xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision 57f2685c)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2009 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/workqueue.h>
33 #include <linux/delay.h>
34 #include <linux/clk.h>
35 #include <linux/err.h>
36 #include <linux/amba/bus.h>
37 #include <linux/amba/pl022.h>
38 #include <linux/io.h>
39 #include <linux/slab.h>
40 #include <linux/dmaengine.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/scatterlist.h>
43 #include <linux/pm_runtime.h>
44 
45 /*
46  * This macro is used to define some register default values.
47  * reg is masked with mask, the OR:ed with an (again masked)
48  * val shifted sb steps to the left.
49  */
50 #define SSP_WRITE_BITS(reg, val, mask, sb) \
51  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
52 
53 /*
54  * This macro is also used to define some default values.
55  * It will just shift val by sb steps to the left and mask
56  * the result with mask.
57  */
58 #define GEN_MASK_BITS(val, mask, sb) \
59  (((val)<<(sb)) & (mask))
60 
61 #define DRIVE_TX		0
62 #define DO_NOT_DRIVE_TX		1
63 
64 #define DO_NOT_QUEUE_DMA	0
65 #define QUEUE_DMA		1
66 
67 #define RX_TRANSFER		1
68 #define TX_TRANSFER		2
69 
70 /*
71  * Macros to access SSP Registers with their offsets
72  */
73 #define SSP_CR0(r)	(r + 0x000)
74 #define SSP_CR1(r)	(r + 0x004)
75 #define SSP_DR(r)	(r + 0x008)
76 #define SSP_SR(r)	(r + 0x00C)
77 #define SSP_CPSR(r)	(r + 0x010)
78 #define SSP_IMSC(r)	(r + 0x014)
79 #define SSP_RIS(r)	(r + 0x018)
80 #define SSP_MIS(r)	(r + 0x01C)
81 #define SSP_ICR(r)	(r + 0x020)
82 #define SSP_DMACR(r)	(r + 0x024)
83 #define SSP_ITCR(r)	(r + 0x080)
84 #define SSP_ITIP(r)	(r + 0x084)
85 #define SSP_ITOP(r)	(r + 0x088)
86 #define SSP_TDR(r)	(r + 0x08C)
87 
88 #define SSP_PID0(r)	(r + 0xFE0)
89 #define SSP_PID1(r)	(r + 0xFE4)
90 #define SSP_PID2(r)	(r + 0xFE8)
91 #define SSP_PID3(r)	(r + 0xFEC)
92 
93 #define SSP_CID0(r)	(r + 0xFF0)
94 #define SSP_CID1(r)	(r + 0xFF4)
95 #define SSP_CID2(r)	(r + 0xFF8)
96 #define SSP_CID3(r)	(r + 0xFFC)
97 
98 /*
99  * SSP Control Register 0  - SSP_CR0
100  */
101 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
102 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
103 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
104 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
105 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
106 
107 /*
108  * The ST version of this block moves som bits
109  * in SSP_CR0 and extends it to 32 bits
110  */
111 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
112 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
113 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
114 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
115 
116 /*
117  * SSP Control Register 0  - SSP_CR1
118  */
119 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
120 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
121 #define SSP_CR1_MASK_MS		(0x1UL << 2)
122 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
123 
124 /*
125  * The ST version of this block adds some bits
126  * in SSP_CR1
127  */
128 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
129 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
130 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
131 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
132 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
133 /* This one is only in the PL023 variant */
134 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
135 
136 /*
137  * SSP Status Register - SSP_SR
138  */
139 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
140 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
141 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
142 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
143 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
144 
145 /*
146  * SSP Clock Prescale Register  - SSP_CPSR
147  */
148 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
149 
150 /*
151  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
152  */
153 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
154 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
155 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
156 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
157 
158 /*
159  * SSP Raw Interrupt Status Register - SSP_RIS
160  */
161 /* Receive Overrun Raw Interrupt status */
162 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
163 /* Receive Timeout Raw Interrupt status */
164 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
165 /* Receive FIFO Raw Interrupt status */
166 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
167 /* Transmit FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
169 
170 /*
171  * SSP Masked Interrupt Status Register - SSP_MIS
172  */
173 /* Receive Overrun Masked Interrupt status */
174 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
175 /* Receive Timeout Masked Interrupt status */
176 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
177 /* Receive FIFO Masked Interrupt status */
178 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
179 /* Transmit FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
181 
182 /*
183  * SSP Interrupt Clear Register - SSP_ICR
184  */
185 /* Receive Overrun Raw Clear Interrupt bit */
186 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
187 /* Receive Timeout Clear Interrupt bit */
188 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
189 
190 /*
191  * SSP DMA Control Register - SSP_DMACR
192  */
193 /* Receive DMA Enable bit */
194 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
195 /* Transmit DMA Enable bit */
196 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
197 
198 /*
199  * SSP Integration Test control Register - SSP_ITCR
200  */
201 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
202 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
203 
204 /*
205  * SSP Integration Test Input Register - SSP_ITIP
206  */
207 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
208 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
209 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
210 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
211 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
212 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
213 
214 /*
215  * SSP Integration Test output Register - SSP_ITOP
216  */
217 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
218 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
219 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
220 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
221 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
222 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
223 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
224 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
225 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
226 #define ITOP_MASK_INTR			 (0x1UL << 9)
227 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
228 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
229 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
230 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
231 
232 /*
233  * SSP Test Data Register - SSP_TDR
234  */
235 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
236 
237 /*
238  * Message State
239  * we use the spi_message.state (void *) pointer to
240  * hold a single state value, that's why all this
241  * (void *) casting is done here.
242  */
243 #define STATE_START			((void *) 0)
244 #define STATE_RUNNING			((void *) 1)
245 #define STATE_DONE			((void *) 2)
246 #define STATE_ERROR			((void *) -1)
247 
248 /*
249  * SSP State - Whether Enabled or Disabled
250  */
251 #define SSP_DISABLED			(0)
252 #define SSP_ENABLED			(1)
253 
254 /*
255  * SSP DMA State - Whether DMA Enabled or Disabled
256  */
257 #define SSP_DMA_DISABLED		(0)
258 #define SSP_DMA_ENABLED			(1)
259 
260 /*
261  * SSP Clock Defaults
262  */
263 #define SSP_DEFAULT_CLKRATE 0x2
264 #define SSP_DEFAULT_PRESCALE 0x40
265 
266 /*
267  * SSP Clock Parameter ranges
268  */
269 #define CPSDVR_MIN 0x02
270 #define CPSDVR_MAX 0xFE
271 #define SCR_MIN 0x00
272 #define SCR_MAX 0xFF
273 
274 /*
275  * SSP Interrupt related Macros
276  */
277 #define DEFAULT_SSP_REG_IMSC  0x0UL
278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
280 
281 #define CLEAR_ALL_INTERRUPTS  0x3
282 
283 #define SPI_POLLING_TIMEOUT 1000
284 
285 /*
286  * The type of reading going on on this chip
287  */
288 enum ssp_reading {
289 	READING_NULL,
290 	READING_U8,
291 	READING_U16,
292 	READING_U32
293 };
294 
295 /**
296  * The type of writing going on on this chip
297  */
298 enum ssp_writing {
299 	WRITING_NULL,
300 	WRITING_U8,
301 	WRITING_U16,
302 	WRITING_U32
303 };
304 
305 /**
306  * struct vendor_data - vendor-specific config parameters
307  * for PL022 derivates
308  * @fifodepth: depth of FIFOs (both)
309  * @max_bpw: maximum number of bits per word
310  * @unidir: supports unidirection transfers
311  * @extended_cr: 32 bit wide control register 0 with extra
312  * features and extra features in CR1 as found in the ST variants
313  * @pl023: supports a subset of the ST extensions called "PL023"
314  */
315 struct vendor_data {
316 	int fifodepth;
317 	int max_bpw;
318 	bool unidir;
319 	bool extended_cr;
320 	bool pl023;
321 	bool loopback;
322 };
323 
324 /**
325  * struct pl022 - This is the private SSP driver data structure
326  * @adev: AMBA device model hookup
327  * @vendor: vendor data for the IP block
328  * @phybase: the physical memory where the SSP device resides
329  * @virtbase: the virtual memory where the SSP is mapped
330  * @clk: outgoing clock "SPICLK" for the SPI bus
331  * @master: SPI framework hookup
332  * @master_info: controller-specific data from machine setup
333  * @workqueue: a workqueue on which any spi_message request is queued
334  * @pump_messages: work struct for scheduling work to the workqueue
335  * @queue_lock: spinlock to syncronise access to message queue
336  * @queue: message queue
337  * @busy: workqueue is busy
338  * @running: workqueue is running
339  * @pump_transfers: Tasklet used in Interrupt Transfer mode
340  * @cur_msg: Pointer to current spi_message being processed
341  * @cur_transfer: Pointer to current spi_transfer
342  * @cur_chip: pointer to current clients chip(assigned from controller_state)
343  * @next_msg_cs_active: the next message in the queue has been examined
344  *  and it was found that it uses the same chip select as the previous
345  *  message, so we left it active after the previous transfer, and it's
346  *  active already.
347  * @tx: current position in TX buffer to be read
348  * @tx_end: end position in TX buffer to be read
349  * @rx: current position in RX buffer to be written
350  * @rx_end: end position in RX buffer to be written
351  * @read: the type of read currently going on
352  * @write: the type of write currently going on
353  * @exp_fifo_level: expected FIFO level
354  * @dma_rx_channel: optional channel for RX DMA
355  * @dma_tx_channel: optional channel for TX DMA
356  * @sgt_rx: scattertable for the RX transfer
357  * @sgt_tx: scattertable for the TX transfer
358  * @dummypage: a dummy page used for driving data on the bus with DMA
359  */
360 struct pl022 {
361 	struct amba_device		*adev;
362 	struct vendor_data		*vendor;
363 	resource_size_t			phybase;
364 	void __iomem			*virtbase;
365 	struct clk			*clk;
366 	struct spi_master		*master;
367 	struct pl022_ssp_controller	*master_info;
368 	/* Driver message queue */
369 	struct workqueue_struct		*workqueue;
370 	struct work_struct		pump_messages;
371 	spinlock_t			queue_lock;
372 	struct list_head		queue;
373 	bool				busy;
374 	bool				running;
375 	/* Message transfer pump */
376 	struct tasklet_struct		pump_transfers;
377 	struct spi_message		*cur_msg;
378 	struct spi_transfer		*cur_transfer;
379 	struct chip_data		*cur_chip;
380 	bool				next_msg_cs_active;
381 	void				*tx;
382 	void				*tx_end;
383 	void				*rx;
384 	void				*rx_end;
385 	enum ssp_reading		read;
386 	enum ssp_writing		write;
387 	u32				exp_fifo_level;
388 	enum ssp_rx_level_trig		rx_lev_trig;
389 	enum ssp_tx_level_trig		tx_lev_trig;
390 	/* DMA settings */
391 #ifdef CONFIG_DMA_ENGINE
392 	struct dma_chan			*dma_rx_channel;
393 	struct dma_chan			*dma_tx_channel;
394 	struct sg_table			sgt_rx;
395 	struct sg_table			sgt_tx;
396 	char				*dummypage;
397 #endif
398 };
399 
400 /**
401  * struct chip_data - To maintain runtime state of SSP for each client chip
402  * @cr0: Value of control register CR0 of SSP - on later ST variants this
403  *       register is 32 bits wide rather than just 16
404  * @cr1: Value of control register CR1 of SSP
405  * @dmacr: Value of DMA control Register of SSP
406  * @cpsr: Value of Clock prescale register
407  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
408  * @enable_dma: Whether to enable DMA or not
409  * @read: function ptr to be used to read when doing xfer for this chip
410  * @write: function ptr to be used to write when doing xfer for this chip
411  * @cs_control: chip select callback provided by chip
412  * @xfer_type: polling/interrupt/DMA
413  *
414  * Runtime state of the SSP controller, maintained per chip,
415  * This would be set according to the current message that would be served
416  */
417 struct chip_data {
418 	u32 cr0;
419 	u16 cr1;
420 	u16 dmacr;
421 	u16 cpsr;
422 	u8 n_bytes;
423 	bool enable_dma;
424 	enum ssp_reading read;
425 	enum ssp_writing write;
426 	void (*cs_control) (u32 command);
427 	int xfer_type;
428 };
429 
430 /**
431  * null_cs_control - Dummy chip select function
432  * @command: select/delect the chip
433  *
434  * If no chip select function is provided by client this is used as dummy
435  * chip select
436  */
437 static void null_cs_control(u32 command)
438 {
439 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
440 }
441 
442 /**
443  * giveback - current spi_message is over, schedule next message and call
444  * callback of this message. Assumes that caller already
445  * set message->status; dma and pio irqs are blocked
446  * @pl022: SSP driver private data structure
447  */
448 static void giveback(struct pl022 *pl022)
449 {
450 	struct spi_transfer *last_transfer;
451 	unsigned long flags;
452 	struct spi_message *msg;
453 	pl022->next_msg_cs_active = false;
454 
455 	last_transfer = list_entry(pl022->cur_msg->transfers.prev,
456 					struct spi_transfer,
457 					transfer_list);
458 
459 	/* Delay if requested before any change in chip select */
460 	if (last_transfer->delay_usecs)
461 		/*
462 		 * FIXME: This runs in interrupt context.
463 		 * Is this really smart?
464 		 */
465 		udelay(last_transfer->delay_usecs);
466 
467 	if (!last_transfer->cs_change) {
468 		struct spi_message *next_msg;
469 
470 		/*
471 		 * cs_change was not set. We can keep the chip select
472 		 * enabled if there is message in the queue and it is
473 		 * for the same spi device.
474 		 *
475 		 * We cannot postpone this until pump_messages, because
476 		 * after calling msg->complete (below) the driver that
477 		 * sent the current message could be unloaded, which
478 		 * could invalidate the cs_control() callback...
479 		 */
480 
481 		/* get a pointer to the next message, if any */
482 		spin_lock_irqsave(&pl022->queue_lock, flags);
483 		if (list_empty(&pl022->queue))
484 			next_msg = NULL;
485 		else
486 			next_msg = list_entry(pl022->queue.next,
487 					struct spi_message, queue);
488 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
489 
490 		/*
491 		 * see if the next and current messages point
492 		 * to the same spi device.
493 		 */
494 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
495 			next_msg = NULL;
496 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
497 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
498 		else
499 			pl022->next_msg_cs_active = true;
500 	}
501 
502 	spin_lock_irqsave(&pl022->queue_lock, flags);
503 	msg = pl022->cur_msg;
504 	pl022->cur_msg = NULL;
505 	pl022->cur_transfer = NULL;
506 	pl022->cur_chip = NULL;
507 	queue_work(pl022->workqueue, &pl022->pump_messages);
508 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
509 
510 	msg->state = NULL;
511 	if (msg->complete)
512 		msg->complete(msg->context);
513 }
514 
515 /**
516  * flush - flush the FIFO to reach a clean state
517  * @pl022: SSP driver private data structure
518  */
519 static int flush(struct pl022 *pl022)
520 {
521 	unsigned long limit = loops_per_jiffy << 1;
522 
523 	dev_dbg(&pl022->adev->dev, "flush\n");
524 	do {
525 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
526 			readw(SSP_DR(pl022->virtbase));
527 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
528 
529 	pl022->exp_fifo_level = 0;
530 
531 	return limit;
532 }
533 
534 /**
535  * restore_state - Load configuration of current chip
536  * @pl022: SSP driver private data structure
537  */
538 static void restore_state(struct pl022 *pl022)
539 {
540 	struct chip_data *chip = pl022->cur_chip;
541 
542 	if (pl022->vendor->extended_cr)
543 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
544 	else
545 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
546 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
547 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
548 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
549 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
550 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
551 }
552 
553 /*
554  * Default SSP Register Values
555  */
556 #define DEFAULT_SSP_REG_CR0 ( \
557 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
558 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
559 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
560 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
561 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
562 )
563 
564 /* ST versions have slightly different bit layout */
565 #define DEFAULT_SSP_REG_CR0_ST ( \
566 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
567 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
568 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
569 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
570 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
571 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
572 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
573 )
574 
575 /* The PL023 version is slightly different again */
576 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
577 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
578 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
579 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
580 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
581 )
582 
583 #define DEFAULT_SSP_REG_CR1 ( \
584 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
585 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
586 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
587 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
588 )
589 
590 /* ST versions extend this register to use all 16 bits */
591 #define DEFAULT_SSP_REG_CR1_ST ( \
592 	DEFAULT_SSP_REG_CR1 | \
593 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
594 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
595 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
596 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
597 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
598 )
599 
600 /*
601  * The PL023 variant has further differences: no loopback mode, no microwire
602  * support, and a new clock feedback delay setting.
603  */
604 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
605 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
606 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
607 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
608 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
609 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
610 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
611 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
612 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
613 )
614 
615 #define DEFAULT_SSP_REG_CPSR ( \
616 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
617 )
618 
619 #define DEFAULT_SSP_REG_DMACR (\
620 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
621 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
622 )
623 
624 /**
625  * load_ssp_default_config - Load default configuration for SSP
626  * @pl022: SSP driver private data structure
627  */
628 static void load_ssp_default_config(struct pl022 *pl022)
629 {
630 	if (pl022->vendor->pl023) {
631 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
632 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
633 	} else if (pl022->vendor->extended_cr) {
634 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
635 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
636 	} else {
637 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
638 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
639 	}
640 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
641 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
642 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
643 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
644 }
645 
646 /**
647  * This will write to TX and read from RX according to the parameters
648  * set in pl022.
649  */
650 static void readwriter(struct pl022 *pl022)
651 {
652 
653 	/*
654 	 * The FIFO depth is different between primecell variants.
655 	 * I believe filling in too much in the FIFO might cause
656 	 * errons in 8bit wide transfers on ARM variants (just 8 words
657 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
658 	 *
659 	 * To prevent this issue, the TX FIFO is only filled to the
660 	 * unused RX FIFO fill length, regardless of what the TX
661 	 * FIFO status flag indicates.
662 	 */
663 	dev_dbg(&pl022->adev->dev,
664 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
665 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
666 
667 	/* Read as much as you can */
668 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
669 	       && (pl022->rx < pl022->rx_end)) {
670 		switch (pl022->read) {
671 		case READING_NULL:
672 			readw(SSP_DR(pl022->virtbase));
673 			break;
674 		case READING_U8:
675 			*(u8 *) (pl022->rx) =
676 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
677 			break;
678 		case READING_U16:
679 			*(u16 *) (pl022->rx) =
680 				(u16) readw(SSP_DR(pl022->virtbase));
681 			break;
682 		case READING_U32:
683 			*(u32 *) (pl022->rx) =
684 				readl(SSP_DR(pl022->virtbase));
685 			break;
686 		}
687 		pl022->rx += (pl022->cur_chip->n_bytes);
688 		pl022->exp_fifo_level--;
689 	}
690 	/*
691 	 * Write as much as possible up to the RX FIFO size
692 	 */
693 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
694 	       && (pl022->tx < pl022->tx_end)) {
695 		switch (pl022->write) {
696 		case WRITING_NULL:
697 			writew(0x0, SSP_DR(pl022->virtbase));
698 			break;
699 		case WRITING_U8:
700 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
701 			break;
702 		case WRITING_U16:
703 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
704 			break;
705 		case WRITING_U32:
706 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
707 			break;
708 		}
709 		pl022->tx += (pl022->cur_chip->n_bytes);
710 		pl022->exp_fifo_level++;
711 		/*
712 		 * This inner reader takes care of things appearing in the RX
713 		 * FIFO as we're transmitting. This will happen a lot since the
714 		 * clock starts running when you put things into the TX FIFO,
715 		 * and then things are continuously clocked into the RX FIFO.
716 		 */
717 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
718 		       && (pl022->rx < pl022->rx_end)) {
719 			switch (pl022->read) {
720 			case READING_NULL:
721 				readw(SSP_DR(pl022->virtbase));
722 				break;
723 			case READING_U8:
724 				*(u8 *) (pl022->rx) =
725 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
726 				break;
727 			case READING_U16:
728 				*(u16 *) (pl022->rx) =
729 					(u16) readw(SSP_DR(pl022->virtbase));
730 				break;
731 			case READING_U32:
732 				*(u32 *) (pl022->rx) =
733 					readl(SSP_DR(pl022->virtbase));
734 				break;
735 			}
736 			pl022->rx += (pl022->cur_chip->n_bytes);
737 			pl022->exp_fifo_level--;
738 		}
739 	}
740 	/*
741 	 * When we exit here the TX FIFO should be full and the RX FIFO
742 	 * should be empty
743 	 */
744 }
745 
746 /**
747  * next_transfer - Move to the Next transfer in the current spi message
748  * @pl022: SSP driver private data structure
749  *
750  * This function moves though the linked list of spi transfers in the
751  * current spi message and returns with the state of current spi
752  * message i.e whether its last transfer is done(STATE_DONE) or
753  * Next transfer is ready(STATE_RUNNING)
754  */
755 static void *next_transfer(struct pl022 *pl022)
756 {
757 	struct spi_message *msg = pl022->cur_msg;
758 	struct spi_transfer *trans = pl022->cur_transfer;
759 
760 	/* Move to next transfer */
761 	if (trans->transfer_list.next != &msg->transfers) {
762 		pl022->cur_transfer =
763 		    list_entry(trans->transfer_list.next,
764 			       struct spi_transfer, transfer_list);
765 		return STATE_RUNNING;
766 	}
767 	return STATE_DONE;
768 }
769 
770 /*
771  * This DMA functionality is only compiled in if we have
772  * access to the generic DMA devices/DMA engine.
773  */
774 #ifdef CONFIG_DMA_ENGINE
775 static void unmap_free_dma_scatter(struct pl022 *pl022)
776 {
777 	/* Unmap and free the SG tables */
778 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
779 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
780 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
781 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
782 	sg_free_table(&pl022->sgt_rx);
783 	sg_free_table(&pl022->sgt_tx);
784 }
785 
786 static void dma_callback(void *data)
787 {
788 	struct pl022 *pl022 = data;
789 	struct spi_message *msg = pl022->cur_msg;
790 
791 	BUG_ON(!pl022->sgt_rx.sgl);
792 
793 #ifdef VERBOSE_DEBUG
794 	/*
795 	 * Optionally dump out buffers to inspect contents, this is
796 	 * good if you want to convince yourself that the loopback
797 	 * read/write contents are the same, when adopting to a new
798 	 * DMA engine.
799 	 */
800 	{
801 		struct scatterlist *sg;
802 		unsigned int i;
803 
804 		dma_sync_sg_for_cpu(&pl022->adev->dev,
805 				    pl022->sgt_rx.sgl,
806 				    pl022->sgt_rx.nents,
807 				    DMA_FROM_DEVICE);
808 
809 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
810 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
811 			print_hex_dump(KERN_ERR, "SPI RX: ",
812 				       DUMP_PREFIX_OFFSET,
813 				       16,
814 				       1,
815 				       sg_virt(sg),
816 				       sg_dma_len(sg),
817 				       1);
818 		}
819 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
820 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
821 			print_hex_dump(KERN_ERR, "SPI TX: ",
822 				       DUMP_PREFIX_OFFSET,
823 				       16,
824 				       1,
825 				       sg_virt(sg),
826 				       sg_dma_len(sg),
827 				       1);
828 		}
829 	}
830 #endif
831 
832 	unmap_free_dma_scatter(pl022);
833 
834 	/* Update total bytes transferred */
835 	msg->actual_length += pl022->cur_transfer->len;
836 	if (pl022->cur_transfer->cs_change)
837 		pl022->cur_chip->
838 			cs_control(SSP_CHIP_DESELECT);
839 
840 	/* Move to next transfer */
841 	msg->state = next_transfer(pl022);
842 	tasklet_schedule(&pl022->pump_transfers);
843 }
844 
845 static void setup_dma_scatter(struct pl022 *pl022,
846 			      void *buffer,
847 			      unsigned int length,
848 			      struct sg_table *sgtab)
849 {
850 	struct scatterlist *sg;
851 	int bytesleft = length;
852 	void *bufp = buffer;
853 	int mapbytes;
854 	int i;
855 
856 	if (buffer) {
857 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
858 			/*
859 			 * If there are less bytes left than what fits
860 			 * in the current page (plus page alignment offset)
861 			 * we just feed in this, else we stuff in as much
862 			 * as we can.
863 			 */
864 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
865 				mapbytes = bytesleft;
866 			else
867 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
868 			sg_set_page(sg, virt_to_page(bufp),
869 				    mapbytes, offset_in_page(bufp));
870 			bufp += mapbytes;
871 			bytesleft -= mapbytes;
872 			dev_dbg(&pl022->adev->dev,
873 				"set RX/TX target page @ %p, %d bytes, %d left\n",
874 				bufp, mapbytes, bytesleft);
875 		}
876 	} else {
877 		/* Map the dummy buffer on every page */
878 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
879 			if (bytesleft < PAGE_SIZE)
880 				mapbytes = bytesleft;
881 			else
882 				mapbytes = PAGE_SIZE;
883 			sg_set_page(sg, virt_to_page(pl022->dummypage),
884 				    mapbytes, 0);
885 			bytesleft -= mapbytes;
886 			dev_dbg(&pl022->adev->dev,
887 				"set RX/TX to dummy page %d bytes, %d left\n",
888 				mapbytes, bytesleft);
889 
890 		}
891 	}
892 	BUG_ON(bytesleft);
893 }
894 
895 /**
896  * configure_dma - configures the channels for the next transfer
897  * @pl022: SSP driver's private data structure
898  */
899 static int configure_dma(struct pl022 *pl022)
900 {
901 	struct dma_slave_config rx_conf = {
902 		.src_addr = SSP_DR(pl022->phybase),
903 		.direction = DMA_DEV_TO_MEM,
904 	};
905 	struct dma_slave_config tx_conf = {
906 		.dst_addr = SSP_DR(pl022->phybase),
907 		.direction = DMA_MEM_TO_DEV,
908 	};
909 	unsigned int pages;
910 	int ret;
911 	int rx_sglen, tx_sglen;
912 	struct dma_chan *rxchan = pl022->dma_rx_channel;
913 	struct dma_chan *txchan = pl022->dma_tx_channel;
914 	struct dma_async_tx_descriptor *rxdesc;
915 	struct dma_async_tx_descriptor *txdesc;
916 
917 	/* Check that the channels are available */
918 	if (!rxchan || !txchan)
919 		return -ENODEV;
920 
921 	/*
922 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
923 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
924 	 * not trigger on 2 elements this needs explicit mapping rather than
925 	 * calculation.
926 	 */
927 	switch (pl022->rx_lev_trig) {
928 	case SSP_RX_1_OR_MORE_ELEM:
929 		rx_conf.src_maxburst = 1;
930 		break;
931 	case SSP_RX_4_OR_MORE_ELEM:
932 		rx_conf.src_maxburst = 4;
933 		break;
934 	case SSP_RX_8_OR_MORE_ELEM:
935 		rx_conf.src_maxburst = 8;
936 		break;
937 	case SSP_RX_16_OR_MORE_ELEM:
938 		rx_conf.src_maxburst = 16;
939 		break;
940 	case SSP_RX_32_OR_MORE_ELEM:
941 		rx_conf.src_maxburst = 32;
942 		break;
943 	default:
944 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
945 		break;
946 	}
947 
948 	switch (pl022->tx_lev_trig) {
949 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
950 		tx_conf.dst_maxburst = 1;
951 		break;
952 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
953 		tx_conf.dst_maxburst = 4;
954 		break;
955 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
956 		tx_conf.dst_maxburst = 8;
957 		break;
958 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
959 		tx_conf.dst_maxburst = 16;
960 		break;
961 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
962 		tx_conf.dst_maxburst = 32;
963 		break;
964 	default:
965 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
966 		break;
967 	}
968 
969 	switch (pl022->read) {
970 	case READING_NULL:
971 		/* Use the same as for writing */
972 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
973 		break;
974 	case READING_U8:
975 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
976 		break;
977 	case READING_U16:
978 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
979 		break;
980 	case READING_U32:
981 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
982 		break;
983 	}
984 
985 	switch (pl022->write) {
986 	case WRITING_NULL:
987 		/* Use the same as for reading */
988 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
989 		break;
990 	case WRITING_U8:
991 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
992 		break;
993 	case WRITING_U16:
994 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
995 		break;
996 	case WRITING_U32:
997 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
998 		break;
999 	}
1000 
1001 	/* SPI pecularity: we need to read and write the same width */
1002 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1003 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1004 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1005 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1006 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1007 
1008 	dmaengine_slave_config(rxchan, &rx_conf);
1009 	dmaengine_slave_config(txchan, &tx_conf);
1010 
1011 	/* Create sglists for the transfers */
1012 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1013 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1014 
1015 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1016 	if (ret)
1017 		goto err_alloc_rx_sg;
1018 
1019 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1020 	if (ret)
1021 		goto err_alloc_tx_sg;
1022 
1023 	/* Fill in the scatterlists for the RX+TX buffers */
1024 	setup_dma_scatter(pl022, pl022->rx,
1025 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1026 	setup_dma_scatter(pl022, pl022->tx,
1027 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1028 
1029 	/* Map DMA buffers */
1030 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1031 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1032 	if (!rx_sglen)
1033 		goto err_rx_sgmap;
1034 
1035 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1036 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1037 	if (!tx_sglen)
1038 		goto err_tx_sgmap;
1039 
1040 	/* Send both scatterlists */
1041 	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1042 				      pl022->sgt_rx.sgl,
1043 				      rx_sglen,
1044 				      DMA_DEV_TO_MEM,
1045 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1046 	if (!rxdesc)
1047 		goto err_rxdesc;
1048 
1049 	txdesc = txchan->device->device_prep_slave_sg(txchan,
1050 				      pl022->sgt_tx.sgl,
1051 				      tx_sglen,
1052 				      DMA_MEM_TO_DEV,
1053 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1054 	if (!txdesc)
1055 		goto err_txdesc;
1056 
1057 	/* Put the callback on the RX transfer only, that should finish last */
1058 	rxdesc->callback = dma_callback;
1059 	rxdesc->callback_param = pl022;
1060 
1061 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1062 	dmaengine_submit(rxdesc);
1063 	dmaengine_submit(txdesc);
1064 	dma_async_issue_pending(rxchan);
1065 	dma_async_issue_pending(txchan);
1066 
1067 	return 0;
1068 
1069 err_txdesc:
1070 	dmaengine_terminate_all(txchan);
1071 err_rxdesc:
1072 	dmaengine_terminate_all(rxchan);
1073 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1074 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1075 err_tx_sgmap:
1076 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1077 		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1078 err_rx_sgmap:
1079 	sg_free_table(&pl022->sgt_tx);
1080 err_alloc_tx_sg:
1081 	sg_free_table(&pl022->sgt_rx);
1082 err_alloc_rx_sg:
1083 	return -ENOMEM;
1084 }
1085 
1086 static int __init pl022_dma_probe(struct pl022 *pl022)
1087 {
1088 	dma_cap_mask_t mask;
1089 
1090 	/* Try to acquire a generic DMA engine slave channel */
1091 	dma_cap_zero(mask);
1092 	dma_cap_set(DMA_SLAVE, mask);
1093 	/*
1094 	 * We need both RX and TX channels to do DMA, else do none
1095 	 * of them.
1096 	 */
1097 	pl022->dma_rx_channel = dma_request_channel(mask,
1098 					    pl022->master_info->dma_filter,
1099 					    pl022->master_info->dma_rx_param);
1100 	if (!pl022->dma_rx_channel) {
1101 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1102 		goto err_no_rxchan;
1103 	}
1104 
1105 	pl022->dma_tx_channel = dma_request_channel(mask,
1106 					    pl022->master_info->dma_filter,
1107 					    pl022->master_info->dma_tx_param);
1108 	if (!pl022->dma_tx_channel) {
1109 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1110 		goto err_no_txchan;
1111 	}
1112 
1113 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1114 	if (!pl022->dummypage) {
1115 		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1116 		goto err_no_dummypage;
1117 	}
1118 
1119 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1120 		 dma_chan_name(pl022->dma_rx_channel),
1121 		 dma_chan_name(pl022->dma_tx_channel));
1122 
1123 	return 0;
1124 
1125 err_no_dummypage:
1126 	dma_release_channel(pl022->dma_tx_channel);
1127 err_no_txchan:
1128 	dma_release_channel(pl022->dma_rx_channel);
1129 	pl022->dma_rx_channel = NULL;
1130 err_no_rxchan:
1131 	dev_err(&pl022->adev->dev,
1132 			"Failed to work in dma mode, work without dma!\n");
1133 	return -ENODEV;
1134 }
1135 
1136 static void terminate_dma(struct pl022 *pl022)
1137 {
1138 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1139 	struct dma_chan *txchan = pl022->dma_tx_channel;
1140 
1141 	dmaengine_terminate_all(rxchan);
1142 	dmaengine_terminate_all(txchan);
1143 	unmap_free_dma_scatter(pl022);
1144 }
1145 
1146 static void pl022_dma_remove(struct pl022 *pl022)
1147 {
1148 	if (pl022->busy)
1149 		terminate_dma(pl022);
1150 	if (pl022->dma_tx_channel)
1151 		dma_release_channel(pl022->dma_tx_channel);
1152 	if (pl022->dma_rx_channel)
1153 		dma_release_channel(pl022->dma_rx_channel);
1154 	kfree(pl022->dummypage);
1155 }
1156 
1157 #else
1158 static inline int configure_dma(struct pl022 *pl022)
1159 {
1160 	return -ENODEV;
1161 }
1162 
1163 static inline int pl022_dma_probe(struct pl022 *pl022)
1164 {
1165 	return 0;
1166 }
1167 
1168 static inline void pl022_dma_remove(struct pl022 *pl022)
1169 {
1170 }
1171 #endif
1172 
1173 /**
1174  * pl022_interrupt_handler - Interrupt handler for SSP controller
1175  *
1176  * This function handles interrupts generated for an interrupt based transfer.
1177  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1178  * current message's state as STATE_ERROR and schedule the tasklet
1179  * pump_transfers which will do the postprocessing of the current message by
1180  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1181  * more data, and writes data in TX FIFO till it is not full. If we complete
1182  * the transfer we move to the next transfer and schedule the tasklet.
1183  */
1184 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1185 {
1186 	struct pl022 *pl022 = dev_id;
1187 	struct spi_message *msg = pl022->cur_msg;
1188 	u16 irq_status = 0;
1189 	u16 flag = 0;
1190 
1191 	if (unlikely(!msg)) {
1192 		dev_err(&pl022->adev->dev,
1193 			"bad message state in interrupt handler");
1194 		/* Never fail */
1195 		return IRQ_HANDLED;
1196 	}
1197 
1198 	/* Read the Interrupt Status Register */
1199 	irq_status = readw(SSP_MIS(pl022->virtbase));
1200 
1201 	if (unlikely(!irq_status))
1202 		return IRQ_NONE;
1203 
1204 	/*
1205 	 * This handles the FIFO interrupts, the timeout
1206 	 * interrupts are flatly ignored, they cannot be
1207 	 * trusted.
1208 	 */
1209 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1210 		/*
1211 		 * Overrun interrupt - bail out since our Data has been
1212 		 * corrupted
1213 		 */
1214 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1215 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1216 			dev_err(&pl022->adev->dev,
1217 				"RXFIFO is full\n");
1218 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1219 			dev_err(&pl022->adev->dev,
1220 				"TXFIFO is full\n");
1221 
1222 		/*
1223 		 * Disable and clear interrupts, disable SSP,
1224 		 * mark message with bad status so it can be
1225 		 * retried.
1226 		 */
1227 		writew(DISABLE_ALL_INTERRUPTS,
1228 		       SSP_IMSC(pl022->virtbase));
1229 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1230 		writew((readw(SSP_CR1(pl022->virtbase)) &
1231 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1232 		msg->state = STATE_ERROR;
1233 
1234 		/* Schedule message queue handler */
1235 		tasklet_schedule(&pl022->pump_transfers);
1236 		return IRQ_HANDLED;
1237 	}
1238 
1239 	readwriter(pl022);
1240 
1241 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1242 		flag = 1;
1243 		/* Disable Transmit interrupt, enable receive interrupt */
1244 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1245 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1246 		       SSP_IMSC(pl022->virtbase));
1247 	}
1248 
1249 	/*
1250 	 * Since all transactions must write as much as shall be read,
1251 	 * we can conclude the entire transaction once RX is complete.
1252 	 * At this point, all TX will always be finished.
1253 	 */
1254 	if (pl022->rx >= pl022->rx_end) {
1255 		writew(DISABLE_ALL_INTERRUPTS,
1256 		       SSP_IMSC(pl022->virtbase));
1257 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1258 		if (unlikely(pl022->rx > pl022->rx_end)) {
1259 			dev_warn(&pl022->adev->dev, "read %u surplus "
1260 				 "bytes (did you request an odd "
1261 				 "number of bytes on a 16bit bus?)\n",
1262 				 (u32) (pl022->rx - pl022->rx_end));
1263 		}
1264 		/* Update total bytes transferred */
1265 		msg->actual_length += pl022->cur_transfer->len;
1266 		if (pl022->cur_transfer->cs_change)
1267 			pl022->cur_chip->
1268 				cs_control(SSP_CHIP_DESELECT);
1269 		/* Move to next transfer */
1270 		msg->state = next_transfer(pl022);
1271 		tasklet_schedule(&pl022->pump_transfers);
1272 		return IRQ_HANDLED;
1273 	}
1274 
1275 	return IRQ_HANDLED;
1276 }
1277 
1278 /**
1279  * This sets up the pointers to memory for the next message to
1280  * send out on the SPI bus.
1281  */
1282 static int set_up_next_transfer(struct pl022 *pl022,
1283 				struct spi_transfer *transfer)
1284 {
1285 	int residue;
1286 
1287 	/* Sanity check the message for this bus width */
1288 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1289 	if (unlikely(residue != 0)) {
1290 		dev_err(&pl022->adev->dev,
1291 			"message of %u bytes to transmit but the current "
1292 			"chip bus has a data width of %u bytes!\n",
1293 			pl022->cur_transfer->len,
1294 			pl022->cur_chip->n_bytes);
1295 		dev_err(&pl022->adev->dev, "skipping this message\n");
1296 		return -EIO;
1297 	}
1298 	pl022->tx = (void *)transfer->tx_buf;
1299 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1300 	pl022->rx = (void *)transfer->rx_buf;
1301 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1302 	pl022->write =
1303 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1304 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1305 	return 0;
1306 }
1307 
1308 /**
1309  * pump_transfers - Tasklet function which schedules next transfer
1310  * when running in interrupt or DMA transfer mode.
1311  * @data: SSP driver private data structure
1312  *
1313  */
1314 static void pump_transfers(unsigned long data)
1315 {
1316 	struct pl022 *pl022 = (struct pl022 *) data;
1317 	struct spi_message *message = NULL;
1318 	struct spi_transfer *transfer = NULL;
1319 	struct spi_transfer *previous = NULL;
1320 
1321 	/* Get current state information */
1322 	message = pl022->cur_msg;
1323 	transfer = pl022->cur_transfer;
1324 
1325 	/* Handle for abort */
1326 	if (message->state == STATE_ERROR) {
1327 		message->status = -EIO;
1328 		giveback(pl022);
1329 		return;
1330 	}
1331 
1332 	/* Handle end of message */
1333 	if (message->state == STATE_DONE) {
1334 		message->status = 0;
1335 		giveback(pl022);
1336 		return;
1337 	}
1338 
1339 	/* Delay if requested at end of transfer before CS change */
1340 	if (message->state == STATE_RUNNING) {
1341 		previous = list_entry(transfer->transfer_list.prev,
1342 					struct spi_transfer,
1343 					transfer_list);
1344 		if (previous->delay_usecs)
1345 			/*
1346 			 * FIXME: This runs in interrupt context.
1347 			 * Is this really smart?
1348 			 */
1349 			udelay(previous->delay_usecs);
1350 
1351 		/* Reselect chip select only if cs_change was requested */
1352 		if (previous->cs_change)
1353 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1354 	} else {
1355 		/* STATE_START */
1356 		message->state = STATE_RUNNING;
1357 	}
1358 
1359 	if (set_up_next_transfer(pl022, transfer)) {
1360 		message->state = STATE_ERROR;
1361 		message->status = -EIO;
1362 		giveback(pl022);
1363 		return;
1364 	}
1365 	/* Flush the FIFOs and let's go! */
1366 	flush(pl022);
1367 
1368 	if (pl022->cur_chip->enable_dma) {
1369 		if (configure_dma(pl022)) {
1370 			dev_dbg(&pl022->adev->dev,
1371 				"configuration of DMA failed, fall back to interrupt mode\n");
1372 			goto err_config_dma;
1373 		}
1374 		return;
1375 	}
1376 
1377 err_config_dma:
1378 	/* enable all interrupts except RX */
1379 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1380 }
1381 
1382 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1383 {
1384 	/*
1385 	 * Default is to enable all interrupts except RX -
1386 	 * this will be enabled once TX is complete
1387 	 */
1388 	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1389 
1390 	/* Enable target chip, if not already active */
1391 	if (!pl022->next_msg_cs_active)
1392 		pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1393 
1394 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1395 		/* Error path */
1396 		pl022->cur_msg->state = STATE_ERROR;
1397 		pl022->cur_msg->status = -EIO;
1398 		giveback(pl022);
1399 		return;
1400 	}
1401 	/* If we're using DMA, set up DMA here */
1402 	if (pl022->cur_chip->enable_dma) {
1403 		/* Configure DMA transfer */
1404 		if (configure_dma(pl022)) {
1405 			dev_dbg(&pl022->adev->dev,
1406 				"configuration of DMA failed, fall back to interrupt mode\n");
1407 			goto err_config_dma;
1408 		}
1409 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1410 		irqflags = DISABLE_ALL_INTERRUPTS;
1411 	}
1412 err_config_dma:
1413 	/* Enable SSP, turn on interrupts */
1414 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1415 	       SSP_CR1(pl022->virtbase));
1416 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1417 }
1418 
1419 static void do_polling_transfer(struct pl022 *pl022)
1420 {
1421 	struct spi_message *message = NULL;
1422 	struct spi_transfer *transfer = NULL;
1423 	struct spi_transfer *previous = NULL;
1424 	struct chip_data *chip;
1425 	unsigned long time, timeout;
1426 
1427 	chip = pl022->cur_chip;
1428 	message = pl022->cur_msg;
1429 
1430 	while (message->state != STATE_DONE) {
1431 		/* Handle for abort */
1432 		if (message->state == STATE_ERROR)
1433 			break;
1434 		transfer = pl022->cur_transfer;
1435 
1436 		/* Delay if requested at end of transfer */
1437 		if (message->state == STATE_RUNNING) {
1438 			previous =
1439 			    list_entry(transfer->transfer_list.prev,
1440 				       struct spi_transfer, transfer_list);
1441 			if (previous->delay_usecs)
1442 				udelay(previous->delay_usecs);
1443 			if (previous->cs_change)
1444 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1445 		} else {
1446 			/* STATE_START */
1447 			message->state = STATE_RUNNING;
1448 			if (!pl022->next_msg_cs_active)
1449 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1450 		}
1451 
1452 		/* Configuration Changing Per Transfer */
1453 		if (set_up_next_transfer(pl022, transfer)) {
1454 			/* Error path */
1455 			message->state = STATE_ERROR;
1456 			break;
1457 		}
1458 		/* Flush FIFOs and enable SSP */
1459 		flush(pl022);
1460 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1461 		       SSP_CR1(pl022->virtbase));
1462 
1463 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1464 
1465 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1466 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1467 			time = jiffies;
1468 			readwriter(pl022);
1469 			if (time_after(time, timeout)) {
1470 				dev_warn(&pl022->adev->dev,
1471 				"%s: timeout!\n", __func__);
1472 				message->state = STATE_ERROR;
1473 				goto out;
1474 			}
1475 			cpu_relax();
1476 		}
1477 
1478 		/* Update total byte transferred */
1479 		message->actual_length += pl022->cur_transfer->len;
1480 		if (pl022->cur_transfer->cs_change)
1481 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1482 		/* Move to next transfer */
1483 		message->state = next_transfer(pl022);
1484 	}
1485 out:
1486 	/* Handle end of message */
1487 	if (message->state == STATE_DONE)
1488 		message->status = 0;
1489 	else
1490 		message->status = -EIO;
1491 
1492 	giveback(pl022);
1493 	return;
1494 }
1495 
1496 /**
1497  * pump_messages - Workqueue function which processes spi message queue
1498  * @data: pointer to private data of SSP driver
1499  *
1500  * This function checks if there is any spi message in the queue that
1501  * needs processing and delegate control to appropriate function
1502  * do_polling_transfer()/do_interrupt_dma_transfer()
1503  * based on the kind of the transfer
1504  *
1505  */
1506 static void pump_messages(struct work_struct *work)
1507 {
1508 	struct pl022 *pl022 =
1509 		container_of(work, struct pl022, pump_messages);
1510 	unsigned long flags;
1511 	bool was_busy = false;
1512 
1513 	/* Lock queue and check for queue work */
1514 	spin_lock_irqsave(&pl022->queue_lock, flags);
1515 	if (list_empty(&pl022->queue) || !pl022->running) {
1516 		if (pl022->busy) {
1517 			/* nothing more to do - disable spi/ssp and power off */
1518 			writew((readw(SSP_CR1(pl022->virtbase)) &
1519 				(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1520 
1521 			if (pl022->master_info->autosuspend_delay > 0) {
1522 				pm_runtime_mark_last_busy(&pl022->adev->dev);
1523 				pm_runtime_put_autosuspend(&pl022->adev->dev);
1524 			} else {
1525 				pm_runtime_put(&pl022->adev->dev);
1526 			}
1527 		}
1528 		pl022->busy = false;
1529 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1530 		return;
1531 	}
1532 
1533 	/* Make sure we are not already running a message */
1534 	if (pl022->cur_msg) {
1535 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1536 		return;
1537 	}
1538 	/* Extract head of queue */
1539 	pl022->cur_msg =
1540 	    list_entry(pl022->queue.next, struct spi_message, queue);
1541 
1542 	list_del_init(&pl022->cur_msg->queue);
1543 	if (pl022->busy)
1544 		was_busy = true;
1545 	else
1546 		pl022->busy = true;
1547 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1548 
1549 	/* Initial message state */
1550 	pl022->cur_msg->state = STATE_START;
1551 	pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1552 					    struct spi_transfer, transfer_list);
1553 
1554 	/* Setup the SPI using the per chip configuration */
1555 	pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1556 	if (!was_busy)
1557 		/*
1558 		 * We enable the core voltage and clocks here, then the clocks
1559 		 * and core will be disabled when this workqueue is run again
1560 		 * and there is no more work to be done.
1561 		 */
1562 		pm_runtime_get_sync(&pl022->adev->dev);
1563 
1564 	restore_state(pl022);
1565 	flush(pl022);
1566 
1567 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1568 		do_polling_transfer(pl022);
1569 	else
1570 		do_interrupt_dma_transfer(pl022);
1571 }
1572 
1573 static int __init init_queue(struct pl022 *pl022)
1574 {
1575 	INIT_LIST_HEAD(&pl022->queue);
1576 	spin_lock_init(&pl022->queue_lock);
1577 
1578 	pl022->running = false;
1579 	pl022->busy = false;
1580 
1581 	tasklet_init(&pl022->pump_transfers, pump_transfers,
1582 			(unsigned long)pl022);
1583 
1584 	INIT_WORK(&pl022->pump_messages, pump_messages);
1585 	pl022->workqueue = create_singlethread_workqueue(
1586 					dev_name(pl022->master->dev.parent));
1587 	if (pl022->workqueue == NULL)
1588 		return -EBUSY;
1589 
1590 	return 0;
1591 }
1592 
1593 static int start_queue(struct pl022 *pl022)
1594 {
1595 	unsigned long flags;
1596 
1597 	spin_lock_irqsave(&pl022->queue_lock, flags);
1598 
1599 	if (pl022->running || pl022->busy) {
1600 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1601 		return -EBUSY;
1602 	}
1603 
1604 	pl022->running = true;
1605 	pl022->cur_msg = NULL;
1606 	pl022->cur_transfer = NULL;
1607 	pl022->cur_chip = NULL;
1608 	pl022->next_msg_cs_active = false;
1609 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1610 
1611 	queue_work(pl022->workqueue, &pl022->pump_messages);
1612 
1613 	return 0;
1614 }
1615 
1616 static int stop_queue(struct pl022 *pl022)
1617 {
1618 	unsigned long flags;
1619 	unsigned limit = 500;
1620 	int status = 0;
1621 
1622 	spin_lock_irqsave(&pl022->queue_lock, flags);
1623 
1624 	/* This is a bit lame, but is optimized for the common execution path.
1625 	 * A wait_queue on the pl022->busy could be used, but then the common
1626 	 * execution path (pump_messages) would be required to call wake_up or
1627 	 * friends on every SPI message. Do this instead */
1628 	while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
1629 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1630 		msleep(10);
1631 		spin_lock_irqsave(&pl022->queue_lock, flags);
1632 	}
1633 
1634 	if (!list_empty(&pl022->queue) || pl022->busy)
1635 		status = -EBUSY;
1636 	else
1637 		pl022->running = false;
1638 
1639 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1640 
1641 	return status;
1642 }
1643 
1644 static int destroy_queue(struct pl022 *pl022)
1645 {
1646 	int status;
1647 
1648 	status = stop_queue(pl022);
1649 	/* we are unloading the module or failing to load (only two calls
1650 	 * to this routine), and neither call can handle a return value.
1651 	 * However, destroy_workqueue calls flush_workqueue, and that will
1652 	 * block until all work is done.  If the reason that stop_queue
1653 	 * timed out is that the work will never finish, then it does no
1654 	 * good to call destroy_workqueue, so return anyway. */
1655 	if (status != 0)
1656 		return status;
1657 
1658 	destroy_workqueue(pl022->workqueue);
1659 
1660 	return 0;
1661 }
1662 
1663 static int verify_controller_parameters(struct pl022 *pl022,
1664 				struct pl022_config_chip const *chip_info)
1665 {
1666 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1667 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1668 		dev_err(&pl022->adev->dev,
1669 			"interface is configured incorrectly\n");
1670 		return -EINVAL;
1671 	}
1672 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1673 	    (!pl022->vendor->unidir)) {
1674 		dev_err(&pl022->adev->dev,
1675 			"unidirectional mode not supported in this "
1676 			"hardware version\n");
1677 		return -EINVAL;
1678 	}
1679 	if ((chip_info->hierarchy != SSP_MASTER)
1680 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1681 		dev_err(&pl022->adev->dev,
1682 			"hierarchy is configured incorrectly\n");
1683 		return -EINVAL;
1684 	}
1685 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1686 	    && (chip_info->com_mode != DMA_TRANSFER)
1687 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1688 		dev_err(&pl022->adev->dev,
1689 			"Communication mode is configured incorrectly\n");
1690 		return -EINVAL;
1691 	}
1692 	switch (chip_info->rx_lev_trig) {
1693 	case SSP_RX_1_OR_MORE_ELEM:
1694 	case SSP_RX_4_OR_MORE_ELEM:
1695 	case SSP_RX_8_OR_MORE_ELEM:
1696 		/* These are always OK, all variants can handle this */
1697 		break;
1698 	case SSP_RX_16_OR_MORE_ELEM:
1699 		if (pl022->vendor->fifodepth < 16) {
1700 			dev_err(&pl022->adev->dev,
1701 			"RX FIFO Trigger Level is configured incorrectly\n");
1702 			return -EINVAL;
1703 		}
1704 		break;
1705 	case SSP_RX_32_OR_MORE_ELEM:
1706 		if (pl022->vendor->fifodepth < 32) {
1707 			dev_err(&pl022->adev->dev,
1708 			"RX FIFO Trigger Level is configured incorrectly\n");
1709 			return -EINVAL;
1710 		}
1711 		break;
1712 	default:
1713 		dev_err(&pl022->adev->dev,
1714 			"RX FIFO Trigger Level is configured incorrectly\n");
1715 		return -EINVAL;
1716 		break;
1717 	}
1718 	switch (chip_info->tx_lev_trig) {
1719 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1720 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1721 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1722 		/* These are always OK, all variants can handle this */
1723 		break;
1724 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1725 		if (pl022->vendor->fifodepth < 16) {
1726 			dev_err(&pl022->adev->dev,
1727 			"TX FIFO Trigger Level is configured incorrectly\n");
1728 			return -EINVAL;
1729 		}
1730 		break;
1731 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1732 		if (pl022->vendor->fifodepth < 32) {
1733 			dev_err(&pl022->adev->dev,
1734 			"TX FIFO Trigger Level is configured incorrectly\n");
1735 			return -EINVAL;
1736 		}
1737 		break;
1738 	default:
1739 		dev_err(&pl022->adev->dev,
1740 			"TX FIFO Trigger Level is configured incorrectly\n");
1741 		return -EINVAL;
1742 		break;
1743 	}
1744 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1745 		if ((chip_info->ctrl_len < SSP_BITS_4)
1746 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1747 			dev_err(&pl022->adev->dev,
1748 				"CTRL LEN is configured incorrectly\n");
1749 			return -EINVAL;
1750 		}
1751 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1752 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1753 			dev_err(&pl022->adev->dev,
1754 				"Wait State is configured incorrectly\n");
1755 			return -EINVAL;
1756 		}
1757 		/* Half duplex is only available in the ST Micro version */
1758 		if (pl022->vendor->extended_cr) {
1759 			if ((chip_info->duplex !=
1760 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1761 			    && (chip_info->duplex !=
1762 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1763 				dev_err(&pl022->adev->dev,
1764 					"Microwire duplex mode is configured incorrectly\n");
1765 				return -EINVAL;
1766 			}
1767 		} else {
1768 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1769 				dev_err(&pl022->adev->dev,
1770 					"Microwire half duplex mode requested,"
1771 					" but this is only available in the"
1772 					" ST version of PL022\n");
1773 			return -EINVAL;
1774 		}
1775 	}
1776 	return 0;
1777 }
1778 
1779 /**
1780  * pl022_transfer - transfer function registered to SPI master framework
1781  * @spi: spi device which is requesting transfer
1782  * @msg: spi message which is to handled is queued to driver queue
1783  *
1784  * This function is registered to the SPI framework for this SPI master
1785  * controller. It will queue the spi_message in the queue of driver if
1786  * the queue is not stopped and return.
1787  */
1788 static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1789 {
1790 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1791 	unsigned long flags;
1792 
1793 	spin_lock_irqsave(&pl022->queue_lock, flags);
1794 
1795 	if (!pl022->running) {
1796 		spin_unlock_irqrestore(&pl022->queue_lock, flags);
1797 		return -ESHUTDOWN;
1798 	}
1799 	msg->actual_length = 0;
1800 	msg->status = -EINPROGRESS;
1801 	msg->state = STATE_START;
1802 
1803 	list_add_tail(&msg->queue, &pl022->queue);
1804 	if (pl022->running && !pl022->busy)
1805 		queue_work(pl022->workqueue, &pl022->pump_messages);
1806 
1807 	spin_unlock_irqrestore(&pl022->queue_lock, flags);
1808 	return 0;
1809 }
1810 
1811 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1812 {
1813 	return rate / (cpsdvsr * (1 + scr));
1814 }
1815 
1816 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1817 				    ssp_clock_params * clk_freq)
1818 {
1819 	/* Lets calculate the frequency parameters */
1820 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1821 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1822 		best_scr = 0, tmp, found = 0;
1823 
1824 	rate = clk_get_rate(pl022->clk);
1825 	/* cpsdvscr = 2 & scr 0 */
1826 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1827 	/* cpsdvsr = 254 & scr = 255 */
1828 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1829 
1830 	if (!((freq <= max_tclk) && (freq >= min_tclk))) {
1831 		dev_err(&pl022->adev->dev,
1832 			"controller data is incorrect: out of range frequency");
1833 		return -EINVAL;
1834 	}
1835 
1836 	/*
1837 	 * best_freq will give closest possible available rate (<= requested
1838 	 * freq) for all values of scr & cpsdvsr.
1839 	 */
1840 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1841 		while (scr <= SCR_MAX) {
1842 			tmp = spi_rate(rate, cpsdvsr, scr);
1843 
1844 			if (tmp > freq)
1845 				scr++;
1846 			/*
1847 			 * If found exact value, update and break.
1848 			 * If found more closer value, update and continue.
1849 			 */
1850 			else if ((tmp == freq) || (tmp > best_freq)) {
1851 				best_freq = tmp;
1852 				best_cpsdvsr = cpsdvsr;
1853 				best_scr = scr;
1854 
1855 				if (tmp == freq)
1856 					break;
1857 			}
1858 			scr++;
1859 		}
1860 		cpsdvsr += 2;
1861 		scr = SCR_MIN;
1862 	}
1863 
1864 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1865 	clk_freq->scr = (u8) (best_scr & 0xFF);
1866 	dev_dbg(&pl022->adev->dev,
1867 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1868 		freq, best_freq);
1869 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1870 		clk_freq->cpsdvsr, clk_freq->scr);
1871 
1872 	return 0;
1873 }
1874 
1875 /*
1876  * A piece of default chip info unless the platform
1877  * supplies it.
1878  */
1879 static const struct pl022_config_chip pl022_default_chip_info = {
1880 	.com_mode = POLLING_TRANSFER,
1881 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1882 	.hierarchy = SSP_SLAVE,
1883 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1884 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1885 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1886 	.ctrl_len = SSP_BITS_8,
1887 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1888 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1889 	.cs_control = null_cs_control,
1890 };
1891 
1892 /**
1893  * pl022_setup - setup function registered to SPI master framework
1894  * @spi: spi device which is requesting setup
1895  *
1896  * This function is registered to the SPI framework for this SPI master
1897  * controller. If it is the first time when setup is called by this device,
1898  * this function will initialize the runtime state for this chip and save
1899  * the same in the device structure. Else it will update the runtime info
1900  * with the updated chip info. Nothing is really being written to the
1901  * controller hardware here, that is not done until the actual transfer
1902  * commence.
1903  */
1904 static int pl022_setup(struct spi_device *spi)
1905 {
1906 	struct pl022_config_chip const *chip_info;
1907 	struct chip_data *chip;
1908 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1909 	int status = 0;
1910 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1911 	unsigned int bits = spi->bits_per_word;
1912 	u32 tmp;
1913 
1914 	if (!spi->max_speed_hz)
1915 		return -EINVAL;
1916 
1917 	/* Get controller_state if one is supplied */
1918 	chip = spi_get_ctldata(spi);
1919 
1920 	if (chip == NULL) {
1921 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1922 		if (!chip) {
1923 			dev_err(&spi->dev,
1924 				"cannot allocate controller state\n");
1925 			return -ENOMEM;
1926 		}
1927 		dev_dbg(&spi->dev,
1928 			"allocated memory for controller's runtime state\n");
1929 	}
1930 
1931 	/* Get controller data if one is supplied */
1932 	chip_info = spi->controller_data;
1933 
1934 	if (chip_info == NULL) {
1935 		chip_info = &pl022_default_chip_info;
1936 		/* spi_board_info.controller_data not is supplied */
1937 		dev_dbg(&spi->dev,
1938 			"using default controller_data settings\n");
1939 	} else
1940 		dev_dbg(&spi->dev,
1941 			"using user supplied controller_data settings\n");
1942 
1943 	/*
1944 	 * We can override with custom divisors, else we use the board
1945 	 * frequency setting
1946 	 */
1947 	if ((0 == chip_info->clk_freq.cpsdvsr)
1948 	    && (0 == chip_info->clk_freq.scr)) {
1949 		status = calculate_effective_freq(pl022,
1950 						  spi->max_speed_hz,
1951 						  &clk_freq);
1952 		if (status < 0)
1953 			goto err_config_params;
1954 	} else {
1955 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1956 		if ((clk_freq.cpsdvsr % 2) != 0)
1957 			clk_freq.cpsdvsr =
1958 				clk_freq.cpsdvsr - 1;
1959 	}
1960 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1961 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1962 		status = -EINVAL;
1963 		dev_err(&spi->dev,
1964 			"cpsdvsr is configured incorrectly\n");
1965 		goto err_config_params;
1966 	}
1967 
1968 	status = verify_controller_parameters(pl022, chip_info);
1969 	if (status) {
1970 		dev_err(&spi->dev, "controller data is incorrect");
1971 		goto err_config_params;
1972 	}
1973 
1974 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1975 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1976 
1977 	/* Now set controller state based on controller data */
1978 	chip->xfer_type = chip_info->com_mode;
1979 	if (!chip_info->cs_control) {
1980 		chip->cs_control = null_cs_control;
1981 		dev_warn(&spi->dev,
1982 			 "chip select function is NULL for this chip\n");
1983 	} else
1984 		chip->cs_control = chip_info->cs_control;
1985 
1986 	if (bits <= 3) {
1987 		/* PL022 doesn't support less than 4-bits */
1988 		status = -ENOTSUPP;
1989 		goto err_config_params;
1990 	} else if (bits <= 8) {
1991 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1992 		chip->n_bytes = 1;
1993 		chip->read = READING_U8;
1994 		chip->write = WRITING_U8;
1995 	} else if (bits <= 16) {
1996 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1997 		chip->n_bytes = 2;
1998 		chip->read = READING_U16;
1999 		chip->write = WRITING_U16;
2000 	} else {
2001 		if (pl022->vendor->max_bpw >= 32) {
2002 			dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
2003 			chip->n_bytes = 4;
2004 			chip->read = READING_U32;
2005 			chip->write = WRITING_U32;
2006 		} else {
2007 			dev_err(&spi->dev,
2008 				"illegal data size for this controller!\n");
2009 			dev_err(&spi->dev,
2010 				"a standard pl022 can only handle "
2011 				"1 <= n <= 16 bit words\n");
2012 			status = -ENOTSUPP;
2013 			goto err_config_params;
2014 		}
2015 	}
2016 
2017 	/* Now Initialize all register settings required for this chip */
2018 	chip->cr0 = 0;
2019 	chip->cr1 = 0;
2020 	chip->dmacr = 0;
2021 	chip->cpsr = 0;
2022 	if ((chip_info->com_mode == DMA_TRANSFER)
2023 	    && ((pl022->master_info)->enable_dma)) {
2024 		chip->enable_dma = true;
2025 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
2026 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2027 			       SSP_DMACR_MASK_RXDMAE, 0);
2028 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2029 			       SSP_DMACR_MASK_TXDMAE, 1);
2030 	} else {
2031 		chip->enable_dma = false;
2032 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
2033 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2034 			       SSP_DMACR_MASK_RXDMAE, 0);
2035 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2036 			       SSP_DMACR_MASK_TXDMAE, 1);
2037 	}
2038 
2039 	chip->cpsr = clk_freq.cpsdvsr;
2040 
2041 	/* Special setup for the ST micro extended control registers */
2042 	if (pl022->vendor->extended_cr) {
2043 		u32 etx;
2044 
2045 		if (pl022->vendor->pl023) {
2046 			/* These bits are only in the PL023 */
2047 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2048 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2049 		} else {
2050 			/* These bits are in the PL022 but not PL023 */
2051 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2052 				       SSP_CR0_MASK_HALFDUP_ST, 5);
2053 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2054 				       SSP_CR0_MASK_CSS_ST, 16);
2055 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2056 				       SSP_CR0_MASK_FRF_ST, 21);
2057 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2058 				       SSP_CR1_MASK_MWAIT_ST, 6);
2059 		}
2060 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2061 			       SSP_CR0_MASK_DSS_ST, 0);
2062 
2063 		if (spi->mode & SPI_LSB_FIRST) {
2064 			tmp = SSP_RX_LSB;
2065 			etx = SSP_TX_LSB;
2066 		} else {
2067 			tmp = SSP_RX_MSB;
2068 			etx = SSP_TX_MSB;
2069 		}
2070 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2071 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2072 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2073 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2074 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2075 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2076 	} else {
2077 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2078 			       SSP_CR0_MASK_DSS, 0);
2079 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2080 			       SSP_CR0_MASK_FRF, 4);
2081 	}
2082 
2083 	/* Stuff that is common for all versions */
2084 	if (spi->mode & SPI_CPOL)
2085 		tmp = SSP_CLK_POL_IDLE_HIGH;
2086 	else
2087 		tmp = SSP_CLK_POL_IDLE_LOW;
2088 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2089 
2090 	if (spi->mode & SPI_CPHA)
2091 		tmp = SSP_CLK_SECOND_EDGE;
2092 	else
2093 		tmp = SSP_CLK_FIRST_EDGE;
2094 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2095 
2096 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2097 	/* Loopback is available on all versions except PL023 */
2098 	if (pl022->vendor->loopback) {
2099 		if (spi->mode & SPI_LOOP)
2100 			tmp = LOOPBACK_ENABLED;
2101 		else
2102 			tmp = LOOPBACK_DISABLED;
2103 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2104 	}
2105 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2106 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2107 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2108 		3);
2109 
2110 	/* Save controller_state */
2111 	spi_set_ctldata(spi, chip);
2112 	return status;
2113  err_config_params:
2114 	spi_set_ctldata(spi, NULL);
2115 	kfree(chip);
2116 	return status;
2117 }
2118 
2119 /**
2120  * pl022_cleanup - cleanup function registered to SPI master framework
2121  * @spi: spi device which is requesting cleanup
2122  *
2123  * This function is registered to the SPI framework for this SPI master
2124  * controller. It will free the runtime state of chip.
2125  */
2126 static void pl022_cleanup(struct spi_device *spi)
2127 {
2128 	struct chip_data *chip = spi_get_ctldata(spi);
2129 
2130 	spi_set_ctldata(spi, NULL);
2131 	kfree(chip);
2132 }
2133 
2134 static int __devinit
2135 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2136 {
2137 	struct device *dev = &adev->dev;
2138 	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2139 	struct spi_master *master;
2140 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2141 	int status = 0;
2142 
2143 	dev_info(&adev->dev,
2144 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2145 	if (platform_info == NULL) {
2146 		dev_err(&adev->dev, "probe - no platform data supplied\n");
2147 		status = -ENODEV;
2148 		goto err_no_pdata;
2149 	}
2150 
2151 	/* Allocate master with space for data */
2152 	master = spi_alloc_master(dev, sizeof(struct pl022));
2153 	if (master == NULL) {
2154 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2155 		status = -ENOMEM;
2156 		goto err_no_master;
2157 	}
2158 
2159 	pl022 = spi_master_get_devdata(master);
2160 	pl022->master = master;
2161 	pl022->master_info = platform_info;
2162 	pl022->adev = adev;
2163 	pl022->vendor = id->data;
2164 
2165 	/*
2166 	 * Bus Number Which has been Assigned to this SSP controller
2167 	 * on this board
2168 	 */
2169 	master->bus_num = platform_info->bus_id;
2170 	master->num_chipselect = platform_info->num_chipselect;
2171 	master->cleanup = pl022_cleanup;
2172 	master->setup = pl022_setup;
2173 	master->transfer = pl022_transfer;
2174 
2175 	/*
2176 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2177 	 * always MS bit first on the original pl022.
2178 	 */
2179 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2180 	if (pl022->vendor->extended_cr)
2181 		master->mode_bits |= SPI_LSB_FIRST;
2182 
2183 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2184 
2185 	status = amba_request_regions(adev, NULL);
2186 	if (status)
2187 		goto err_no_ioregion;
2188 
2189 	pl022->phybase = adev->res.start;
2190 	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2191 	if (pl022->virtbase == NULL) {
2192 		status = -ENOMEM;
2193 		goto err_no_ioremap;
2194 	}
2195 	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2196 	       adev->res.start, pl022->virtbase);
2197 
2198 	pl022->clk = clk_get(&adev->dev, NULL);
2199 	if (IS_ERR(pl022->clk)) {
2200 		status = PTR_ERR(pl022->clk);
2201 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2202 		goto err_no_clk;
2203 	}
2204 
2205 	status = clk_prepare(pl022->clk);
2206 	if (status) {
2207 		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2208 		goto  err_clk_prep;
2209 	}
2210 
2211 	status = clk_enable(pl022->clk);
2212 	if (status) {
2213 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2214 		goto err_no_clk_en;
2215 	}
2216 
2217 	/* Disable SSP */
2218 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2219 	       SSP_CR1(pl022->virtbase));
2220 	load_ssp_default_config(pl022);
2221 
2222 	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2223 			     pl022);
2224 	if (status < 0) {
2225 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2226 		goto err_no_irq;
2227 	}
2228 
2229 	/* Get DMA channels */
2230 	if (platform_info->enable_dma) {
2231 		status = pl022_dma_probe(pl022);
2232 		if (status != 0)
2233 			platform_info->enable_dma = 0;
2234 	}
2235 
2236 	/* Initialize and start queue */
2237 	status = init_queue(pl022);
2238 	if (status != 0) {
2239 		dev_err(&adev->dev, "probe - problem initializing queue\n");
2240 		goto err_init_queue;
2241 	}
2242 	status = start_queue(pl022);
2243 	if (status != 0) {
2244 		dev_err(&adev->dev, "probe - problem starting queue\n");
2245 		goto err_start_queue;
2246 	}
2247 	/* Register with the SPI framework */
2248 	amba_set_drvdata(adev, pl022);
2249 	status = spi_register_master(master);
2250 	if (status != 0) {
2251 		dev_err(&adev->dev,
2252 			"probe - problem registering spi master\n");
2253 		goto err_spi_register;
2254 	}
2255 	dev_dbg(dev, "probe succeeded\n");
2256 
2257 	/* let runtime pm put suspend */
2258 	if (platform_info->autosuspend_delay > 0) {
2259 		dev_info(&adev->dev,
2260 			"will use autosuspend for runtime pm, delay %dms\n",
2261 			platform_info->autosuspend_delay);
2262 		pm_runtime_set_autosuspend_delay(dev,
2263 			platform_info->autosuspend_delay);
2264 		pm_runtime_use_autosuspend(dev);
2265 		pm_runtime_put_autosuspend(dev);
2266 	} else {
2267 		pm_runtime_put(dev);
2268 	}
2269 	return 0;
2270 
2271  err_spi_register:
2272  err_start_queue:
2273  err_init_queue:
2274 	destroy_queue(pl022);
2275 	if (platform_info->enable_dma)
2276 		pl022_dma_remove(pl022);
2277 
2278 	free_irq(adev->irq[0], pl022);
2279  err_no_irq:
2280 	clk_disable(pl022->clk);
2281  err_no_clk_en:
2282 	clk_unprepare(pl022->clk);
2283  err_clk_prep:
2284 	clk_put(pl022->clk);
2285  err_no_clk:
2286 	iounmap(pl022->virtbase);
2287  err_no_ioremap:
2288 	amba_release_regions(adev);
2289  err_no_ioregion:
2290 	spi_master_put(master);
2291  err_no_master:
2292  err_no_pdata:
2293 	return status;
2294 }
2295 
2296 static int __devexit
2297 pl022_remove(struct amba_device *adev)
2298 {
2299 	struct pl022 *pl022 = amba_get_drvdata(adev);
2300 
2301 	if (!pl022)
2302 		return 0;
2303 
2304 	/*
2305 	 * undo pm_runtime_put() in probe.  I assume that we're not
2306 	 * accessing the primecell here.
2307 	 */
2308 	pm_runtime_get_noresume(&adev->dev);
2309 
2310 	/* Remove the queue */
2311 	if (destroy_queue(pl022) != 0)
2312 		dev_err(&adev->dev, "queue remove failed\n");
2313 	load_ssp_default_config(pl022);
2314 	if (pl022->master_info->enable_dma)
2315 		pl022_dma_remove(pl022);
2316 
2317 	free_irq(adev->irq[0], pl022);
2318 	clk_disable(pl022->clk);
2319 	clk_unprepare(pl022->clk);
2320 	clk_put(pl022->clk);
2321 	iounmap(pl022->virtbase);
2322 	amba_release_regions(adev);
2323 	tasklet_disable(&pl022->pump_transfers);
2324 	spi_unregister_master(pl022->master);
2325 	spi_master_put(pl022->master);
2326 	amba_set_drvdata(adev, NULL);
2327 	return 0;
2328 }
2329 
2330 #ifdef CONFIG_SUSPEND
2331 static int pl022_suspend(struct device *dev)
2332 {
2333 	struct pl022 *pl022 = dev_get_drvdata(dev);
2334 	int status = 0;
2335 
2336 	status = stop_queue(pl022);
2337 	if (status) {
2338 		dev_warn(dev, "suspend cannot stop queue\n");
2339 		return status;
2340 	}
2341 
2342 	dev_dbg(dev, "suspended\n");
2343 	return 0;
2344 }
2345 
2346 static int pl022_resume(struct device *dev)
2347 {
2348 	struct pl022 *pl022 = dev_get_drvdata(dev);
2349 	int status = 0;
2350 
2351 	/* Start the queue running */
2352 	status = start_queue(pl022);
2353 	if (status)
2354 		dev_err(dev, "problem starting queue (%d)\n", status);
2355 	else
2356 		dev_dbg(dev, "resumed\n");
2357 
2358 	return status;
2359 }
2360 #endif	/* CONFIG_PM */
2361 
2362 #ifdef CONFIG_PM_RUNTIME
2363 static int pl022_runtime_suspend(struct device *dev)
2364 {
2365 	struct pl022 *pl022 = dev_get_drvdata(dev);
2366 
2367 	clk_disable(pl022->clk);
2368 	amba_vcore_disable(pl022->adev);
2369 
2370 	return 0;
2371 }
2372 
2373 static int pl022_runtime_resume(struct device *dev)
2374 {
2375 	struct pl022 *pl022 = dev_get_drvdata(dev);
2376 
2377 	amba_vcore_enable(pl022->adev);
2378 	clk_enable(pl022->clk);
2379 
2380 	return 0;
2381 }
2382 #endif
2383 
2384 static const struct dev_pm_ops pl022_dev_pm_ops = {
2385 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2386 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2387 };
2388 
2389 static struct vendor_data vendor_arm = {
2390 	.fifodepth = 8,
2391 	.max_bpw = 16,
2392 	.unidir = false,
2393 	.extended_cr = false,
2394 	.pl023 = false,
2395 	.loopback = true,
2396 };
2397 
2398 static struct vendor_data vendor_st = {
2399 	.fifodepth = 32,
2400 	.max_bpw = 32,
2401 	.unidir = false,
2402 	.extended_cr = true,
2403 	.pl023 = false,
2404 	.loopback = true,
2405 };
2406 
2407 static struct vendor_data vendor_st_pl023 = {
2408 	.fifodepth = 32,
2409 	.max_bpw = 32,
2410 	.unidir = false,
2411 	.extended_cr = true,
2412 	.pl023 = true,
2413 	.loopback = false,
2414 };
2415 
2416 static struct vendor_data vendor_db5500_pl023 = {
2417 	.fifodepth = 32,
2418 	.max_bpw = 32,
2419 	.unidir = false,
2420 	.extended_cr = true,
2421 	.pl023 = true,
2422 	.loopback = true,
2423 };
2424 
2425 static struct amba_id pl022_ids[] = {
2426 	{
2427 		/*
2428 		 * ARM PL022 variant, this has a 16bit wide
2429 		 * and 8 locations deep TX/RX FIFO
2430 		 */
2431 		.id	= 0x00041022,
2432 		.mask	= 0x000fffff,
2433 		.data	= &vendor_arm,
2434 	},
2435 	{
2436 		/*
2437 		 * ST Micro derivative, this has 32bit wide
2438 		 * and 32 locations deep TX/RX FIFO
2439 		 */
2440 		.id	= 0x01080022,
2441 		.mask	= 0xffffffff,
2442 		.data	= &vendor_st,
2443 	},
2444 	{
2445 		/*
2446 		 * ST-Ericsson derivative "PL023" (this is not
2447 		 * an official ARM number), this is a PL022 SSP block
2448 		 * stripped to SPI mode only, it has 32bit wide
2449 		 * and 32 locations deep TX/RX FIFO but no extended
2450 		 * CR0/CR1 register
2451 		 */
2452 		.id	= 0x00080023,
2453 		.mask	= 0xffffffff,
2454 		.data	= &vendor_st_pl023,
2455 	},
2456 	{
2457 		.id	= 0x10080023,
2458 		.mask	= 0xffffffff,
2459 		.data	= &vendor_db5500_pl023,
2460 	},
2461 	{ 0, 0 },
2462 };
2463 
2464 MODULE_DEVICE_TABLE(amba, pl022_ids);
2465 
2466 static struct amba_driver pl022_driver = {
2467 	.drv = {
2468 		.name	= "ssp-pl022",
2469 		.pm	= &pl022_dev_pm_ops,
2470 	},
2471 	.id_table	= pl022_ids,
2472 	.probe		= pl022_probe,
2473 	.remove		= __devexit_p(pl022_remove),
2474 };
2475 
2476 static int __init pl022_init(void)
2477 {
2478 	return amba_driver_register(&pl022_driver);
2479 }
2480 subsys_initcall(pl022_init);
2481 
2482 static void __exit pl022_exit(void)
2483 {
2484 	amba_driver_unregister(&pl022_driver);
2485 }
2486 module_exit(pl022_exit);
2487 
2488 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2489 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2490 MODULE_LICENSE("GPL");
2491