xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision 750afb08)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2012 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
46 
47 /*
48  * This macro is used to define some register default values.
49  * reg is masked with mask, the OR:ed with an (again masked)
50  * val shifted sb steps to the left.
51  */
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 
55 /*
56  * This macro is also used to define some default values.
57  * It will just shift val by sb steps to the left and mask
58  * the result with mask.
59  */
60 #define GEN_MASK_BITS(val, mask, sb) \
61  (((val)<<(sb)) & (mask))
62 
63 #define DRIVE_TX		0
64 #define DO_NOT_DRIVE_TX		1
65 
66 #define DO_NOT_QUEUE_DMA	0
67 #define QUEUE_DMA		1
68 
69 #define RX_TRANSFER		1
70 #define TX_TRANSFER		2
71 
72 /*
73  * Macros to access SSP Registers with their offsets
74  */
75 #define SSP_CR0(r)	(r + 0x000)
76 #define SSP_CR1(r)	(r + 0x004)
77 #define SSP_DR(r)	(r + 0x008)
78 #define SSP_SR(r)	(r + 0x00C)
79 #define SSP_CPSR(r)	(r + 0x010)
80 #define SSP_IMSC(r)	(r + 0x014)
81 #define SSP_RIS(r)	(r + 0x018)
82 #define SSP_MIS(r)	(r + 0x01C)
83 #define SSP_ICR(r)	(r + 0x020)
84 #define SSP_DMACR(r)	(r + 0x024)
85 #define SSP_CSR(r)	(r + 0x030) /* vendor extension */
86 #define SSP_ITCR(r)	(r + 0x080)
87 #define SSP_ITIP(r)	(r + 0x084)
88 #define SSP_ITOP(r)	(r + 0x088)
89 #define SSP_TDR(r)	(r + 0x08C)
90 
91 #define SSP_PID0(r)	(r + 0xFE0)
92 #define SSP_PID1(r)	(r + 0xFE4)
93 #define SSP_PID2(r)	(r + 0xFE8)
94 #define SSP_PID3(r)	(r + 0xFEC)
95 
96 #define SSP_CID0(r)	(r + 0xFF0)
97 #define SSP_CID1(r)	(r + 0xFF4)
98 #define SSP_CID2(r)	(r + 0xFF8)
99 #define SSP_CID3(r)	(r + 0xFFC)
100 
101 /*
102  * SSP Control Register 0  - SSP_CR0
103  */
104 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
105 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
106 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
107 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
108 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
109 
110 /*
111  * The ST version of this block moves som bits
112  * in SSP_CR0 and extends it to 32 bits
113  */
114 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
115 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
116 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
117 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
118 
119 /*
120  * SSP Control Register 0  - SSP_CR1
121  */
122 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
123 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
124 #define SSP_CR1_MASK_MS		(0x1UL << 2)
125 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
126 
127 /*
128  * The ST version of this block adds some bits
129  * in SSP_CR1
130  */
131 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
132 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
133 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
134 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
135 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136 /* This one is only in the PL023 variant */
137 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138 
139 /*
140  * SSP Status Register - SSP_SR
141  */
142 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
143 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
144 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
145 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
146 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
147 
148 /*
149  * SSP Clock Prescale Register  - SSP_CPSR
150  */
151 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
152 
153 /*
154  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155  */
156 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
157 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
158 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
159 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160 
161 /*
162  * SSP Raw Interrupt Status Register - SSP_RIS
163  */
164 /* Receive Overrun Raw Interrupt status */
165 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
166 /* Receive Timeout Raw Interrupt status */
167 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
168 /* Receive FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
170 /* Transmit FIFO Raw Interrupt status */
171 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
172 
173 /*
174  * SSP Masked Interrupt Status Register - SSP_MIS
175  */
176 /* Receive Overrun Masked Interrupt status */
177 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
178 /* Receive Timeout Masked Interrupt status */
179 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
180 /* Receive FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
182 /* Transmit FIFO Masked Interrupt status */
183 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
184 
185 /*
186  * SSP Interrupt Clear Register - SSP_ICR
187  */
188 /* Receive Overrun Raw Clear Interrupt bit */
189 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
190 /* Receive Timeout Clear Interrupt bit */
191 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
192 
193 /*
194  * SSP DMA Control Register - SSP_DMACR
195  */
196 /* Receive DMA Enable bit */
197 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
198 /* Transmit DMA Enable bit */
199 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
200 
201 /*
202  * SSP Chip Select Control Register - SSP_CSR
203  * (vendor extension)
204  */
205 #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
206 
207 /*
208  * SSP Integration Test control Register - SSP_ITCR
209  */
210 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
211 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
212 
213 /*
214  * SSP Integration Test Input Register - SSP_ITIP
215  */
216 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
217 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
218 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
219 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
220 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
221 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
222 
223 /*
224  * SSP Integration Test output Register - SSP_ITOP
225  */
226 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
227 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
228 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
229 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
230 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
231 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
232 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
233 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
234 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
235 #define ITOP_MASK_INTR			 (0x1UL << 9)
236 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
237 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
238 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
239 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
240 
241 /*
242  * SSP Test Data Register - SSP_TDR
243  */
244 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
245 
246 /*
247  * Message State
248  * we use the spi_message.state (void *) pointer to
249  * hold a single state value, that's why all this
250  * (void *) casting is done here.
251  */
252 #define STATE_START			((void *) 0)
253 #define STATE_RUNNING			((void *) 1)
254 #define STATE_DONE			((void *) 2)
255 #define STATE_ERROR			((void *) -1)
256 
257 /*
258  * SSP State - Whether Enabled or Disabled
259  */
260 #define SSP_DISABLED			(0)
261 #define SSP_ENABLED			(1)
262 
263 /*
264  * SSP DMA State - Whether DMA Enabled or Disabled
265  */
266 #define SSP_DMA_DISABLED		(0)
267 #define SSP_DMA_ENABLED			(1)
268 
269 /*
270  * SSP Clock Defaults
271  */
272 #define SSP_DEFAULT_CLKRATE 0x2
273 #define SSP_DEFAULT_PRESCALE 0x40
274 
275 /*
276  * SSP Clock Parameter ranges
277  */
278 #define CPSDVR_MIN 0x02
279 #define CPSDVR_MAX 0xFE
280 #define SCR_MIN 0x00
281 #define SCR_MAX 0xFF
282 
283 /*
284  * SSP Interrupt related Macros
285  */
286 #define DEFAULT_SSP_REG_IMSC  0x0UL
287 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
288 #define ENABLE_ALL_INTERRUPTS ( \
289 	SSP_IMSC_MASK_RORIM | \
290 	SSP_IMSC_MASK_RTIM | \
291 	SSP_IMSC_MASK_RXIM | \
292 	SSP_IMSC_MASK_TXIM \
293 )
294 
295 #define CLEAR_ALL_INTERRUPTS  0x3
296 
297 #define SPI_POLLING_TIMEOUT 1000
298 
299 /*
300  * The type of reading going on on this chip
301  */
302 enum ssp_reading {
303 	READING_NULL,
304 	READING_U8,
305 	READING_U16,
306 	READING_U32
307 };
308 
309 /**
310  * The type of writing going on on this chip
311  */
312 enum ssp_writing {
313 	WRITING_NULL,
314 	WRITING_U8,
315 	WRITING_U16,
316 	WRITING_U32
317 };
318 
319 /**
320  * struct vendor_data - vendor-specific config parameters
321  * for PL022 derivates
322  * @fifodepth: depth of FIFOs (both)
323  * @max_bpw: maximum number of bits per word
324  * @unidir: supports unidirection transfers
325  * @extended_cr: 32 bit wide control register 0 with extra
326  * features and extra features in CR1 as found in the ST variants
327  * @pl023: supports a subset of the ST extensions called "PL023"
328  * @internal_cs_ctrl: supports chip select control register
329  */
330 struct vendor_data {
331 	int fifodepth;
332 	int max_bpw;
333 	bool unidir;
334 	bool extended_cr;
335 	bool pl023;
336 	bool loopback;
337 	bool internal_cs_ctrl;
338 };
339 
340 /**
341  * struct pl022 - This is the private SSP driver data structure
342  * @adev: AMBA device model hookup
343  * @vendor: vendor data for the IP block
344  * @phybase: the physical memory where the SSP device resides
345  * @virtbase: the virtual memory where the SSP is mapped
346  * @clk: outgoing clock "SPICLK" for the SPI bus
347  * @master: SPI framework hookup
348  * @master_info: controller-specific data from machine setup
349  * @pump_transfers: Tasklet used in Interrupt Transfer mode
350  * @cur_msg: Pointer to current spi_message being processed
351  * @cur_transfer: Pointer to current spi_transfer
352  * @cur_chip: pointer to current clients chip(assigned from controller_state)
353  * @next_msg_cs_active: the next message in the queue has been examined
354  *  and it was found that it uses the same chip select as the previous
355  *  message, so we left it active after the previous transfer, and it's
356  *  active already.
357  * @tx: current position in TX buffer to be read
358  * @tx_end: end position in TX buffer to be read
359  * @rx: current position in RX buffer to be written
360  * @rx_end: end position in RX buffer to be written
361  * @read: the type of read currently going on
362  * @write: the type of write currently going on
363  * @exp_fifo_level: expected FIFO level
364  * @dma_rx_channel: optional channel for RX DMA
365  * @dma_tx_channel: optional channel for TX DMA
366  * @sgt_rx: scattertable for the RX transfer
367  * @sgt_tx: scattertable for the TX transfer
368  * @dummypage: a dummy page used for driving data on the bus with DMA
369  * @cur_cs: current chip select (gpio)
370  * @chipselects: list of chipselects (gpios)
371  */
372 struct pl022 {
373 	struct amba_device		*adev;
374 	struct vendor_data		*vendor;
375 	resource_size_t			phybase;
376 	void __iomem			*virtbase;
377 	struct clk			*clk;
378 	struct spi_master		*master;
379 	struct pl022_ssp_controller	*master_info;
380 	/* Message per-transfer pump */
381 	struct tasklet_struct		pump_transfers;
382 	struct spi_message		*cur_msg;
383 	struct spi_transfer		*cur_transfer;
384 	struct chip_data		*cur_chip;
385 	bool				next_msg_cs_active;
386 	void				*tx;
387 	void				*tx_end;
388 	void				*rx;
389 	void				*rx_end;
390 	enum ssp_reading		read;
391 	enum ssp_writing		write;
392 	u32				exp_fifo_level;
393 	enum ssp_rx_level_trig		rx_lev_trig;
394 	enum ssp_tx_level_trig		tx_lev_trig;
395 	/* DMA settings */
396 #ifdef CONFIG_DMA_ENGINE
397 	struct dma_chan			*dma_rx_channel;
398 	struct dma_chan			*dma_tx_channel;
399 	struct sg_table			sgt_rx;
400 	struct sg_table			sgt_tx;
401 	char				*dummypage;
402 	bool				dma_running;
403 #endif
404 	int cur_cs;
405 	int *chipselects;
406 };
407 
408 /**
409  * struct chip_data - To maintain runtime state of SSP for each client chip
410  * @cr0: Value of control register CR0 of SSP - on later ST variants this
411  *       register is 32 bits wide rather than just 16
412  * @cr1: Value of control register CR1 of SSP
413  * @dmacr: Value of DMA control Register of SSP
414  * @cpsr: Value of Clock prescale register
415  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
416  * @enable_dma: Whether to enable DMA or not
417  * @read: function ptr to be used to read when doing xfer for this chip
418  * @write: function ptr to be used to write when doing xfer for this chip
419  * @cs_control: chip select callback provided by chip
420  * @xfer_type: polling/interrupt/DMA
421  *
422  * Runtime state of the SSP controller, maintained per chip,
423  * This would be set according to the current message that would be served
424  */
425 struct chip_data {
426 	u32 cr0;
427 	u16 cr1;
428 	u16 dmacr;
429 	u16 cpsr;
430 	u8 n_bytes;
431 	bool enable_dma;
432 	enum ssp_reading read;
433 	enum ssp_writing write;
434 	void (*cs_control) (u32 command);
435 	int xfer_type;
436 };
437 
438 /**
439  * null_cs_control - Dummy chip select function
440  * @command: select/delect the chip
441  *
442  * If no chip select function is provided by client this is used as dummy
443  * chip select
444  */
445 static void null_cs_control(u32 command)
446 {
447 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
448 }
449 
450 /**
451  * internal_cs_control - Control chip select signals via SSP_CSR.
452  * @pl022: SSP driver private data structure
453  * @command: select/delect the chip
454  *
455  * Used on controller with internal chip select control via SSP_CSR register
456  * (vendor extension). Each of the 5 LSB in the register controls one chip
457  * select signal.
458  */
459 static void internal_cs_control(struct pl022 *pl022, u32 command)
460 {
461 	u32 tmp;
462 
463 	tmp = readw(SSP_CSR(pl022->virtbase));
464 	if (command == SSP_CHIP_SELECT)
465 		tmp &= ~BIT(pl022->cur_cs);
466 	else
467 		tmp |= BIT(pl022->cur_cs);
468 	writew(tmp, SSP_CSR(pl022->virtbase));
469 }
470 
471 static void pl022_cs_control(struct pl022 *pl022, u32 command)
472 {
473 	if (pl022->vendor->internal_cs_ctrl)
474 		internal_cs_control(pl022, command);
475 	else if (gpio_is_valid(pl022->cur_cs))
476 		gpio_set_value(pl022->cur_cs, command);
477 	else
478 		pl022->cur_chip->cs_control(command);
479 }
480 
481 /**
482  * giveback - current spi_message is over, schedule next message and call
483  * callback of this message. Assumes that caller already
484  * set message->status; dma and pio irqs are blocked
485  * @pl022: SSP driver private data structure
486  */
487 static void giveback(struct pl022 *pl022)
488 {
489 	struct spi_transfer *last_transfer;
490 	pl022->next_msg_cs_active = false;
491 
492 	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
493 					struct spi_transfer, transfer_list);
494 
495 	/* Delay if requested before any change in chip select */
496 	if (last_transfer->delay_usecs)
497 		/*
498 		 * FIXME: This runs in interrupt context.
499 		 * Is this really smart?
500 		 */
501 		udelay(last_transfer->delay_usecs);
502 
503 	if (!last_transfer->cs_change) {
504 		struct spi_message *next_msg;
505 
506 		/*
507 		 * cs_change was not set. We can keep the chip select
508 		 * enabled if there is message in the queue and it is
509 		 * for the same spi device.
510 		 *
511 		 * We cannot postpone this until pump_messages, because
512 		 * after calling msg->complete (below) the driver that
513 		 * sent the current message could be unloaded, which
514 		 * could invalidate the cs_control() callback...
515 		 */
516 		/* get a pointer to the next message, if any */
517 		next_msg = spi_get_next_queued_message(pl022->master);
518 
519 		/*
520 		 * see if the next and current messages point
521 		 * to the same spi device.
522 		 */
523 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
524 			next_msg = NULL;
525 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
526 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
527 		else
528 			pl022->next_msg_cs_active = true;
529 
530 	}
531 
532 	pl022->cur_msg = NULL;
533 	pl022->cur_transfer = NULL;
534 	pl022->cur_chip = NULL;
535 
536 	/* disable the SPI/SSP operation */
537 	writew((readw(SSP_CR1(pl022->virtbase)) &
538 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
539 
540 	spi_finalize_current_message(pl022->master);
541 }
542 
543 /**
544  * flush - flush the FIFO to reach a clean state
545  * @pl022: SSP driver private data structure
546  */
547 static int flush(struct pl022 *pl022)
548 {
549 	unsigned long limit = loops_per_jiffy << 1;
550 
551 	dev_dbg(&pl022->adev->dev, "flush\n");
552 	do {
553 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
554 			readw(SSP_DR(pl022->virtbase));
555 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
556 
557 	pl022->exp_fifo_level = 0;
558 
559 	return limit;
560 }
561 
562 /**
563  * restore_state - Load configuration of current chip
564  * @pl022: SSP driver private data structure
565  */
566 static void restore_state(struct pl022 *pl022)
567 {
568 	struct chip_data *chip = pl022->cur_chip;
569 
570 	if (pl022->vendor->extended_cr)
571 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
572 	else
573 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
574 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
575 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
576 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
577 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
578 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
579 }
580 
581 /*
582  * Default SSP Register Values
583  */
584 #define DEFAULT_SSP_REG_CR0 ( \
585 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
586 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
587 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
590 )
591 
592 /* ST versions have slightly different bit layout */
593 #define DEFAULT_SSP_REG_CR0_ST ( \
594 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
595 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
596 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
597 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
598 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
599 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
600 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
601 )
602 
603 /* The PL023 version is slightly different again */
604 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
605 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
606 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
607 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
608 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
609 )
610 
611 #define DEFAULT_SSP_REG_CR1 ( \
612 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
613 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
614 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
615 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
616 )
617 
618 /* ST versions extend this register to use all 16 bits */
619 #define DEFAULT_SSP_REG_CR1_ST ( \
620 	DEFAULT_SSP_REG_CR1 | \
621 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
622 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
623 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
624 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
625 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
626 )
627 
628 /*
629  * The PL023 variant has further differences: no loopback mode, no microwire
630  * support, and a new clock feedback delay setting.
631  */
632 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
633 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
634 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
635 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
636 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
637 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
638 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
639 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
640 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
641 )
642 
643 #define DEFAULT_SSP_REG_CPSR ( \
644 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
645 )
646 
647 #define DEFAULT_SSP_REG_DMACR (\
648 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
649 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
650 )
651 
652 /**
653  * load_ssp_default_config - Load default configuration for SSP
654  * @pl022: SSP driver private data structure
655  */
656 static void load_ssp_default_config(struct pl022 *pl022)
657 {
658 	if (pl022->vendor->pl023) {
659 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
660 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
661 	} else if (pl022->vendor->extended_cr) {
662 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
663 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
664 	} else {
665 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
666 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
667 	}
668 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
669 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
670 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
671 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
672 }
673 
674 /**
675  * This will write to TX and read from RX according to the parameters
676  * set in pl022.
677  */
678 static void readwriter(struct pl022 *pl022)
679 {
680 
681 	/*
682 	 * The FIFO depth is different between primecell variants.
683 	 * I believe filling in too much in the FIFO might cause
684 	 * errons in 8bit wide transfers on ARM variants (just 8 words
685 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
686 	 *
687 	 * To prevent this issue, the TX FIFO is only filled to the
688 	 * unused RX FIFO fill length, regardless of what the TX
689 	 * FIFO status flag indicates.
690 	 */
691 	dev_dbg(&pl022->adev->dev,
692 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
693 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
694 
695 	/* Read as much as you can */
696 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
697 	       && (pl022->rx < pl022->rx_end)) {
698 		switch (pl022->read) {
699 		case READING_NULL:
700 			readw(SSP_DR(pl022->virtbase));
701 			break;
702 		case READING_U8:
703 			*(u8 *) (pl022->rx) =
704 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
705 			break;
706 		case READING_U16:
707 			*(u16 *) (pl022->rx) =
708 				(u16) readw(SSP_DR(pl022->virtbase));
709 			break;
710 		case READING_U32:
711 			*(u32 *) (pl022->rx) =
712 				readl(SSP_DR(pl022->virtbase));
713 			break;
714 		}
715 		pl022->rx += (pl022->cur_chip->n_bytes);
716 		pl022->exp_fifo_level--;
717 	}
718 	/*
719 	 * Write as much as possible up to the RX FIFO size
720 	 */
721 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
722 	       && (pl022->tx < pl022->tx_end)) {
723 		switch (pl022->write) {
724 		case WRITING_NULL:
725 			writew(0x0, SSP_DR(pl022->virtbase));
726 			break;
727 		case WRITING_U8:
728 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
729 			break;
730 		case WRITING_U16:
731 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
732 			break;
733 		case WRITING_U32:
734 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
735 			break;
736 		}
737 		pl022->tx += (pl022->cur_chip->n_bytes);
738 		pl022->exp_fifo_level++;
739 		/*
740 		 * This inner reader takes care of things appearing in the RX
741 		 * FIFO as we're transmitting. This will happen a lot since the
742 		 * clock starts running when you put things into the TX FIFO,
743 		 * and then things are continuously clocked into the RX FIFO.
744 		 */
745 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
746 		       && (pl022->rx < pl022->rx_end)) {
747 			switch (pl022->read) {
748 			case READING_NULL:
749 				readw(SSP_DR(pl022->virtbase));
750 				break;
751 			case READING_U8:
752 				*(u8 *) (pl022->rx) =
753 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
754 				break;
755 			case READING_U16:
756 				*(u16 *) (pl022->rx) =
757 					(u16) readw(SSP_DR(pl022->virtbase));
758 				break;
759 			case READING_U32:
760 				*(u32 *) (pl022->rx) =
761 					readl(SSP_DR(pl022->virtbase));
762 				break;
763 			}
764 			pl022->rx += (pl022->cur_chip->n_bytes);
765 			pl022->exp_fifo_level--;
766 		}
767 	}
768 	/*
769 	 * When we exit here the TX FIFO should be full and the RX FIFO
770 	 * should be empty
771 	 */
772 }
773 
774 /**
775  * next_transfer - Move to the Next transfer in the current spi message
776  * @pl022: SSP driver private data structure
777  *
778  * This function moves though the linked list of spi transfers in the
779  * current spi message and returns with the state of current spi
780  * message i.e whether its last transfer is done(STATE_DONE) or
781  * Next transfer is ready(STATE_RUNNING)
782  */
783 static void *next_transfer(struct pl022 *pl022)
784 {
785 	struct spi_message *msg = pl022->cur_msg;
786 	struct spi_transfer *trans = pl022->cur_transfer;
787 
788 	/* Move to next transfer */
789 	if (trans->transfer_list.next != &msg->transfers) {
790 		pl022->cur_transfer =
791 		    list_entry(trans->transfer_list.next,
792 			       struct spi_transfer, transfer_list);
793 		return STATE_RUNNING;
794 	}
795 	return STATE_DONE;
796 }
797 
798 /*
799  * This DMA functionality is only compiled in if we have
800  * access to the generic DMA devices/DMA engine.
801  */
802 #ifdef CONFIG_DMA_ENGINE
803 static void unmap_free_dma_scatter(struct pl022 *pl022)
804 {
805 	/* Unmap and free the SG tables */
806 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
807 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
808 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
809 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
810 	sg_free_table(&pl022->sgt_rx);
811 	sg_free_table(&pl022->sgt_tx);
812 }
813 
814 static void dma_callback(void *data)
815 {
816 	struct pl022 *pl022 = data;
817 	struct spi_message *msg = pl022->cur_msg;
818 
819 	BUG_ON(!pl022->sgt_rx.sgl);
820 
821 #ifdef VERBOSE_DEBUG
822 	/*
823 	 * Optionally dump out buffers to inspect contents, this is
824 	 * good if you want to convince yourself that the loopback
825 	 * read/write contents are the same, when adopting to a new
826 	 * DMA engine.
827 	 */
828 	{
829 		struct scatterlist *sg;
830 		unsigned int i;
831 
832 		dma_sync_sg_for_cpu(&pl022->adev->dev,
833 				    pl022->sgt_rx.sgl,
834 				    pl022->sgt_rx.nents,
835 				    DMA_FROM_DEVICE);
836 
837 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
838 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
839 			print_hex_dump(KERN_ERR, "SPI RX: ",
840 				       DUMP_PREFIX_OFFSET,
841 				       16,
842 				       1,
843 				       sg_virt(sg),
844 				       sg_dma_len(sg),
845 				       1);
846 		}
847 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
848 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
849 			print_hex_dump(KERN_ERR, "SPI TX: ",
850 				       DUMP_PREFIX_OFFSET,
851 				       16,
852 				       1,
853 				       sg_virt(sg),
854 				       sg_dma_len(sg),
855 				       1);
856 		}
857 	}
858 #endif
859 
860 	unmap_free_dma_scatter(pl022);
861 
862 	/* Update total bytes transferred */
863 	msg->actual_length += pl022->cur_transfer->len;
864 	/* Move to next transfer */
865 	msg->state = next_transfer(pl022);
866 	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
867 		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
868 	tasklet_schedule(&pl022->pump_transfers);
869 }
870 
871 static void setup_dma_scatter(struct pl022 *pl022,
872 			      void *buffer,
873 			      unsigned int length,
874 			      struct sg_table *sgtab)
875 {
876 	struct scatterlist *sg;
877 	int bytesleft = length;
878 	void *bufp = buffer;
879 	int mapbytes;
880 	int i;
881 
882 	if (buffer) {
883 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
884 			/*
885 			 * If there are less bytes left than what fits
886 			 * in the current page (plus page alignment offset)
887 			 * we just feed in this, else we stuff in as much
888 			 * as we can.
889 			 */
890 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
891 				mapbytes = bytesleft;
892 			else
893 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
894 			sg_set_page(sg, virt_to_page(bufp),
895 				    mapbytes, offset_in_page(bufp));
896 			bufp += mapbytes;
897 			bytesleft -= mapbytes;
898 			dev_dbg(&pl022->adev->dev,
899 				"set RX/TX target page @ %p, %d bytes, %d left\n",
900 				bufp, mapbytes, bytesleft);
901 		}
902 	} else {
903 		/* Map the dummy buffer on every page */
904 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
905 			if (bytesleft < PAGE_SIZE)
906 				mapbytes = bytesleft;
907 			else
908 				mapbytes = PAGE_SIZE;
909 			sg_set_page(sg, virt_to_page(pl022->dummypage),
910 				    mapbytes, 0);
911 			bytesleft -= mapbytes;
912 			dev_dbg(&pl022->adev->dev,
913 				"set RX/TX to dummy page %d bytes, %d left\n",
914 				mapbytes, bytesleft);
915 
916 		}
917 	}
918 	BUG_ON(bytesleft);
919 }
920 
921 /**
922  * configure_dma - configures the channels for the next transfer
923  * @pl022: SSP driver's private data structure
924  */
925 static int configure_dma(struct pl022 *pl022)
926 {
927 	struct dma_slave_config rx_conf = {
928 		.src_addr = SSP_DR(pl022->phybase),
929 		.direction = DMA_DEV_TO_MEM,
930 		.device_fc = false,
931 	};
932 	struct dma_slave_config tx_conf = {
933 		.dst_addr = SSP_DR(pl022->phybase),
934 		.direction = DMA_MEM_TO_DEV,
935 		.device_fc = false,
936 	};
937 	unsigned int pages;
938 	int ret;
939 	int rx_sglen, tx_sglen;
940 	struct dma_chan *rxchan = pl022->dma_rx_channel;
941 	struct dma_chan *txchan = pl022->dma_tx_channel;
942 	struct dma_async_tx_descriptor *rxdesc;
943 	struct dma_async_tx_descriptor *txdesc;
944 
945 	/* Check that the channels are available */
946 	if (!rxchan || !txchan)
947 		return -ENODEV;
948 
949 	/*
950 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
951 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
952 	 * not trigger on 2 elements this needs explicit mapping rather than
953 	 * calculation.
954 	 */
955 	switch (pl022->rx_lev_trig) {
956 	case SSP_RX_1_OR_MORE_ELEM:
957 		rx_conf.src_maxburst = 1;
958 		break;
959 	case SSP_RX_4_OR_MORE_ELEM:
960 		rx_conf.src_maxburst = 4;
961 		break;
962 	case SSP_RX_8_OR_MORE_ELEM:
963 		rx_conf.src_maxburst = 8;
964 		break;
965 	case SSP_RX_16_OR_MORE_ELEM:
966 		rx_conf.src_maxburst = 16;
967 		break;
968 	case SSP_RX_32_OR_MORE_ELEM:
969 		rx_conf.src_maxburst = 32;
970 		break;
971 	default:
972 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
973 		break;
974 	}
975 
976 	switch (pl022->tx_lev_trig) {
977 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
978 		tx_conf.dst_maxburst = 1;
979 		break;
980 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
981 		tx_conf.dst_maxburst = 4;
982 		break;
983 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
984 		tx_conf.dst_maxburst = 8;
985 		break;
986 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
987 		tx_conf.dst_maxburst = 16;
988 		break;
989 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
990 		tx_conf.dst_maxburst = 32;
991 		break;
992 	default:
993 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
994 		break;
995 	}
996 
997 	switch (pl022->read) {
998 	case READING_NULL:
999 		/* Use the same as for writing */
1000 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1001 		break;
1002 	case READING_U8:
1003 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1004 		break;
1005 	case READING_U16:
1006 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1007 		break;
1008 	case READING_U32:
1009 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1010 		break;
1011 	}
1012 
1013 	switch (pl022->write) {
1014 	case WRITING_NULL:
1015 		/* Use the same as for reading */
1016 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1017 		break;
1018 	case WRITING_U8:
1019 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1020 		break;
1021 	case WRITING_U16:
1022 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1023 		break;
1024 	case WRITING_U32:
1025 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1026 		break;
1027 	}
1028 
1029 	/* SPI pecularity: we need to read and write the same width */
1030 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1031 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1032 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1033 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1034 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1035 
1036 	dmaengine_slave_config(rxchan, &rx_conf);
1037 	dmaengine_slave_config(txchan, &tx_conf);
1038 
1039 	/* Create sglists for the transfers */
1040 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1041 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1042 
1043 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1044 	if (ret)
1045 		goto err_alloc_rx_sg;
1046 
1047 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1048 	if (ret)
1049 		goto err_alloc_tx_sg;
1050 
1051 	/* Fill in the scatterlists for the RX+TX buffers */
1052 	setup_dma_scatter(pl022, pl022->rx,
1053 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1054 	setup_dma_scatter(pl022, pl022->tx,
1055 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1056 
1057 	/* Map DMA buffers */
1058 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1059 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1060 	if (!rx_sglen)
1061 		goto err_rx_sgmap;
1062 
1063 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1064 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1065 	if (!tx_sglen)
1066 		goto err_tx_sgmap;
1067 
1068 	/* Send both scatterlists */
1069 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1070 				      pl022->sgt_rx.sgl,
1071 				      rx_sglen,
1072 				      DMA_DEV_TO_MEM,
1073 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1074 	if (!rxdesc)
1075 		goto err_rxdesc;
1076 
1077 	txdesc = dmaengine_prep_slave_sg(txchan,
1078 				      pl022->sgt_tx.sgl,
1079 				      tx_sglen,
1080 				      DMA_MEM_TO_DEV,
1081 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1082 	if (!txdesc)
1083 		goto err_txdesc;
1084 
1085 	/* Put the callback on the RX transfer only, that should finish last */
1086 	rxdesc->callback = dma_callback;
1087 	rxdesc->callback_param = pl022;
1088 
1089 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1090 	dmaengine_submit(rxdesc);
1091 	dmaengine_submit(txdesc);
1092 	dma_async_issue_pending(rxchan);
1093 	dma_async_issue_pending(txchan);
1094 	pl022->dma_running = true;
1095 
1096 	return 0;
1097 
1098 err_txdesc:
1099 	dmaengine_terminate_all(txchan);
1100 err_rxdesc:
1101 	dmaengine_terminate_all(rxchan);
1102 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1103 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1104 err_tx_sgmap:
1105 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1106 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1107 err_rx_sgmap:
1108 	sg_free_table(&pl022->sgt_tx);
1109 err_alloc_tx_sg:
1110 	sg_free_table(&pl022->sgt_rx);
1111 err_alloc_rx_sg:
1112 	return -ENOMEM;
1113 }
1114 
1115 static int pl022_dma_probe(struct pl022 *pl022)
1116 {
1117 	dma_cap_mask_t mask;
1118 
1119 	/* Try to acquire a generic DMA engine slave channel */
1120 	dma_cap_zero(mask);
1121 	dma_cap_set(DMA_SLAVE, mask);
1122 	/*
1123 	 * We need both RX and TX channels to do DMA, else do none
1124 	 * of them.
1125 	 */
1126 	pl022->dma_rx_channel = dma_request_channel(mask,
1127 					    pl022->master_info->dma_filter,
1128 					    pl022->master_info->dma_rx_param);
1129 	if (!pl022->dma_rx_channel) {
1130 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1131 		goto err_no_rxchan;
1132 	}
1133 
1134 	pl022->dma_tx_channel = dma_request_channel(mask,
1135 					    pl022->master_info->dma_filter,
1136 					    pl022->master_info->dma_tx_param);
1137 	if (!pl022->dma_tx_channel) {
1138 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1139 		goto err_no_txchan;
1140 	}
1141 
1142 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1143 	if (!pl022->dummypage)
1144 		goto err_no_dummypage;
1145 
1146 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1147 		 dma_chan_name(pl022->dma_rx_channel),
1148 		 dma_chan_name(pl022->dma_tx_channel));
1149 
1150 	return 0;
1151 
1152 err_no_dummypage:
1153 	dma_release_channel(pl022->dma_tx_channel);
1154 err_no_txchan:
1155 	dma_release_channel(pl022->dma_rx_channel);
1156 	pl022->dma_rx_channel = NULL;
1157 err_no_rxchan:
1158 	dev_err(&pl022->adev->dev,
1159 			"Failed to work in dma mode, work without dma!\n");
1160 	return -ENODEV;
1161 }
1162 
1163 static int pl022_dma_autoprobe(struct pl022 *pl022)
1164 {
1165 	struct device *dev = &pl022->adev->dev;
1166 	struct dma_chan *chan;
1167 	int err;
1168 
1169 	/* automatically configure DMA channels from platform, normally using DT */
1170 	chan = dma_request_slave_channel_reason(dev, "rx");
1171 	if (IS_ERR(chan)) {
1172 		err = PTR_ERR(chan);
1173 		goto err_no_rxchan;
1174 	}
1175 
1176 	pl022->dma_rx_channel = chan;
1177 
1178 	chan = dma_request_slave_channel_reason(dev, "tx");
1179 	if (IS_ERR(chan)) {
1180 		err = PTR_ERR(chan);
1181 		goto err_no_txchan;
1182 	}
1183 
1184 	pl022->dma_tx_channel = chan;
1185 
1186 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1187 	if (!pl022->dummypage) {
1188 		err = -ENOMEM;
1189 		goto err_no_dummypage;
1190 	}
1191 
1192 	return 0;
1193 
1194 err_no_dummypage:
1195 	dma_release_channel(pl022->dma_tx_channel);
1196 	pl022->dma_tx_channel = NULL;
1197 err_no_txchan:
1198 	dma_release_channel(pl022->dma_rx_channel);
1199 	pl022->dma_rx_channel = NULL;
1200 err_no_rxchan:
1201 	return err;
1202 }
1203 
1204 static void terminate_dma(struct pl022 *pl022)
1205 {
1206 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1207 	struct dma_chan *txchan = pl022->dma_tx_channel;
1208 
1209 	dmaengine_terminate_all(rxchan);
1210 	dmaengine_terminate_all(txchan);
1211 	unmap_free_dma_scatter(pl022);
1212 	pl022->dma_running = false;
1213 }
1214 
1215 static void pl022_dma_remove(struct pl022 *pl022)
1216 {
1217 	if (pl022->dma_running)
1218 		terminate_dma(pl022);
1219 	if (pl022->dma_tx_channel)
1220 		dma_release_channel(pl022->dma_tx_channel);
1221 	if (pl022->dma_rx_channel)
1222 		dma_release_channel(pl022->dma_rx_channel);
1223 	kfree(pl022->dummypage);
1224 }
1225 
1226 #else
1227 static inline int configure_dma(struct pl022 *pl022)
1228 {
1229 	return -ENODEV;
1230 }
1231 
1232 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1233 {
1234 	return 0;
1235 }
1236 
1237 static inline int pl022_dma_probe(struct pl022 *pl022)
1238 {
1239 	return 0;
1240 }
1241 
1242 static inline void pl022_dma_remove(struct pl022 *pl022)
1243 {
1244 }
1245 #endif
1246 
1247 /**
1248  * pl022_interrupt_handler - Interrupt handler for SSP controller
1249  *
1250  * This function handles interrupts generated for an interrupt based transfer.
1251  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1252  * current message's state as STATE_ERROR and schedule the tasklet
1253  * pump_transfers which will do the postprocessing of the current message by
1254  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1255  * more data, and writes data in TX FIFO till it is not full. If we complete
1256  * the transfer we move to the next transfer and schedule the tasklet.
1257  */
1258 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1259 {
1260 	struct pl022 *pl022 = dev_id;
1261 	struct spi_message *msg = pl022->cur_msg;
1262 	u16 irq_status = 0;
1263 
1264 	if (unlikely(!msg)) {
1265 		dev_err(&pl022->adev->dev,
1266 			"bad message state in interrupt handler");
1267 		/* Never fail */
1268 		return IRQ_HANDLED;
1269 	}
1270 
1271 	/* Read the Interrupt Status Register */
1272 	irq_status = readw(SSP_MIS(pl022->virtbase));
1273 
1274 	if (unlikely(!irq_status))
1275 		return IRQ_NONE;
1276 
1277 	/*
1278 	 * This handles the FIFO interrupts, the timeout
1279 	 * interrupts are flatly ignored, they cannot be
1280 	 * trusted.
1281 	 */
1282 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1283 		/*
1284 		 * Overrun interrupt - bail out since our Data has been
1285 		 * corrupted
1286 		 */
1287 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1288 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1289 			dev_err(&pl022->adev->dev,
1290 				"RXFIFO is full\n");
1291 
1292 		/*
1293 		 * Disable and clear interrupts, disable SSP,
1294 		 * mark message with bad status so it can be
1295 		 * retried.
1296 		 */
1297 		writew(DISABLE_ALL_INTERRUPTS,
1298 		       SSP_IMSC(pl022->virtbase));
1299 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1300 		writew((readw(SSP_CR1(pl022->virtbase)) &
1301 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1302 		msg->state = STATE_ERROR;
1303 
1304 		/* Schedule message queue handler */
1305 		tasklet_schedule(&pl022->pump_transfers);
1306 		return IRQ_HANDLED;
1307 	}
1308 
1309 	readwriter(pl022);
1310 
1311 	if (pl022->tx == pl022->tx_end) {
1312 		/* Disable Transmit interrupt, enable receive interrupt */
1313 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1314 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1315 		       SSP_IMSC(pl022->virtbase));
1316 	}
1317 
1318 	/*
1319 	 * Since all transactions must write as much as shall be read,
1320 	 * we can conclude the entire transaction once RX is complete.
1321 	 * At this point, all TX will always be finished.
1322 	 */
1323 	if (pl022->rx >= pl022->rx_end) {
1324 		writew(DISABLE_ALL_INTERRUPTS,
1325 		       SSP_IMSC(pl022->virtbase));
1326 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1327 		if (unlikely(pl022->rx > pl022->rx_end)) {
1328 			dev_warn(&pl022->adev->dev, "read %u surplus "
1329 				 "bytes (did you request an odd "
1330 				 "number of bytes on a 16bit bus?)\n",
1331 				 (u32) (pl022->rx - pl022->rx_end));
1332 		}
1333 		/* Update total bytes transferred */
1334 		msg->actual_length += pl022->cur_transfer->len;
1335 		/* Move to next transfer */
1336 		msg->state = next_transfer(pl022);
1337 		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1338 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1339 		tasklet_schedule(&pl022->pump_transfers);
1340 		return IRQ_HANDLED;
1341 	}
1342 
1343 	return IRQ_HANDLED;
1344 }
1345 
1346 /**
1347  * This sets up the pointers to memory for the next message to
1348  * send out on the SPI bus.
1349  */
1350 static int set_up_next_transfer(struct pl022 *pl022,
1351 				struct spi_transfer *transfer)
1352 {
1353 	int residue;
1354 
1355 	/* Sanity check the message for this bus width */
1356 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1357 	if (unlikely(residue != 0)) {
1358 		dev_err(&pl022->adev->dev,
1359 			"message of %u bytes to transmit but the current "
1360 			"chip bus has a data width of %u bytes!\n",
1361 			pl022->cur_transfer->len,
1362 			pl022->cur_chip->n_bytes);
1363 		dev_err(&pl022->adev->dev, "skipping this message\n");
1364 		return -EIO;
1365 	}
1366 	pl022->tx = (void *)transfer->tx_buf;
1367 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1368 	pl022->rx = (void *)transfer->rx_buf;
1369 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1370 	pl022->write =
1371 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1372 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1373 	return 0;
1374 }
1375 
1376 /**
1377  * pump_transfers - Tasklet function which schedules next transfer
1378  * when running in interrupt or DMA transfer mode.
1379  * @data: SSP driver private data structure
1380  *
1381  */
1382 static void pump_transfers(unsigned long data)
1383 {
1384 	struct pl022 *pl022 = (struct pl022 *) data;
1385 	struct spi_message *message = NULL;
1386 	struct spi_transfer *transfer = NULL;
1387 	struct spi_transfer *previous = NULL;
1388 
1389 	/* Get current state information */
1390 	message = pl022->cur_msg;
1391 	transfer = pl022->cur_transfer;
1392 
1393 	/* Handle for abort */
1394 	if (message->state == STATE_ERROR) {
1395 		message->status = -EIO;
1396 		giveback(pl022);
1397 		return;
1398 	}
1399 
1400 	/* Handle end of message */
1401 	if (message->state == STATE_DONE) {
1402 		message->status = 0;
1403 		giveback(pl022);
1404 		return;
1405 	}
1406 
1407 	/* Delay if requested at end of transfer before CS change */
1408 	if (message->state == STATE_RUNNING) {
1409 		previous = list_entry(transfer->transfer_list.prev,
1410 					struct spi_transfer,
1411 					transfer_list);
1412 		if (previous->delay_usecs)
1413 			/*
1414 			 * FIXME: This runs in interrupt context.
1415 			 * Is this really smart?
1416 			 */
1417 			udelay(previous->delay_usecs);
1418 
1419 		/* Reselect chip select only if cs_change was requested */
1420 		if (previous->cs_change)
1421 			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1422 	} else {
1423 		/* STATE_START */
1424 		message->state = STATE_RUNNING;
1425 	}
1426 
1427 	if (set_up_next_transfer(pl022, transfer)) {
1428 		message->state = STATE_ERROR;
1429 		message->status = -EIO;
1430 		giveback(pl022);
1431 		return;
1432 	}
1433 	/* Flush the FIFOs and let's go! */
1434 	flush(pl022);
1435 
1436 	if (pl022->cur_chip->enable_dma) {
1437 		if (configure_dma(pl022)) {
1438 			dev_dbg(&pl022->adev->dev,
1439 				"configuration of DMA failed, fall back to interrupt mode\n");
1440 			goto err_config_dma;
1441 		}
1442 		return;
1443 	}
1444 
1445 err_config_dma:
1446 	/* enable all interrupts except RX */
1447 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1448 }
1449 
1450 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1451 {
1452 	/*
1453 	 * Default is to enable all interrupts except RX -
1454 	 * this will be enabled once TX is complete
1455 	 */
1456 	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1457 
1458 	/* Enable target chip, if not already active */
1459 	if (!pl022->next_msg_cs_active)
1460 		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1461 
1462 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1463 		/* Error path */
1464 		pl022->cur_msg->state = STATE_ERROR;
1465 		pl022->cur_msg->status = -EIO;
1466 		giveback(pl022);
1467 		return;
1468 	}
1469 	/* If we're using DMA, set up DMA here */
1470 	if (pl022->cur_chip->enable_dma) {
1471 		/* Configure DMA transfer */
1472 		if (configure_dma(pl022)) {
1473 			dev_dbg(&pl022->adev->dev,
1474 				"configuration of DMA failed, fall back to interrupt mode\n");
1475 			goto err_config_dma;
1476 		}
1477 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1478 		irqflags = DISABLE_ALL_INTERRUPTS;
1479 	}
1480 err_config_dma:
1481 	/* Enable SSP, turn on interrupts */
1482 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1483 	       SSP_CR1(pl022->virtbase));
1484 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1485 }
1486 
1487 static void do_polling_transfer(struct pl022 *pl022)
1488 {
1489 	struct spi_message *message = NULL;
1490 	struct spi_transfer *transfer = NULL;
1491 	struct spi_transfer *previous = NULL;
1492 	unsigned long time, timeout;
1493 
1494 	message = pl022->cur_msg;
1495 
1496 	while (message->state != STATE_DONE) {
1497 		/* Handle for abort */
1498 		if (message->state == STATE_ERROR)
1499 			break;
1500 		transfer = pl022->cur_transfer;
1501 
1502 		/* Delay if requested at end of transfer */
1503 		if (message->state == STATE_RUNNING) {
1504 			previous =
1505 			    list_entry(transfer->transfer_list.prev,
1506 				       struct spi_transfer, transfer_list);
1507 			if (previous->delay_usecs)
1508 				udelay(previous->delay_usecs);
1509 			if (previous->cs_change)
1510 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1511 		} else {
1512 			/* STATE_START */
1513 			message->state = STATE_RUNNING;
1514 			if (!pl022->next_msg_cs_active)
1515 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1516 		}
1517 
1518 		/* Configuration Changing Per Transfer */
1519 		if (set_up_next_transfer(pl022, transfer)) {
1520 			/* Error path */
1521 			message->state = STATE_ERROR;
1522 			break;
1523 		}
1524 		/* Flush FIFOs and enable SSP */
1525 		flush(pl022);
1526 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1527 		       SSP_CR1(pl022->virtbase));
1528 
1529 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1530 
1531 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1532 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1533 			time = jiffies;
1534 			readwriter(pl022);
1535 			if (time_after(time, timeout)) {
1536 				dev_warn(&pl022->adev->dev,
1537 				"%s: timeout!\n", __func__);
1538 				message->state = STATE_ERROR;
1539 				goto out;
1540 			}
1541 			cpu_relax();
1542 		}
1543 
1544 		/* Update total byte transferred */
1545 		message->actual_length += pl022->cur_transfer->len;
1546 		/* Move to next transfer */
1547 		message->state = next_transfer(pl022);
1548 		if (message->state != STATE_DONE
1549 		    && pl022->cur_transfer->cs_change)
1550 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1551 	}
1552 out:
1553 	/* Handle end of message */
1554 	if (message->state == STATE_DONE)
1555 		message->status = 0;
1556 	else
1557 		message->status = -EIO;
1558 
1559 	giveback(pl022);
1560 	return;
1561 }
1562 
1563 static int pl022_transfer_one_message(struct spi_master *master,
1564 				      struct spi_message *msg)
1565 {
1566 	struct pl022 *pl022 = spi_master_get_devdata(master);
1567 
1568 	/* Initial message state */
1569 	pl022->cur_msg = msg;
1570 	msg->state = STATE_START;
1571 
1572 	pl022->cur_transfer = list_entry(msg->transfers.next,
1573 					 struct spi_transfer, transfer_list);
1574 
1575 	/* Setup the SPI using the per chip configuration */
1576 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1577 	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1578 
1579 	restore_state(pl022);
1580 	flush(pl022);
1581 
1582 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1583 		do_polling_transfer(pl022);
1584 	else
1585 		do_interrupt_dma_transfer(pl022);
1586 
1587 	return 0;
1588 }
1589 
1590 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1591 {
1592 	struct pl022 *pl022 = spi_master_get_devdata(master);
1593 
1594 	/* nothing more to do - disable spi/ssp and power off */
1595 	writew((readw(SSP_CR1(pl022->virtbase)) &
1596 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1597 
1598 	return 0;
1599 }
1600 
1601 static int verify_controller_parameters(struct pl022 *pl022,
1602 				struct pl022_config_chip const *chip_info)
1603 {
1604 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1605 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1606 		dev_err(&pl022->adev->dev,
1607 			"interface is configured incorrectly\n");
1608 		return -EINVAL;
1609 	}
1610 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1611 	    (!pl022->vendor->unidir)) {
1612 		dev_err(&pl022->adev->dev,
1613 			"unidirectional mode not supported in this "
1614 			"hardware version\n");
1615 		return -EINVAL;
1616 	}
1617 	if ((chip_info->hierarchy != SSP_MASTER)
1618 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1619 		dev_err(&pl022->adev->dev,
1620 			"hierarchy is configured incorrectly\n");
1621 		return -EINVAL;
1622 	}
1623 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1624 	    && (chip_info->com_mode != DMA_TRANSFER)
1625 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1626 		dev_err(&pl022->adev->dev,
1627 			"Communication mode is configured incorrectly\n");
1628 		return -EINVAL;
1629 	}
1630 	switch (chip_info->rx_lev_trig) {
1631 	case SSP_RX_1_OR_MORE_ELEM:
1632 	case SSP_RX_4_OR_MORE_ELEM:
1633 	case SSP_RX_8_OR_MORE_ELEM:
1634 		/* These are always OK, all variants can handle this */
1635 		break;
1636 	case SSP_RX_16_OR_MORE_ELEM:
1637 		if (pl022->vendor->fifodepth < 16) {
1638 			dev_err(&pl022->adev->dev,
1639 			"RX FIFO Trigger Level is configured incorrectly\n");
1640 			return -EINVAL;
1641 		}
1642 		break;
1643 	case SSP_RX_32_OR_MORE_ELEM:
1644 		if (pl022->vendor->fifodepth < 32) {
1645 			dev_err(&pl022->adev->dev,
1646 			"RX FIFO Trigger Level is configured incorrectly\n");
1647 			return -EINVAL;
1648 		}
1649 		break;
1650 	default:
1651 		dev_err(&pl022->adev->dev,
1652 			"RX FIFO Trigger Level is configured incorrectly\n");
1653 		return -EINVAL;
1654 	}
1655 	switch (chip_info->tx_lev_trig) {
1656 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1657 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1658 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1659 		/* These are always OK, all variants can handle this */
1660 		break;
1661 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1662 		if (pl022->vendor->fifodepth < 16) {
1663 			dev_err(&pl022->adev->dev,
1664 			"TX FIFO Trigger Level is configured incorrectly\n");
1665 			return -EINVAL;
1666 		}
1667 		break;
1668 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1669 		if (pl022->vendor->fifodepth < 32) {
1670 			dev_err(&pl022->adev->dev,
1671 			"TX FIFO Trigger Level is configured incorrectly\n");
1672 			return -EINVAL;
1673 		}
1674 		break;
1675 	default:
1676 		dev_err(&pl022->adev->dev,
1677 			"TX FIFO Trigger Level is configured incorrectly\n");
1678 		return -EINVAL;
1679 	}
1680 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1681 		if ((chip_info->ctrl_len < SSP_BITS_4)
1682 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1683 			dev_err(&pl022->adev->dev,
1684 				"CTRL LEN is configured incorrectly\n");
1685 			return -EINVAL;
1686 		}
1687 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1688 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1689 			dev_err(&pl022->adev->dev,
1690 				"Wait State is configured incorrectly\n");
1691 			return -EINVAL;
1692 		}
1693 		/* Half duplex is only available in the ST Micro version */
1694 		if (pl022->vendor->extended_cr) {
1695 			if ((chip_info->duplex !=
1696 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1697 			    && (chip_info->duplex !=
1698 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1699 				dev_err(&pl022->adev->dev,
1700 					"Microwire duplex mode is configured incorrectly\n");
1701 				return -EINVAL;
1702 			}
1703 		} else {
1704 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1705 				dev_err(&pl022->adev->dev,
1706 					"Microwire half duplex mode requested,"
1707 					" but this is only available in the"
1708 					" ST version of PL022\n");
1709 			return -EINVAL;
1710 		}
1711 	}
1712 	return 0;
1713 }
1714 
1715 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1716 {
1717 	return rate / (cpsdvsr * (1 + scr));
1718 }
1719 
1720 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1721 				    ssp_clock_params * clk_freq)
1722 {
1723 	/* Lets calculate the frequency parameters */
1724 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1725 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1726 		best_scr = 0, tmp, found = 0;
1727 
1728 	rate = clk_get_rate(pl022->clk);
1729 	/* cpsdvscr = 2 & scr 0 */
1730 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1731 	/* cpsdvsr = 254 & scr = 255 */
1732 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1733 
1734 	if (freq > max_tclk)
1735 		dev_warn(&pl022->adev->dev,
1736 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1737 			max_tclk, freq);
1738 
1739 	if (freq < min_tclk) {
1740 		dev_err(&pl022->adev->dev,
1741 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1742 			freq, min_tclk);
1743 		return -EINVAL;
1744 	}
1745 
1746 	/*
1747 	 * best_freq will give closest possible available rate (<= requested
1748 	 * freq) for all values of scr & cpsdvsr.
1749 	 */
1750 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1751 		while (scr <= SCR_MAX) {
1752 			tmp = spi_rate(rate, cpsdvsr, scr);
1753 
1754 			if (tmp > freq) {
1755 				/* we need lower freq */
1756 				scr++;
1757 				continue;
1758 			}
1759 
1760 			/*
1761 			 * If found exact value, mark found and break.
1762 			 * If found more closer value, update and break.
1763 			 */
1764 			if (tmp > best_freq) {
1765 				best_freq = tmp;
1766 				best_cpsdvsr = cpsdvsr;
1767 				best_scr = scr;
1768 
1769 				if (tmp == freq)
1770 					found = 1;
1771 			}
1772 			/*
1773 			 * increased scr will give lower rates, which are not
1774 			 * required
1775 			 */
1776 			break;
1777 		}
1778 		cpsdvsr += 2;
1779 		scr = SCR_MIN;
1780 	}
1781 
1782 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1783 			freq);
1784 
1785 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1786 	clk_freq->scr = (u8) (best_scr & 0xFF);
1787 	dev_dbg(&pl022->adev->dev,
1788 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1789 		freq, best_freq);
1790 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1791 		clk_freq->cpsdvsr, clk_freq->scr);
1792 
1793 	return 0;
1794 }
1795 
1796 /*
1797  * A piece of default chip info unless the platform
1798  * supplies it.
1799  */
1800 static const struct pl022_config_chip pl022_default_chip_info = {
1801 	.com_mode = POLLING_TRANSFER,
1802 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1803 	.hierarchy = SSP_SLAVE,
1804 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1805 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1806 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1807 	.ctrl_len = SSP_BITS_8,
1808 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1809 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1810 	.cs_control = null_cs_control,
1811 };
1812 
1813 /**
1814  * pl022_setup - setup function registered to SPI master framework
1815  * @spi: spi device which is requesting setup
1816  *
1817  * This function is registered to the SPI framework for this SPI master
1818  * controller. If it is the first time when setup is called by this device,
1819  * this function will initialize the runtime state for this chip and save
1820  * the same in the device structure. Else it will update the runtime info
1821  * with the updated chip info. Nothing is really being written to the
1822  * controller hardware here, that is not done until the actual transfer
1823  * commence.
1824  */
1825 static int pl022_setup(struct spi_device *spi)
1826 {
1827 	struct pl022_config_chip const *chip_info;
1828 	struct pl022_config_chip chip_info_dt;
1829 	struct chip_data *chip;
1830 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1831 	int status = 0;
1832 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1833 	unsigned int bits = spi->bits_per_word;
1834 	u32 tmp;
1835 	struct device_node *np = spi->dev.of_node;
1836 
1837 	if (!spi->max_speed_hz)
1838 		return -EINVAL;
1839 
1840 	/* Get controller_state if one is supplied */
1841 	chip = spi_get_ctldata(spi);
1842 
1843 	if (chip == NULL) {
1844 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1845 		if (!chip)
1846 			return -ENOMEM;
1847 		dev_dbg(&spi->dev,
1848 			"allocated memory for controller's runtime state\n");
1849 	}
1850 
1851 	/* Get controller data if one is supplied */
1852 	chip_info = spi->controller_data;
1853 
1854 	if (chip_info == NULL) {
1855 		if (np) {
1856 			chip_info_dt = pl022_default_chip_info;
1857 
1858 			chip_info_dt.hierarchy = SSP_MASTER;
1859 			of_property_read_u32(np, "pl022,interface",
1860 				&chip_info_dt.iface);
1861 			of_property_read_u32(np, "pl022,com-mode",
1862 				&chip_info_dt.com_mode);
1863 			of_property_read_u32(np, "pl022,rx-level-trig",
1864 				&chip_info_dt.rx_lev_trig);
1865 			of_property_read_u32(np, "pl022,tx-level-trig",
1866 				&chip_info_dt.tx_lev_trig);
1867 			of_property_read_u32(np, "pl022,ctrl-len",
1868 				&chip_info_dt.ctrl_len);
1869 			of_property_read_u32(np, "pl022,wait-state",
1870 				&chip_info_dt.wait_state);
1871 			of_property_read_u32(np, "pl022,duplex",
1872 				&chip_info_dt.duplex);
1873 
1874 			chip_info = &chip_info_dt;
1875 		} else {
1876 			chip_info = &pl022_default_chip_info;
1877 			/* spi_board_info.controller_data not is supplied */
1878 			dev_dbg(&spi->dev,
1879 				"using default controller_data settings\n");
1880 		}
1881 	} else
1882 		dev_dbg(&spi->dev,
1883 			"using user supplied controller_data settings\n");
1884 
1885 	/*
1886 	 * We can override with custom divisors, else we use the board
1887 	 * frequency setting
1888 	 */
1889 	if ((0 == chip_info->clk_freq.cpsdvsr)
1890 	    && (0 == chip_info->clk_freq.scr)) {
1891 		status = calculate_effective_freq(pl022,
1892 						  spi->max_speed_hz,
1893 						  &clk_freq);
1894 		if (status < 0)
1895 			goto err_config_params;
1896 	} else {
1897 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1898 		if ((clk_freq.cpsdvsr % 2) != 0)
1899 			clk_freq.cpsdvsr =
1900 				clk_freq.cpsdvsr - 1;
1901 	}
1902 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1903 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1904 		status = -EINVAL;
1905 		dev_err(&spi->dev,
1906 			"cpsdvsr is configured incorrectly\n");
1907 		goto err_config_params;
1908 	}
1909 
1910 	status = verify_controller_parameters(pl022, chip_info);
1911 	if (status) {
1912 		dev_err(&spi->dev, "controller data is incorrect");
1913 		goto err_config_params;
1914 	}
1915 
1916 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1917 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1918 
1919 	/* Now set controller state based on controller data */
1920 	chip->xfer_type = chip_info->com_mode;
1921 	if (!chip_info->cs_control) {
1922 		chip->cs_control = null_cs_control;
1923 		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1924 			dev_warn(&spi->dev,
1925 				 "invalid chip select\n");
1926 	} else
1927 		chip->cs_control = chip_info->cs_control;
1928 
1929 	/* Check bits per word with vendor specific range */
1930 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1931 		status = -ENOTSUPP;
1932 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1933 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1934 				pl022->vendor->max_bpw);
1935 		goto err_config_params;
1936 	} else if (bits <= 8) {
1937 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1938 		chip->n_bytes = 1;
1939 		chip->read = READING_U8;
1940 		chip->write = WRITING_U8;
1941 	} else if (bits <= 16) {
1942 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1943 		chip->n_bytes = 2;
1944 		chip->read = READING_U16;
1945 		chip->write = WRITING_U16;
1946 	} else {
1947 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1948 		chip->n_bytes = 4;
1949 		chip->read = READING_U32;
1950 		chip->write = WRITING_U32;
1951 	}
1952 
1953 	/* Now Initialize all register settings required for this chip */
1954 	chip->cr0 = 0;
1955 	chip->cr1 = 0;
1956 	chip->dmacr = 0;
1957 	chip->cpsr = 0;
1958 	if ((chip_info->com_mode == DMA_TRANSFER)
1959 	    && ((pl022->master_info)->enable_dma)) {
1960 		chip->enable_dma = true;
1961 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1962 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1963 			       SSP_DMACR_MASK_RXDMAE, 0);
1964 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1965 			       SSP_DMACR_MASK_TXDMAE, 1);
1966 	} else {
1967 		chip->enable_dma = false;
1968 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1969 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1970 			       SSP_DMACR_MASK_RXDMAE, 0);
1971 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1972 			       SSP_DMACR_MASK_TXDMAE, 1);
1973 	}
1974 
1975 	chip->cpsr = clk_freq.cpsdvsr;
1976 
1977 	/* Special setup for the ST micro extended control registers */
1978 	if (pl022->vendor->extended_cr) {
1979 		u32 etx;
1980 
1981 		if (pl022->vendor->pl023) {
1982 			/* These bits are only in the PL023 */
1983 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1984 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1985 		} else {
1986 			/* These bits are in the PL022 but not PL023 */
1987 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1988 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1989 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1990 				       SSP_CR0_MASK_CSS_ST, 16);
1991 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1992 				       SSP_CR0_MASK_FRF_ST, 21);
1993 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1994 				       SSP_CR1_MASK_MWAIT_ST, 6);
1995 		}
1996 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1997 			       SSP_CR0_MASK_DSS_ST, 0);
1998 
1999 		if (spi->mode & SPI_LSB_FIRST) {
2000 			tmp = SSP_RX_LSB;
2001 			etx = SSP_TX_LSB;
2002 		} else {
2003 			tmp = SSP_RX_MSB;
2004 			etx = SSP_TX_MSB;
2005 		}
2006 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2007 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2008 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2009 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2010 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2011 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2012 	} else {
2013 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2014 			       SSP_CR0_MASK_DSS, 0);
2015 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2016 			       SSP_CR0_MASK_FRF, 4);
2017 	}
2018 
2019 	/* Stuff that is common for all versions */
2020 	if (spi->mode & SPI_CPOL)
2021 		tmp = SSP_CLK_POL_IDLE_HIGH;
2022 	else
2023 		tmp = SSP_CLK_POL_IDLE_LOW;
2024 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2025 
2026 	if (spi->mode & SPI_CPHA)
2027 		tmp = SSP_CLK_SECOND_EDGE;
2028 	else
2029 		tmp = SSP_CLK_FIRST_EDGE;
2030 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2031 
2032 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2033 	/* Loopback is available on all versions except PL023 */
2034 	if (pl022->vendor->loopback) {
2035 		if (spi->mode & SPI_LOOP)
2036 			tmp = LOOPBACK_ENABLED;
2037 		else
2038 			tmp = LOOPBACK_DISABLED;
2039 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2040 	}
2041 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2042 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2043 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2044 		3);
2045 
2046 	/* Save controller_state */
2047 	spi_set_ctldata(spi, chip);
2048 	return status;
2049  err_config_params:
2050 	spi_set_ctldata(spi, NULL);
2051 	kfree(chip);
2052 	return status;
2053 }
2054 
2055 /**
2056  * pl022_cleanup - cleanup function registered to SPI master framework
2057  * @spi: spi device which is requesting cleanup
2058  *
2059  * This function is registered to the SPI framework for this SPI master
2060  * controller. It will free the runtime state of chip.
2061  */
2062 static void pl022_cleanup(struct spi_device *spi)
2063 {
2064 	struct chip_data *chip = spi_get_ctldata(spi);
2065 
2066 	spi_set_ctldata(spi, NULL);
2067 	kfree(chip);
2068 }
2069 
2070 static struct pl022_ssp_controller *
2071 pl022_platform_data_dt_get(struct device *dev)
2072 {
2073 	struct device_node *np = dev->of_node;
2074 	struct pl022_ssp_controller *pd;
2075 	u32 tmp = 0;
2076 
2077 	if (!np) {
2078 		dev_err(dev, "no dt node defined\n");
2079 		return NULL;
2080 	}
2081 
2082 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2083 	if (!pd)
2084 		return NULL;
2085 
2086 	pd->bus_id = -1;
2087 	pd->enable_dma = 1;
2088 	of_property_read_u32(np, "num-cs", &tmp);
2089 	pd->num_chipselect = tmp;
2090 	of_property_read_u32(np, "pl022,autosuspend-delay",
2091 			     &pd->autosuspend_delay);
2092 	pd->rt = of_property_read_bool(np, "pl022,rt");
2093 
2094 	return pd;
2095 }
2096 
2097 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2098 {
2099 	struct device *dev = &adev->dev;
2100 	struct pl022_ssp_controller *platform_info =
2101 			dev_get_platdata(&adev->dev);
2102 	struct spi_master *master;
2103 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2104 	struct device_node *np = adev->dev.of_node;
2105 	int status = 0, i, num_cs;
2106 
2107 	dev_info(&adev->dev,
2108 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2109 	if (!platform_info && IS_ENABLED(CONFIG_OF))
2110 		platform_info = pl022_platform_data_dt_get(dev);
2111 
2112 	if (!platform_info) {
2113 		dev_err(dev, "probe: no platform data defined\n");
2114 		return -ENODEV;
2115 	}
2116 
2117 	if (platform_info->num_chipselect) {
2118 		num_cs = platform_info->num_chipselect;
2119 	} else {
2120 		dev_err(dev, "probe: no chip select defined\n");
2121 		return -ENODEV;
2122 	}
2123 
2124 	/* Allocate master with space for data */
2125 	master = spi_alloc_master(dev, sizeof(struct pl022));
2126 	if (master == NULL) {
2127 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2128 		return -ENOMEM;
2129 	}
2130 
2131 	pl022 = spi_master_get_devdata(master);
2132 	pl022->master = master;
2133 	pl022->master_info = platform_info;
2134 	pl022->adev = adev;
2135 	pl022->vendor = id->data;
2136 	pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2137 					  GFP_KERNEL);
2138 	if (!pl022->chipselects) {
2139 		status = -ENOMEM;
2140 		goto err_no_mem;
2141 	}
2142 
2143 	/*
2144 	 * Bus Number Which has been Assigned to this SSP controller
2145 	 * on this board
2146 	 */
2147 	master->bus_num = platform_info->bus_id;
2148 	master->num_chipselect = num_cs;
2149 	master->cleanup = pl022_cleanup;
2150 	master->setup = pl022_setup;
2151 	master->auto_runtime_pm = true;
2152 	master->transfer_one_message = pl022_transfer_one_message;
2153 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2154 	master->rt = platform_info->rt;
2155 	master->dev.of_node = dev->of_node;
2156 
2157 	if (platform_info->num_chipselect && platform_info->chipselects) {
2158 		for (i = 0; i < num_cs; i++)
2159 			pl022->chipselects[i] = platform_info->chipselects[i];
2160 	} else if (pl022->vendor->internal_cs_ctrl) {
2161 		for (i = 0; i < num_cs; i++)
2162 			pl022->chipselects[i] = i;
2163 	} else if (IS_ENABLED(CONFIG_OF)) {
2164 		for (i = 0; i < num_cs; i++) {
2165 			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2166 
2167 			if (cs_gpio == -EPROBE_DEFER) {
2168 				status = -EPROBE_DEFER;
2169 				goto err_no_gpio;
2170 			}
2171 
2172 			pl022->chipselects[i] = cs_gpio;
2173 
2174 			if (gpio_is_valid(cs_gpio)) {
2175 				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2176 					dev_err(&adev->dev,
2177 						"could not request %d gpio\n",
2178 						cs_gpio);
2179 				else if (gpio_direction_output(cs_gpio, 1))
2180 					dev_err(&adev->dev,
2181 						"could not set gpio %d as output\n",
2182 						cs_gpio);
2183 			}
2184 		}
2185 	}
2186 
2187 	/*
2188 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2189 	 * always MS bit first on the original pl022.
2190 	 */
2191 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2192 	if (pl022->vendor->extended_cr)
2193 		master->mode_bits |= SPI_LSB_FIRST;
2194 
2195 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2196 
2197 	status = amba_request_regions(adev, NULL);
2198 	if (status)
2199 		goto err_no_ioregion;
2200 
2201 	pl022->phybase = adev->res.start;
2202 	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2203 				       resource_size(&adev->res));
2204 	if (pl022->virtbase == NULL) {
2205 		status = -ENOMEM;
2206 		goto err_no_ioremap;
2207 	}
2208 	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2209 		&adev->res.start, pl022->virtbase);
2210 
2211 	pl022->clk = devm_clk_get(&adev->dev, NULL);
2212 	if (IS_ERR(pl022->clk)) {
2213 		status = PTR_ERR(pl022->clk);
2214 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2215 		goto err_no_clk;
2216 	}
2217 
2218 	status = clk_prepare_enable(pl022->clk);
2219 	if (status) {
2220 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2221 		goto err_no_clk_en;
2222 	}
2223 
2224 	/* Initialize transfer pump */
2225 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2226 		     (unsigned long)pl022);
2227 
2228 	/* Disable SSP */
2229 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2230 	       SSP_CR1(pl022->virtbase));
2231 	load_ssp_default_config(pl022);
2232 
2233 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2234 				  0, "pl022", pl022);
2235 	if (status < 0) {
2236 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2237 		goto err_no_irq;
2238 	}
2239 
2240 	/* Get DMA channels, try autoconfiguration first */
2241 	status = pl022_dma_autoprobe(pl022);
2242 	if (status == -EPROBE_DEFER) {
2243 		dev_dbg(dev, "deferring probe to get DMA channel\n");
2244 		goto err_no_irq;
2245 	}
2246 
2247 	/* If that failed, use channels from platform_info */
2248 	if (status == 0)
2249 		platform_info->enable_dma = 1;
2250 	else if (platform_info->enable_dma) {
2251 		status = pl022_dma_probe(pl022);
2252 		if (status != 0)
2253 			platform_info->enable_dma = 0;
2254 	}
2255 
2256 	/* Register with the SPI framework */
2257 	amba_set_drvdata(adev, pl022);
2258 	status = devm_spi_register_master(&adev->dev, master);
2259 	if (status != 0) {
2260 		dev_err(&adev->dev,
2261 			"probe - problem registering spi master\n");
2262 		goto err_spi_register;
2263 	}
2264 	dev_dbg(dev, "probe succeeded\n");
2265 
2266 	/* let runtime pm put suspend */
2267 	if (platform_info->autosuspend_delay > 0) {
2268 		dev_info(&adev->dev,
2269 			"will use autosuspend for runtime pm, delay %dms\n",
2270 			platform_info->autosuspend_delay);
2271 		pm_runtime_set_autosuspend_delay(dev,
2272 			platform_info->autosuspend_delay);
2273 		pm_runtime_use_autosuspend(dev);
2274 	}
2275 	pm_runtime_put(dev);
2276 
2277 	return 0;
2278 
2279  err_spi_register:
2280 	if (platform_info->enable_dma)
2281 		pl022_dma_remove(pl022);
2282  err_no_irq:
2283 	clk_disable_unprepare(pl022->clk);
2284  err_no_clk_en:
2285  err_no_clk:
2286  err_no_ioremap:
2287 	amba_release_regions(adev);
2288  err_no_ioregion:
2289  err_no_gpio:
2290  err_no_mem:
2291 	spi_master_put(master);
2292 	return status;
2293 }
2294 
2295 static int
2296 pl022_remove(struct amba_device *adev)
2297 {
2298 	struct pl022 *pl022 = amba_get_drvdata(adev);
2299 
2300 	if (!pl022)
2301 		return 0;
2302 
2303 	/*
2304 	 * undo pm_runtime_put() in probe.  I assume that we're not
2305 	 * accessing the primecell here.
2306 	 */
2307 	pm_runtime_get_noresume(&adev->dev);
2308 
2309 	load_ssp_default_config(pl022);
2310 	if (pl022->master_info->enable_dma)
2311 		pl022_dma_remove(pl022);
2312 
2313 	clk_disable_unprepare(pl022->clk);
2314 	amba_release_regions(adev);
2315 	tasklet_disable(&pl022->pump_transfers);
2316 	return 0;
2317 }
2318 
2319 #ifdef CONFIG_PM_SLEEP
2320 static int pl022_suspend(struct device *dev)
2321 {
2322 	struct pl022 *pl022 = dev_get_drvdata(dev);
2323 	int ret;
2324 
2325 	ret = spi_master_suspend(pl022->master);
2326 	if (ret)
2327 		return ret;
2328 
2329 	ret = pm_runtime_force_suspend(dev);
2330 	if (ret) {
2331 		spi_master_resume(pl022->master);
2332 		return ret;
2333 	}
2334 
2335 	pinctrl_pm_select_sleep_state(dev);
2336 
2337 	dev_dbg(dev, "suspended\n");
2338 	return 0;
2339 }
2340 
2341 static int pl022_resume(struct device *dev)
2342 {
2343 	struct pl022 *pl022 = dev_get_drvdata(dev);
2344 	int ret;
2345 
2346 	ret = pm_runtime_force_resume(dev);
2347 	if (ret)
2348 		dev_err(dev, "problem resuming\n");
2349 
2350 	/* Start the queue running */
2351 	ret = spi_master_resume(pl022->master);
2352 	if (!ret)
2353 		dev_dbg(dev, "resumed\n");
2354 
2355 	return ret;
2356 }
2357 #endif
2358 
2359 #ifdef CONFIG_PM
2360 static int pl022_runtime_suspend(struct device *dev)
2361 {
2362 	struct pl022 *pl022 = dev_get_drvdata(dev);
2363 
2364 	clk_disable_unprepare(pl022->clk);
2365 	pinctrl_pm_select_idle_state(dev);
2366 
2367 	return 0;
2368 }
2369 
2370 static int pl022_runtime_resume(struct device *dev)
2371 {
2372 	struct pl022 *pl022 = dev_get_drvdata(dev);
2373 
2374 	pinctrl_pm_select_default_state(dev);
2375 	clk_prepare_enable(pl022->clk);
2376 
2377 	return 0;
2378 }
2379 #endif
2380 
2381 static const struct dev_pm_ops pl022_dev_pm_ops = {
2382 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2383 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2384 };
2385 
2386 static struct vendor_data vendor_arm = {
2387 	.fifodepth = 8,
2388 	.max_bpw = 16,
2389 	.unidir = false,
2390 	.extended_cr = false,
2391 	.pl023 = false,
2392 	.loopback = true,
2393 	.internal_cs_ctrl = false,
2394 };
2395 
2396 static struct vendor_data vendor_st = {
2397 	.fifodepth = 32,
2398 	.max_bpw = 32,
2399 	.unidir = false,
2400 	.extended_cr = true,
2401 	.pl023 = false,
2402 	.loopback = true,
2403 	.internal_cs_ctrl = false,
2404 };
2405 
2406 static struct vendor_data vendor_st_pl023 = {
2407 	.fifodepth = 32,
2408 	.max_bpw = 32,
2409 	.unidir = false,
2410 	.extended_cr = true,
2411 	.pl023 = true,
2412 	.loopback = false,
2413 	.internal_cs_ctrl = false,
2414 };
2415 
2416 static struct vendor_data vendor_lsi = {
2417 	.fifodepth = 8,
2418 	.max_bpw = 16,
2419 	.unidir = false,
2420 	.extended_cr = false,
2421 	.pl023 = false,
2422 	.loopback = true,
2423 	.internal_cs_ctrl = true,
2424 };
2425 
2426 static const struct amba_id pl022_ids[] = {
2427 	{
2428 		/*
2429 		 * ARM PL022 variant, this has a 16bit wide
2430 		 * and 8 locations deep TX/RX FIFO
2431 		 */
2432 		.id	= 0x00041022,
2433 		.mask	= 0x000fffff,
2434 		.data	= &vendor_arm,
2435 	},
2436 	{
2437 		/*
2438 		 * ST Micro derivative, this has 32bit wide
2439 		 * and 32 locations deep TX/RX FIFO
2440 		 */
2441 		.id	= 0x01080022,
2442 		.mask	= 0xffffffff,
2443 		.data	= &vendor_st,
2444 	},
2445 	{
2446 		/*
2447 		 * ST-Ericsson derivative "PL023" (this is not
2448 		 * an official ARM number), this is a PL022 SSP block
2449 		 * stripped to SPI mode only, it has 32bit wide
2450 		 * and 32 locations deep TX/RX FIFO but no extended
2451 		 * CR0/CR1 register
2452 		 */
2453 		.id	= 0x00080023,
2454 		.mask	= 0xffffffff,
2455 		.data	= &vendor_st_pl023,
2456 	},
2457 	{
2458 		/*
2459 		 * PL022 variant that has a chip select control register whih
2460 		 * allows control of 5 output signals nCS[0:4].
2461 		 */
2462 		.id	= 0x000b6022,
2463 		.mask	= 0x000fffff,
2464 		.data	= &vendor_lsi,
2465 	},
2466 	{ 0, 0 },
2467 };
2468 
2469 MODULE_DEVICE_TABLE(amba, pl022_ids);
2470 
2471 static struct amba_driver pl022_driver = {
2472 	.drv = {
2473 		.name	= "ssp-pl022",
2474 		.pm	= &pl022_dev_pm_ops,
2475 	},
2476 	.id_table	= pl022_ids,
2477 	.probe		= pl022_probe,
2478 	.remove		= pl022_remove,
2479 };
2480 
2481 static int __init pl022_init(void)
2482 {
2483 	return amba_driver_register(&pl022_driver);
2484 }
2485 subsys_initcall(pl022_init);
2486 
2487 static void __exit pl022_exit(void)
2488 {
2489 	amba_driver_unregister(&pl022_driver);
2490 }
2491 module_exit(pl022_exit);
2492 
2493 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2494 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2495 MODULE_LICENSE("GPL");
2496