_control = null_cs_control;
1973 		dev_warn(&spi->dev,
1974 			 "chip select function is NULL for this chip\n");
1975 	} else
1976 		chip->cs_control = chip_info->cs_control;
1977 
1978 	if (bits <= 3) {
1979 		/* PL022 doesn't support less than 4-bits */
1980 		status = -ENOTSUPP;
1981 		goto err_config_params;
1982 	} else if (bits <= 8) {
1983 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1984 		chip->n_bytes = 1;
1985 		chip->read = READING_U8;
1986 		chip->write = WRITING_U8;
1987 	} else if (bits <= 16) {
1988 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1989 		chip->n_bytes = 2;
1990 		chip->read = READING_U16;
1991 		chip->write = WRITING_U16;
1992 	} else {
1993 		if (pl022->vendor->max_bpw >= 32) {
1994 			dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1995 			chip->n_bytes = 4;
1996 			chip->read = READING_U32;
1997 			chip->write = WRITING_U32;
1998 		} else {
1999 			dev_err(&spi->dev,
2000 				"illegal data size for this controller!\n");
2001 			dev_err(&spi->dev,
2002 				"a standard pl022 can only handle "
2003 				"1 <= n <= 16 bit words\n");
2004 			status = -ENOTSUPP;
2005 			goto err_config_params;
2006 		}
2007 	}
2008 
2009 	/* Now Initialize all register settings required for this chip */
2010 	chip->cr0 = 0;
2011 	chip->cr1 = 0;
2012 	chip->dmacr = 0;
2013 	chip->cpsr = 0;
2014 	if ((chip_info->com_mode == DMA_TRANSFER)
2015 	    && ((pl022->master_info)->enable_dma)) {
2016 		chip->enable_dma = true;
2017 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
2018 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2019 			       SSP_DMACR_MASK_RXDMAE, 0);
2020 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2021 			       SSP_DMACR_MASK_TXDMAE, 1);
2022 	} else {
2023 		chip->enable_dma = false;
2024 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
2025 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2026 			       SSP_DMACR_MASK_RXDMAE, 0);
2027 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2028 			       SSP_DMACR_MASK_TXDMAE, 1);
2029 	}
2030 
2031 	chip->cpsr = clk_freq.cpsdvsr;
2032 
2033 	/* Special setup for the ST micro extended control registers */
2034 	if (pl022->vendor->extended_cr) {
2035 		u32 etx;
2036 
2037 		if (pl022->vendor->pl023) {
2038 			/* These bits are only in the PL023 */
2039 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2040 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2041 		} else {
2042 			/* These bits are in the PL022 but not PL023 */
2043 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2044 				       SSP_CR0_MASK_HALFDUP_ST, 5);
2045 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2046 				       SSP_CR0_MASK_CSS_ST, 16);
2047 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2048 				       SSP_CR0_MASK_FRF_ST, 21);
2049 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2050 				       SSP_CR1_MASK_MWAIT_ST, 6);
2051 		}
2052 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2053 			       SSP_CR0_MASK_DSS_ST, 0);
2054 
2055 		if (spi->mode & SPI_LSB_FIRST) {
2056 			tmp = SSP_RX_LSB;
2057 			etx = SSP_TX_LSB;
2058 		} else {
2059 			tmp = SSP_RX_MSB;
2060 			etx = SSP_TX_MSB;
2061 		}
2062 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2063 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2064 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2065 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2066 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2067 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2068 	} else {
2069 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2070 			       SSP_CR0_MASK_DSS, 0);
2071 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2072 			       SSP_CR0_MASK_FRF, 4);
2073 	}
2074 
2075 	/* Stuff that is common for all versions */
2076 	if (spi->mode & SPI_CPOL)
2077 		tmp = SSP_CLK_POL_IDLE_HIGH;
2078 	else
2079 		tmp = SSP_CLK_POL_IDLE_LOW;
2080 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2081 
2082 	if (spi->mode & SPI_CPHA)
2083 		tmp = SSP_CLK_SECOND_EDGE;
2084 	else
2085 		tmp = SSP_CLK_FIRST_EDGE;
2086 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2087 
2088 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2089 	/* Loopback is available on all versions except PL023 */
2090 	if (pl022->vendor->loopback) {
2091 		if (spi->mode & SPI_LOOP)
2092 			tmp = LOOPBACK_ENABLED;
2093 		else
2094 			tmp = LOOPBACK_DISABLED;
2095 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2096 	}
2097 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2098 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2099 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
2100 
2101 	/* Save controller_state */
2102 	spi_set_ctldata(spi, chip);
2103 	return status;
2104  err_config_params:
2105 	spi_set_ctldata(spi, NULL);
2106 	kfree(chip);
2107 	return status;
2108 }
2109 
2110 /**
2111  * pl022_cleanup - cleanup function registered to SPI master framework
2112  * @spi: spi device which is requesting cleanup
2113  *
2114  * This function is registered to the SPI framework for this SPI master
2115  * controller. It will free the runtime state of chip.
2116  */
2117 static void pl022_cleanup(struct spi_device *spi)
2118 {
2119 	struct chip_data *chip = spi_get_ctldata(spi);
2120 
2121 	spi_set_ctldata(spi, NULL);
2122 	kfree(chip);
2123 }
2124 
2125 
2126 static int __devinit
2127 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2128 {
2129 	struct device *dev = &adev->dev;
2130 	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2131 	struct spi_master *master;
2132 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2133 	int status = 0;
2134 
2135 	dev_info(&adev->dev,
2136 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2137 	if (platform_info == NULL) {
2138 		dev_err(&adev->dev, "probe - no platform data supplied\n");
2139 		status = -ENODEV;
2140 		goto err_no_pdata;
2141 	}
2142 
2143 	/* Allocate master with space for data */
2144 	master = spi_alloc_master(dev, sizeof(struct pl022));
2145 	if (master == NULL) {
2146 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2147 		status = -ENOMEM;
2148 		goto err_no_master;
2149 	}
2150 
2151 	pl022 = spi_master_get_devdata(master);
2152 	pl022->master = master;
2153 	pl022->master_info = platform_info;
2154 	pl022->adev = adev;
2155 	pl022->vendor = id->data;
2156 
2157 	/*
2158 	 * Bus Number Which has been Assigned to this SSP controller
2159 	 * on this board
2160 	 */
2161 	master->bus_num = platform_info->bus_id;
2162 	master->num_chipselect = platform_info->num_chipselect;
2163 	master->cleanup = pl022_cleanup;
2164 	master->setup = pl022_setup;
2165 	master->transfer = pl022_transfer;
2166 
2167 	/*
2168 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2169 	 * always MS bit first on the original pl022.
2170 	 */
2171 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2172 	if (pl022->vendor->extended_cr)
2173 		master->mode_bits |= SPI_LSB_FIRST;
2174 
2175 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2176 
2177 	status = amba_request_regions(adev, NULL);
2178 	if (status)
2179 		goto err_no_ioregion;
2180 
2181 	pl022->phybase = adev->res.start;
2182 	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2183 	if (pl022->virtbase == NULL) {
2184 		status = -ENOMEM;
2185 		goto err_no_ioremap;
2186 	}
2187 	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2188 	       adev->res.start, pl022->virtbase);
2189 	pm_runtime_enable(dev);
2190 	pm_runtime_resume(dev);
2191 
2192 	pl022->clk = clk_get(&adev->dev, NULL);
2193 	if (IS_ERR(pl022->clk)) {
2194 		status = PTR_ERR(pl022->clk);
2195 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2196 		goto err_no_clk;
2197 	}
2198 
2199 	/* Disable SSP */
2200 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2201 	       SSP_CR1(pl022->virtbase));
2202 	load_ssp_default_config(pl022);
2203 
2204 	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2205 			     pl022);
2206 	if (status < 0) {
2207 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2208 		goto err_no_irq;
2209 	}
2210 
2211 	/* Get DMA channels */
2212 	if (platform_info->enable_dma) {
2213 		status = pl022_dma_probe(pl022);
2214 		if (status != 0)
2215 			platform_info->enable_dma = 0;
2216 	}
2217 
2218 	/* Initialize and start queue */
2219 	status = init_queue(pl022);
2220 	if (status != 0) {
2221 		dev_err(&adev->dev, "probe - problem initializing queue\n");
2222 		goto err_init_queue;
2223 	}
2224 	status = start_queue(pl022);
2225 	if (status != 0) {
2226 		dev_err(&adev->dev, "probe - problem starting queue\n");
2227 		goto err_start_queue;
2228 	}
2229 	/* Register with the SPI framework */
2230 	amba_set_drvdata(adev, pl022);
2231 	status = spi_register_master(master);
2232 	if (status != 0) {
2233 		dev_err(&adev->dev,
2234 			"probe - problem registering spi master\n");
2235 		goto err_spi_register;
2236 	}
2237 	dev_dbg(dev, "probe succeeded\n");
2238 	/*
2239 	 * Disable the silicon block pclk and any voltage domain and just
2240 	 * power it up and clock it when it's needed
2241 	 */
2242 	amba_pclk_disable(adev);
2243 	amba_vcore_disable(adev);
2244 	return 0;
2245 
2246  err_spi_register:
2247  err_start_queue:
2248  err_init_queue:
2249 	destroy_queue(pl022);
2250 	pl022_dma_remove(pl022);
2251 	free_irq(adev->irq[0], pl022);
2252 	pm_runtime_disable(&adev->dev);
2253  err_no_irq:
2254 	clk_put(pl022->clk);
2255  err_no_clk:
2256 	iounmap(pl022->virtbase);
2257  err_no_ioremap:
2258 	amba_release_regions(adev);
2259  err_no_ioregion:
2260 	spi_master_put(master);
2261  err_no_master:
2262  err_no_pdata:
2263 	return status;
2264 }
2265 
2266 static int __devexit
2267 pl022_remove(struct amba_device *adev)
2268 {
2269 	struct pl022 *pl022 = amba_get_drvdata(adev);
2270 
2271 	if (!pl022)
2272 		return 0;
2273 
2274 	/* Remove the queue */
2275 	if (destroy_queue(pl022) != 0)
2276 		dev_err(&adev->dev, "queue remove failed\n");
2277 	load_ssp_default_config(pl022);
2278 	pl022_dma_remove(pl022);
2279 	free_irq(adev->irq[0], pl022);
2280 	clk_disable(pl022->clk);
2281 	clk_put(pl022->clk);
2282 	iounmap(pl022->virtbase);
2283 	amba_release_regions(adev);
2284 	tasklet_disable(&pl022->pump_transfers);
2285 	spi_unregister_master(pl022->master);
2286 	spi_master_put(pl022->master);
2287 	amba_set_drvdata(adev, NULL);
2288 	return 0;
2289 }
2290 
2291 #ifdef CONFIG_PM
2292 static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2293 {
2294 	struct pl022 *pl022 = amba_get_drvdata(adev);
2295 	int status = 0;
2296 
2297 	status = stop_queue(pl022);
2298 	if (status) {
2299 		dev_warn(&adev->dev, "suspend cannot stop queue\n");
2300 		return status;
2301 	}
2302 
2303 	amba_vcore_enable(adev);
2304 	amba_pclk_enable(adev);
2305 	load_ssp_default_config(pl022);
2306 	amba_pclk_disable(adev);
2307 	amba_vcore_disable(adev);
2308 	dev_dbg(&adev->dev, "suspended\n");
2309 	return 0;
2310 }
2311 
2312 static int pl022_resume(struct amba_device *adev)
2313 {
2314 	struct pl022 *pl022 = amba_get_drvdata(adev);
2315 	int status = 0;
2316 
2317 	/* Start the queue running */
2318 	status = start_queue(pl022);
2319 	if (status)
2320 		dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2321 	else
2322 		dev_dbg(&adev->dev, "resumed\n");
2323 
2324 	return status;
2325 }
2326 #else
2327 #define pl022_suspend NULL
2328 #define pl022_resume NULL
2329 #endif	/* CONFIG_PM */
2330 
2331 static struct vendor_data vendor_arm = {
2332 	.fifodepth = 8,
2333 	.max_bpw = 16,
2334 	.unidir = false,
2335 	.extended_cr = false,
2336 	.pl023 = false,
2337 	.loopback = true,
2338 };
2339 
2340 
2341 static struct vendor_data vendor_st = {
2342 	.fifodepth = 32,
2343 	.max_bpw = 32,
2344 	.unidir = false,
2345 	.extended_cr = true,
2346 	.pl023 = false,
2347 	.loopback = true,
2348 };
2349 
2350 static struct vendor_data vendor_st_pl023 = {
2351 	.fifodepth = 32,
2352 	.max_bpw = 32,
2353 	.unidir = false,
2354 	.extended_cr = true,
2355 	.pl023 = true,
2356 	.loopback = false,
2357 };
2358 
2359 static struct vendor_data vendor_db5500_pl023 = {
2360 	.fifodepth = 32,
2361 	.max_bpw = 32,
2362 	.unidir = false,
2363 	.extended_cr = true,
2364 	.pl023 = true,
2365 	.loopback = true,
2366 };
2367 
2368 static struct amba_id pl022_ids[] = {
2369 	{
2370 		/*
2371 		 * ARM PL022 variant, this has a 16bit wide
2372 		 * and 8 locations deep TX/RX FIFO
2373 		 */
2374 		.id	= 0x00041022,
2375 		.mask	= 0x000fffff,
2376 		.data	= &vendor_arm,
2377 	},
2378 	{
2379 		/*
2380 		 * ST Micro derivative, this has 32bit wide
2381 		 * and 32 locations deep TX/RX FIFO
2382 		 */
2383 		.id	= 0x01080022,
2384 		.mask	= 0xffffffff,
2385 		.data	= &vendor_st,
2386 	},
2387 	{
2388 		/*
2389 		 * ST-Ericsson derivative "PL023" (this is not
2390 		 * an official ARM number), this is a PL022 SSP block
2391 		 * stripped to SPI mode only, it has 32bit wide
2392 		 * and 32 locations deep TX/RX FIFO but no extended
2393 		 * CR0/CR1 register
2394 		 */
2395 		.id     = 0x00080023,
2396 		.mask   = 0xffffffff,
2397 		.data   = &vendor_st_pl023,
2398 	},
2399 	{
2400 		.id	= 0x10080023,
2401 		.mask	= 0xffffffff,
2402 		.data	= &vendor_db5500_pl023,
2403 	},
2404 	{ 0, 0 },
2405 };
2406 
2407 static struct amba_driver pl022_driver = {
2408 	.drv = {
2409 		.name	= "ssp-pl022",
2410 	},
2411 	.id_table	= pl022_ids,
2412 	.probe		= pl022_probe,
2413 	.remove		= __devexit_p(pl022_remove),
2414 	.suspend        = pl022_suspend,
2415 	.resume         = pl022_resume,
2416 };
2417 
2418 
2419 static int __init pl022_init(void)
2420 {
2421 	return amba_driver_register(&pl022_driver);
2422 }
2423 
2424 subsys_initcall(pl022_init);
2425 
2426 static void __exit pl022_exit(void)
2427 {
2428 	amba_driver_unregister(&pl022_driver);
2429 }
2430 
2431 module_exit(pl022_exit);
2432 
2433 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2434 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2435 MODULE_LICENSE("GPL");
2436