xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision 7ff6bcf0)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2009 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/workqueue.h>
33 #include <linux/delay.h>
34 #include <linux/clk.h>
35 #include <linux/err.h>
36 #include <linux/amba/bus.h>
37 #include <linux/amba/pl022.h>
38 #include <linux/io.h>
39 #include <linux/slab.h>
40 #include <linux/dmaengine.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/scatterlist.h>
43 #include <linux/pm_runtime.h>
44 
45 /*
46  * This macro is used to define some register default values.
47  * reg is masked with mask, the OR:ed with an (again masked)
48  * val shifted sb steps to the left.
49  */
50 #define SSP_WRITE_BITS(reg, val, mask, sb) \
51  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
52 
53 /*
54  * This macro is also used to define some default values.
55  * It will just shift val by sb steps to the left and mask
56  * the result with mask.
57  */
58 #define GEN_MASK_BITS(val, mask, sb) \
59  (((val)<<(sb)) & (mask))
60 
61 #define DRIVE_TX		0
62 #define DO_NOT_DRIVE_TX		1
63 
64 #define DO_NOT_QUEUE_DMA	0
65 #define QUEUE_DMA		1
66 
67 #define RX_TRANSFER		1
68 #define TX_TRANSFER		2
69 
70 /*
71  * Macros to access SSP Registers with their offsets
72  */
73 #define SSP_CR0(r)	(r + 0x000)
74 #define SSP_CR1(r)	(r + 0x004)
75 #define SSP_DR(r)	(r + 0x008)
76 #define SSP_SR(r)	(r + 0x00C)
77 #define SSP_CPSR(r)	(r + 0x010)
78 #define SSP_IMSC(r)	(r + 0x014)
79 #define SSP_RIS(r)	(r + 0x018)
80 #define SSP_MIS(r)	(r + 0x01C)
81 #define SSP_ICR(r)	(r + 0x020)
82 #define SSP_DMACR(r)	(r + 0x024)
83 #define SSP_ITCR(r)	(r + 0x080)
84 #define SSP_ITIP(r)	(r + 0x084)
85 #define SSP_ITOP(r)	(r + 0x088)
86 #define SSP_TDR(r)	(r + 0x08C)
87 
88 #define SSP_PID0(r)	(r + 0xFE0)
89 #define SSP_PID1(r)	(r + 0xFE4)
90 #define SSP_PID2(r)	(r + 0xFE8)
91 #define SSP_PID3(r)	(r + 0xFEC)
92 
93 #define SSP_CID0(r)	(r + 0xFF0)
94 #define SSP_CID1(r)	(r + 0xFF4)
95 #define SSP_CID2(r)	(r + 0xFF8)
96 #define SSP_CID3(r)	(r + 0xFFC)
97 
98 /*
99  * SSP Control Register 0  - SSP_CR0
100  */
101 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
102 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
103 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
104 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
105 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
106 
107 /*
108  * The ST version of this block moves som bits
109  * in SSP_CR0 and extends it to 32 bits
110  */
111 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
112 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
113 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
114 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
115 
116 
117 /*
118  * SSP Control Register 0  - SSP_CR1
119  */
120 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
121 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
122 #define SSP_CR1_MASK_MS		(0x1UL << 2)
123 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
124 
125 /*
126  * The ST version of this block adds some bits
127  * in SSP_CR1
128  */
129 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
130 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
131 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
132 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
133 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
134 /* This one is only in the PL023 variant */
135 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
136 
137 /*
138  * SSP Status Register - SSP_SR
139  */
140 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
141 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
142 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
143 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
144 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
145 
146 /*
147  * SSP Clock Prescale Register  - SSP_CPSR
148  */
149 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
150 
151 /*
152  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
153  */
154 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
155 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
156 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
157 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
158 
159 /*
160  * SSP Raw Interrupt Status Register - SSP_RIS
161  */
162 /* Receive Overrun Raw Interrupt status */
163 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
164 /* Receive Timeout Raw Interrupt status */
165 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
166 /* Receive FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
168 /* Transmit FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
170 
171 /*
172  * SSP Masked Interrupt Status Register - SSP_MIS
173  */
174 /* Receive Overrun Masked Interrupt status */
175 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
176 /* Receive Timeout Masked Interrupt status */
177 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
178 /* Receive FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
180 /* Transmit FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
182 
183 /*
184  * SSP Interrupt Clear Register - SSP_ICR
185  */
186 /* Receive Overrun Raw Clear Interrupt bit */
187 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
188 /* Receive Timeout Clear Interrupt bit */
189 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
190 
191 /*
192  * SSP DMA Control Register - SSP_DMACR
193  */
194 /* Receive DMA Enable bit */
195 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
196 /* Transmit DMA Enable bit */
197 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
198 
199 /*
200  * SSP Integration Test control Register - SSP_ITCR
201  */
202 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
203 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
204 
205 /*
206  * SSP Integration Test Input Register - SSP_ITIP
207  */
208 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
209 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
210 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
211 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
212 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
213 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
214 
215 /*
216  * SSP Integration Test output Register - SSP_ITOP
217  */
218 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
219 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
220 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
221 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
222 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
223 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
224 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
225 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
226 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
227 #define ITOP_MASK_INTR			 (0x1UL << 9)
228 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
229 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
230 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
231 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
232 
233 /*
234  * SSP Test Data Register - SSP_TDR
235  */
236 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
237 
238 /*
239  * Message State
240  * we use the spi_message.state (void *) pointer to
241  * hold a single state value, that's why all this
242  * (void *) casting is done here.
243  */
244 #define STATE_START			((void *) 0)
245 #define STATE_RUNNING			((void *) 1)
246 #define STATE_DONE			((void *) 2)
247 #define STATE_ERROR			((void *) -1)
248 
249 /*
250  * SSP State - Whether Enabled or Disabled
251  */
252 #define SSP_DISABLED			(0)
253 #define SSP_ENABLED			(1)
254 
255 /*
256  * SSP DMA State - Whether DMA Enabled or Disabled
257  */
258 #define SSP_DMA_DISABLED		(0)
259 #define SSP_DMA_ENABLED			(1)
260 
261 /*
262  * SSP Clock Defaults
263  */
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
266 
267 /*
268  * SSP Clock Parameter ranges
269  */
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
272 #define SCR_MIN 0x00
273 #define SCR_MAX 0xFF
274 
275 /*
276  * SSP Interrupt related Macros
277  */
278 #define DEFAULT_SSP_REG_IMSC  0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
281 
282 #define CLEAR_ALL_INTERRUPTS  0x3
283 
284 #define SPI_POLLING_TIMEOUT 1000
285 
286 
287 /*
288  * The type of reading going on on this chip
289  */
290 enum ssp_reading {
291 	READING_NULL,
292 	READING_U8,
293 	READING_U16,
294 	READING_U32
295 };
296 
297 /**
298  * The type of writing going on on this chip
299  */
300 enum ssp_writing {
301 	WRITING_NULL,
302 	WRITING_U8,
303 	WRITING_U16,
304 	WRITING_U32
305 };
306 
307 /**
308  * struct vendor_data - vendor-specific config parameters
309  * for PL022 derivates
310  * @fifodepth: depth of FIFOs (both)
311  * @max_bpw: maximum number of bits per word
312  * @unidir: supports unidirection transfers
313  * @extended_cr: 32 bit wide control register 0 with extra
314  * features and extra features in CR1 as found in the ST variants
315  * @pl023: supports a subset of the ST extensions called "PL023"
316  */
317 struct vendor_data {
318 	int fifodepth;
319 	int max_bpw;
320 	bool unidir;
321 	bool extended_cr;
322 	bool pl023;
323 	bool loopback;
324 };
325 
326 /**
327  * struct pl022 - This is the private SSP driver data structure
328  * @adev: AMBA device model hookup
329  * @vendor: vendor data for the IP block
330  * @phybase: the physical memory where the SSP device resides
331  * @virtbase: the virtual memory where the SSP is mapped
332  * @clk: outgoing clock "SPICLK" for the SPI bus
333  * @master: SPI framework hookup
334  * @master_info: controller-specific data from machine setup
335  * @workqueue: a workqueue on which any spi_message request is queued
336  * @pump_messages: work struct for scheduling work to the workqueue
337  * @queue_lock: spinlock to syncronise access to message queue
338  * @queue: message queue
339  * @busy: workqueue is busy
340  * @running: workqueue is running
341  * @pump_transfers: Tasklet used in Interrupt Transfer mode
342  * @cur_msg: Pointer to current spi_message being processed
343  * @cur_transfer: Pointer to current spi_transfer
344  * @cur_chip: pointer to current clients chip(assigned from controller_state)
345  * @tx: current position in TX buffer to be read
346  * @tx_end: end position in TX buffer to be read
347  * @rx: current position in RX buffer to be written
348  * @rx_end: end position in RX buffer to be written
349  * @read: the type of read currently going on
350  * @write: the type of write currently going on
351  * @exp_fifo_level: expected FIFO level
352  * @dma_rx_channel: optional channel for RX DMA
353  * @dma_tx_channel: optional channel for TX DMA
354  * @sgt_rx: scattertable for the RX transfer
355  * @sgt_tx: scattertable for the TX transfer
356  * @dummypage: a dummy page used for driving data on the bus with DMA
357  */
358 struct pl022 {
359 	struct amba_device		*adev;
360 	struct vendor_data		*vendor;
361 	resource_size_t			phybase;
362 	void __iomem			*virtbase;
363 	struct clk			*clk;
364 	struct spi_master		*master;
365 	struct pl022_ssp_controller	*master_info;
366 	/* Driver message queue */
367 	struct workqueue_struct		*workqueue;
368 	struct work_struct		pump_messages;
369 	spinlock_t			queue_lock;
370 	struct list_head		queue;
371 	bool				busy;
372 	bool				running;
373 	/* Message transfer pump */
374 	struct tasklet_struct		pump_transfers;
375 	struct spi_message		*cur_msg;
376 	struct spi_transfer		*cur_transfer;
377 	struct chip_data		*cur_chip;
378 	void				*tx;
379 	void				*tx_end;
380 	void				*rx;
381 	void				*rx_end;
382 	enum ssp_reading		read;
383 	enum ssp_writing		write;
384 	u32				exp_fifo_level;
385 	enum ssp_rx_level_trig		rx_lev_trig;
386 	enum ssp_tx_level_trig		tx_lev_trig;
387 	/* DMA settings */
388 #ifdef CONFIG_DMA_ENGINE
389 	struct dma_chan			*dma_rx_channel;
390 	struct dma_chan			*dma_tx_channel;
391 	struct sg_table			sgt_rx;
392 	struct sg_table			sgt_tx;
393 	char				*dummypage;
394 #endif
395 };
396 
397 /**
398  * struct chip_data - To maintain runtime state of SSP for each client chip
399  * @cr0: Value of control register CR0 of SSP - on later ST variants this
400  *       register is 32 bits wide rather than just 16
401  * @cr1: Value of control register CR1 of SSP
402  * @dmacr: Value of DMA control Register of SSP
403  * @cpsr: Value of Clock prescale register
404  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
405  * @enable_dma: Whether to enable DMA or not
406  * @read: function ptr to be used to read when doing xfer for this chip
407  * @write: function ptr to be used to write when doing xfer for this chip
408  * @cs_control: chip select callback provided by chip
409  * @xfer_type: polling/interrupt/DMA
410  *
411  * Runtime state of the SSP controller, maintained per chip,
412  * This would be set according to the current message that would be served
413  */
414 struct chip_data {
415 	u32 cr0;
416 	u16 cr1;
417 	u16 dmacr;
418 	u16 cpsr;
419 	u8 n_bytes;
420 	bool enable_dma;
421 	enum ssp_reading read;
422 	enum ssp_writing write;
423 	void (*cs_control) (u32 command);
424 	int xfer_type;
425 };
426 
427 /**
428  * null_cs_control - Dummy chip select function
429  * @command: select/delect the chip
430  *
431  * If no chip select function is provided by client this is used as dummy
432  * chip select
433  */
434 static void null_cs_control(u32 command)
435 {
436 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
437 }
438 
439 /**
440  * giveback - current spi_message is over, schedule next message and call
441  * callback of this message. Assumes that caller already
442  * set message->status; dma and pio irqs are blocked
443  * @pl022: SSP driver private data structure
444  */
445 static void giveback(struct pl022 *pl022)
446 {
447 	struct spi_transfer *last_transfer;
448 	unsigned long flags;
449 	struct spi_message *msg;
450 	void (*curr_cs_control) (u32 command);
451 
452 	/*
453 	 * This local reference to the chip select function
454 	 * is needed because we set curr_chip to NULL
455 	 * as a step toward termininating the message.
456 	 */
457 	curr_cs_control = pl022->cur_chip->cs_control;
458 	spin_lock_irqsave(&pl022->queue_lock, flags);
459 	msg = pl022->cur_msg;
460 	pl022->cur_msg = NULL;
461 	pl022->cur_transfer = NULL;
462 	pl022->cur_chip = NULL;
463 	queue_work(pl022->workqueue, &pl022->pump_messages);
464 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
465 
466 	last_transfer = list_entry(msg->transfers.prev,
467 					struct spi_transfer,
468 					transfer_list);
469 
470 	/* Delay if requested before any change in chip select */
471 	if (last_transfer->delay_usecs)
472 		/*
473 		 * FIXME: This runs in interrupt context.
474 		 * Is this really smart?
475 		 */
476 		udelay(last_transfer->delay_usecs);
477 
478 	/*
479 	 * Drop chip select UNLESS cs_change is true or we are returning
480 	 * a message with an error, or next message is for another chip
481 	 */
482 	if (!last_transfer->cs_change)
483 		curr_cs_control(SSP_CHIP_DESELECT);
484 	else {
485 		struct spi_message *next_msg;
486 
487 		/* Holding of cs was hinted, but we need to make sure
488 		 * the next message is for the same chip.  Don't waste
489 		 * time with the following tests unless this was hinted.
490 		 *
491 		 * We cannot postpone this until pump_messages, because
492 		 * after calling msg->complete (below) the driver that
493 		 * sent the current message could be unloaded, which
494 		 * could invalidate the cs_control() callback...
495 		 */
496 
497 		/* get a pointer to the next message, if any */
498 		spin_lock_irqsave(&pl022->queue_lock, flags);
499 		if (list_empty(&pl022->queue))
500 			next_msg = NULL;
501 		else
502 			next_msg = list_entry(pl022->queue.next,
503 					struct spi_message, queue);
504 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
505 
506 		/* see if the next and current messages point
507 		 * to the same chip
508 		 */
509 		if (next_msg && next_msg->spi != msg->spi)
510 			next_msg = NULL;
511 		if (!next_msg || msg->state == STATE_ERROR)
512 			curr_cs_control(SSP_CHIP_DESELECT);
513 	}
514 	msg->state = NULL;
515 	if (msg->complete)
516 		msg->complete(msg->context);
517 	/* This message is completed, so let's turn off the clocks & power */
518 	pm_runtime_put(&pl022->adev->dev);
519 }
520 
521 /**
522  * flush - flush the FIFO to reach a clean state
523  * @pl022: SSP driver private data structure
524  */
525 static int flush(struct pl022 *pl022)
526 {
527 	unsigned long limit = loops_per_jiffy << 1;
528 
529 	dev_dbg(&pl022->adev->dev, "flush\n");
530 	do {
531 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
532 			readw(SSP_DR(pl022->virtbase));
533 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
534 
535 	pl022->exp_fifo_level = 0;
536 
537 	return limit;
538 }
539 
540 /**
541  * restore_state - Load configuration of current chip
542  * @pl022: SSP driver private data structure
543  */
544 static void restore_state(struct pl022 *pl022)
545 {
546 	struct chip_data *chip = pl022->cur_chip;
547 
548 	if (pl022->vendor->extended_cr)
549 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
550 	else
551 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
552 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
553 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
554 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
555 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
556 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
557 }
558 
559 /*
560  * Default SSP Register Values
561  */
562 #define DEFAULT_SSP_REG_CR0 ( \
563 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
564 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
565 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
566 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
567 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
568 )
569 
570 /* ST versions have slightly different bit layout */
571 #define DEFAULT_SSP_REG_CR0_ST ( \
572 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
573 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
574 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
575 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
576 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
577 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
578 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
579 )
580 
581 /* The PL023 version is slightly different again */
582 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
583 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
584 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
585 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
586 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
587 )
588 
589 #define DEFAULT_SSP_REG_CR1 ( \
590 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
591 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
592 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
593 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
594 )
595 
596 /* ST versions extend this register to use all 16 bits */
597 #define DEFAULT_SSP_REG_CR1_ST ( \
598 	DEFAULT_SSP_REG_CR1 | \
599 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
600 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
601 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
602 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
603 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
604 )
605 
606 /*
607  * The PL023 variant has further differences: no loopback mode, no microwire
608  * support, and a new clock feedback delay setting.
609  */
610 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
611 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
612 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
613 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
614 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
615 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
616 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
617 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
618 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
619 )
620 
621 #define DEFAULT_SSP_REG_CPSR ( \
622 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
623 )
624 
625 #define DEFAULT_SSP_REG_DMACR (\
626 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
627 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
628 )
629 
630 /**
631  * load_ssp_default_config - Load default configuration for SSP
632  * @pl022: SSP driver private data structure
633  */
634 static void load_ssp_default_config(struct pl022 *pl022)
635 {
636 	if (pl022->vendor->pl023) {
637 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
638 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
639 	} else if (pl022->vendor->extended_cr) {
640 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
641 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
642 	} else {
643 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
644 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
645 	}
646 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
647 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
648 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
649 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
650 }
651 
652 /**
653  * This will write to TX and read from RX according to the parameters
654  * set in pl022.
655  */
656 static void readwriter(struct pl022 *pl022)
657 {
658 
659 	/*
660 	 * The FIFO depth is different between primecell variants.
661 	 * I believe filling in too much in the FIFO might cause
662 	 * errons in 8bit wide transfers on ARM variants (just 8 words
663 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
664 	 *
665 	 * To prevent this issue, the TX FIFO is only filled to the
666 	 * unused RX FIFO fill length, regardless of what the TX
667 	 * FIFO status flag indicates.
668 	 */
669 	dev_dbg(&pl022->adev->dev,
670 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
671 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
672 
673 	/* Read as much as you can */
674 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
675 	       && (pl022->rx < pl022->rx_end)) {
676 		switch (pl022->read) {
677 		case READING_NULL:
678 			readw(SSP_DR(pl022->virtbase));
679 			break;
680 		case READING_U8:
681 			*(u8 *) (pl022->rx) =
682 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
683 			break;
684 		case READING_U16:
685 			*(u16 *) (pl022->rx) =
686 				(u16) readw(SSP_DR(pl022->virtbase));
687 			break;
688 		case READING_U32:
689 			*(u32 *) (pl022->rx) =
690 				readl(SSP_DR(pl022->virtbase));
691 			break;
692 		}
693 		pl022->rx += (pl022->cur_chip->n_bytes);
694 		pl022->exp_fifo_level--;
695 	}
696 	/*
697 	 * Write as much as possible up to the RX FIFO size
698 	 */
699 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
700 	       && (pl022->tx < pl022->tx_end)) {
701 		switch (pl022->write) {
702 		case WRITING_NULL:
703 			writew(0x0, SSP_DR(pl022->virtbase));
704 			break;
705 		case WRITING_U8:
706 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
707 			break;
708 		case WRITING_U16:
709 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
710 			break;
711 		case WRITING_U32:
712 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
713 			break;
714 		}
715 		pl022->tx += (pl022->cur_chip->n_bytes);
716 		pl022->exp_fifo_level++;
717 		/*
718 		 * This inner reader takes care of things appearing in the RX
719 		 * FIFO as we're transmitting. This will happen a lot since the
720 		 * clock starts running when you put things into the TX FIFO,
721 		 * and then things are continuously clocked into the RX FIFO.
722 		 */
723 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
724 		       && (pl022->rx < pl022->rx_end)) {
725 			switch (pl022->read) {
726 			case READING_NULL:
727 				readw(SSP_DR(pl022->virtbase));
728 				break;
729 			case READING_U8:
730 				*(u8 *) (pl022->rx) =
731 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
732 				break;
733 			case READING_U16:
734 				*(u16 *) (pl022->rx) =
735 					(u16) readw(SSP_DR(pl022->virtbase));
736 				break;
737 			case READING_U32:
738 				*(u32 *) (pl022->rx) =
739 					readl(SSP_DR(pl022->virtbase));
740 				break;
741 			}
742 			pl022->rx += (pl022->cur_chip->n_bytes);
743 			pl022->exp_fifo_level--;
744 		}
745 	}
746 	/*
747 	 * When we exit here the TX FIFO should be full and the RX FIFO
748 	 * should be empty
749 	 */
750 }
751 
752 
753 /**
754  * next_transfer - Move to the Next transfer in the current spi message
755  * @pl022: SSP driver private data structure
756  *
757  * This function moves though the linked list of spi transfers in the
758  * current spi message and returns with the state of current spi
759  * message i.e whether its last transfer is done(STATE_DONE) or
760  * Next transfer is ready(STATE_RUNNING)
761  */
762 static void *next_transfer(struct pl022 *pl022)
763 {
764 	struct spi_message *msg = pl022->cur_msg;
765 	struct spi_transfer *trans = pl022->cur_transfer;
766 
767 	/* Move to next transfer */
768 	if (trans->transfer_list.next != &msg->transfers) {
769 		pl022->cur_transfer =
770 		    list_entry(trans->transfer_list.next,
771 			       struct spi_transfer, transfer_list);
772 		return STATE_RUNNING;
773 	}
774 	return STATE_DONE;
775 }
776 
777 /*
778  * This DMA functionality is only compiled in if we have
779  * access to the generic DMA devices/DMA engine.
780  */
781 #ifdef CONFIG_DMA_ENGINE
782 static void unmap_free_dma_scatter(struct pl022 *pl022)
783 {
784 	/* Unmap and free the SG tables */
785 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
786 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
787 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
788 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
789 	sg_free_table(&pl022->sgt_rx);
790 	sg_free_table(&pl022->sgt_tx);
791 }
792 
793 static void dma_callback(void *data)
794 {
795 	struct pl022 *pl022 = data;
796 	struct spi_message *msg = pl022->cur_msg;
797 
798 	BUG_ON(!pl022->sgt_rx.sgl);
799 
800 #ifdef VERBOSE_DEBUG
801 	/*
802 	 * Optionally dump out buffers to inspect contents, this is
803 	 * good if you want to convince yourself that the loopback
804 	 * read/write contents are the same, when adopting to a new
805 	 * DMA engine.
806 	 */
807 	{
808 		struct scatterlist *sg;
809 		unsigned int i;
810 
811 		dma_sync_sg_for_cpu(&pl022->adev->dev,
812 				    pl022->sgt_rx.sgl,
813 				    pl022->sgt_rx.nents,
814 				    DMA_FROM_DEVICE);
815 
816 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
817 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
818 			print_hex_dump(KERN_ERR, "SPI RX: ",
819 				       DUMP_PREFIX_OFFSET,
820 				       16,
821 				       1,
822 				       sg_virt(sg),
823 				       sg_dma_len(sg),
824 				       1);
825 		}
826 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
827 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
828 			print_hex_dump(KERN_ERR, "SPI TX: ",
829 				       DUMP_PREFIX_OFFSET,
830 				       16,
831 				       1,
832 				       sg_virt(sg),
833 				       sg_dma_len(sg),
834 				       1);
835 		}
836 	}
837 #endif
838 
839 	unmap_free_dma_scatter(pl022);
840 
841 	/* Update total bytes transferred */
842 	msg->actual_length += pl022->cur_transfer->len;
843 	if (pl022->cur_transfer->cs_change)
844 		pl022->cur_chip->
845 			cs_control(SSP_CHIP_DESELECT);
846 
847 	/* Move to next transfer */
848 	msg->state = next_transfer(pl022);
849 	tasklet_schedule(&pl022->pump_transfers);
850 }
851 
852 static void setup_dma_scatter(struct pl022 *pl022,
853 			      void *buffer,
854 			      unsigned int length,
855 			      struct sg_table *sgtab)
856 {
857 	struct scatterlist *sg;
858 	int bytesleft = length;
859 	void *bufp = buffer;
860 	int mapbytes;
861 	int i;
862 
863 	if (buffer) {
864 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
865 			/*
866 			 * If there are less bytes left than what fits
867 			 * in the current page (plus page alignment offset)
868 			 * we just feed in this, else we stuff in as much
869 			 * as we can.
870 			 */
871 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
872 				mapbytes = bytesleft;
873 			else
874 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
875 			sg_set_page(sg, virt_to_page(bufp),
876 				    mapbytes, offset_in_page(bufp));
877 			bufp += mapbytes;
878 			bytesleft -= mapbytes;
879 			dev_dbg(&pl022->adev->dev,
880 				"set RX/TX target page @ %p, %d bytes, %d left\n",
881 				bufp, mapbytes, bytesleft);
882 		}
883 	} else {
884 		/* Map the dummy buffer on every page */
885 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
886 			if (bytesleft < PAGE_SIZE)
887 				mapbytes = bytesleft;
888 			else
889 				mapbytes = PAGE_SIZE;
890 			sg_set_page(sg, virt_to_page(pl022->dummypage),
891 				    mapbytes, 0);
892 			bytesleft -= mapbytes;
893 			dev_dbg(&pl022->adev->dev,
894 				"set RX/TX to dummy page %d bytes, %d left\n",
895 				mapbytes, bytesleft);
896 
897 		}
898 	}
899 	BUG_ON(bytesleft);
900 }
901 
902 /**
903  * configure_dma - configures the channels for the next transfer
904  * @pl022: SSP driver's private data structure
905  */
906 static int configure_dma(struct pl022 *pl022)
907 {
908 	struct dma_slave_config rx_conf = {
909 		.src_addr = SSP_DR(pl022->phybase),
910 		.direction = DMA_FROM_DEVICE,
911 	};
912 	struct dma_slave_config tx_conf = {
913 		.dst_addr = SSP_DR(pl022->phybase),
914 		.direction = DMA_TO_DEVICE,
915 	};
916 	unsigned int pages;
917 	int ret;
918 	int rx_sglen, tx_sglen;
919 	struct dma_chan *rxchan = pl022->dma_rx_channel;
920 	struct dma_chan *txchan = pl022->dma_tx_channel;
921 	struct dma_async_tx_descriptor *rxdesc;
922 	struct dma_async_tx_descriptor *txdesc;
923 
924 	/* Check that the channels are available */
925 	if (!rxchan || !txchan)
926 		return -ENODEV;
927 
928 	/*
929 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
930 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
931 	 * not trigger on 2 elements this needs explicit mapping rather than
932 	 * calculation.
933 	 */
934 	switch (pl022->rx_lev_trig) {
935 	case SSP_RX_1_OR_MORE_ELEM:
936 		rx_conf.src_maxburst = 1;
937 		break;
938 	case SSP_RX_4_OR_MORE_ELEM:
939 		rx_conf.src_maxburst = 4;
940 		break;
941 	case SSP_RX_8_OR_MORE_ELEM:
942 		rx_conf.src_maxburst = 8;
943 		break;
944 	case SSP_RX_16_OR_MORE_ELEM:
945 		rx_conf.src_maxburst = 16;
946 		break;
947 	case SSP_RX_32_OR_MORE_ELEM:
948 		rx_conf.src_maxburst = 32;
949 		break;
950 	default:
951 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
952 		break;
953 	}
954 
955 	switch (pl022->tx_lev_trig) {
956 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
957 		tx_conf.dst_maxburst = 1;
958 		break;
959 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
960 		tx_conf.dst_maxburst = 4;
961 		break;
962 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
963 		tx_conf.dst_maxburst = 8;
964 		break;
965 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
966 		tx_conf.dst_maxburst = 16;
967 		break;
968 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
969 		tx_conf.dst_maxburst = 32;
970 		break;
971 	default:
972 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
973 		break;
974 	}
975 
976 	switch (pl022->read) {
977 	case READING_NULL:
978 		/* Use the same as for writing */
979 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
980 		break;
981 	case READING_U8:
982 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
983 		break;
984 	case READING_U16:
985 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
986 		break;
987 	case READING_U32:
988 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
989 		break;
990 	}
991 
992 	switch (pl022->write) {
993 	case WRITING_NULL:
994 		/* Use the same as for reading */
995 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
996 		break;
997 	case WRITING_U8:
998 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
999 		break;
1000 	case WRITING_U16:
1001 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1002 		break;
1003 	case WRITING_U32:
1004 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1005 		break;
1006 	}
1007 
1008 	/* SPI pecularity: we need to read and write the same width */
1009 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1010 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1011 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1012 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1013 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1014 
1015 	dmaengine_slave_config(rxchan, &rx_conf);
1016 	dmaengine_slave_config(txchan, &tx_conf);
1017 
1018 	/* Create sglists for the transfers */
1019 	pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
1020 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1021 
1022 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
1023 	if (ret)
1024 		goto err_alloc_rx_sg;
1025 
1026 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
1027 	if (ret)
1028 		goto err_alloc_tx_sg;
1029 
1030 	/* Fill in the scatterlists for the RX+TX buffers */
1031 	setup_dma_scatter(pl022, pl022->rx,
1032 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1033 	setup_dma_scatter(pl022, pl022->tx,
1034 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1035 
1036 	/* Map DMA buffers */
1037 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1038 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1039 	if (!rx_sglen)
1040 		goto err_rx_sgmap;
1041 
1042 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1043 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1044 	if (!tx_sglen)
1045 		goto err_tx_sgmap;
1046 
1047 	/* Send both scatterlists */
1048 	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1049 				      pl022->sgt_rx.sgl,
1050 				      rx_sglen,
1051 				      DMA_FROM_DEVICE,
1052 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1053 	if (!rxdesc)
1054 		goto err_rxdesc;
1055 
1056 	txdesc = txchan->device->device_prep_slave_sg(txchan,
1057 				      pl022->sgt_tx.sgl,
1058 				      tx_sglen,
1059 				      DMA_TO_DEVICE,
1060 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1061 	if (!txdesc)
1062 		goto err_txdesc;
1063 
1064 	/* Put the callback on the RX transfer only, that should finish last */
1065 	rxdesc->callback = dma_callback;
1066 	rxdesc->callback_param = pl022;
1067 
1068 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1069 	dmaengine_submit(rxdesc);
1070 	dmaengine_submit(txdesc);
1071 	dma_async_issue_pending(rxchan);
1072 	dma_async_issue_pending(txchan);
1073 
1074 	return 0;
1075 
1076 err_txdesc:
1077 	dmaengine_terminate_all(txchan);
1078 err_rxdesc:
1079 	dmaengine_terminate_all(rxchan);
1080 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1081 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1082 err_tx_sgmap:
1083 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1084 		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1085 err_rx_sgmap:
1086 	sg_free_table(&pl022->sgt_tx);
1087 err_alloc_tx_sg:
1088 	sg_free_table(&pl022->sgt_rx);
1089 err_alloc_rx_sg:
1090 	return -ENOMEM;
1091 }
1092 
1093 static int __init pl022_dma_probe(struct pl022 *pl022)
1094 {
1095 	dma_cap_mask_t mask;
1096 
1097 	/* Try to acquire a generic DMA engine slave channel */
1098 	dma_cap_zero(mask);
1099 	dma_cap_set(DMA_SLAVE, mask);
1100 	/*
1101 	 * We need both RX and TX channels to do DMA, else do none
1102 	 * of them.
1103 	 */
1104 	pl022->dma_rx_channel = dma_request_channel(mask,
1105 					    pl022->master_info->dma_filter,
1106 					    pl022->master_info->dma_rx_param);
1107 	if (!pl022->dma_rx_channel) {
1108 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1109 		goto err_no_rxchan;
1110 	}
1111 
1112 	pl022->dma_tx_channel = dma_request_channel(mask,
1113 					    pl022->master_info->dma_filter,
1114 					    pl022->master_info->dma_tx_param);
1115 	if (!pl022->dma_tx_channel) {
1116 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1117 		goto err_no_txchan;
1118 	}
1119 
1120 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1121 	if (!pl022->dummypage) {
1122 		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1123 		goto err_no_dummypage;
1124 	}
1125 
1126 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1127 		 dma_chan_name(pl022->dma_rx_channel),
1128 		 dma_chan_name(pl022->dma_tx_channel));
1129 
1130 	return 0;
1131 
1132 err_no_dummypage:
1133 	dma_release_channel(pl022->dma_tx_channel);
1134 err_no_txchan:
1135 	dma_release_channel(pl022->dma_rx_channel);
1136 	pl022->dma_rx_channel = NULL;
1137 err_no_rxchan:
1138 	dev_err(&pl022->adev->dev,
1139 			"Failed to work in dma mode, work without dma!\n");
1140 	return -ENODEV;
1141 }
1142 
1143 static void terminate_dma(struct pl022 *pl022)
1144 {
1145 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1146 	struct dma_chan *txchan = pl022->dma_tx_channel;
1147 
1148 	dmaengine_terminate_all(rxchan);
1149 	dmaengine_terminate_all(txchan);
1150 	unmap_free_dma_scatter(pl022);
1151 }
1152 
1153 static void pl022_dma_remove(struct pl022 *pl022)
1154 {
1155 	if (pl022->busy)
1156 		terminate_dma(pl022);
1157 	if (pl022->dma_tx_channel)
1158 		dma_release_channel(pl022->dma_tx_channel);
1159 	if (pl022->dma_rx_channel)
1160 		dma_release_channel(pl022->dma_rx_channel);
1161 	kfree(pl022->dummypage);
1162 }
1163 
1164 #else
1165 static inline int configure_dma(struct pl022 *pl022)
1166 {
1167 	return -ENODEV;
1168 }
1169 
1170 static inline int pl022_dma_probe(struct pl022 *pl022)
1171 {
1172 	return 0;
1173 }
1174 
1175 static inline void pl022_dma_remove(struct pl022 *pl022)
1176 {
1177 }
1178 #endif
1179 
1180 /**
1181  * pl022_interrupt_handler - Interrupt handler for SSP controller
1182  *
1183  * This function handles interrupts generated for an interrupt based transfer.
1184  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1185  * current message's state as STATE_ERROR and schedule the tasklet
1186  * pump_transfers which will do the postprocessing of the current message by
1187  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1188  * more data, and writes data in TX FIFO till it is not full. If we complete
1189  * the transfer we move to the next transfer and schedule the tasklet.
1190  */
1191 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1192 {
1193 	struct pl022 *pl022 = dev_id;
1194 	struct spi_message *msg = pl022->cur_msg;
1195 	u16 irq_status = 0;
1196 	u16 flag = 0;
1197 
1198 	if (unlikely(!msg)) {
1199 		dev_err(&pl022->adev->dev,
1200 			"bad message state in interrupt handler");
1201 		/* Never fail */
1202 		return IRQ_HANDLED;
1203 	}
1204 
1205 	/* Read the Interrupt Status Register */
1206 	irq_status = readw(SSP_MIS(pl022->virtbase));
1207 
1208 	if (unlikely(!irq_status))
1209 		return IRQ_NONE;
1210 
1211 	/*
1212 	 * This handles the FIFO interrupts, the timeout
1213 	 * interrupts are flatly ignored, they cannot be
1214 	 * trusted.
1215 	 */
1216 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1217 		/*
1218 		 * Overrun interrupt - bail out since our Data has been
1219 		 * corrupted
1220 		 */
1221 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1222 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1223 			dev_err(&pl022->adev->dev,
1224 				"RXFIFO is full\n");
1225 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1226 			dev_err(&pl022->adev->dev,
1227 				"TXFIFO is full\n");
1228 
1229 		/*
1230 		 * Disable and clear interrupts, disable SSP,
1231 		 * mark message with bad status so it can be
1232 		 * retried.
1233 		 */
1234 		writew(DISABLE_ALL_INTERRUPTS,
1235 		       SSP_IMSC(pl022->virtbase));
1236 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1237 		writew((readw(SSP_CR1(pl022->virtbase)) &
1238 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1239 		msg->state = STATE_ERROR;
1240 
1241 		/* Schedule message queue handler */
1242 		tasklet_schedule(&pl022->pump_transfers);
1243 		return IRQ_HANDLED;
1244 	}
1245 
1246 	readwriter(pl022);
1247 
1248 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1249 		flag = 1;
1250 		/* Disable Transmit interrupt */
1251 		writew(readw(SSP_IMSC(pl022->virtbase)) &
1252 		       (~SSP_IMSC_MASK_TXIM),
1253 		       SSP_IMSC(pl022->virtbase));
1254 	}
1255 
1256 	/*
1257 	 * Since all transactions must write as much as shall be read,
1258 	 * we can conclude the entire transaction once RX is complete.
1259 	 * At this point, all TX will always be finished.
1260 	 */
1261 	if (pl022->rx >= pl022->rx_end) {
1262 		writew(DISABLE_ALL_INTERRUPTS,
1263 		       SSP_IMSC(pl022->virtbase));
1264 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1265 		if (unlikely(pl022->rx > pl022->rx_end)) {
1266 			dev_warn(&pl022->adev->dev, "read %u surplus "
1267 				 "bytes (did you request an odd "
1268 				 "number of bytes on a 16bit bus?)\n",
1269 				 (u32) (pl022->rx - pl022->rx_end));
1270 		}
1271 		/* Update total bytes transferred */
1272 		msg->actual_length += pl022->cur_transfer->len;
1273 		if (pl022->cur_transfer->cs_change)
1274 			pl022->cur_chip->
1275 				cs_control(SSP_CHIP_DESELECT);
1276 		/* Move to next transfer */
1277 		msg->state = next_transfer(pl022);
1278 		tasklet_schedule(&pl022->pump_transfers);
1279 		return IRQ_HANDLED;
1280 	}
1281 
1282 	return IRQ_HANDLED;
1283 }
1284 
1285 /**
1286  * This sets up the pointers to memory for the next message to
1287  * send out on the SPI bus.
1288  */
1289 static int set_up_next_transfer(struct pl022 *pl022,
1290 				struct spi_transfer *transfer)
1291 {
1292 	int residue;
1293 
1294 	/* Sanity check the message for this bus width */
1295 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1296 	if (unlikely(residue != 0)) {
1297 		dev_err(&pl022->adev->dev,
1298 			"message of %u bytes to transmit but the current "
1299 			"chip bus has a data width of %u bytes!\n",
1300 			pl022->cur_transfer->len,
1301 			pl022->cur_chip->n_bytes);
1302 		dev_err(&pl022->adev->dev, "skipping this message\n");
1303 		return -EIO;
1304 	}
1305 	pl022->tx = (void *)transfer->tx_buf;
1306 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1307 	pl022->rx = (void *)transfer->rx_buf;
1308 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1309 	pl022->write =
1310 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1311 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1312 	return 0;
1313 }
1314 
1315 /**
1316  * pump_transfers - Tasklet function which schedules next transfer
1317  * when running in interrupt or DMA transfer mode.
1318  * @data: SSP driver private data structure
1319  *
1320  */
1321 static void pump_transfers(unsigned long data)
1322 {
1323 	struct pl022 *pl022 = (struct pl022 *) data;
1324 	struct spi_message *message = NULL;
1325 	struct spi_transfer *transfer = NULL;
1326 	struct spi_transfer *previous = NULL;
1327 
1328 	/* Get current state information */
1329 	message = pl022->cur_msg;
1330 	transfer = pl022->cur_transfer;
1331 
1332 	/* Handle for abort */
1333 	if (message->state == STATE_ERROR) {
1334 		message->status = -EIO;
1335 		giveback(pl022);
1336 		return;
1337 	}
1338 
1339 	/* Handle end of message */
1340 	if (message->state == STATE_DONE) {
1341 		message->status = 0;
1342 		giveback(pl022);
1343 		return;
1344 	}
1345 
1346 	/* Delay if requested at end of transfer before CS change */
1347 	if (message->state == STATE_RUNNING) {
1348 		previous = list_entry(transfer->transfer_list.prev,
1349 					struct spi_transfer,
1350 					transfer_list);
1351 		if (previous->delay_usecs)
1352 			/*
1353 			 * FIXME: This runs in interrupt context.
1354 			 * Is this really smart?
1355 			 */
1356 			udelay(previous->delay_usecs);
1357 
1358 		/* Drop chip select only if cs_change is requested */
1359 		if (previous->cs_change)
1360 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1361 	} else {
1362 		/* STATE_START */
1363 		message->state = STATE_RUNNING;
1364 	}
1365 
1366 	if (set_up_next_transfer(pl022, transfer)) {
1367 		message->state = STATE_ERROR;
1368 		message->status = -EIO;
1369 		giveback(pl022);
1370 		return;
1371 	}
1372 	/* Flush the FIFOs and let's go! */
1373 	flush(pl022);
1374 
1375 	if (pl022->cur_chip->enable_dma) {
1376 		if (configure_dma(pl022)) {
1377 			dev_dbg(&pl022->adev->dev,
1378 				"configuration of DMA failed, fall back to interrupt mode\n");
1379 			goto err_config_dma;
1380 		}
1381 		return;
1382 	}
1383 
1384 err_config_dma:
1385 	writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1386 }
1387 
1388 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1389 {
1390 	u32 irqflags = ENABLE_ALL_INTERRUPTS;
1391 
1392 	/* Enable target chip */
1393 	pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1394 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1395 		/* Error path */
1396 		pl022->cur_msg->state = STATE_ERROR;
1397 		pl022->cur_msg->status = -EIO;
1398 		giveback(pl022);
1399 		return;
1400 	}
1401 	/* If we're using DMA, set up DMA here */
1402 	if (pl022->cur_chip->enable_dma) {
1403 		/* Configure DMA transfer */
1404 		if (configure_dma(pl022)) {
1405 			dev_dbg(&pl022->adev->dev,
1406 				"configuration of DMA failed, fall back to interrupt mode\n");
1407 			goto err_config_dma;
1408 		}
1409 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1410 		irqflags = DISABLE_ALL_INTERRUPTS;
1411 	}
1412 err_config_dma:
1413 	/* Enable SSP, turn on interrupts */
1414 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1415 	       SSP_CR1(pl022->virtbase));
1416 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1417 }
1418 
1419 static void do_polling_transfer(struct pl022 *pl022)
1420 {
1421 	struct spi_message *message = NULL;
1422 	struct spi_transfer *transfer = NULL;
1423 	struct spi_transfer *previous = NULL;
1424 	struct chip_data *chip;
1425 	unsigned long time, timeout;
1426 
1427 	chip = pl022->cur_chip;
1428 	message = pl022->cur_msg;
1429 
1430 	while (message->state != STATE_DONE) {
1431 		/* Handle for abort */
1432 		if (message->state == STATE_ERROR)
1433 			break;
1434 		transfer = pl022->cur_transfer;
1435 
1436 		/* Delay if requested at end of transfer */
1437 		if (message->state == STATE_RUNNING) {
1438 			previous =
1439 			    list_entry(transfer->transfer_list.prev,
1440 				       struct spi_transfer, transfer_list);
1441 			if (previous->delay_usecs)
1442 				udelay(previous->delay_usecs);
1443 			if (previous->cs_change)
1444 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1445 		} else {
1446 			/* STATE_START */
1447 			message->state = STATE_RUNNING;
1448 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1449 		}
1450 
1451 		/* Configuration Changing Per Transfer */
1452 		if (set_up_next_transfer(pl022, transfer)) {
1453 			/* Error path */
1454 			message->state = STATE_ERROR;
1455 			break;
1456 		}
1457 		/* Flush FIFOs and enable SSP */
1458 		flush(pl022);
1459 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1460 		       SSP_CR1(pl022->virtbase));
1461 
1462 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1463 
1464 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1465 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1466 			time = jiffies;
1467 			readwriter(pl022);
1468 			if (time_after(time, timeout)) {
1469 				dev_warn(&pl022->adev->dev,
1470 				"%s: timeout!\n", __func__);
1471 				message->state = STATE_ERROR;
1472 				goto out;
1473 			}
1474 			cpu_relax();
1475 		}
1476 
1477 		/* Update total byte transferred */
1478 		message->actual_length += pl022->cur_transfer->len;
1479 		if (pl022->cur_transfer->cs_change)
1480 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1481 		/* Move to next transfer */
1482 		message->state = next_transfer(pl022);
1483 	}
1484 out:
1485 	/* Handle end of message */
1486 	if (message->state == STATE_DONE)
1487 		message->status = 0;
1488 	else
1489 		message->status = -EIO;
1490 
1491 	giveback(pl022);
1492 	return;
1493 }
1494 
1495 /**
1496  * pump_messages - Workqueue function which processes spi message queue
1497  * @data: pointer to private data of SSP driver
1498  *
1499  * This function checks if there is any spi message in the queue that
1500  * needs processing and delegate control to appropriate function
1501  * do_polling_transfer()/do_interrupt_dma_transfer()
1502  * based on the kind of the transfer
1503  *
1504  */
1505 static void pump_messages(struct work_struct *work)
1506 {
1507 	struct pl022 *pl022 =
1508 		container_of(work, struct pl022, pump_messages);
1509 	unsigned long flags;
1510 
1511 	/* Lock queue and check for queue work */
1512 	spin_lock_irqsave(&pl022->queue_lock, flags);
1513 	if (list_empty(&pl022->queue) || !pl022->running) {
1514 		pl022->busy = false;
1515 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1516 		return;
1517 	}
1518 	/* Make sure we are not already running a message */
1519 	if (pl022->cur_msg) {
1520 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1521 		return;
1522 	}
1523 	/* Extract head of queue */
1524 	pl022->cur_msg =
1525 	    list_entry(pl022->queue.next, struct spi_message, queue);
1526 
1527 	list_del_init(&pl022->cur_msg->queue);
1528 	pl022->busy = true;
1529 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1530 
1531 	/* Initial message state */
1532 	pl022->cur_msg->state = STATE_START;
1533 	pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1534 					    struct spi_transfer,
1535 					    transfer_list);
1536 
1537 	/* Setup the SPI using the per chip configuration */
1538 	pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1539 	/*
1540 	 * We enable the core voltage and clocks here, then the clocks
1541 	 * and core will be disabled when giveback() is called in each method
1542 	 * (poll/interrupt/DMA)
1543 	 */
1544 	pm_runtime_get_sync(&pl022->adev->dev);
1545 	restore_state(pl022);
1546 	flush(pl022);
1547 
1548 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1549 		do_polling_transfer(pl022);
1550 	else
1551 		do_interrupt_dma_transfer(pl022);
1552 }
1553 
1554 
1555 static int __init init_queue(struct pl022 *pl022)
1556 {
1557 	INIT_LIST_HEAD(&pl022->queue);
1558 	spin_lock_init(&pl022->queue_lock);
1559 
1560 	pl022->running = false;
1561 	pl022->busy = false;
1562 
1563 	tasklet_init(&pl022->pump_transfers,
1564 			pump_transfers,	(unsigned long)pl022);
1565 
1566 	INIT_WORK(&pl022->pump_messages, pump_messages);
1567 	pl022->workqueue = create_singlethread_workqueue(
1568 					dev_name(pl022->master->dev.parent));
1569 	if (pl022->workqueue == NULL)
1570 		return -EBUSY;
1571 
1572 	return 0;
1573 }
1574 
1575 
1576 static int start_queue(struct pl022 *pl022)
1577 {
1578 	unsigned long flags;
1579 
1580 	spin_lock_irqsave(&pl022->queue_lock, flags);
1581 
1582 	if (pl022->running || pl022->busy) {
1583 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1584 		return -EBUSY;
1585 	}
1586 
1587 	pl022->running = true;
1588 	pl022->cur_msg = NULL;
1589 	pl022->cur_transfer = NULL;
1590 	pl022->cur_chip = NULL;
1591 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1592 
1593 	queue_work(pl022->workqueue, &pl022->pump_messages);
1594 
1595 	return 0;
1596 }
1597 
1598 
1599 static int stop_queue(struct pl022 *pl022)
1600 {
1601 	unsigned long flags;
1602 	unsigned limit = 500;
1603 	int status = 0;
1604 
1605 	spin_lock_irqsave(&pl022->queue_lock, flags);
1606 
1607 	/* This is a bit lame, but is optimized for the common execution path.
1608 	 * A wait_queue on the pl022->busy could be used, but then the common
1609 	 * execution path (pump_messages) would be required to call wake_up or
1610 	 * friends on every SPI message. Do this instead */
1611 	while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
1612 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1613 		msleep(10);
1614 		spin_lock_irqsave(&pl022->queue_lock, flags);
1615 	}
1616 
1617 	if (!list_empty(&pl022->queue) || pl022->busy)
1618 		status = -EBUSY;
1619 	else
1620 		pl022->running = false;
1621 
1622 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1623 
1624 	return status;
1625 }
1626 
1627 static int destroy_queue(struct pl022 *pl022)
1628 {
1629 	int status;
1630 
1631 	status = stop_queue(pl022);
1632 	/* we are unloading the module or failing to load (only two calls
1633 	 * to this routine), and neither call can handle a return value.
1634 	 * However, destroy_workqueue calls flush_workqueue, and that will
1635 	 * block until all work is done.  If the reason that stop_queue
1636 	 * timed out is that the work will never finish, then it does no
1637 	 * good to call destroy_workqueue, so return anyway. */
1638 	if (status != 0)
1639 		return status;
1640 
1641 	destroy_workqueue(pl022->workqueue);
1642 
1643 	return 0;
1644 }
1645 
1646 static int verify_controller_parameters(struct pl022 *pl022,
1647 				struct pl022_config_chip const *chip_info)
1648 {
1649 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1650 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1651 		dev_err(&pl022->adev->dev,
1652 			"interface is configured incorrectly\n");
1653 		return -EINVAL;
1654 	}
1655 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1656 	    (!pl022->vendor->unidir)) {
1657 		dev_err(&pl022->adev->dev,
1658 			"unidirectional mode not supported in this "
1659 			"hardware version\n");
1660 		return -EINVAL;
1661 	}
1662 	if ((chip_info->hierarchy != SSP_MASTER)
1663 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1664 		dev_err(&pl022->adev->dev,
1665 			"hierarchy is configured incorrectly\n");
1666 		return -EINVAL;
1667 	}
1668 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1669 	    && (chip_info->com_mode != DMA_TRANSFER)
1670 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1671 		dev_err(&pl022->adev->dev,
1672 			"Communication mode is configured incorrectly\n");
1673 		return -EINVAL;
1674 	}
1675 	switch (chip_info->rx_lev_trig) {
1676 	case SSP_RX_1_OR_MORE_ELEM:
1677 	case SSP_RX_4_OR_MORE_ELEM:
1678 	case SSP_RX_8_OR_MORE_ELEM:
1679 		/* These are always OK, all variants can handle this */
1680 		break;
1681 	case SSP_RX_16_OR_MORE_ELEM:
1682 		if (pl022->vendor->fifodepth < 16) {
1683 			dev_err(&pl022->adev->dev,
1684 			"RX FIFO Trigger Level is configured incorrectly\n");
1685 			return -EINVAL;
1686 		}
1687 		break;
1688 	case SSP_RX_32_OR_MORE_ELEM:
1689 		if (pl022->vendor->fifodepth < 32) {
1690 			dev_err(&pl022->adev->dev,
1691 			"RX FIFO Trigger Level is configured incorrectly\n");
1692 			return -EINVAL;
1693 		}
1694 		break;
1695 	default:
1696 		dev_err(&pl022->adev->dev,
1697 			"RX FIFO Trigger Level is configured incorrectly\n");
1698 		return -EINVAL;
1699 		break;
1700 	}
1701 	switch (chip_info->tx_lev_trig) {
1702 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1703 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1704 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1705 		/* These are always OK, all variants can handle this */
1706 		break;
1707 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1708 		if (pl022->vendor->fifodepth < 16) {
1709 			dev_err(&pl022->adev->dev,
1710 			"TX FIFO Trigger Level is configured incorrectly\n");
1711 			return -EINVAL;
1712 		}
1713 		break;
1714 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1715 		if (pl022->vendor->fifodepth < 32) {
1716 			dev_err(&pl022->adev->dev,
1717 			"TX FIFO Trigger Level is configured incorrectly\n");
1718 			return -EINVAL;
1719 		}
1720 		break;
1721 	default:
1722 		dev_err(&pl022->adev->dev,
1723 			"TX FIFO Trigger Level is configured incorrectly\n");
1724 		return -EINVAL;
1725 		break;
1726 	}
1727 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1728 		if ((chip_info->ctrl_len < SSP_BITS_4)
1729 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1730 			dev_err(&pl022->adev->dev,
1731 				"CTRL LEN is configured incorrectly\n");
1732 			return -EINVAL;
1733 		}
1734 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1735 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1736 			dev_err(&pl022->adev->dev,
1737 				"Wait State is configured incorrectly\n");
1738 			return -EINVAL;
1739 		}
1740 		/* Half duplex is only available in the ST Micro version */
1741 		if (pl022->vendor->extended_cr) {
1742 			if ((chip_info->duplex !=
1743 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1744 			    && (chip_info->duplex !=
1745 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1746 				dev_err(&pl022->adev->dev,
1747 					"Microwire duplex mode is configured incorrectly\n");
1748 				return -EINVAL;
1749 			}
1750 		} else {
1751 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1752 				dev_err(&pl022->adev->dev,
1753 					"Microwire half duplex mode requested,"
1754 					" but this is only available in the"
1755 					" ST version of PL022\n");
1756 			return -EINVAL;
1757 		}
1758 	}
1759 	return 0;
1760 }
1761 
1762 /**
1763  * pl022_transfer - transfer function registered to SPI master framework
1764  * @spi: spi device which is requesting transfer
1765  * @msg: spi message which is to handled is queued to driver queue
1766  *
1767  * This function is registered to the SPI framework for this SPI master
1768  * controller. It will queue the spi_message in the queue of driver if
1769  * the queue is not stopped and return.
1770  */
1771 static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1772 {
1773 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1774 	unsigned long flags;
1775 
1776 	spin_lock_irqsave(&pl022->queue_lock, flags);
1777 
1778 	if (!pl022->running) {
1779 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1780 		return -ESHUTDOWN;
1781 	}
1782 	msg->actual_length = 0;
1783 	msg->status = -EINPROGRESS;
1784 	msg->state = STATE_START;
1785 
1786 	list_add_tail(&msg->queue, &pl022->queue);
1787 	if (pl022->running && !pl022->busy)
1788 		queue_work(pl022->workqueue, &pl022->pump_messages);
1789 
1790 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1791 	return 0;
1792 }
1793 
1794 static int calculate_effective_freq(struct pl022 *pl022,
1795 				    int freq,
1796 				    struct ssp_clock_params *clk_freq)
1797 {
1798 	/* Lets calculate the frequency parameters */
1799 	u16 cpsdvsr = 2;
1800 	u16 scr = 0;
1801 	bool freq_found = false;
1802 	u32 rate;
1803 	u32 max_tclk;
1804 	u32 min_tclk;
1805 
1806 	rate = clk_get_rate(pl022->clk);
1807 	/* cpsdvscr = 2 & scr 0 */
1808 	max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1809 	/* cpsdvsr = 254 & scr = 255 */
1810 	min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1811 
1812 	if ((freq <= max_tclk) && (freq >= min_tclk)) {
1813 		while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1814 			while (scr <= SCR_MAX && !freq_found) {
1815 				if ((rate /
1816 				     (cpsdvsr * (1 + scr))) > freq)
1817 					scr += 1;
1818 				else {
1819 					/*
1820 					 * This bool is made true when
1821 					 * effective frequency >=
1822 					 * target frequency is found
1823 					 */
1824 					freq_found = true;
1825 					if ((rate /
1826 					     (cpsdvsr * (1 + scr))) != freq) {
1827 						if (scr == SCR_MIN) {
1828 							cpsdvsr -= 2;
1829 							scr = SCR_MAX;
1830 						} else
1831 							scr -= 1;
1832 					}
1833 				}
1834 			}
1835 			if (!freq_found) {
1836 				cpsdvsr += 2;
1837 				scr = SCR_MIN;
1838 			}
1839 		}
1840 		if (cpsdvsr != 0) {
1841 			dev_dbg(&pl022->adev->dev,
1842 				"SSP Effective Frequency is %u\n",
1843 				(rate / (cpsdvsr * (1 + scr))));
1844 			clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1845 			clk_freq->scr = (u8) (scr & 0xFF);
1846 			dev_dbg(&pl022->adev->dev,
1847 				"SSP cpsdvsr = %d, scr = %d\n",
1848 				clk_freq->cpsdvsr, clk_freq->scr);
1849 		}
1850 	} else {
1851 		dev_err(&pl022->adev->dev,
1852 			"controller data is incorrect: out of range frequency");
1853 		return -EINVAL;
1854 	}
1855 	return 0;
1856 }
1857 
1858 
1859 /*
1860  * A piece of default chip info unless the platform
1861  * supplies it.
1862  */
1863 static const struct pl022_config_chip pl022_default_chip_info = {
1864 	.com_mode = POLLING_TRANSFER,
1865 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1866 	.hierarchy = SSP_SLAVE,
1867 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1868 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1869 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1870 	.ctrl_len = SSP_BITS_8,
1871 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1872 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1873 	.cs_control = null_cs_control,
1874 };
1875 
1876 
1877 /**
1878  * pl022_setup - setup function registered to SPI master framework
1879  * @spi: spi device which is requesting setup
1880  *
1881  * This function is registered to the SPI framework for this SPI master
1882  * controller. If it is the first time when setup is called by this device,
1883  * this function will initialize the runtime state for this chip and save
1884  * the same in the device structure. Else it will update the runtime info
1885  * with the updated chip info. Nothing is really being written to the
1886  * controller hardware here, that is not done until the actual transfer
1887  * commence.
1888  */
1889 static int pl022_setup(struct spi_device *spi)
1890 {
1891 	struct pl022_config_chip const *chip_info;
1892 	struct chip_data *chip;
1893 	struct ssp_clock_params clk_freq = {0, };
1894 	int status = 0;
1895 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1896 	unsigned int bits = spi->bits_per_word;
1897 	u32 tmp;
1898 
1899 	if (!spi->max_speed_hz)
1900 		return -EINVAL;
1901 
1902 	/* Get controller_state if one is supplied */
1903 	chip = spi_get_ctldata(spi);
1904 
1905 	if (chip == NULL) {
1906 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1907 		if (!chip) {
1908 			dev_err(&spi->dev,
1909 				"cannot allocate controller state\n");
1910 			return -ENOMEM;
1911 		}
1912 		dev_dbg(&spi->dev,
1913 			"allocated memory for controller's runtime state\n");
1914 	}
1915 
1916 	/* Get controller data if one is supplied */
1917 	chip_info = spi->controller_data;
1918 
1919 	if (chip_info == NULL) {
1920 		chip_info = &pl022_default_chip_info;
1921 		/* spi_board_info.controller_data not is supplied */
1922 		dev_dbg(&spi->dev,
1923 			"using default controller_data settings\n");
1924 	} else
1925 		dev_dbg(&spi->dev,
1926 			"using user supplied controller_data settings\n");
1927 
1928 	/*
1929 	 * We can override with custom divisors, else we use the board
1930 	 * frequency setting
1931 	 */
1932 	if ((0 == chip_info->clk_freq.cpsdvsr)
1933 	    && (0 == chip_info->clk_freq.scr)) {
1934 		status = calculate_effective_freq(pl022,
1935 						  spi->max_speed_hz,
1936 						  &clk_freq);
1937 		if (status < 0)
1938 			goto err_config_params;
1939 	} else {
1940 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1941 		if ((clk_freq.cpsdvsr % 2) != 0)
1942 			clk_freq.cpsdvsr =
1943 				clk_freq.cpsdvsr - 1;
1944 	}
1945 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1946 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1947 		status = -EINVAL;
1948 		dev_err(&spi->dev,
1949 			"cpsdvsr is configured incorrectly\n");
1950 		goto err_config_params;
1951 	}
1952 
1953 
1954 	status = verify_controller_parameters(pl022, chip_info);
1955 	if (status) {
1956 		dev_err(&spi->dev, "controller data is incorrect");
1957 		goto err_config_params;
1958 	}
1959 
1960 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1961 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1962 
1963 	/* Now set controller state based on controller data */
1964 	chip->xfer_type = chip_info->com_mode;
1965 	if (!chip_info->cs_control) {
1966 		chip->cs_control = null_cs_control;
1967 		dev_warn(&spi->dev,
1968 			 "chip select function is NULL for this chip\n");
1969 	} else
1970 		chip->cs_control = chip_info->cs_control;
1971 
1972 	if (bits <= 3) {
1973 		/* PL022 doesn't support less than 4-bits */
1974 		status = -ENOTSUPP;
1975 		goto err_config_params;
1976 	} else if (bits <= 8) {
1977 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1978 		chip->n_bytes = 1;
1979 		chip->read = READING_U8;
1980 		chip->write = WRITING_U8;
1981 	} else if (bits <= 16) {
1982 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1983 		chip->n_bytes = 2;
1984 		chip->read = READING_U16;
1985 		chip->write = WRITING_U16;
1986 	} else {
1987 		if (pl022->vendor->max_bpw >= 32) {
1988 			dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1989 			chip->n_bytes = 4;
1990 			chip->read = READING_U32;
1991 			chip->write = WRITING_U32;
1992 		} else {
1993 			dev_err(&spi->dev,
1994 				"illegal data size for this controller!\n");
1995 			dev_err(&spi->dev,
1996 				"a standard pl022 can only handle "
1997 				"1 <= n <= 16 bit words\n");
1998 			status = -ENOTSUPP;
1999 			goto err_config_params;
2000 		}
2001 	}
2002 
2003 	/* Now Initialize all register settings required for this chip */
2004 	chip->cr0 = 0;
2005 	chip->cr1 = 0;
2006 	chip->dmacr = 0;
2007 	chip->cpsr = 0;
2008 	if ((chip_info->com_mode == DMA_TRANSFER)
2009 	    && ((pl022->master_info)->enable_dma)) {
2010 		chip->enable_dma = true;
2011 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
2012 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2013 			       SSP_DMACR_MASK_RXDMAE, 0);
2014 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2015 			       SSP_DMACR_MASK_TXDMAE, 1);
2016 	} else {
2017 		chip->enable_dma = false;
2018 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
2019 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2020 			       SSP_DMACR_MASK_RXDMAE, 0);
2021 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2022 			       SSP_DMACR_MASK_TXDMAE, 1);
2023 	}
2024 
2025 	chip->cpsr = clk_freq.cpsdvsr;
2026 
2027 	/* Special setup for the ST micro extended control registers */
2028 	if (pl022->vendor->extended_cr) {
2029 		u32 etx;
2030 
2031 		if (pl022->vendor->pl023) {
2032 			/* These bits are only in the PL023 */
2033 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2034 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2035 		} else {
2036 			/* These bits are in the PL022 but not PL023 */
2037 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2038 				       SSP_CR0_MASK_HALFDUP_ST, 5);
2039 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2040 				       SSP_CR0_MASK_CSS_ST, 16);
2041 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2042 				       SSP_CR0_MASK_FRF_ST, 21);
2043 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2044 				       SSP_CR1_MASK_MWAIT_ST, 6);
2045 		}
2046 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2047 			       SSP_CR0_MASK_DSS_ST, 0);
2048 
2049 		if (spi->mode & SPI_LSB_FIRST) {
2050 			tmp = SSP_RX_LSB;
2051 			etx = SSP_TX_LSB;
2052 		} else {
2053 			tmp = SSP_RX_MSB;
2054 			etx = SSP_TX_MSB;
2055 		}
2056 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2057 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2058 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2059 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2060 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2061 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2062 	} else {
2063 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2064 			       SSP_CR0_MASK_DSS, 0);
2065 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2066 			       SSP_CR0_MASK_FRF, 4);
2067 	}
2068 
2069 	/* Stuff that is common for all versions */
2070 	if (spi->mode & SPI_CPOL)
2071 		tmp = SSP_CLK_POL_IDLE_HIGH;
2072 	else
2073 		tmp = SSP_CLK_POL_IDLE_LOW;
2074 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2075 
2076 	if (spi->mode & SPI_CPHA)
2077 		tmp = SSP_CLK_SECOND_EDGE;
2078 	else
2079 		tmp = SSP_CLK_FIRST_EDGE;
2080 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2081 
2082 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2083 	/* Loopback is available on all versions except PL023 */
2084 	if (pl022->vendor->loopback) {
2085 		if (spi->mode & SPI_LOOP)
2086 			tmp = LOOPBACK_ENABLED;
2087 		else
2088 			tmp = LOOPBACK_DISABLED;
2089 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2090 	}
2091 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2092 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2093 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
2094 
2095 	/* Save controller_state */
2096 	spi_set_ctldata(spi, chip);
2097 	return status;
2098  err_config_params:
2099 	spi_set_ctldata(spi, NULL);
2100 	kfree(chip);
2101 	return status;
2102 }
2103 
2104 /**
2105  * pl022_cleanup - cleanup function registered to SPI master framework
2106  * @spi: spi device which is requesting cleanup
2107  *
2108  * This function is registered to the SPI framework for this SPI master
2109  * controller. It will free the runtime state of chip.
2110  */
2111 static void pl022_cleanup(struct spi_device *spi)
2112 {
2113 	struct chip_data *chip = spi_get_ctldata(spi);
2114 
2115 	spi_set_ctldata(spi, NULL);
2116 	kfree(chip);
2117 }
2118 
2119 
2120 static int __devinit
2121 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2122 {
2123 	struct device *dev = &adev->dev;
2124 	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2125 	struct spi_master *master;
2126 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2127 	int status = 0;
2128 
2129 	dev_info(&adev->dev,
2130 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2131 	if (platform_info == NULL) {
2132 		dev_err(&adev->dev, "probe - no platform data supplied\n");
2133 		status = -ENODEV;
2134 		goto err_no_pdata;
2135 	}
2136 
2137 	/* Allocate master with space for data */
2138 	master = spi_alloc_master(dev, sizeof(struct pl022));
2139 	if (master == NULL) {
2140 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2141 		status = -ENOMEM;
2142 		goto err_no_master;
2143 	}
2144 
2145 	pl022 = spi_master_get_devdata(master);
2146 	pl022->master = master;
2147 	pl022->master_info = platform_info;
2148 	pl022->adev = adev;
2149 	pl022->vendor = id->data;
2150 
2151 	/*
2152 	 * Bus Number Which has been Assigned to this SSP controller
2153 	 * on this board
2154 	 */
2155 	master->bus_num = platform_info->bus_id;
2156 	master->num_chipselect = platform_info->num_chipselect;
2157 	master->cleanup = pl022_cleanup;
2158 	master->setup = pl022_setup;
2159 	master->transfer = pl022_transfer;
2160 
2161 	/*
2162 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2163 	 * always MS bit first on the original pl022.
2164 	 */
2165 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2166 	if (pl022->vendor->extended_cr)
2167 		master->mode_bits |= SPI_LSB_FIRST;
2168 
2169 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2170 
2171 	status = amba_request_regions(adev, NULL);
2172 	if (status)
2173 		goto err_no_ioregion;
2174 
2175 	pl022->phybase = adev->res.start;
2176 	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2177 	if (pl022->virtbase == NULL) {
2178 		status = -ENOMEM;
2179 		goto err_no_ioremap;
2180 	}
2181 	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2182 	       adev->res.start, pl022->virtbase);
2183 
2184 	pl022->clk = clk_get(&adev->dev, NULL);
2185 	if (IS_ERR(pl022->clk)) {
2186 		status = PTR_ERR(pl022->clk);
2187 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2188 		goto err_no_clk;
2189 	}
2190 
2191 	status = clk_prepare(pl022->clk);
2192 	if (status) {
2193 		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2194 		goto  err_clk_prep;
2195 	}
2196 
2197 	/* Disable SSP */
2198 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2199 	       SSP_CR1(pl022->virtbase));
2200 	load_ssp_default_config(pl022);
2201 
2202 	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2203 			     pl022);
2204 	if (status < 0) {
2205 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2206 		goto err_no_irq;
2207 	}
2208 
2209 	/* Get DMA channels */
2210 	if (platform_info->enable_dma) {
2211 		status = pl022_dma_probe(pl022);
2212 		if (status != 0)
2213 			platform_info->enable_dma = 0;
2214 	}
2215 
2216 	/* Initialize and start queue */
2217 	status = init_queue(pl022);
2218 	if (status != 0) {
2219 		dev_err(&adev->dev, "probe - problem initializing queue\n");
2220 		goto err_init_queue;
2221 	}
2222 	status = start_queue(pl022);
2223 	if (status != 0) {
2224 		dev_err(&adev->dev, "probe - problem starting queue\n");
2225 		goto err_start_queue;
2226 	}
2227 	/* Register with the SPI framework */
2228 	amba_set_drvdata(adev, pl022);
2229 	status = spi_register_master(master);
2230 	if (status != 0) {
2231 		dev_err(&adev->dev,
2232 			"probe - problem registering spi master\n");
2233 		goto err_spi_register;
2234 	}
2235 	dev_dbg(dev, "probe succeeded\n");
2236 
2237 	/* let runtime pm put suspend */
2238 	pm_runtime_put(dev);
2239 	return 0;
2240 
2241  err_spi_register:
2242  err_start_queue:
2243  err_init_queue:
2244 	destroy_queue(pl022);
2245 	pl022_dma_remove(pl022);
2246 	free_irq(adev->irq[0], pl022);
2247  err_no_irq:
2248 	clk_unprepare(pl022->clk);
2249  err_clk_prep:
2250 	clk_put(pl022->clk);
2251  err_no_clk:
2252 	iounmap(pl022->virtbase);
2253  err_no_ioremap:
2254 	amba_release_regions(adev);
2255  err_no_ioregion:
2256 	spi_master_put(master);
2257  err_no_master:
2258  err_no_pdata:
2259 	return status;
2260 }
2261 
2262 static int __devexit
2263 pl022_remove(struct amba_device *adev)
2264 {
2265 	struct pl022 *pl022 = amba_get_drvdata(adev);
2266 
2267 	if (!pl022)
2268 		return 0;
2269 
2270 	/*
2271 	 * undo pm_runtime_put() in probe.  I assume that we're not
2272 	 * accessing the primecell here.
2273 	 */
2274 	pm_runtime_get_noresume(&adev->dev);
2275 
2276 	/* Remove the queue */
2277 	if (destroy_queue(pl022) != 0)
2278 		dev_err(&adev->dev, "queue remove failed\n");
2279 	load_ssp_default_config(pl022);
2280 	pl022_dma_remove(pl022);
2281 	free_irq(adev->irq[0], pl022);
2282 	clk_disable(pl022->clk);
2283 	clk_unprepare(pl022->clk);
2284 	clk_put(pl022->clk);
2285 	iounmap(pl022->virtbase);
2286 	amba_release_regions(adev);
2287 	tasklet_disable(&pl022->pump_transfers);
2288 	spi_unregister_master(pl022->master);
2289 	spi_master_put(pl022->master);
2290 	amba_set_drvdata(adev, NULL);
2291 	return 0;
2292 }
2293 
2294 #ifdef CONFIG_SUSPEND
2295 static int pl022_suspend(struct device *dev)
2296 {
2297 	struct pl022 *pl022 = dev_get_drvdata(dev);
2298 	int status = 0;
2299 
2300 	status = stop_queue(pl022);
2301 	if (status) {
2302 		dev_warn(dev, "suspend cannot stop queue\n");
2303 		return status;
2304 	}
2305 
2306 	amba_vcore_enable(pl022->adev);
2307 	amba_pclk_enable(pl022->adev);
2308 	load_ssp_default_config(pl022);
2309 	amba_pclk_disable(pl022->adev);
2310 	amba_vcore_disable(pl022->adev);
2311 	dev_dbg(dev, "suspended\n");
2312 	return 0;
2313 }
2314 
2315 static int pl022_resume(struct device *dev)
2316 {
2317 	struct pl022 *pl022 = dev_get_drvdata(dev);
2318 	int status = 0;
2319 
2320 	/* Start the queue running */
2321 	status = start_queue(pl022);
2322 	if (status)
2323 		dev_err(dev, "problem starting queue (%d)\n", status);
2324 	else
2325 		dev_dbg(dev, "resumed\n");
2326 
2327 	return status;
2328 }
2329 #endif	/* CONFIG_PM */
2330 
2331 #ifdef CONFIG_PM_RUNTIME
2332 static int pl022_runtime_suspend(struct device *dev)
2333 {
2334 	struct pl022 *pl022 = dev_get_drvdata(dev);
2335 
2336 	clk_disable(pl022->clk);
2337 	amba_vcore_disable(pl022->adev);
2338 
2339 	return 0;
2340 }
2341 
2342 static int pl022_runtime_resume(struct device *dev)
2343 {
2344 	struct pl022 *pl022 = dev_get_drvdata(dev);
2345 
2346 	amba_vcore_enable(pl022->adev);
2347 	clk_enable(pl022->clk);
2348 
2349 	return 0;
2350 }
2351 #endif
2352 
2353 static const struct dev_pm_ops pl022_dev_pm_ops = {
2354 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2355 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2356 };
2357 
2358 static struct vendor_data vendor_arm = {
2359 	.fifodepth = 8,
2360 	.max_bpw = 16,
2361 	.unidir = false,
2362 	.extended_cr = false,
2363 	.pl023 = false,
2364 	.loopback = true,
2365 };
2366 
2367 
2368 static struct vendor_data vendor_st = {
2369 	.fifodepth = 32,
2370 	.max_bpw = 32,
2371 	.unidir = false,
2372 	.extended_cr = true,
2373 	.pl023 = false,
2374 	.loopback = true,
2375 };
2376 
2377 static struct vendor_data vendor_st_pl023 = {
2378 	.fifodepth = 32,
2379 	.max_bpw = 32,
2380 	.unidir = false,
2381 	.extended_cr = true,
2382 	.pl023 = true,
2383 	.loopback = false,
2384 };
2385 
2386 static struct vendor_data vendor_db5500_pl023 = {
2387 	.fifodepth = 32,
2388 	.max_bpw = 32,
2389 	.unidir = false,
2390 	.extended_cr = true,
2391 	.pl023 = true,
2392 	.loopback = true,
2393 };
2394 
2395 static struct amba_id pl022_ids[] = {
2396 	{
2397 		/*
2398 		 * ARM PL022 variant, this has a 16bit wide
2399 		 * and 8 locations deep TX/RX FIFO
2400 		 */
2401 		.id	= 0x00041022,
2402 		.mask	= 0x000fffff,
2403 		.data	= &vendor_arm,
2404 	},
2405 	{
2406 		/*
2407 		 * ST Micro derivative, this has 32bit wide
2408 		 * and 32 locations deep TX/RX FIFO
2409 		 */
2410 		.id	= 0x01080022,
2411 		.mask	= 0xffffffff,
2412 		.data	= &vendor_st,
2413 	},
2414 	{
2415 		/*
2416 		 * ST-Ericsson derivative "PL023" (this is not
2417 		 * an official ARM number), this is a PL022 SSP block
2418 		 * stripped to SPI mode only, it has 32bit wide
2419 		 * and 32 locations deep TX/RX FIFO but no extended
2420 		 * CR0/CR1 register
2421 		 */
2422 		.id     = 0x00080023,
2423 		.mask   = 0xffffffff,
2424 		.data   = &vendor_st_pl023,
2425 	},
2426 	{
2427 		.id	= 0x10080023,
2428 		.mask	= 0xffffffff,
2429 		.data	= &vendor_db5500_pl023,
2430 	},
2431 	{ 0, 0 },
2432 };
2433 
2434 static struct amba_driver pl022_driver = {
2435 	.drv = {
2436 		.name	= "ssp-pl022",
2437 		.pm	= &pl022_dev_pm_ops,
2438 	},
2439 	.id_table	= pl022_ids,
2440 	.probe		= pl022_probe,
2441 	.remove		= __devexit_p(pl022_remove),
2442 };
2443 
2444 
2445 static int __init pl022_init(void)
2446 {
2447 	return amba_driver_register(&pl022_driver);
2448 }
2449 
2450 subsys_initcall(pl022_init);
2451 
2452 static void __exit pl022_exit(void)
2453 {
2454 	amba_driver_unregister(&pl022_driver);
2455 }
2456 
2457 module_exit(pl022_exit);
2458 
2459 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2460 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2461 MODULE_LICENSE("GPL");
2462