xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision 5015a2e1)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2012 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
46 
47 /*
48  * This macro is used to define some register default values.
49  * reg is masked with mask, the OR:ed with an (again masked)
50  * val shifted sb steps to the left.
51  */
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 
55 /*
56  * This macro is also used to define some default values.
57  * It will just shift val by sb steps to the left and mask
58  * the result with mask.
59  */
60 #define GEN_MASK_BITS(val, mask, sb) \
61  (((val)<<(sb)) & (mask))
62 
63 #define DRIVE_TX		0
64 #define DO_NOT_DRIVE_TX		1
65 
66 #define DO_NOT_QUEUE_DMA	0
67 #define QUEUE_DMA		1
68 
69 #define RX_TRANSFER		1
70 #define TX_TRANSFER		2
71 
72 /*
73  * Macros to access SSP Registers with their offsets
74  */
75 #define SSP_CR0(r)	(r + 0x000)
76 #define SSP_CR1(r)	(r + 0x004)
77 #define SSP_DR(r)	(r + 0x008)
78 #define SSP_SR(r)	(r + 0x00C)
79 #define SSP_CPSR(r)	(r + 0x010)
80 #define SSP_IMSC(r)	(r + 0x014)
81 #define SSP_RIS(r)	(r + 0x018)
82 #define SSP_MIS(r)	(r + 0x01C)
83 #define SSP_ICR(r)	(r + 0x020)
84 #define SSP_DMACR(r)	(r + 0x024)
85 #define SSP_ITCR(r)	(r + 0x080)
86 #define SSP_ITIP(r)	(r + 0x084)
87 #define SSP_ITOP(r)	(r + 0x088)
88 #define SSP_TDR(r)	(r + 0x08C)
89 
90 #define SSP_PID0(r)	(r + 0xFE0)
91 #define SSP_PID1(r)	(r + 0xFE4)
92 #define SSP_PID2(r)	(r + 0xFE8)
93 #define SSP_PID3(r)	(r + 0xFEC)
94 
95 #define SSP_CID0(r)	(r + 0xFF0)
96 #define SSP_CID1(r)	(r + 0xFF4)
97 #define SSP_CID2(r)	(r + 0xFF8)
98 #define SSP_CID3(r)	(r + 0xFFC)
99 
100 /*
101  * SSP Control Register 0  - SSP_CR0
102  */
103 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
104 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
105 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
106 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
107 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
108 
109 /*
110  * The ST version of this block moves som bits
111  * in SSP_CR0 and extends it to 32 bits
112  */
113 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
114 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
115 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
116 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
117 
118 /*
119  * SSP Control Register 0  - SSP_CR1
120  */
121 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
122 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
123 #define SSP_CR1_MASK_MS		(0x1UL << 2)
124 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
125 
126 /*
127  * The ST version of this block adds some bits
128  * in SSP_CR1
129  */
130 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
131 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
132 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
133 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
135 /* This one is only in the PL023 variant */
136 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
137 
138 /*
139  * SSP Status Register - SSP_SR
140  */
141 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
142 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
143 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
144 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
145 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
146 
147 /*
148  * SSP Clock Prescale Register  - SSP_CPSR
149  */
150 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
151 
152 /*
153  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154  */
155 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
157 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
158 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
159 
160 /*
161  * SSP Raw Interrupt Status Register - SSP_RIS
162  */
163 /* Receive Overrun Raw Interrupt status */
164 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
165 /* Receive Timeout Raw Interrupt status */
166 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
167 /* Receive FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
169 /* Transmit FIFO Raw Interrupt status */
170 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
171 
172 /*
173  * SSP Masked Interrupt Status Register - SSP_MIS
174  */
175 /* Receive Overrun Masked Interrupt status */
176 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
177 /* Receive Timeout Masked Interrupt status */
178 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
179 /* Receive FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
181 /* Transmit FIFO Masked Interrupt status */
182 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
183 
184 /*
185  * SSP Interrupt Clear Register - SSP_ICR
186  */
187 /* Receive Overrun Raw Clear Interrupt bit */
188 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
189 /* Receive Timeout Clear Interrupt bit */
190 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
191 
192 /*
193  * SSP DMA Control Register - SSP_DMACR
194  */
195 /* Receive DMA Enable bit */
196 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
197 /* Transmit DMA Enable bit */
198 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
199 
200 /*
201  * SSP Integration Test control Register - SSP_ITCR
202  */
203 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
204 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
205 
206 /*
207  * SSP Integration Test Input Register - SSP_ITIP
208  */
209 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
210 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
211 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
212 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
213 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
214 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
215 
216 /*
217  * SSP Integration Test output Register - SSP_ITOP
218  */
219 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
220 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
221 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
222 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
223 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
224 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
225 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
226 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
227 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
228 #define ITOP_MASK_INTR			 (0x1UL << 9)
229 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
230 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
231 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
232 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
233 
234 /*
235  * SSP Test Data Register - SSP_TDR
236  */
237 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
238 
239 /*
240  * Message State
241  * we use the spi_message.state (void *) pointer to
242  * hold a single state value, that's why all this
243  * (void *) casting is done here.
244  */
245 #define STATE_START			((void *) 0)
246 #define STATE_RUNNING			((void *) 1)
247 #define STATE_DONE			((void *) 2)
248 #define STATE_ERROR			((void *) -1)
249 
250 /*
251  * SSP State - Whether Enabled or Disabled
252  */
253 #define SSP_DISABLED			(0)
254 #define SSP_ENABLED			(1)
255 
256 /*
257  * SSP DMA State - Whether DMA Enabled or Disabled
258  */
259 #define SSP_DMA_DISABLED		(0)
260 #define SSP_DMA_ENABLED			(1)
261 
262 /*
263  * SSP Clock Defaults
264  */
265 #define SSP_DEFAULT_CLKRATE 0x2
266 #define SSP_DEFAULT_PRESCALE 0x40
267 
268 /*
269  * SSP Clock Parameter ranges
270  */
271 #define CPSDVR_MIN 0x02
272 #define CPSDVR_MAX 0xFE
273 #define SCR_MIN 0x00
274 #define SCR_MAX 0xFF
275 
276 /*
277  * SSP Interrupt related Macros
278  */
279 #define DEFAULT_SSP_REG_IMSC  0x0UL
280 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282 
283 #define CLEAR_ALL_INTERRUPTS  0x3
284 
285 #define SPI_POLLING_TIMEOUT 1000
286 
287 /*
288  * The type of reading going on on this chip
289  */
290 enum ssp_reading {
291 	READING_NULL,
292 	READING_U8,
293 	READING_U16,
294 	READING_U32
295 };
296 
297 /**
298  * The type of writing going on on this chip
299  */
300 enum ssp_writing {
301 	WRITING_NULL,
302 	WRITING_U8,
303 	WRITING_U16,
304 	WRITING_U32
305 };
306 
307 /**
308  * struct vendor_data - vendor-specific config parameters
309  * for PL022 derivates
310  * @fifodepth: depth of FIFOs (both)
311  * @max_bpw: maximum number of bits per word
312  * @unidir: supports unidirection transfers
313  * @extended_cr: 32 bit wide control register 0 with extra
314  * features and extra features in CR1 as found in the ST variants
315  * @pl023: supports a subset of the ST extensions called "PL023"
316  */
317 struct vendor_data {
318 	int fifodepth;
319 	int max_bpw;
320 	bool unidir;
321 	bool extended_cr;
322 	bool pl023;
323 	bool loopback;
324 };
325 
326 /**
327  * struct pl022 - This is the private SSP driver data structure
328  * @adev: AMBA device model hookup
329  * @vendor: vendor data for the IP block
330  * @phybase: the physical memory where the SSP device resides
331  * @virtbase: the virtual memory where the SSP is mapped
332  * @clk: outgoing clock "SPICLK" for the SPI bus
333  * @master: SPI framework hookup
334  * @master_info: controller-specific data from machine setup
335  * @kworker: thread struct for message pump
336  * @kworker_task: pointer to task for message pump kworker thread
337  * @pump_messages: work struct for scheduling work to the message pump
338  * @queue_lock: spinlock to syncronise access to message queue
339  * @queue: message queue
340  * @busy: message pump is busy
341  * @running: message pump is running
342  * @pump_transfers: Tasklet used in Interrupt Transfer mode
343  * @cur_msg: Pointer to current spi_message being processed
344  * @cur_transfer: Pointer to current spi_transfer
345  * @cur_chip: pointer to current clients chip(assigned from controller_state)
346  * @next_msg_cs_active: the next message in the queue has been examined
347  *  and it was found that it uses the same chip select as the previous
348  *  message, so we left it active after the previous transfer, and it's
349  *  active already.
350  * @tx: current position in TX buffer to be read
351  * @tx_end: end position in TX buffer to be read
352  * @rx: current position in RX buffer to be written
353  * @rx_end: end position in RX buffer to be written
354  * @read: the type of read currently going on
355  * @write: the type of write currently going on
356  * @exp_fifo_level: expected FIFO level
357  * @dma_rx_channel: optional channel for RX DMA
358  * @dma_tx_channel: optional channel for TX DMA
359  * @sgt_rx: scattertable for the RX transfer
360  * @sgt_tx: scattertable for the TX transfer
361  * @dummypage: a dummy page used for driving data on the bus with DMA
362  * @cur_cs: current chip select (gpio)
363  * @chipselects: list of chipselects (gpios)
364  */
365 struct pl022 {
366 	struct amba_device		*adev;
367 	struct vendor_data		*vendor;
368 	resource_size_t			phybase;
369 	void __iomem			*virtbase;
370 	struct clk			*clk;
371 	/* Two optional pin states - default & sleep */
372 	struct pinctrl			*pinctrl;
373 	struct pinctrl_state		*pins_default;
374 	struct pinctrl_state		*pins_sleep;
375 	struct spi_master		*master;
376 	struct pl022_ssp_controller	*master_info;
377 	/* Message per-transfer pump */
378 	struct tasklet_struct		pump_transfers;
379 	struct spi_message		*cur_msg;
380 	struct spi_transfer		*cur_transfer;
381 	struct chip_data		*cur_chip;
382 	bool				next_msg_cs_active;
383 	void				*tx;
384 	void				*tx_end;
385 	void				*rx;
386 	void				*rx_end;
387 	enum ssp_reading		read;
388 	enum ssp_writing		write;
389 	u32				exp_fifo_level;
390 	enum ssp_rx_level_trig		rx_lev_trig;
391 	enum ssp_tx_level_trig		tx_lev_trig;
392 	/* DMA settings */
393 #ifdef CONFIG_DMA_ENGINE
394 	struct dma_chan			*dma_rx_channel;
395 	struct dma_chan			*dma_tx_channel;
396 	struct sg_table			sgt_rx;
397 	struct sg_table			sgt_tx;
398 	char				*dummypage;
399 	bool				dma_running;
400 #endif
401 	int cur_cs;
402 	int *chipselects;
403 };
404 
405 /**
406  * struct chip_data - To maintain runtime state of SSP for each client chip
407  * @cr0: Value of control register CR0 of SSP - on later ST variants this
408  *       register is 32 bits wide rather than just 16
409  * @cr1: Value of control register CR1 of SSP
410  * @dmacr: Value of DMA control Register of SSP
411  * @cpsr: Value of Clock prescale register
412  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
413  * @enable_dma: Whether to enable DMA or not
414  * @read: function ptr to be used to read when doing xfer for this chip
415  * @write: function ptr to be used to write when doing xfer for this chip
416  * @cs_control: chip select callback provided by chip
417  * @xfer_type: polling/interrupt/DMA
418  *
419  * Runtime state of the SSP controller, maintained per chip,
420  * This would be set according to the current message that would be served
421  */
422 struct chip_data {
423 	u32 cr0;
424 	u16 cr1;
425 	u16 dmacr;
426 	u16 cpsr;
427 	u8 n_bytes;
428 	bool enable_dma;
429 	enum ssp_reading read;
430 	enum ssp_writing write;
431 	void (*cs_control) (u32 command);
432 	int xfer_type;
433 };
434 
435 /**
436  * null_cs_control - Dummy chip select function
437  * @command: select/delect the chip
438  *
439  * If no chip select function is provided by client this is used as dummy
440  * chip select
441  */
442 static void null_cs_control(u32 command)
443 {
444 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
445 }
446 
447 static void pl022_cs_control(struct pl022 *pl022, u32 command)
448 {
449 	if (gpio_is_valid(pl022->cur_cs))
450 		gpio_set_value(pl022->cur_cs, command);
451 	else
452 		pl022->cur_chip->cs_control(command);
453 }
454 
455 /**
456  * giveback - current spi_message is over, schedule next message and call
457  * callback of this message. Assumes that caller already
458  * set message->status; dma and pio irqs are blocked
459  * @pl022: SSP driver private data structure
460  */
461 static void giveback(struct pl022 *pl022)
462 {
463 	struct spi_transfer *last_transfer;
464 	pl022->next_msg_cs_active = false;
465 
466 	last_transfer = list_entry(pl022->cur_msg->transfers.prev,
467 					struct spi_transfer,
468 					transfer_list);
469 
470 	/* Delay if requested before any change in chip select */
471 	if (last_transfer->delay_usecs)
472 		/*
473 		 * FIXME: This runs in interrupt context.
474 		 * Is this really smart?
475 		 */
476 		udelay(last_transfer->delay_usecs);
477 
478 	if (!last_transfer->cs_change) {
479 		struct spi_message *next_msg;
480 
481 		/*
482 		 * cs_change was not set. We can keep the chip select
483 		 * enabled if there is message in the queue and it is
484 		 * for the same spi device.
485 		 *
486 		 * We cannot postpone this until pump_messages, because
487 		 * after calling msg->complete (below) the driver that
488 		 * sent the current message could be unloaded, which
489 		 * could invalidate the cs_control() callback...
490 		 */
491 		/* get a pointer to the next message, if any */
492 		next_msg = spi_get_next_queued_message(pl022->master);
493 
494 		/*
495 		 * see if the next and current messages point
496 		 * to the same spi device.
497 		 */
498 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
499 			next_msg = NULL;
500 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
501 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
502 		else
503 			pl022->next_msg_cs_active = true;
504 
505 	}
506 
507 	pl022->cur_msg = NULL;
508 	pl022->cur_transfer = NULL;
509 	pl022->cur_chip = NULL;
510 	spi_finalize_current_message(pl022->master);
511 
512 	/* disable the SPI/SSP operation */
513 	writew((readw(SSP_CR1(pl022->virtbase)) &
514 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
515 
516 }
517 
518 /**
519  * flush - flush the FIFO to reach a clean state
520  * @pl022: SSP driver private data structure
521  */
522 static int flush(struct pl022 *pl022)
523 {
524 	unsigned long limit = loops_per_jiffy << 1;
525 
526 	dev_dbg(&pl022->adev->dev, "flush\n");
527 	do {
528 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
529 			readw(SSP_DR(pl022->virtbase));
530 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
531 
532 	pl022->exp_fifo_level = 0;
533 
534 	return limit;
535 }
536 
537 /**
538  * restore_state - Load configuration of current chip
539  * @pl022: SSP driver private data structure
540  */
541 static void restore_state(struct pl022 *pl022)
542 {
543 	struct chip_data *chip = pl022->cur_chip;
544 
545 	if (pl022->vendor->extended_cr)
546 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
547 	else
548 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
549 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
550 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
551 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
552 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
553 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
554 }
555 
556 /*
557  * Default SSP Register Values
558  */
559 #define DEFAULT_SSP_REG_CR0 ( \
560 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
561 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
562 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
563 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
564 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
565 )
566 
567 /* ST versions have slightly different bit layout */
568 #define DEFAULT_SSP_REG_CR0_ST ( \
569 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
570 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
571 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
572 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
573 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
574 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
575 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
576 )
577 
578 /* The PL023 version is slightly different again */
579 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
580 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
581 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
582 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
583 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
584 )
585 
586 #define DEFAULT_SSP_REG_CR1 ( \
587 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
588 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
589 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
590 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
591 )
592 
593 /* ST versions extend this register to use all 16 bits */
594 #define DEFAULT_SSP_REG_CR1_ST ( \
595 	DEFAULT_SSP_REG_CR1 | \
596 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
597 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
598 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
599 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
600 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
601 )
602 
603 /*
604  * The PL023 variant has further differences: no loopback mode, no microwire
605  * support, and a new clock feedback delay setting.
606  */
607 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
608 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
609 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
610 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
611 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
612 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
613 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
614 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
615 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
616 )
617 
618 #define DEFAULT_SSP_REG_CPSR ( \
619 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
620 )
621 
622 #define DEFAULT_SSP_REG_DMACR (\
623 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
624 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
625 )
626 
627 /**
628  * load_ssp_default_config - Load default configuration for SSP
629  * @pl022: SSP driver private data structure
630  */
631 static void load_ssp_default_config(struct pl022 *pl022)
632 {
633 	if (pl022->vendor->pl023) {
634 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
635 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
636 	} else if (pl022->vendor->extended_cr) {
637 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
638 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
639 	} else {
640 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
641 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
642 	}
643 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
644 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
645 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
646 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
647 }
648 
649 /**
650  * This will write to TX and read from RX according to the parameters
651  * set in pl022.
652  */
653 static void readwriter(struct pl022 *pl022)
654 {
655 
656 	/*
657 	 * The FIFO depth is different between primecell variants.
658 	 * I believe filling in too much in the FIFO might cause
659 	 * errons in 8bit wide transfers on ARM variants (just 8 words
660 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
661 	 *
662 	 * To prevent this issue, the TX FIFO is only filled to the
663 	 * unused RX FIFO fill length, regardless of what the TX
664 	 * FIFO status flag indicates.
665 	 */
666 	dev_dbg(&pl022->adev->dev,
667 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
668 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
669 
670 	/* Read as much as you can */
671 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
672 	       && (pl022->rx < pl022->rx_end)) {
673 		switch (pl022->read) {
674 		case READING_NULL:
675 			readw(SSP_DR(pl022->virtbase));
676 			break;
677 		case READING_U8:
678 			*(u8 *) (pl022->rx) =
679 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
680 			break;
681 		case READING_U16:
682 			*(u16 *) (pl022->rx) =
683 				(u16) readw(SSP_DR(pl022->virtbase));
684 			break;
685 		case READING_U32:
686 			*(u32 *) (pl022->rx) =
687 				readl(SSP_DR(pl022->virtbase));
688 			break;
689 		}
690 		pl022->rx += (pl022->cur_chip->n_bytes);
691 		pl022->exp_fifo_level--;
692 	}
693 	/*
694 	 * Write as much as possible up to the RX FIFO size
695 	 */
696 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
697 	       && (pl022->tx < pl022->tx_end)) {
698 		switch (pl022->write) {
699 		case WRITING_NULL:
700 			writew(0x0, SSP_DR(pl022->virtbase));
701 			break;
702 		case WRITING_U8:
703 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
704 			break;
705 		case WRITING_U16:
706 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
707 			break;
708 		case WRITING_U32:
709 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
710 			break;
711 		}
712 		pl022->tx += (pl022->cur_chip->n_bytes);
713 		pl022->exp_fifo_level++;
714 		/*
715 		 * This inner reader takes care of things appearing in the RX
716 		 * FIFO as we're transmitting. This will happen a lot since the
717 		 * clock starts running when you put things into the TX FIFO,
718 		 * and then things are continuously clocked into the RX FIFO.
719 		 */
720 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
721 		       && (pl022->rx < pl022->rx_end)) {
722 			switch (pl022->read) {
723 			case READING_NULL:
724 				readw(SSP_DR(pl022->virtbase));
725 				break;
726 			case READING_U8:
727 				*(u8 *) (pl022->rx) =
728 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
729 				break;
730 			case READING_U16:
731 				*(u16 *) (pl022->rx) =
732 					(u16) readw(SSP_DR(pl022->virtbase));
733 				break;
734 			case READING_U32:
735 				*(u32 *) (pl022->rx) =
736 					readl(SSP_DR(pl022->virtbase));
737 				break;
738 			}
739 			pl022->rx += (pl022->cur_chip->n_bytes);
740 			pl022->exp_fifo_level--;
741 		}
742 	}
743 	/*
744 	 * When we exit here the TX FIFO should be full and the RX FIFO
745 	 * should be empty
746 	 */
747 }
748 
749 /**
750  * next_transfer - Move to the Next transfer in the current spi message
751  * @pl022: SSP driver private data structure
752  *
753  * This function moves though the linked list of spi transfers in the
754  * current spi message and returns with the state of current spi
755  * message i.e whether its last transfer is done(STATE_DONE) or
756  * Next transfer is ready(STATE_RUNNING)
757  */
758 static void *next_transfer(struct pl022 *pl022)
759 {
760 	struct spi_message *msg = pl022->cur_msg;
761 	struct spi_transfer *trans = pl022->cur_transfer;
762 
763 	/* Move to next transfer */
764 	if (trans->transfer_list.next != &msg->transfers) {
765 		pl022->cur_transfer =
766 		    list_entry(trans->transfer_list.next,
767 			       struct spi_transfer, transfer_list);
768 		return STATE_RUNNING;
769 	}
770 	return STATE_DONE;
771 }
772 
773 /*
774  * This DMA functionality is only compiled in if we have
775  * access to the generic DMA devices/DMA engine.
776  */
777 #ifdef CONFIG_DMA_ENGINE
778 static void unmap_free_dma_scatter(struct pl022 *pl022)
779 {
780 	/* Unmap and free the SG tables */
781 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
782 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
783 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
784 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
785 	sg_free_table(&pl022->sgt_rx);
786 	sg_free_table(&pl022->sgt_tx);
787 }
788 
789 static void dma_callback(void *data)
790 {
791 	struct pl022 *pl022 = data;
792 	struct spi_message *msg = pl022->cur_msg;
793 
794 	BUG_ON(!pl022->sgt_rx.sgl);
795 
796 #ifdef VERBOSE_DEBUG
797 	/*
798 	 * Optionally dump out buffers to inspect contents, this is
799 	 * good if you want to convince yourself that the loopback
800 	 * read/write contents are the same, when adopting to a new
801 	 * DMA engine.
802 	 */
803 	{
804 		struct scatterlist *sg;
805 		unsigned int i;
806 
807 		dma_sync_sg_for_cpu(&pl022->adev->dev,
808 				    pl022->sgt_rx.sgl,
809 				    pl022->sgt_rx.nents,
810 				    DMA_FROM_DEVICE);
811 
812 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
813 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
814 			print_hex_dump(KERN_ERR, "SPI RX: ",
815 				       DUMP_PREFIX_OFFSET,
816 				       16,
817 				       1,
818 				       sg_virt(sg),
819 				       sg_dma_len(sg),
820 				       1);
821 		}
822 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
823 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
824 			print_hex_dump(KERN_ERR, "SPI TX: ",
825 				       DUMP_PREFIX_OFFSET,
826 				       16,
827 				       1,
828 				       sg_virt(sg),
829 				       sg_dma_len(sg),
830 				       1);
831 		}
832 	}
833 #endif
834 
835 	unmap_free_dma_scatter(pl022);
836 
837 	/* Update total bytes transferred */
838 	msg->actual_length += pl022->cur_transfer->len;
839 	if (pl022->cur_transfer->cs_change)
840 		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
841 
842 	/* Move to next transfer */
843 	msg->state = next_transfer(pl022);
844 	tasklet_schedule(&pl022->pump_transfers);
845 }
846 
847 static void setup_dma_scatter(struct pl022 *pl022,
848 			      void *buffer,
849 			      unsigned int length,
850 			      struct sg_table *sgtab)
851 {
852 	struct scatterlist *sg;
853 	int bytesleft = length;
854 	void *bufp = buffer;
855 	int mapbytes;
856 	int i;
857 
858 	if (buffer) {
859 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
860 			/*
861 			 * If there are less bytes left than what fits
862 			 * in the current page (plus page alignment offset)
863 			 * we just feed in this, else we stuff in as much
864 			 * as we can.
865 			 */
866 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
867 				mapbytes = bytesleft;
868 			else
869 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
870 			sg_set_page(sg, virt_to_page(bufp),
871 				    mapbytes, offset_in_page(bufp));
872 			bufp += mapbytes;
873 			bytesleft -= mapbytes;
874 			dev_dbg(&pl022->adev->dev,
875 				"set RX/TX target page @ %p, %d bytes, %d left\n",
876 				bufp, mapbytes, bytesleft);
877 		}
878 	} else {
879 		/* Map the dummy buffer on every page */
880 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
881 			if (bytesleft < PAGE_SIZE)
882 				mapbytes = bytesleft;
883 			else
884 				mapbytes = PAGE_SIZE;
885 			sg_set_page(sg, virt_to_page(pl022->dummypage),
886 				    mapbytes, 0);
887 			bytesleft -= mapbytes;
888 			dev_dbg(&pl022->adev->dev,
889 				"set RX/TX to dummy page %d bytes, %d left\n",
890 				mapbytes, bytesleft);
891 
892 		}
893 	}
894 	BUG_ON(bytesleft);
895 }
896 
897 /**
898  * configure_dma - configures the channels for the next transfer
899  * @pl022: SSP driver's private data structure
900  */
901 static int configure_dma(struct pl022 *pl022)
902 {
903 	struct dma_slave_config rx_conf = {
904 		.src_addr = SSP_DR(pl022->phybase),
905 		.direction = DMA_DEV_TO_MEM,
906 		.device_fc = false,
907 	};
908 	struct dma_slave_config tx_conf = {
909 		.dst_addr = SSP_DR(pl022->phybase),
910 		.direction = DMA_MEM_TO_DEV,
911 		.device_fc = false,
912 	};
913 	unsigned int pages;
914 	int ret;
915 	int rx_sglen, tx_sglen;
916 	struct dma_chan *rxchan = pl022->dma_rx_channel;
917 	struct dma_chan *txchan = pl022->dma_tx_channel;
918 	struct dma_async_tx_descriptor *rxdesc;
919 	struct dma_async_tx_descriptor *txdesc;
920 
921 	/* Check that the channels are available */
922 	if (!rxchan || !txchan)
923 		return -ENODEV;
924 
925 	/*
926 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
927 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
928 	 * not trigger on 2 elements this needs explicit mapping rather than
929 	 * calculation.
930 	 */
931 	switch (pl022->rx_lev_trig) {
932 	case SSP_RX_1_OR_MORE_ELEM:
933 		rx_conf.src_maxburst = 1;
934 		break;
935 	case SSP_RX_4_OR_MORE_ELEM:
936 		rx_conf.src_maxburst = 4;
937 		break;
938 	case SSP_RX_8_OR_MORE_ELEM:
939 		rx_conf.src_maxburst = 8;
940 		break;
941 	case SSP_RX_16_OR_MORE_ELEM:
942 		rx_conf.src_maxburst = 16;
943 		break;
944 	case SSP_RX_32_OR_MORE_ELEM:
945 		rx_conf.src_maxburst = 32;
946 		break;
947 	default:
948 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
949 		break;
950 	}
951 
952 	switch (pl022->tx_lev_trig) {
953 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
954 		tx_conf.dst_maxburst = 1;
955 		break;
956 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
957 		tx_conf.dst_maxburst = 4;
958 		break;
959 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
960 		tx_conf.dst_maxburst = 8;
961 		break;
962 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
963 		tx_conf.dst_maxburst = 16;
964 		break;
965 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
966 		tx_conf.dst_maxburst = 32;
967 		break;
968 	default:
969 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
970 		break;
971 	}
972 
973 	switch (pl022->read) {
974 	case READING_NULL:
975 		/* Use the same as for writing */
976 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
977 		break;
978 	case READING_U8:
979 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
980 		break;
981 	case READING_U16:
982 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
983 		break;
984 	case READING_U32:
985 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
986 		break;
987 	}
988 
989 	switch (pl022->write) {
990 	case WRITING_NULL:
991 		/* Use the same as for reading */
992 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
993 		break;
994 	case WRITING_U8:
995 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
996 		break;
997 	case WRITING_U16:
998 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
999 		break;
1000 	case WRITING_U32:
1001 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1002 		break;
1003 	}
1004 
1005 	/* SPI pecularity: we need to read and write the same width */
1006 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1007 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1008 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1009 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1010 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1011 
1012 	dmaengine_slave_config(rxchan, &rx_conf);
1013 	dmaengine_slave_config(txchan, &tx_conf);
1014 
1015 	/* Create sglists for the transfers */
1016 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1017 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1018 
1019 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1020 	if (ret)
1021 		goto err_alloc_rx_sg;
1022 
1023 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1024 	if (ret)
1025 		goto err_alloc_tx_sg;
1026 
1027 	/* Fill in the scatterlists for the RX+TX buffers */
1028 	setup_dma_scatter(pl022, pl022->rx,
1029 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1030 	setup_dma_scatter(pl022, pl022->tx,
1031 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1032 
1033 	/* Map DMA buffers */
1034 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1035 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1036 	if (!rx_sglen)
1037 		goto err_rx_sgmap;
1038 
1039 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1040 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1041 	if (!tx_sglen)
1042 		goto err_tx_sgmap;
1043 
1044 	/* Send both scatterlists */
1045 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1046 				      pl022->sgt_rx.sgl,
1047 				      rx_sglen,
1048 				      DMA_DEV_TO_MEM,
1049 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1050 	if (!rxdesc)
1051 		goto err_rxdesc;
1052 
1053 	txdesc = dmaengine_prep_slave_sg(txchan,
1054 				      pl022->sgt_tx.sgl,
1055 				      tx_sglen,
1056 				      DMA_MEM_TO_DEV,
1057 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1058 	if (!txdesc)
1059 		goto err_txdesc;
1060 
1061 	/* Put the callback on the RX transfer only, that should finish last */
1062 	rxdesc->callback = dma_callback;
1063 	rxdesc->callback_param = pl022;
1064 
1065 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1066 	dmaengine_submit(rxdesc);
1067 	dmaengine_submit(txdesc);
1068 	dma_async_issue_pending(rxchan);
1069 	dma_async_issue_pending(txchan);
1070 	pl022->dma_running = true;
1071 
1072 	return 0;
1073 
1074 err_txdesc:
1075 	dmaengine_terminate_all(txchan);
1076 err_rxdesc:
1077 	dmaengine_terminate_all(rxchan);
1078 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1079 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1080 err_tx_sgmap:
1081 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1082 		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1083 err_rx_sgmap:
1084 	sg_free_table(&pl022->sgt_tx);
1085 err_alloc_tx_sg:
1086 	sg_free_table(&pl022->sgt_rx);
1087 err_alloc_rx_sg:
1088 	return -ENOMEM;
1089 }
1090 
1091 static int __devinit pl022_dma_probe(struct pl022 *pl022)
1092 {
1093 	dma_cap_mask_t mask;
1094 
1095 	/* Try to acquire a generic DMA engine slave channel */
1096 	dma_cap_zero(mask);
1097 	dma_cap_set(DMA_SLAVE, mask);
1098 	/*
1099 	 * We need both RX and TX channels to do DMA, else do none
1100 	 * of them.
1101 	 */
1102 	pl022->dma_rx_channel = dma_request_channel(mask,
1103 					    pl022->master_info->dma_filter,
1104 					    pl022->master_info->dma_rx_param);
1105 	if (!pl022->dma_rx_channel) {
1106 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1107 		goto err_no_rxchan;
1108 	}
1109 
1110 	pl022->dma_tx_channel = dma_request_channel(mask,
1111 					    pl022->master_info->dma_filter,
1112 					    pl022->master_info->dma_tx_param);
1113 	if (!pl022->dma_tx_channel) {
1114 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1115 		goto err_no_txchan;
1116 	}
1117 
1118 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1119 	if (!pl022->dummypage) {
1120 		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1121 		goto err_no_dummypage;
1122 	}
1123 
1124 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1125 		 dma_chan_name(pl022->dma_rx_channel),
1126 		 dma_chan_name(pl022->dma_tx_channel));
1127 
1128 	return 0;
1129 
1130 err_no_dummypage:
1131 	dma_release_channel(pl022->dma_tx_channel);
1132 err_no_txchan:
1133 	dma_release_channel(pl022->dma_rx_channel);
1134 	pl022->dma_rx_channel = NULL;
1135 err_no_rxchan:
1136 	dev_err(&pl022->adev->dev,
1137 			"Failed to work in dma mode, work without dma!\n");
1138 	return -ENODEV;
1139 }
1140 
1141 static void terminate_dma(struct pl022 *pl022)
1142 {
1143 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1144 	struct dma_chan *txchan = pl022->dma_tx_channel;
1145 
1146 	dmaengine_terminate_all(rxchan);
1147 	dmaengine_terminate_all(txchan);
1148 	unmap_free_dma_scatter(pl022);
1149 	pl022->dma_running = false;
1150 }
1151 
1152 static void pl022_dma_remove(struct pl022 *pl022)
1153 {
1154 	if (pl022->dma_running)
1155 		terminate_dma(pl022);
1156 	if (pl022->dma_tx_channel)
1157 		dma_release_channel(pl022->dma_tx_channel);
1158 	if (pl022->dma_rx_channel)
1159 		dma_release_channel(pl022->dma_rx_channel);
1160 	kfree(pl022->dummypage);
1161 }
1162 
1163 #else
1164 static inline int configure_dma(struct pl022 *pl022)
1165 {
1166 	return -ENODEV;
1167 }
1168 
1169 static inline int pl022_dma_probe(struct pl022 *pl022)
1170 {
1171 	return 0;
1172 }
1173 
1174 static inline void pl022_dma_remove(struct pl022 *pl022)
1175 {
1176 }
1177 #endif
1178 
1179 /**
1180  * pl022_interrupt_handler - Interrupt handler for SSP controller
1181  *
1182  * This function handles interrupts generated for an interrupt based transfer.
1183  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1184  * current message's state as STATE_ERROR and schedule the tasklet
1185  * pump_transfers which will do the postprocessing of the current message by
1186  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1187  * more data, and writes data in TX FIFO till it is not full. If we complete
1188  * the transfer we move to the next transfer and schedule the tasklet.
1189  */
1190 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1191 {
1192 	struct pl022 *pl022 = dev_id;
1193 	struct spi_message *msg = pl022->cur_msg;
1194 	u16 irq_status = 0;
1195 	u16 flag = 0;
1196 
1197 	if (unlikely(!msg)) {
1198 		dev_err(&pl022->adev->dev,
1199 			"bad message state in interrupt handler");
1200 		/* Never fail */
1201 		return IRQ_HANDLED;
1202 	}
1203 
1204 	/* Read the Interrupt Status Register */
1205 	irq_status = readw(SSP_MIS(pl022->virtbase));
1206 
1207 	if (unlikely(!irq_status))
1208 		return IRQ_NONE;
1209 
1210 	/*
1211 	 * This handles the FIFO interrupts, the timeout
1212 	 * interrupts are flatly ignored, they cannot be
1213 	 * trusted.
1214 	 */
1215 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1216 		/*
1217 		 * Overrun interrupt - bail out since our Data has been
1218 		 * corrupted
1219 		 */
1220 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1221 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1222 			dev_err(&pl022->adev->dev,
1223 				"RXFIFO is full\n");
1224 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1225 			dev_err(&pl022->adev->dev,
1226 				"TXFIFO is full\n");
1227 
1228 		/*
1229 		 * Disable and clear interrupts, disable SSP,
1230 		 * mark message with bad status so it can be
1231 		 * retried.
1232 		 */
1233 		writew(DISABLE_ALL_INTERRUPTS,
1234 		       SSP_IMSC(pl022->virtbase));
1235 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1236 		writew((readw(SSP_CR1(pl022->virtbase)) &
1237 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1238 		msg->state = STATE_ERROR;
1239 
1240 		/* Schedule message queue handler */
1241 		tasklet_schedule(&pl022->pump_transfers);
1242 		return IRQ_HANDLED;
1243 	}
1244 
1245 	readwriter(pl022);
1246 
1247 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1248 		flag = 1;
1249 		/* Disable Transmit interrupt, enable receive interrupt */
1250 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1251 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1252 		       SSP_IMSC(pl022->virtbase));
1253 	}
1254 
1255 	/*
1256 	 * Since all transactions must write as much as shall be read,
1257 	 * we can conclude the entire transaction once RX is complete.
1258 	 * At this point, all TX will always be finished.
1259 	 */
1260 	if (pl022->rx >= pl022->rx_end) {
1261 		writew(DISABLE_ALL_INTERRUPTS,
1262 		       SSP_IMSC(pl022->virtbase));
1263 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1264 		if (unlikely(pl022->rx > pl022->rx_end)) {
1265 			dev_warn(&pl022->adev->dev, "read %u surplus "
1266 				 "bytes (did you request an odd "
1267 				 "number of bytes on a 16bit bus?)\n",
1268 				 (u32) (pl022->rx - pl022->rx_end));
1269 		}
1270 		/* Update total bytes transferred */
1271 		msg->actual_length += pl022->cur_transfer->len;
1272 		if (pl022->cur_transfer->cs_change)
1273 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1274 		/* Move to next transfer */
1275 		msg->state = next_transfer(pl022);
1276 		tasklet_schedule(&pl022->pump_transfers);
1277 		return IRQ_HANDLED;
1278 	}
1279 
1280 	return IRQ_HANDLED;
1281 }
1282 
1283 /**
1284  * This sets up the pointers to memory for the next message to
1285  * send out on the SPI bus.
1286  */
1287 static int set_up_next_transfer(struct pl022 *pl022,
1288 				struct spi_transfer *transfer)
1289 {
1290 	int residue;
1291 
1292 	/* Sanity check the message for this bus width */
1293 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1294 	if (unlikely(residue != 0)) {
1295 		dev_err(&pl022->adev->dev,
1296 			"message of %u bytes to transmit but the current "
1297 			"chip bus has a data width of %u bytes!\n",
1298 			pl022->cur_transfer->len,
1299 			pl022->cur_chip->n_bytes);
1300 		dev_err(&pl022->adev->dev, "skipping this message\n");
1301 		return -EIO;
1302 	}
1303 	pl022->tx = (void *)transfer->tx_buf;
1304 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1305 	pl022->rx = (void *)transfer->rx_buf;
1306 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1307 	pl022->write =
1308 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1309 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1310 	return 0;
1311 }
1312 
1313 /**
1314  * pump_transfers - Tasklet function which schedules next transfer
1315  * when running in interrupt or DMA transfer mode.
1316  * @data: SSP driver private data structure
1317  *
1318  */
1319 static void pump_transfers(unsigned long data)
1320 {
1321 	struct pl022 *pl022 = (struct pl022 *) data;
1322 	struct spi_message *message = NULL;
1323 	struct spi_transfer *transfer = NULL;
1324 	struct spi_transfer *previous = NULL;
1325 
1326 	/* Get current state information */
1327 	message = pl022->cur_msg;
1328 	transfer = pl022->cur_transfer;
1329 
1330 	/* Handle for abort */
1331 	if (message->state == STATE_ERROR) {
1332 		message->status = -EIO;
1333 		giveback(pl022);
1334 		return;
1335 	}
1336 
1337 	/* Handle end of message */
1338 	if (message->state == STATE_DONE) {
1339 		message->status = 0;
1340 		giveback(pl022);
1341 		return;
1342 	}
1343 
1344 	/* Delay if requested at end of transfer before CS change */
1345 	if (message->state == STATE_RUNNING) {
1346 		previous = list_entry(transfer->transfer_list.prev,
1347 					struct spi_transfer,
1348 					transfer_list);
1349 		if (previous->delay_usecs)
1350 			/*
1351 			 * FIXME: This runs in interrupt context.
1352 			 * Is this really smart?
1353 			 */
1354 			udelay(previous->delay_usecs);
1355 
1356 		/* Reselect chip select only if cs_change was requested */
1357 		if (previous->cs_change)
1358 			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1359 	} else {
1360 		/* STATE_START */
1361 		message->state = STATE_RUNNING;
1362 	}
1363 
1364 	if (set_up_next_transfer(pl022, transfer)) {
1365 		message->state = STATE_ERROR;
1366 		message->status = -EIO;
1367 		giveback(pl022);
1368 		return;
1369 	}
1370 	/* Flush the FIFOs and let's go! */
1371 	flush(pl022);
1372 
1373 	if (pl022->cur_chip->enable_dma) {
1374 		if (configure_dma(pl022)) {
1375 			dev_dbg(&pl022->adev->dev,
1376 				"configuration of DMA failed, fall back to interrupt mode\n");
1377 			goto err_config_dma;
1378 		}
1379 		return;
1380 	}
1381 
1382 err_config_dma:
1383 	/* enable all interrupts except RX */
1384 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1385 }
1386 
1387 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1388 {
1389 	/*
1390 	 * Default is to enable all interrupts except RX -
1391 	 * this will be enabled once TX is complete
1392 	 */
1393 	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1394 
1395 	/* Enable target chip, if not already active */
1396 	if (!pl022->next_msg_cs_active)
1397 		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1398 
1399 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1400 		/* Error path */
1401 		pl022->cur_msg->state = STATE_ERROR;
1402 		pl022->cur_msg->status = -EIO;
1403 		giveback(pl022);
1404 		return;
1405 	}
1406 	/* If we're using DMA, set up DMA here */
1407 	if (pl022->cur_chip->enable_dma) {
1408 		/* Configure DMA transfer */
1409 		if (configure_dma(pl022)) {
1410 			dev_dbg(&pl022->adev->dev,
1411 				"configuration of DMA failed, fall back to interrupt mode\n");
1412 			goto err_config_dma;
1413 		}
1414 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1415 		irqflags = DISABLE_ALL_INTERRUPTS;
1416 	}
1417 err_config_dma:
1418 	/* Enable SSP, turn on interrupts */
1419 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1420 	       SSP_CR1(pl022->virtbase));
1421 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1422 }
1423 
1424 static void do_polling_transfer(struct pl022 *pl022)
1425 {
1426 	struct spi_message *message = NULL;
1427 	struct spi_transfer *transfer = NULL;
1428 	struct spi_transfer *previous = NULL;
1429 	struct chip_data *chip;
1430 	unsigned long time, timeout;
1431 
1432 	chip = pl022->cur_chip;
1433 	message = pl022->cur_msg;
1434 
1435 	while (message->state != STATE_DONE) {
1436 		/* Handle for abort */
1437 		if (message->state == STATE_ERROR)
1438 			break;
1439 		transfer = pl022->cur_transfer;
1440 
1441 		/* Delay if requested at end of transfer */
1442 		if (message->state == STATE_RUNNING) {
1443 			previous =
1444 			    list_entry(transfer->transfer_list.prev,
1445 				       struct spi_transfer, transfer_list);
1446 			if (previous->delay_usecs)
1447 				udelay(previous->delay_usecs);
1448 			if (previous->cs_change)
1449 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1450 		} else {
1451 			/* STATE_START */
1452 			message->state = STATE_RUNNING;
1453 			if (!pl022->next_msg_cs_active)
1454 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1455 		}
1456 
1457 		/* Configuration Changing Per Transfer */
1458 		if (set_up_next_transfer(pl022, transfer)) {
1459 			/* Error path */
1460 			message->state = STATE_ERROR;
1461 			break;
1462 		}
1463 		/* Flush FIFOs and enable SSP */
1464 		flush(pl022);
1465 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1466 		       SSP_CR1(pl022->virtbase));
1467 
1468 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1469 
1470 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1471 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1472 			time = jiffies;
1473 			readwriter(pl022);
1474 			if (time_after(time, timeout)) {
1475 				dev_warn(&pl022->adev->dev,
1476 				"%s: timeout!\n", __func__);
1477 				message->state = STATE_ERROR;
1478 				goto out;
1479 			}
1480 			cpu_relax();
1481 		}
1482 
1483 		/* Update total byte transferred */
1484 		message->actual_length += pl022->cur_transfer->len;
1485 		if (pl022->cur_transfer->cs_change)
1486 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1487 		/* Move to next transfer */
1488 		message->state = next_transfer(pl022);
1489 	}
1490 out:
1491 	/* Handle end of message */
1492 	if (message->state == STATE_DONE)
1493 		message->status = 0;
1494 	else
1495 		message->status = -EIO;
1496 
1497 	giveback(pl022);
1498 	return;
1499 }
1500 
1501 static int pl022_transfer_one_message(struct spi_master *master,
1502 				      struct spi_message *msg)
1503 {
1504 	struct pl022 *pl022 = spi_master_get_devdata(master);
1505 
1506 	/* Initial message state */
1507 	pl022->cur_msg = msg;
1508 	msg->state = STATE_START;
1509 
1510 	pl022->cur_transfer = list_entry(msg->transfers.next,
1511 					 struct spi_transfer, transfer_list);
1512 
1513 	/* Setup the SPI using the per chip configuration */
1514 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1515 	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1516 
1517 	restore_state(pl022);
1518 	flush(pl022);
1519 
1520 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1521 		do_polling_transfer(pl022);
1522 	else
1523 		do_interrupt_dma_transfer(pl022);
1524 
1525 	return 0;
1526 }
1527 
1528 static int pl022_prepare_transfer_hardware(struct spi_master *master)
1529 {
1530 	struct pl022 *pl022 = spi_master_get_devdata(master);
1531 
1532 	/*
1533 	 * Just make sure we have all we need to run the transfer by syncing
1534 	 * with the runtime PM framework.
1535 	 */
1536 	pm_runtime_get_sync(&pl022->adev->dev);
1537 	return 0;
1538 }
1539 
1540 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1541 {
1542 	struct pl022 *pl022 = spi_master_get_devdata(master);
1543 
1544 	/* nothing more to do - disable spi/ssp and power off */
1545 	writew((readw(SSP_CR1(pl022->virtbase)) &
1546 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1547 
1548 	if (pl022->master_info->autosuspend_delay > 0) {
1549 		pm_runtime_mark_last_busy(&pl022->adev->dev);
1550 		pm_runtime_put_autosuspend(&pl022->adev->dev);
1551 	} else {
1552 		pm_runtime_put(&pl022->adev->dev);
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static int verify_controller_parameters(struct pl022 *pl022,
1559 				struct pl022_config_chip const *chip_info)
1560 {
1561 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1562 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1563 		dev_err(&pl022->adev->dev,
1564 			"interface is configured incorrectly\n");
1565 		return -EINVAL;
1566 	}
1567 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1568 	    (!pl022->vendor->unidir)) {
1569 		dev_err(&pl022->adev->dev,
1570 			"unidirectional mode not supported in this "
1571 			"hardware version\n");
1572 		return -EINVAL;
1573 	}
1574 	if ((chip_info->hierarchy != SSP_MASTER)
1575 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1576 		dev_err(&pl022->adev->dev,
1577 			"hierarchy is configured incorrectly\n");
1578 		return -EINVAL;
1579 	}
1580 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1581 	    && (chip_info->com_mode != DMA_TRANSFER)
1582 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1583 		dev_err(&pl022->adev->dev,
1584 			"Communication mode is configured incorrectly\n");
1585 		return -EINVAL;
1586 	}
1587 	switch (chip_info->rx_lev_trig) {
1588 	case SSP_RX_1_OR_MORE_ELEM:
1589 	case SSP_RX_4_OR_MORE_ELEM:
1590 	case SSP_RX_8_OR_MORE_ELEM:
1591 		/* These are always OK, all variants can handle this */
1592 		break;
1593 	case SSP_RX_16_OR_MORE_ELEM:
1594 		if (pl022->vendor->fifodepth < 16) {
1595 			dev_err(&pl022->adev->dev,
1596 			"RX FIFO Trigger Level is configured incorrectly\n");
1597 			return -EINVAL;
1598 		}
1599 		break;
1600 	case SSP_RX_32_OR_MORE_ELEM:
1601 		if (pl022->vendor->fifodepth < 32) {
1602 			dev_err(&pl022->adev->dev,
1603 			"RX FIFO Trigger Level is configured incorrectly\n");
1604 			return -EINVAL;
1605 		}
1606 		break;
1607 	default:
1608 		dev_err(&pl022->adev->dev,
1609 			"RX FIFO Trigger Level is configured incorrectly\n");
1610 		return -EINVAL;
1611 		break;
1612 	}
1613 	switch (chip_info->tx_lev_trig) {
1614 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1615 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1616 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1617 		/* These are always OK, all variants can handle this */
1618 		break;
1619 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1620 		if (pl022->vendor->fifodepth < 16) {
1621 			dev_err(&pl022->adev->dev,
1622 			"TX FIFO Trigger Level is configured incorrectly\n");
1623 			return -EINVAL;
1624 		}
1625 		break;
1626 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1627 		if (pl022->vendor->fifodepth < 32) {
1628 			dev_err(&pl022->adev->dev,
1629 			"TX FIFO Trigger Level is configured incorrectly\n");
1630 			return -EINVAL;
1631 		}
1632 		break;
1633 	default:
1634 		dev_err(&pl022->adev->dev,
1635 			"TX FIFO Trigger Level is configured incorrectly\n");
1636 		return -EINVAL;
1637 		break;
1638 	}
1639 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1640 		if ((chip_info->ctrl_len < SSP_BITS_4)
1641 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1642 			dev_err(&pl022->adev->dev,
1643 				"CTRL LEN is configured incorrectly\n");
1644 			return -EINVAL;
1645 		}
1646 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1647 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1648 			dev_err(&pl022->adev->dev,
1649 				"Wait State is configured incorrectly\n");
1650 			return -EINVAL;
1651 		}
1652 		/* Half duplex is only available in the ST Micro version */
1653 		if (pl022->vendor->extended_cr) {
1654 			if ((chip_info->duplex !=
1655 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1656 			    && (chip_info->duplex !=
1657 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1658 				dev_err(&pl022->adev->dev,
1659 					"Microwire duplex mode is configured incorrectly\n");
1660 				return -EINVAL;
1661 			}
1662 		} else {
1663 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1664 				dev_err(&pl022->adev->dev,
1665 					"Microwire half duplex mode requested,"
1666 					" but this is only available in the"
1667 					" ST version of PL022\n");
1668 			return -EINVAL;
1669 		}
1670 	}
1671 	return 0;
1672 }
1673 
1674 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1675 {
1676 	return rate / (cpsdvsr * (1 + scr));
1677 }
1678 
1679 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1680 				    ssp_clock_params * clk_freq)
1681 {
1682 	/* Lets calculate the frequency parameters */
1683 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1684 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1685 		best_scr = 0, tmp, found = 0;
1686 
1687 	rate = clk_get_rate(pl022->clk);
1688 	/* cpsdvscr = 2 & scr 0 */
1689 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1690 	/* cpsdvsr = 254 & scr = 255 */
1691 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1692 
1693 	if (freq > max_tclk)
1694 		dev_warn(&pl022->adev->dev,
1695 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1696 			max_tclk, freq);
1697 
1698 	if (freq < min_tclk) {
1699 		dev_err(&pl022->adev->dev,
1700 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1701 			freq, min_tclk);
1702 		return -EINVAL;
1703 	}
1704 
1705 	/*
1706 	 * best_freq will give closest possible available rate (<= requested
1707 	 * freq) for all values of scr & cpsdvsr.
1708 	 */
1709 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1710 		while (scr <= SCR_MAX) {
1711 			tmp = spi_rate(rate, cpsdvsr, scr);
1712 
1713 			if (tmp > freq) {
1714 				/* we need lower freq */
1715 				scr++;
1716 				continue;
1717 			}
1718 
1719 			/*
1720 			 * If found exact value, mark found and break.
1721 			 * If found more closer value, update and break.
1722 			 */
1723 			if (tmp > best_freq) {
1724 				best_freq = tmp;
1725 				best_cpsdvsr = cpsdvsr;
1726 				best_scr = scr;
1727 
1728 				if (tmp == freq)
1729 					found = 1;
1730 			}
1731 			/*
1732 			 * increased scr will give lower rates, which are not
1733 			 * required
1734 			 */
1735 			break;
1736 		}
1737 		cpsdvsr += 2;
1738 		scr = SCR_MIN;
1739 	}
1740 
1741 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1742 			freq);
1743 
1744 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1745 	clk_freq->scr = (u8) (best_scr & 0xFF);
1746 	dev_dbg(&pl022->adev->dev,
1747 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1748 		freq, best_freq);
1749 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1750 		clk_freq->cpsdvsr, clk_freq->scr);
1751 
1752 	return 0;
1753 }
1754 
1755 /*
1756  * A piece of default chip info unless the platform
1757  * supplies it.
1758  */
1759 static const struct pl022_config_chip pl022_default_chip_info = {
1760 	.com_mode = POLLING_TRANSFER,
1761 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1762 	.hierarchy = SSP_SLAVE,
1763 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1764 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1765 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1766 	.ctrl_len = SSP_BITS_8,
1767 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1768 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1769 	.cs_control = null_cs_control,
1770 };
1771 
1772 /**
1773  * pl022_setup - setup function registered to SPI master framework
1774  * @spi: spi device which is requesting setup
1775  *
1776  * This function is registered to the SPI framework for this SPI master
1777  * controller. If it is the first time when setup is called by this device,
1778  * this function will initialize the runtime state for this chip and save
1779  * the same in the device structure. Else it will update the runtime info
1780  * with the updated chip info. Nothing is really being written to the
1781  * controller hardware here, that is not done until the actual transfer
1782  * commence.
1783  */
1784 static int pl022_setup(struct spi_device *spi)
1785 {
1786 	struct pl022_config_chip const *chip_info;
1787 	struct pl022_config_chip chip_info_dt;
1788 	struct chip_data *chip;
1789 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1790 	int status = 0;
1791 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1792 	unsigned int bits = spi->bits_per_word;
1793 	u32 tmp;
1794 	struct device_node *np = spi->dev.of_node;
1795 
1796 	if (!spi->max_speed_hz)
1797 		return -EINVAL;
1798 
1799 	/* Get controller_state if one is supplied */
1800 	chip = spi_get_ctldata(spi);
1801 
1802 	if (chip == NULL) {
1803 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1804 		if (!chip) {
1805 			dev_err(&spi->dev,
1806 				"cannot allocate controller state\n");
1807 			return -ENOMEM;
1808 		}
1809 		dev_dbg(&spi->dev,
1810 			"allocated memory for controller's runtime state\n");
1811 	}
1812 
1813 	/* Get controller data if one is supplied */
1814 	chip_info = spi->controller_data;
1815 
1816 	if (chip_info == NULL) {
1817 		if (np) {
1818 			chip_info_dt = pl022_default_chip_info;
1819 
1820 			chip_info_dt.hierarchy = SSP_MASTER;
1821 			of_property_read_u32(np, "pl022,interface",
1822 				&chip_info_dt.iface);
1823 			of_property_read_u32(np, "pl022,com-mode",
1824 				&chip_info_dt.com_mode);
1825 			of_property_read_u32(np, "pl022,rx-level-trig",
1826 				&chip_info_dt.rx_lev_trig);
1827 			of_property_read_u32(np, "pl022,tx-level-trig",
1828 				&chip_info_dt.tx_lev_trig);
1829 			of_property_read_u32(np, "pl022,ctrl-len",
1830 				&chip_info_dt.ctrl_len);
1831 			of_property_read_u32(np, "pl022,wait-state",
1832 				&chip_info_dt.wait_state);
1833 			of_property_read_u32(np, "pl022,duplex",
1834 				&chip_info_dt.duplex);
1835 
1836 			chip_info = &chip_info_dt;
1837 		} else {
1838 			chip_info = &pl022_default_chip_info;
1839 			/* spi_board_info.controller_data not is supplied */
1840 			dev_dbg(&spi->dev,
1841 				"using default controller_data settings\n");
1842 		}
1843 	} else
1844 		dev_dbg(&spi->dev,
1845 			"using user supplied controller_data settings\n");
1846 
1847 	/*
1848 	 * We can override with custom divisors, else we use the board
1849 	 * frequency setting
1850 	 */
1851 	if ((0 == chip_info->clk_freq.cpsdvsr)
1852 	    && (0 == chip_info->clk_freq.scr)) {
1853 		status = calculate_effective_freq(pl022,
1854 						  spi->max_speed_hz,
1855 						  &clk_freq);
1856 		if (status < 0)
1857 			goto err_config_params;
1858 	} else {
1859 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1860 		if ((clk_freq.cpsdvsr % 2) != 0)
1861 			clk_freq.cpsdvsr =
1862 				clk_freq.cpsdvsr - 1;
1863 	}
1864 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1865 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1866 		status = -EINVAL;
1867 		dev_err(&spi->dev,
1868 			"cpsdvsr is configured incorrectly\n");
1869 		goto err_config_params;
1870 	}
1871 
1872 	status = verify_controller_parameters(pl022, chip_info);
1873 	if (status) {
1874 		dev_err(&spi->dev, "controller data is incorrect");
1875 		goto err_config_params;
1876 	}
1877 
1878 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1879 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1880 
1881 	/* Now set controller state based on controller data */
1882 	chip->xfer_type = chip_info->com_mode;
1883 	if (!chip_info->cs_control) {
1884 		chip->cs_control = null_cs_control;
1885 		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1886 			dev_warn(&spi->dev,
1887 				 "invalid chip select\n");
1888 	} else
1889 		chip->cs_control = chip_info->cs_control;
1890 
1891 	/* Check bits per word with vendor specific range */
1892 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1893 		status = -ENOTSUPP;
1894 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1895 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1896 				pl022->vendor->max_bpw);
1897 		goto err_config_params;
1898 	} else if (bits <= 8) {
1899 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1900 		chip->n_bytes = 1;
1901 		chip->read = READING_U8;
1902 		chip->write = WRITING_U8;
1903 	} else if (bits <= 16) {
1904 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1905 		chip->n_bytes = 2;
1906 		chip->read = READING_U16;
1907 		chip->write = WRITING_U16;
1908 	} else {
1909 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1910 		chip->n_bytes = 4;
1911 		chip->read = READING_U32;
1912 		chip->write = WRITING_U32;
1913 	}
1914 
1915 	/* Now Initialize all register settings required for this chip */
1916 	chip->cr0 = 0;
1917 	chip->cr1 = 0;
1918 	chip->dmacr = 0;
1919 	chip->cpsr = 0;
1920 	if ((chip_info->com_mode == DMA_TRANSFER)
1921 	    && ((pl022->master_info)->enable_dma)) {
1922 		chip->enable_dma = true;
1923 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1924 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1925 			       SSP_DMACR_MASK_RXDMAE, 0);
1926 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1927 			       SSP_DMACR_MASK_TXDMAE, 1);
1928 	} else {
1929 		chip->enable_dma = false;
1930 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1931 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1932 			       SSP_DMACR_MASK_RXDMAE, 0);
1933 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1934 			       SSP_DMACR_MASK_TXDMAE, 1);
1935 	}
1936 
1937 	chip->cpsr = clk_freq.cpsdvsr;
1938 
1939 	/* Special setup for the ST micro extended control registers */
1940 	if (pl022->vendor->extended_cr) {
1941 		u32 etx;
1942 
1943 		if (pl022->vendor->pl023) {
1944 			/* These bits are only in the PL023 */
1945 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1946 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1947 		} else {
1948 			/* These bits are in the PL022 but not PL023 */
1949 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1950 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1951 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1952 				       SSP_CR0_MASK_CSS_ST, 16);
1953 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1954 				       SSP_CR0_MASK_FRF_ST, 21);
1955 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1956 				       SSP_CR1_MASK_MWAIT_ST, 6);
1957 		}
1958 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1959 			       SSP_CR0_MASK_DSS_ST, 0);
1960 
1961 		if (spi->mode & SPI_LSB_FIRST) {
1962 			tmp = SSP_RX_LSB;
1963 			etx = SSP_TX_LSB;
1964 		} else {
1965 			tmp = SSP_RX_MSB;
1966 			etx = SSP_TX_MSB;
1967 		}
1968 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1969 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1970 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1971 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
1972 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1973 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
1974 	} else {
1975 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1976 			       SSP_CR0_MASK_DSS, 0);
1977 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1978 			       SSP_CR0_MASK_FRF, 4);
1979 	}
1980 
1981 	/* Stuff that is common for all versions */
1982 	if (spi->mode & SPI_CPOL)
1983 		tmp = SSP_CLK_POL_IDLE_HIGH;
1984 	else
1985 		tmp = SSP_CLK_POL_IDLE_LOW;
1986 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1987 
1988 	if (spi->mode & SPI_CPHA)
1989 		tmp = SSP_CLK_SECOND_EDGE;
1990 	else
1991 		tmp = SSP_CLK_FIRST_EDGE;
1992 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1993 
1994 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1995 	/* Loopback is available on all versions except PL023 */
1996 	if (pl022->vendor->loopback) {
1997 		if (spi->mode & SPI_LOOP)
1998 			tmp = LOOPBACK_ENABLED;
1999 		else
2000 			tmp = LOOPBACK_DISABLED;
2001 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2002 	}
2003 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2004 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2005 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2006 		3);
2007 
2008 	/* Save controller_state */
2009 	spi_set_ctldata(spi, chip);
2010 	return status;
2011  err_config_params:
2012 	spi_set_ctldata(spi, NULL);
2013 	kfree(chip);
2014 	return status;
2015 }
2016 
2017 /**
2018  * pl022_cleanup - cleanup function registered to SPI master framework
2019  * @spi: spi device which is requesting cleanup
2020  *
2021  * This function is registered to the SPI framework for this SPI master
2022  * controller. It will free the runtime state of chip.
2023  */
2024 static void pl022_cleanup(struct spi_device *spi)
2025 {
2026 	struct chip_data *chip = spi_get_ctldata(spi);
2027 
2028 	spi_set_ctldata(spi, NULL);
2029 	kfree(chip);
2030 }
2031 
2032 static struct pl022_ssp_controller *
2033 pl022_platform_data_dt_get(struct device *dev)
2034 {
2035 	struct device_node *np = dev->of_node;
2036 	struct pl022_ssp_controller *pd;
2037 	u32 tmp;
2038 
2039 	if (!np) {
2040 		dev_err(dev, "no dt node defined\n");
2041 		return NULL;
2042 	}
2043 
2044 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2045 	if (!pd) {
2046 		dev_err(dev, "cannot allocate platform data memory\n");
2047 		return NULL;
2048 	}
2049 
2050 	pd->bus_id = -1;
2051 	of_property_read_u32(np, "num-cs", &tmp);
2052 	pd->num_chipselect = tmp;
2053 	of_property_read_u32(np, "pl022,autosuspend-delay",
2054 			     &pd->autosuspend_delay);
2055 	pd->rt = of_property_read_bool(np, "pl022,rt");
2056 
2057 	return pd;
2058 }
2059 
2060 static int __devinit
2061 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2062 {
2063 	struct device *dev = &adev->dev;
2064 	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2065 	struct spi_master *master;
2066 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2067 	struct device_node *np = adev->dev.of_node;
2068 	int status = 0, i, num_cs;
2069 
2070 	dev_info(&adev->dev,
2071 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2072 	if (!platform_info && IS_ENABLED(CONFIG_OF))
2073 		platform_info = pl022_platform_data_dt_get(dev);
2074 
2075 	if (!platform_info) {
2076 		dev_err(dev, "probe: no platform data defined\n");
2077 		return -ENODEV;
2078 	}
2079 
2080 	if (platform_info->num_chipselect) {
2081 		num_cs = platform_info->num_chipselect;
2082 	} else {
2083 		dev_err(dev, "probe: no chip select defined\n");
2084 		return -ENODEV;
2085 	}
2086 
2087 	/* Allocate master with space for data */
2088 	master = spi_alloc_master(dev, sizeof(struct pl022));
2089 	if (master == NULL) {
2090 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2091 		return -ENOMEM;
2092 	}
2093 
2094 	pl022 = spi_master_get_devdata(master);
2095 	pl022->master = master;
2096 	pl022->master_info = platform_info;
2097 	pl022->adev = adev;
2098 	pl022->vendor = id->data;
2099 	pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2100 					  GFP_KERNEL);
2101 
2102 	pl022->pinctrl = devm_pinctrl_get(dev);
2103 	if (IS_ERR(pl022->pinctrl)) {
2104 		status = PTR_ERR(pl022->pinctrl);
2105 		goto err_no_pinctrl;
2106 	}
2107 
2108 	pl022->pins_default = pinctrl_lookup_state(pl022->pinctrl,
2109 						 PINCTRL_STATE_DEFAULT);
2110 	/* enable pins to be muxed in and configured */
2111 	if (!IS_ERR(pl022->pins_default)) {
2112 		status = pinctrl_select_state(pl022->pinctrl,
2113 				pl022->pins_default);
2114 		if (status)
2115 			dev_err(dev, "could not set default pins\n");
2116 	} else
2117 		dev_err(dev, "could not get default pinstate\n");
2118 
2119 	pl022->pins_sleep = pinctrl_lookup_state(pl022->pinctrl,
2120 					       PINCTRL_STATE_SLEEP);
2121 	if (IS_ERR(pl022->pins_sleep))
2122 		dev_dbg(dev, "could not get sleep pinstate\n");
2123 
2124 	/*
2125 	 * Bus Number Which has been Assigned to this SSP controller
2126 	 * on this board
2127 	 */
2128 	master->bus_num = platform_info->bus_id;
2129 	master->num_chipselect = num_cs;
2130 	master->cleanup = pl022_cleanup;
2131 	master->setup = pl022_setup;
2132 	master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2133 	master->transfer_one_message = pl022_transfer_one_message;
2134 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2135 	master->rt = platform_info->rt;
2136 	master->dev.of_node = dev->of_node;
2137 
2138 	if (platform_info->num_chipselect && platform_info->chipselects) {
2139 		for (i = 0; i < num_cs; i++)
2140 			pl022->chipselects[i] = platform_info->chipselects[i];
2141 	} else if (IS_ENABLED(CONFIG_OF)) {
2142 		for (i = 0; i < num_cs; i++) {
2143 			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2144 
2145 			if (cs_gpio == -EPROBE_DEFER) {
2146 				status = -EPROBE_DEFER;
2147 				goto err_no_gpio;
2148 			}
2149 
2150 			pl022->chipselects[i] = cs_gpio;
2151 
2152 			if (gpio_is_valid(cs_gpio)) {
2153 				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2154 					dev_err(&adev->dev,
2155 						"could not request %d gpio\n",
2156 						cs_gpio);
2157 				else if (gpio_direction_output(cs_gpio, 1))
2158 					dev_err(&adev->dev,
2159 						"could set gpio %d as output\n",
2160 						cs_gpio);
2161 			}
2162 		}
2163 	}
2164 
2165 	/*
2166 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2167 	 * always MS bit first on the original pl022.
2168 	 */
2169 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2170 	if (pl022->vendor->extended_cr)
2171 		master->mode_bits |= SPI_LSB_FIRST;
2172 
2173 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2174 
2175 	status = amba_request_regions(adev, NULL);
2176 	if (status)
2177 		goto err_no_ioregion;
2178 
2179 	pl022->phybase = adev->res.start;
2180 	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2181 				       resource_size(&adev->res));
2182 	if (pl022->virtbase == NULL) {
2183 		status = -ENOMEM;
2184 		goto err_no_ioremap;
2185 	}
2186 	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2187 	       adev->res.start, pl022->virtbase);
2188 
2189 	pm_runtime_enable(dev);
2190 	pm_runtime_resume(dev);
2191 
2192 	pl022->clk = devm_clk_get(&adev->dev, NULL);
2193 	if (IS_ERR(pl022->clk)) {
2194 		status = PTR_ERR(pl022->clk);
2195 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2196 		goto err_no_clk;
2197 	}
2198 
2199 	status = clk_prepare(pl022->clk);
2200 	if (status) {
2201 		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2202 		goto  err_clk_prep;
2203 	}
2204 
2205 	status = clk_enable(pl022->clk);
2206 	if (status) {
2207 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2208 		goto err_no_clk_en;
2209 	}
2210 
2211 	/* Initialize transfer pump */
2212 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2213 		     (unsigned long)pl022);
2214 
2215 	/* Disable SSP */
2216 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2217 	       SSP_CR1(pl022->virtbase));
2218 	load_ssp_default_config(pl022);
2219 
2220 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2221 				  0, "pl022", pl022);
2222 	if (status < 0) {
2223 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2224 		goto err_no_irq;
2225 	}
2226 
2227 	/* Get DMA channels */
2228 	if (platform_info->enable_dma) {
2229 		status = pl022_dma_probe(pl022);
2230 		if (status != 0)
2231 			platform_info->enable_dma = 0;
2232 	}
2233 
2234 	/* Register with the SPI framework */
2235 	amba_set_drvdata(adev, pl022);
2236 	status = spi_register_master(master);
2237 	if (status != 0) {
2238 		dev_err(&adev->dev,
2239 			"probe - problem registering spi master\n");
2240 		goto err_spi_register;
2241 	}
2242 	dev_dbg(dev, "probe succeeded\n");
2243 
2244 	/* let runtime pm put suspend */
2245 	if (platform_info->autosuspend_delay > 0) {
2246 		dev_info(&adev->dev,
2247 			"will use autosuspend for runtime pm, delay %dms\n",
2248 			platform_info->autosuspend_delay);
2249 		pm_runtime_set_autosuspend_delay(dev,
2250 			platform_info->autosuspend_delay);
2251 		pm_runtime_use_autosuspend(dev);
2252 		pm_runtime_put_autosuspend(dev);
2253 	} else {
2254 		pm_runtime_put(dev);
2255 	}
2256 	return 0;
2257 
2258  err_spi_register:
2259 	if (platform_info->enable_dma)
2260 		pl022_dma_remove(pl022);
2261  err_no_irq:
2262 	clk_disable(pl022->clk);
2263  err_no_clk_en:
2264 	clk_unprepare(pl022->clk);
2265  err_clk_prep:
2266  err_no_clk:
2267  err_no_ioremap:
2268 	amba_release_regions(adev);
2269  err_no_ioregion:
2270  err_no_gpio:
2271  err_no_pinctrl:
2272 	spi_master_put(master);
2273 	return status;
2274 }
2275 
2276 static int __devexit
2277 pl022_remove(struct amba_device *adev)
2278 {
2279 	struct pl022 *pl022 = amba_get_drvdata(adev);
2280 
2281 	if (!pl022)
2282 		return 0;
2283 
2284 	/*
2285 	 * undo pm_runtime_put() in probe.  I assume that we're not
2286 	 * accessing the primecell here.
2287 	 */
2288 	pm_runtime_get_noresume(&adev->dev);
2289 
2290 	load_ssp_default_config(pl022);
2291 	if (pl022->master_info->enable_dma)
2292 		pl022_dma_remove(pl022);
2293 
2294 	clk_disable(pl022->clk);
2295 	clk_unprepare(pl022->clk);
2296 	pm_runtime_disable(&adev->dev);
2297 	amba_release_regions(adev);
2298 	tasklet_disable(&pl022->pump_transfers);
2299 	spi_unregister_master(pl022->master);
2300 	amba_set_drvdata(adev, NULL);
2301 	return 0;
2302 }
2303 
2304 #if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME)
2305 /*
2306  * These two functions are used from both suspend/resume and
2307  * the runtime counterparts to handle external resources like
2308  * clocks, pins and regulators when going to sleep.
2309  */
2310 static void pl022_suspend_resources(struct pl022 *pl022)
2311 {
2312 	int ret;
2313 
2314 	clk_disable(pl022->clk);
2315 
2316 	/* Optionally let pins go into sleep states */
2317 	if (!IS_ERR(pl022->pins_sleep)) {
2318 		ret = pinctrl_select_state(pl022->pinctrl,
2319 					   pl022->pins_sleep);
2320 		if (ret)
2321 			dev_err(&pl022->adev->dev,
2322 				"could not set pins to sleep state\n");
2323 	}
2324 }
2325 
2326 static void pl022_resume_resources(struct pl022 *pl022)
2327 {
2328 	int ret;
2329 
2330 	/* Optionaly enable pins to be muxed in and configured */
2331 	if (!IS_ERR(pl022->pins_default)) {
2332 		ret = pinctrl_select_state(pl022->pinctrl,
2333 					   pl022->pins_default);
2334 		if (ret)
2335 			dev_err(&pl022->adev->dev,
2336 				"could not set default pins\n");
2337 	}
2338 
2339 	clk_enable(pl022->clk);
2340 }
2341 #endif
2342 
2343 #ifdef CONFIG_SUSPEND
2344 static int pl022_suspend(struct device *dev)
2345 {
2346 	struct pl022 *pl022 = dev_get_drvdata(dev);
2347 	int ret;
2348 
2349 	ret = spi_master_suspend(pl022->master);
2350 	if (ret) {
2351 		dev_warn(dev, "cannot suspend master\n");
2352 		return ret;
2353 	}
2354 	pl022_suspend_resources(pl022);
2355 
2356 	dev_dbg(dev, "suspended\n");
2357 	return 0;
2358 }
2359 
2360 static int pl022_resume(struct device *dev)
2361 {
2362 	struct pl022 *pl022 = dev_get_drvdata(dev);
2363 	int ret;
2364 
2365 	pl022_resume_resources(pl022);
2366 
2367 	/* Start the queue running */
2368 	ret = spi_master_resume(pl022->master);
2369 	if (ret)
2370 		dev_err(dev, "problem starting queue (%d)\n", ret);
2371 	else
2372 		dev_dbg(dev, "resumed\n");
2373 
2374 	return ret;
2375 }
2376 #endif	/* CONFIG_PM */
2377 
2378 #ifdef CONFIG_PM_RUNTIME
2379 static int pl022_runtime_suspend(struct device *dev)
2380 {
2381 	struct pl022 *pl022 = dev_get_drvdata(dev);
2382 
2383 	pl022_suspend_resources(pl022);
2384 	return 0;
2385 }
2386 
2387 static int pl022_runtime_resume(struct device *dev)
2388 {
2389 	struct pl022 *pl022 = dev_get_drvdata(dev);
2390 
2391 	pl022_resume_resources(pl022);
2392 	return 0;
2393 }
2394 #endif
2395 
2396 static const struct dev_pm_ops pl022_dev_pm_ops = {
2397 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2398 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2399 };
2400 
2401 static struct vendor_data vendor_arm = {
2402 	.fifodepth = 8,
2403 	.max_bpw = 16,
2404 	.unidir = false,
2405 	.extended_cr = false,
2406 	.pl023 = false,
2407 	.loopback = true,
2408 };
2409 
2410 static struct vendor_data vendor_st = {
2411 	.fifodepth = 32,
2412 	.max_bpw = 32,
2413 	.unidir = false,
2414 	.extended_cr = true,
2415 	.pl023 = false,
2416 	.loopback = true,
2417 };
2418 
2419 static struct vendor_data vendor_st_pl023 = {
2420 	.fifodepth = 32,
2421 	.max_bpw = 32,
2422 	.unidir = false,
2423 	.extended_cr = true,
2424 	.pl023 = true,
2425 	.loopback = false,
2426 };
2427 
2428 static struct amba_id pl022_ids[] = {
2429 	{
2430 		/*
2431 		 * ARM PL022 variant, this has a 16bit wide
2432 		 * and 8 locations deep TX/RX FIFO
2433 		 */
2434 		.id	= 0x00041022,
2435 		.mask	= 0x000fffff,
2436 		.data	= &vendor_arm,
2437 	},
2438 	{
2439 		/*
2440 		 * ST Micro derivative, this has 32bit wide
2441 		 * and 32 locations deep TX/RX FIFO
2442 		 */
2443 		.id	= 0x01080022,
2444 		.mask	= 0xffffffff,
2445 		.data	= &vendor_st,
2446 	},
2447 	{
2448 		/*
2449 		 * ST-Ericsson derivative "PL023" (this is not
2450 		 * an official ARM number), this is a PL022 SSP block
2451 		 * stripped to SPI mode only, it has 32bit wide
2452 		 * and 32 locations deep TX/RX FIFO but no extended
2453 		 * CR0/CR1 register
2454 		 */
2455 		.id	= 0x00080023,
2456 		.mask	= 0xffffffff,
2457 		.data	= &vendor_st_pl023,
2458 	},
2459 	{ 0, 0 },
2460 };
2461 
2462 MODULE_DEVICE_TABLE(amba, pl022_ids);
2463 
2464 static struct amba_driver pl022_driver = {
2465 	.drv = {
2466 		.name	= "ssp-pl022",
2467 		.pm	= &pl022_dev_pm_ops,
2468 	},
2469 	.id_table	= pl022_ids,
2470 	.probe		= pl022_probe,
2471 	.remove		= __devexit_p(pl022_remove),
2472 };
2473 
2474 static int __init pl022_init(void)
2475 {
2476 	return amba_driver_register(&pl022_driver);
2477 }
2478 subsys_initcall(pl022_init);
2479 
2480 static void __exit pl022_exit(void)
2481 {
2482 	amba_driver_unregister(&pl022_driver);
2483 }
2484 module_exit(pl022_exit);
2485 
2486 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2487 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2488 MODULE_LICENSE("GPL");
2489