xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2012 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
46 
47 /*
48  * This macro is used to define some register default values.
49  * reg is masked with mask, the OR:ed with an (again masked)
50  * val shifted sb steps to the left.
51  */
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 
55 /*
56  * This macro is also used to define some default values.
57  * It will just shift val by sb steps to the left and mask
58  * the result with mask.
59  */
60 #define GEN_MASK_BITS(val, mask, sb) \
61  (((val)<<(sb)) & (mask))
62 
63 #define DRIVE_TX		0
64 #define DO_NOT_DRIVE_TX		1
65 
66 #define DO_NOT_QUEUE_DMA	0
67 #define QUEUE_DMA		1
68 
69 #define RX_TRANSFER		1
70 #define TX_TRANSFER		2
71 
72 /*
73  * Macros to access SSP Registers with their offsets
74  */
75 #define SSP_CR0(r)	(r + 0x000)
76 #define SSP_CR1(r)	(r + 0x004)
77 #define SSP_DR(r)	(r + 0x008)
78 #define SSP_SR(r)	(r + 0x00C)
79 #define SSP_CPSR(r)	(r + 0x010)
80 #define SSP_IMSC(r)	(r + 0x014)
81 #define SSP_RIS(r)	(r + 0x018)
82 #define SSP_MIS(r)	(r + 0x01C)
83 #define SSP_ICR(r)	(r + 0x020)
84 #define SSP_DMACR(r)	(r + 0x024)
85 #define SSP_CSR(r)	(r + 0x030) /* vendor extension */
86 #define SSP_ITCR(r)	(r + 0x080)
87 #define SSP_ITIP(r)	(r + 0x084)
88 #define SSP_ITOP(r)	(r + 0x088)
89 #define SSP_TDR(r)	(r + 0x08C)
90 
91 #define SSP_PID0(r)	(r + 0xFE0)
92 #define SSP_PID1(r)	(r + 0xFE4)
93 #define SSP_PID2(r)	(r + 0xFE8)
94 #define SSP_PID3(r)	(r + 0xFEC)
95 
96 #define SSP_CID0(r)	(r + 0xFF0)
97 #define SSP_CID1(r)	(r + 0xFF4)
98 #define SSP_CID2(r)	(r + 0xFF8)
99 #define SSP_CID3(r)	(r + 0xFFC)
100 
101 /*
102  * SSP Control Register 0  - SSP_CR0
103  */
104 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
105 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
106 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
107 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
108 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
109 
110 /*
111  * The ST version of this block moves som bits
112  * in SSP_CR0 and extends it to 32 bits
113  */
114 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
115 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
116 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
117 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
118 
119 /*
120  * SSP Control Register 0  - SSP_CR1
121  */
122 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
123 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
124 #define SSP_CR1_MASK_MS		(0x1UL << 2)
125 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
126 
127 /*
128  * The ST version of this block adds some bits
129  * in SSP_CR1
130  */
131 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
132 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
133 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
134 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
135 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136 /* This one is only in the PL023 variant */
137 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138 
139 /*
140  * SSP Status Register - SSP_SR
141  */
142 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
143 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
144 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
145 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
146 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
147 
148 /*
149  * SSP Clock Prescale Register  - SSP_CPSR
150  */
151 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
152 
153 /*
154  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155  */
156 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
157 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
158 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
159 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160 
161 /*
162  * SSP Raw Interrupt Status Register - SSP_RIS
163  */
164 /* Receive Overrun Raw Interrupt status */
165 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
166 /* Receive Timeout Raw Interrupt status */
167 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
168 /* Receive FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
170 /* Transmit FIFO Raw Interrupt status */
171 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
172 
173 /*
174  * SSP Masked Interrupt Status Register - SSP_MIS
175  */
176 /* Receive Overrun Masked Interrupt status */
177 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
178 /* Receive Timeout Masked Interrupt status */
179 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
180 /* Receive FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
182 /* Transmit FIFO Masked Interrupt status */
183 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
184 
185 /*
186  * SSP Interrupt Clear Register - SSP_ICR
187  */
188 /* Receive Overrun Raw Clear Interrupt bit */
189 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
190 /* Receive Timeout Clear Interrupt bit */
191 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
192 
193 /*
194  * SSP DMA Control Register - SSP_DMACR
195  */
196 /* Receive DMA Enable bit */
197 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
198 /* Transmit DMA Enable bit */
199 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
200 
201 /*
202  * SSP Chip Select Control Register - SSP_CSR
203  * (vendor extension)
204  */
205 #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
206 
207 /*
208  * SSP Integration Test control Register - SSP_ITCR
209  */
210 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
211 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
212 
213 /*
214  * SSP Integration Test Input Register - SSP_ITIP
215  */
216 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
217 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
218 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
219 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
220 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
221 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
222 
223 /*
224  * SSP Integration Test output Register - SSP_ITOP
225  */
226 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
227 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
228 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
229 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
230 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
231 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
232 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
233 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
234 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
235 #define ITOP_MASK_INTR			 (0x1UL << 9)
236 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
237 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
238 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
239 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
240 
241 /*
242  * SSP Test Data Register - SSP_TDR
243  */
244 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
245 
246 /*
247  * Message State
248  * we use the spi_message.state (void *) pointer to
249  * hold a single state value, that's why all this
250  * (void *) casting is done here.
251  */
252 #define STATE_START			((void *) 0)
253 #define STATE_RUNNING			((void *) 1)
254 #define STATE_DONE			((void *) 2)
255 #define STATE_ERROR			((void *) -1)
256 #define STATE_TIMEOUT			((void *) -2)
257 
258 /*
259  * SSP State - Whether Enabled or Disabled
260  */
261 #define SSP_DISABLED			(0)
262 #define SSP_ENABLED			(1)
263 
264 /*
265  * SSP DMA State - Whether DMA Enabled or Disabled
266  */
267 #define SSP_DMA_DISABLED		(0)
268 #define SSP_DMA_ENABLED			(1)
269 
270 /*
271  * SSP Clock Defaults
272  */
273 #define SSP_DEFAULT_CLKRATE 0x2
274 #define SSP_DEFAULT_PRESCALE 0x40
275 
276 /*
277  * SSP Clock Parameter ranges
278  */
279 #define CPSDVR_MIN 0x02
280 #define CPSDVR_MAX 0xFE
281 #define SCR_MIN 0x00
282 #define SCR_MAX 0xFF
283 
284 /*
285  * SSP Interrupt related Macros
286  */
287 #define DEFAULT_SSP_REG_IMSC  0x0UL
288 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
289 #define ENABLE_ALL_INTERRUPTS ( \
290 	SSP_IMSC_MASK_RORIM | \
291 	SSP_IMSC_MASK_RTIM | \
292 	SSP_IMSC_MASK_RXIM | \
293 	SSP_IMSC_MASK_TXIM \
294 )
295 
296 #define CLEAR_ALL_INTERRUPTS  0x3
297 
298 #define SPI_POLLING_TIMEOUT 1000
299 
300 /*
301  * The type of reading going on on this chip
302  */
303 enum ssp_reading {
304 	READING_NULL,
305 	READING_U8,
306 	READING_U16,
307 	READING_U32
308 };
309 
310 /**
311  * The type of writing going on on this chip
312  */
313 enum ssp_writing {
314 	WRITING_NULL,
315 	WRITING_U8,
316 	WRITING_U16,
317 	WRITING_U32
318 };
319 
320 /**
321  * struct vendor_data - vendor-specific config parameters
322  * for PL022 derivates
323  * @fifodepth: depth of FIFOs (both)
324  * @max_bpw: maximum number of bits per word
325  * @unidir: supports unidirection transfers
326  * @extended_cr: 32 bit wide control register 0 with extra
327  * features and extra features in CR1 as found in the ST variants
328  * @pl023: supports a subset of the ST extensions called "PL023"
329  * @internal_cs_ctrl: supports chip select control register
330  */
331 struct vendor_data {
332 	int fifodepth;
333 	int max_bpw;
334 	bool unidir;
335 	bool extended_cr;
336 	bool pl023;
337 	bool loopback;
338 	bool internal_cs_ctrl;
339 };
340 
341 /**
342  * struct pl022 - This is the private SSP driver data structure
343  * @adev: AMBA device model hookup
344  * @vendor: vendor data for the IP block
345  * @phybase: the physical memory where the SSP device resides
346  * @virtbase: the virtual memory where the SSP is mapped
347  * @clk: outgoing clock "SPICLK" for the SPI bus
348  * @master: SPI framework hookup
349  * @master_info: controller-specific data from machine setup
350  * @pump_transfers: Tasklet used in Interrupt Transfer mode
351  * @cur_msg: Pointer to current spi_message being processed
352  * @cur_transfer: Pointer to current spi_transfer
353  * @cur_chip: pointer to current clients chip(assigned from controller_state)
354  * @next_msg_cs_active: the next message in the queue has been examined
355  *  and it was found that it uses the same chip select as the previous
356  *  message, so we left it active after the previous transfer, and it's
357  *  active already.
358  * @tx: current position in TX buffer to be read
359  * @tx_end: end position in TX buffer to be read
360  * @rx: current position in RX buffer to be written
361  * @rx_end: end position in RX buffer to be written
362  * @read: the type of read currently going on
363  * @write: the type of write currently going on
364  * @exp_fifo_level: expected FIFO level
365  * @dma_rx_channel: optional channel for RX DMA
366  * @dma_tx_channel: optional channel for TX DMA
367  * @sgt_rx: scattertable for the RX transfer
368  * @sgt_tx: scattertable for the TX transfer
369  * @dummypage: a dummy page used for driving data on the bus with DMA
370  * @cur_cs: current chip select (gpio)
371  * @chipselects: list of chipselects (gpios)
372  */
373 struct pl022 {
374 	struct amba_device		*adev;
375 	struct vendor_data		*vendor;
376 	resource_size_t			phybase;
377 	void __iomem			*virtbase;
378 	struct clk			*clk;
379 	struct spi_master		*master;
380 	struct pl022_ssp_controller	*master_info;
381 	/* Message per-transfer pump */
382 	struct tasklet_struct		pump_transfers;
383 	struct spi_message		*cur_msg;
384 	struct spi_transfer		*cur_transfer;
385 	struct chip_data		*cur_chip;
386 	bool				next_msg_cs_active;
387 	void				*tx;
388 	void				*tx_end;
389 	void				*rx;
390 	void				*rx_end;
391 	enum ssp_reading		read;
392 	enum ssp_writing		write;
393 	u32				exp_fifo_level;
394 	enum ssp_rx_level_trig		rx_lev_trig;
395 	enum ssp_tx_level_trig		tx_lev_trig;
396 	/* DMA settings */
397 #ifdef CONFIG_DMA_ENGINE
398 	struct dma_chan			*dma_rx_channel;
399 	struct dma_chan			*dma_tx_channel;
400 	struct sg_table			sgt_rx;
401 	struct sg_table			sgt_tx;
402 	char				*dummypage;
403 	bool				dma_running;
404 #endif
405 	int cur_cs;
406 	int *chipselects;
407 };
408 
409 /**
410  * struct chip_data - To maintain runtime state of SSP for each client chip
411  * @cr0: Value of control register CR0 of SSP - on later ST variants this
412  *       register is 32 bits wide rather than just 16
413  * @cr1: Value of control register CR1 of SSP
414  * @dmacr: Value of DMA control Register of SSP
415  * @cpsr: Value of Clock prescale register
416  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
417  * @enable_dma: Whether to enable DMA or not
418  * @read: function ptr to be used to read when doing xfer for this chip
419  * @write: function ptr to be used to write when doing xfer for this chip
420  * @cs_control: chip select callback provided by chip
421  * @xfer_type: polling/interrupt/DMA
422  *
423  * Runtime state of the SSP controller, maintained per chip,
424  * This would be set according to the current message that would be served
425  */
426 struct chip_data {
427 	u32 cr0;
428 	u16 cr1;
429 	u16 dmacr;
430 	u16 cpsr;
431 	u8 n_bytes;
432 	bool enable_dma;
433 	enum ssp_reading read;
434 	enum ssp_writing write;
435 	void (*cs_control) (u32 command);
436 	int xfer_type;
437 };
438 
439 /**
440  * null_cs_control - Dummy chip select function
441  * @command: select/delect the chip
442  *
443  * If no chip select function is provided by client this is used as dummy
444  * chip select
445  */
446 static void null_cs_control(u32 command)
447 {
448 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
449 }
450 
451 /**
452  * internal_cs_control - Control chip select signals via SSP_CSR.
453  * @pl022: SSP driver private data structure
454  * @command: select/delect the chip
455  *
456  * Used on controller with internal chip select control via SSP_CSR register
457  * (vendor extension). Each of the 5 LSB in the register controls one chip
458  * select signal.
459  */
460 static void internal_cs_control(struct pl022 *pl022, u32 command)
461 {
462 	u32 tmp;
463 
464 	tmp = readw(SSP_CSR(pl022->virtbase));
465 	if (command == SSP_CHIP_SELECT)
466 		tmp &= ~BIT(pl022->cur_cs);
467 	else
468 		tmp |= BIT(pl022->cur_cs);
469 	writew(tmp, SSP_CSR(pl022->virtbase));
470 }
471 
472 static void pl022_cs_control(struct pl022 *pl022, u32 command)
473 {
474 	if (pl022->vendor->internal_cs_ctrl)
475 		internal_cs_control(pl022, command);
476 	else if (gpio_is_valid(pl022->cur_cs))
477 		gpio_set_value(pl022->cur_cs, command);
478 	else
479 		pl022->cur_chip->cs_control(command);
480 }
481 
482 /**
483  * giveback - current spi_message is over, schedule next message and call
484  * callback of this message. Assumes that caller already
485  * set message->status; dma and pio irqs are blocked
486  * @pl022: SSP driver private data structure
487  */
488 static void giveback(struct pl022 *pl022)
489 {
490 	struct spi_transfer *last_transfer;
491 	pl022->next_msg_cs_active = false;
492 
493 	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
494 					struct spi_transfer, transfer_list);
495 
496 	/* Delay if requested before any change in chip select */
497 	if (last_transfer->delay_usecs)
498 		/*
499 		 * FIXME: This runs in interrupt context.
500 		 * Is this really smart?
501 		 */
502 		udelay(last_transfer->delay_usecs);
503 
504 	if (!last_transfer->cs_change) {
505 		struct spi_message *next_msg;
506 
507 		/*
508 		 * cs_change was not set. We can keep the chip select
509 		 * enabled if there is message in the queue and it is
510 		 * for the same spi device.
511 		 *
512 		 * We cannot postpone this until pump_messages, because
513 		 * after calling msg->complete (below) the driver that
514 		 * sent the current message could be unloaded, which
515 		 * could invalidate the cs_control() callback...
516 		 */
517 		/* get a pointer to the next message, if any */
518 		next_msg = spi_get_next_queued_message(pl022->master);
519 
520 		/*
521 		 * see if the next and current messages point
522 		 * to the same spi device.
523 		 */
524 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
525 			next_msg = NULL;
526 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
527 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
528 		else
529 			pl022->next_msg_cs_active = true;
530 
531 	}
532 
533 	pl022->cur_msg = NULL;
534 	pl022->cur_transfer = NULL;
535 	pl022->cur_chip = NULL;
536 
537 	/* disable the SPI/SSP operation */
538 	writew((readw(SSP_CR1(pl022->virtbase)) &
539 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
540 
541 	spi_finalize_current_message(pl022->master);
542 }
543 
544 /**
545  * flush - flush the FIFO to reach a clean state
546  * @pl022: SSP driver private data structure
547  */
548 static int flush(struct pl022 *pl022)
549 {
550 	unsigned long limit = loops_per_jiffy << 1;
551 
552 	dev_dbg(&pl022->adev->dev, "flush\n");
553 	do {
554 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
555 			readw(SSP_DR(pl022->virtbase));
556 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
557 
558 	pl022->exp_fifo_level = 0;
559 
560 	return limit;
561 }
562 
563 /**
564  * restore_state - Load configuration of current chip
565  * @pl022: SSP driver private data structure
566  */
567 static void restore_state(struct pl022 *pl022)
568 {
569 	struct chip_data *chip = pl022->cur_chip;
570 
571 	if (pl022->vendor->extended_cr)
572 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
573 	else
574 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
575 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
576 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
577 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
578 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
579 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
580 }
581 
582 /*
583  * Default SSP Register Values
584  */
585 #define DEFAULT_SSP_REG_CR0 ( \
586 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
587 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
588 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
589 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
590 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
591 )
592 
593 /* ST versions have slightly different bit layout */
594 #define DEFAULT_SSP_REG_CR0_ST ( \
595 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
596 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
597 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
598 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
599 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
600 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
601 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
602 )
603 
604 /* The PL023 version is slightly different again */
605 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
606 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
607 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
608 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
609 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
610 )
611 
612 #define DEFAULT_SSP_REG_CR1 ( \
613 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
614 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
615 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
616 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
617 )
618 
619 /* ST versions extend this register to use all 16 bits */
620 #define DEFAULT_SSP_REG_CR1_ST ( \
621 	DEFAULT_SSP_REG_CR1 | \
622 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
623 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
624 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
625 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
626 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
627 )
628 
629 /*
630  * The PL023 variant has further differences: no loopback mode, no microwire
631  * support, and a new clock feedback delay setting.
632  */
633 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
634 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
635 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
636 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
637 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
638 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
639 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
640 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
641 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
642 )
643 
644 #define DEFAULT_SSP_REG_CPSR ( \
645 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
646 )
647 
648 #define DEFAULT_SSP_REG_DMACR (\
649 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
650 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
651 )
652 
653 /**
654  * load_ssp_default_config - Load default configuration for SSP
655  * @pl022: SSP driver private data structure
656  */
657 static void load_ssp_default_config(struct pl022 *pl022)
658 {
659 	if (pl022->vendor->pl023) {
660 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
661 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
662 	} else if (pl022->vendor->extended_cr) {
663 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
664 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
665 	} else {
666 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
667 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
668 	}
669 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
670 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
671 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
672 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
673 }
674 
675 /**
676  * This will write to TX and read from RX according to the parameters
677  * set in pl022.
678  */
679 static void readwriter(struct pl022 *pl022)
680 {
681 
682 	/*
683 	 * The FIFO depth is different between primecell variants.
684 	 * I believe filling in too much in the FIFO might cause
685 	 * errons in 8bit wide transfers on ARM variants (just 8 words
686 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
687 	 *
688 	 * To prevent this issue, the TX FIFO is only filled to the
689 	 * unused RX FIFO fill length, regardless of what the TX
690 	 * FIFO status flag indicates.
691 	 */
692 	dev_dbg(&pl022->adev->dev,
693 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
694 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
695 
696 	/* Read as much as you can */
697 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
698 	       && (pl022->rx < pl022->rx_end)) {
699 		switch (pl022->read) {
700 		case READING_NULL:
701 			readw(SSP_DR(pl022->virtbase));
702 			break;
703 		case READING_U8:
704 			*(u8 *) (pl022->rx) =
705 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
706 			break;
707 		case READING_U16:
708 			*(u16 *) (pl022->rx) =
709 				(u16) readw(SSP_DR(pl022->virtbase));
710 			break;
711 		case READING_U32:
712 			*(u32 *) (pl022->rx) =
713 				readl(SSP_DR(pl022->virtbase));
714 			break;
715 		}
716 		pl022->rx += (pl022->cur_chip->n_bytes);
717 		pl022->exp_fifo_level--;
718 	}
719 	/*
720 	 * Write as much as possible up to the RX FIFO size
721 	 */
722 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
723 	       && (pl022->tx < pl022->tx_end)) {
724 		switch (pl022->write) {
725 		case WRITING_NULL:
726 			writew(0x0, SSP_DR(pl022->virtbase));
727 			break;
728 		case WRITING_U8:
729 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
730 			break;
731 		case WRITING_U16:
732 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
733 			break;
734 		case WRITING_U32:
735 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
736 			break;
737 		}
738 		pl022->tx += (pl022->cur_chip->n_bytes);
739 		pl022->exp_fifo_level++;
740 		/*
741 		 * This inner reader takes care of things appearing in the RX
742 		 * FIFO as we're transmitting. This will happen a lot since the
743 		 * clock starts running when you put things into the TX FIFO,
744 		 * and then things are continuously clocked into the RX FIFO.
745 		 */
746 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
747 		       && (pl022->rx < pl022->rx_end)) {
748 			switch (pl022->read) {
749 			case READING_NULL:
750 				readw(SSP_DR(pl022->virtbase));
751 				break;
752 			case READING_U8:
753 				*(u8 *) (pl022->rx) =
754 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
755 				break;
756 			case READING_U16:
757 				*(u16 *) (pl022->rx) =
758 					(u16) readw(SSP_DR(pl022->virtbase));
759 				break;
760 			case READING_U32:
761 				*(u32 *) (pl022->rx) =
762 					readl(SSP_DR(pl022->virtbase));
763 				break;
764 			}
765 			pl022->rx += (pl022->cur_chip->n_bytes);
766 			pl022->exp_fifo_level--;
767 		}
768 	}
769 	/*
770 	 * When we exit here the TX FIFO should be full and the RX FIFO
771 	 * should be empty
772 	 */
773 }
774 
775 /**
776  * next_transfer - Move to the Next transfer in the current spi message
777  * @pl022: SSP driver private data structure
778  *
779  * This function moves though the linked list of spi transfers in the
780  * current spi message and returns with the state of current spi
781  * message i.e whether its last transfer is done(STATE_DONE) or
782  * Next transfer is ready(STATE_RUNNING)
783  */
784 static void *next_transfer(struct pl022 *pl022)
785 {
786 	struct spi_message *msg = pl022->cur_msg;
787 	struct spi_transfer *trans = pl022->cur_transfer;
788 
789 	/* Move to next transfer */
790 	if (trans->transfer_list.next != &msg->transfers) {
791 		pl022->cur_transfer =
792 		    list_entry(trans->transfer_list.next,
793 			       struct spi_transfer, transfer_list);
794 		return STATE_RUNNING;
795 	}
796 	return STATE_DONE;
797 }
798 
799 /*
800  * This DMA functionality is only compiled in if we have
801  * access to the generic DMA devices/DMA engine.
802  */
803 #ifdef CONFIG_DMA_ENGINE
804 static void unmap_free_dma_scatter(struct pl022 *pl022)
805 {
806 	/* Unmap and free the SG tables */
807 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
808 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
809 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
810 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
811 	sg_free_table(&pl022->sgt_rx);
812 	sg_free_table(&pl022->sgt_tx);
813 }
814 
815 static void dma_callback(void *data)
816 {
817 	struct pl022 *pl022 = data;
818 	struct spi_message *msg = pl022->cur_msg;
819 
820 	BUG_ON(!pl022->sgt_rx.sgl);
821 
822 #ifdef VERBOSE_DEBUG
823 	/*
824 	 * Optionally dump out buffers to inspect contents, this is
825 	 * good if you want to convince yourself that the loopback
826 	 * read/write contents are the same, when adopting to a new
827 	 * DMA engine.
828 	 */
829 	{
830 		struct scatterlist *sg;
831 		unsigned int i;
832 
833 		dma_sync_sg_for_cpu(&pl022->adev->dev,
834 				    pl022->sgt_rx.sgl,
835 				    pl022->sgt_rx.nents,
836 				    DMA_FROM_DEVICE);
837 
838 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
839 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
840 			print_hex_dump(KERN_ERR, "SPI RX: ",
841 				       DUMP_PREFIX_OFFSET,
842 				       16,
843 				       1,
844 				       sg_virt(sg),
845 				       sg_dma_len(sg),
846 				       1);
847 		}
848 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
849 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
850 			print_hex_dump(KERN_ERR, "SPI TX: ",
851 				       DUMP_PREFIX_OFFSET,
852 				       16,
853 				       1,
854 				       sg_virt(sg),
855 				       sg_dma_len(sg),
856 				       1);
857 		}
858 	}
859 #endif
860 
861 	unmap_free_dma_scatter(pl022);
862 
863 	/* Update total bytes transferred */
864 	msg->actual_length += pl022->cur_transfer->len;
865 	/* Move to next transfer */
866 	msg->state = next_transfer(pl022);
867 	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
868 		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
869 	tasklet_schedule(&pl022->pump_transfers);
870 }
871 
872 static void setup_dma_scatter(struct pl022 *pl022,
873 			      void *buffer,
874 			      unsigned int length,
875 			      struct sg_table *sgtab)
876 {
877 	struct scatterlist *sg;
878 	int bytesleft = length;
879 	void *bufp = buffer;
880 	int mapbytes;
881 	int i;
882 
883 	if (buffer) {
884 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
885 			/*
886 			 * If there are less bytes left than what fits
887 			 * in the current page (plus page alignment offset)
888 			 * we just feed in this, else we stuff in as much
889 			 * as we can.
890 			 */
891 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
892 				mapbytes = bytesleft;
893 			else
894 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
895 			sg_set_page(sg, virt_to_page(bufp),
896 				    mapbytes, offset_in_page(bufp));
897 			bufp += mapbytes;
898 			bytesleft -= mapbytes;
899 			dev_dbg(&pl022->adev->dev,
900 				"set RX/TX target page @ %p, %d bytes, %d left\n",
901 				bufp, mapbytes, bytesleft);
902 		}
903 	} else {
904 		/* Map the dummy buffer on every page */
905 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
906 			if (bytesleft < PAGE_SIZE)
907 				mapbytes = bytesleft;
908 			else
909 				mapbytes = PAGE_SIZE;
910 			sg_set_page(sg, virt_to_page(pl022->dummypage),
911 				    mapbytes, 0);
912 			bytesleft -= mapbytes;
913 			dev_dbg(&pl022->adev->dev,
914 				"set RX/TX to dummy page %d bytes, %d left\n",
915 				mapbytes, bytesleft);
916 
917 		}
918 	}
919 	BUG_ON(bytesleft);
920 }
921 
922 /**
923  * configure_dma - configures the channels for the next transfer
924  * @pl022: SSP driver's private data structure
925  */
926 static int configure_dma(struct pl022 *pl022)
927 {
928 	struct dma_slave_config rx_conf = {
929 		.src_addr = SSP_DR(pl022->phybase),
930 		.direction = DMA_DEV_TO_MEM,
931 		.device_fc = false,
932 	};
933 	struct dma_slave_config tx_conf = {
934 		.dst_addr = SSP_DR(pl022->phybase),
935 		.direction = DMA_MEM_TO_DEV,
936 		.device_fc = false,
937 	};
938 	unsigned int pages;
939 	int ret;
940 	int rx_sglen, tx_sglen;
941 	struct dma_chan *rxchan = pl022->dma_rx_channel;
942 	struct dma_chan *txchan = pl022->dma_tx_channel;
943 	struct dma_async_tx_descriptor *rxdesc;
944 	struct dma_async_tx_descriptor *txdesc;
945 
946 	/* Check that the channels are available */
947 	if (!rxchan || !txchan)
948 		return -ENODEV;
949 
950 	/*
951 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
952 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
953 	 * not trigger on 2 elements this needs explicit mapping rather than
954 	 * calculation.
955 	 */
956 	switch (pl022->rx_lev_trig) {
957 	case SSP_RX_1_OR_MORE_ELEM:
958 		rx_conf.src_maxburst = 1;
959 		break;
960 	case SSP_RX_4_OR_MORE_ELEM:
961 		rx_conf.src_maxburst = 4;
962 		break;
963 	case SSP_RX_8_OR_MORE_ELEM:
964 		rx_conf.src_maxburst = 8;
965 		break;
966 	case SSP_RX_16_OR_MORE_ELEM:
967 		rx_conf.src_maxburst = 16;
968 		break;
969 	case SSP_RX_32_OR_MORE_ELEM:
970 		rx_conf.src_maxburst = 32;
971 		break;
972 	default:
973 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
974 		break;
975 	}
976 
977 	switch (pl022->tx_lev_trig) {
978 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
979 		tx_conf.dst_maxburst = 1;
980 		break;
981 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
982 		tx_conf.dst_maxburst = 4;
983 		break;
984 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
985 		tx_conf.dst_maxburst = 8;
986 		break;
987 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
988 		tx_conf.dst_maxburst = 16;
989 		break;
990 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
991 		tx_conf.dst_maxburst = 32;
992 		break;
993 	default:
994 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
995 		break;
996 	}
997 
998 	switch (pl022->read) {
999 	case READING_NULL:
1000 		/* Use the same as for writing */
1001 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1002 		break;
1003 	case READING_U8:
1004 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1005 		break;
1006 	case READING_U16:
1007 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1008 		break;
1009 	case READING_U32:
1010 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1011 		break;
1012 	}
1013 
1014 	switch (pl022->write) {
1015 	case WRITING_NULL:
1016 		/* Use the same as for reading */
1017 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1018 		break;
1019 	case WRITING_U8:
1020 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1021 		break;
1022 	case WRITING_U16:
1023 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1024 		break;
1025 	case WRITING_U32:
1026 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1027 		break;
1028 	}
1029 
1030 	/* SPI pecularity: we need to read and write the same width */
1031 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1032 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1033 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1034 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1035 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1036 
1037 	dmaengine_slave_config(rxchan, &rx_conf);
1038 	dmaengine_slave_config(txchan, &tx_conf);
1039 
1040 	/* Create sglists for the transfers */
1041 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1042 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1043 
1044 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1045 	if (ret)
1046 		goto err_alloc_rx_sg;
1047 
1048 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1049 	if (ret)
1050 		goto err_alloc_tx_sg;
1051 
1052 	/* Fill in the scatterlists for the RX+TX buffers */
1053 	setup_dma_scatter(pl022, pl022->rx,
1054 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1055 	setup_dma_scatter(pl022, pl022->tx,
1056 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1057 
1058 	/* Map DMA buffers */
1059 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1060 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1061 	if (!rx_sglen)
1062 		goto err_rx_sgmap;
1063 
1064 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1065 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1066 	if (!tx_sglen)
1067 		goto err_tx_sgmap;
1068 
1069 	/* Send both scatterlists */
1070 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1071 				      pl022->sgt_rx.sgl,
1072 				      rx_sglen,
1073 				      DMA_DEV_TO_MEM,
1074 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1075 	if (!rxdesc)
1076 		goto err_rxdesc;
1077 
1078 	txdesc = dmaengine_prep_slave_sg(txchan,
1079 				      pl022->sgt_tx.sgl,
1080 				      tx_sglen,
1081 				      DMA_MEM_TO_DEV,
1082 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1083 	if (!txdesc)
1084 		goto err_txdesc;
1085 
1086 	/* Put the callback on the RX transfer only, that should finish last */
1087 	rxdesc->callback = dma_callback;
1088 	rxdesc->callback_param = pl022;
1089 
1090 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1091 	dmaengine_submit(rxdesc);
1092 	dmaengine_submit(txdesc);
1093 	dma_async_issue_pending(rxchan);
1094 	dma_async_issue_pending(txchan);
1095 	pl022->dma_running = true;
1096 
1097 	return 0;
1098 
1099 err_txdesc:
1100 	dmaengine_terminate_all(txchan);
1101 err_rxdesc:
1102 	dmaengine_terminate_all(rxchan);
1103 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1104 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1105 err_tx_sgmap:
1106 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1107 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1108 err_rx_sgmap:
1109 	sg_free_table(&pl022->sgt_tx);
1110 err_alloc_tx_sg:
1111 	sg_free_table(&pl022->sgt_rx);
1112 err_alloc_rx_sg:
1113 	return -ENOMEM;
1114 }
1115 
1116 static int pl022_dma_probe(struct pl022 *pl022)
1117 {
1118 	dma_cap_mask_t mask;
1119 
1120 	/* Try to acquire a generic DMA engine slave channel */
1121 	dma_cap_zero(mask);
1122 	dma_cap_set(DMA_SLAVE, mask);
1123 	/*
1124 	 * We need both RX and TX channels to do DMA, else do none
1125 	 * of them.
1126 	 */
1127 	pl022->dma_rx_channel = dma_request_channel(mask,
1128 					    pl022->master_info->dma_filter,
1129 					    pl022->master_info->dma_rx_param);
1130 	if (!pl022->dma_rx_channel) {
1131 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1132 		goto err_no_rxchan;
1133 	}
1134 
1135 	pl022->dma_tx_channel = dma_request_channel(mask,
1136 					    pl022->master_info->dma_filter,
1137 					    pl022->master_info->dma_tx_param);
1138 	if (!pl022->dma_tx_channel) {
1139 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1140 		goto err_no_txchan;
1141 	}
1142 
1143 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1144 	if (!pl022->dummypage)
1145 		goto err_no_dummypage;
1146 
1147 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1148 		 dma_chan_name(pl022->dma_rx_channel),
1149 		 dma_chan_name(pl022->dma_tx_channel));
1150 
1151 	return 0;
1152 
1153 err_no_dummypage:
1154 	dma_release_channel(pl022->dma_tx_channel);
1155 err_no_txchan:
1156 	dma_release_channel(pl022->dma_rx_channel);
1157 	pl022->dma_rx_channel = NULL;
1158 err_no_rxchan:
1159 	dev_err(&pl022->adev->dev,
1160 			"Failed to work in dma mode, work without dma!\n");
1161 	return -ENODEV;
1162 }
1163 
1164 static int pl022_dma_autoprobe(struct pl022 *pl022)
1165 {
1166 	struct device *dev = &pl022->adev->dev;
1167 	struct dma_chan *chan;
1168 	int err;
1169 
1170 	/* automatically configure DMA channels from platform, normally using DT */
1171 	chan = dma_request_slave_channel_reason(dev, "rx");
1172 	if (IS_ERR(chan)) {
1173 		err = PTR_ERR(chan);
1174 		goto err_no_rxchan;
1175 	}
1176 
1177 	pl022->dma_rx_channel = chan;
1178 
1179 	chan = dma_request_slave_channel_reason(dev, "tx");
1180 	if (IS_ERR(chan)) {
1181 		err = PTR_ERR(chan);
1182 		goto err_no_txchan;
1183 	}
1184 
1185 	pl022->dma_tx_channel = chan;
1186 
1187 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1188 	if (!pl022->dummypage) {
1189 		err = -ENOMEM;
1190 		goto err_no_dummypage;
1191 	}
1192 
1193 	return 0;
1194 
1195 err_no_dummypage:
1196 	dma_release_channel(pl022->dma_tx_channel);
1197 	pl022->dma_tx_channel = NULL;
1198 err_no_txchan:
1199 	dma_release_channel(pl022->dma_rx_channel);
1200 	pl022->dma_rx_channel = NULL;
1201 err_no_rxchan:
1202 	return err;
1203 }
1204 
1205 static void terminate_dma(struct pl022 *pl022)
1206 {
1207 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1208 	struct dma_chan *txchan = pl022->dma_tx_channel;
1209 
1210 	dmaengine_terminate_all(rxchan);
1211 	dmaengine_terminate_all(txchan);
1212 	unmap_free_dma_scatter(pl022);
1213 	pl022->dma_running = false;
1214 }
1215 
1216 static void pl022_dma_remove(struct pl022 *pl022)
1217 {
1218 	if (pl022->dma_running)
1219 		terminate_dma(pl022);
1220 	if (pl022->dma_tx_channel)
1221 		dma_release_channel(pl022->dma_tx_channel);
1222 	if (pl022->dma_rx_channel)
1223 		dma_release_channel(pl022->dma_rx_channel);
1224 	kfree(pl022->dummypage);
1225 }
1226 
1227 #else
1228 static inline int configure_dma(struct pl022 *pl022)
1229 {
1230 	return -ENODEV;
1231 }
1232 
1233 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1234 {
1235 	return 0;
1236 }
1237 
1238 static inline int pl022_dma_probe(struct pl022 *pl022)
1239 {
1240 	return 0;
1241 }
1242 
1243 static inline void pl022_dma_remove(struct pl022 *pl022)
1244 {
1245 }
1246 #endif
1247 
1248 /**
1249  * pl022_interrupt_handler - Interrupt handler for SSP controller
1250  *
1251  * This function handles interrupts generated for an interrupt based transfer.
1252  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1253  * current message's state as STATE_ERROR and schedule the tasklet
1254  * pump_transfers which will do the postprocessing of the current message by
1255  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1256  * more data, and writes data in TX FIFO till it is not full. If we complete
1257  * the transfer we move to the next transfer and schedule the tasklet.
1258  */
1259 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1260 {
1261 	struct pl022 *pl022 = dev_id;
1262 	struct spi_message *msg = pl022->cur_msg;
1263 	u16 irq_status = 0;
1264 
1265 	if (unlikely(!msg)) {
1266 		dev_err(&pl022->adev->dev,
1267 			"bad message state in interrupt handler");
1268 		/* Never fail */
1269 		return IRQ_HANDLED;
1270 	}
1271 
1272 	/* Read the Interrupt Status Register */
1273 	irq_status = readw(SSP_MIS(pl022->virtbase));
1274 
1275 	if (unlikely(!irq_status))
1276 		return IRQ_NONE;
1277 
1278 	/*
1279 	 * This handles the FIFO interrupts, the timeout
1280 	 * interrupts are flatly ignored, they cannot be
1281 	 * trusted.
1282 	 */
1283 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1284 		/*
1285 		 * Overrun interrupt - bail out since our Data has been
1286 		 * corrupted
1287 		 */
1288 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1289 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1290 			dev_err(&pl022->adev->dev,
1291 				"RXFIFO is full\n");
1292 
1293 		/*
1294 		 * Disable and clear interrupts, disable SSP,
1295 		 * mark message with bad status so it can be
1296 		 * retried.
1297 		 */
1298 		writew(DISABLE_ALL_INTERRUPTS,
1299 		       SSP_IMSC(pl022->virtbase));
1300 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1301 		writew((readw(SSP_CR1(pl022->virtbase)) &
1302 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1303 		msg->state = STATE_ERROR;
1304 
1305 		/* Schedule message queue handler */
1306 		tasklet_schedule(&pl022->pump_transfers);
1307 		return IRQ_HANDLED;
1308 	}
1309 
1310 	readwriter(pl022);
1311 
1312 	if (pl022->tx == pl022->tx_end) {
1313 		/* Disable Transmit interrupt, enable receive interrupt */
1314 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1315 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1316 		       SSP_IMSC(pl022->virtbase));
1317 	}
1318 
1319 	/*
1320 	 * Since all transactions must write as much as shall be read,
1321 	 * we can conclude the entire transaction once RX is complete.
1322 	 * At this point, all TX will always be finished.
1323 	 */
1324 	if (pl022->rx >= pl022->rx_end) {
1325 		writew(DISABLE_ALL_INTERRUPTS,
1326 		       SSP_IMSC(pl022->virtbase));
1327 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1328 		if (unlikely(pl022->rx > pl022->rx_end)) {
1329 			dev_warn(&pl022->adev->dev, "read %u surplus "
1330 				 "bytes (did you request an odd "
1331 				 "number of bytes on a 16bit bus?)\n",
1332 				 (u32) (pl022->rx - pl022->rx_end));
1333 		}
1334 		/* Update total bytes transferred */
1335 		msg->actual_length += pl022->cur_transfer->len;
1336 		/* Move to next transfer */
1337 		msg->state = next_transfer(pl022);
1338 		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1339 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1340 		tasklet_schedule(&pl022->pump_transfers);
1341 		return IRQ_HANDLED;
1342 	}
1343 
1344 	return IRQ_HANDLED;
1345 }
1346 
1347 /**
1348  * This sets up the pointers to memory for the next message to
1349  * send out on the SPI bus.
1350  */
1351 static int set_up_next_transfer(struct pl022 *pl022,
1352 				struct spi_transfer *transfer)
1353 {
1354 	int residue;
1355 
1356 	/* Sanity check the message for this bus width */
1357 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1358 	if (unlikely(residue != 0)) {
1359 		dev_err(&pl022->adev->dev,
1360 			"message of %u bytes to transmit but the current "
1361 			"chip bus has a data width of %u bytes!\n",
1362 			pl022->cur_transfer->len,
1363 			pl022->cur_chip->n_bytes);
1364 		dev_err(&pl022->adev->dev, "skipping this message\n");
1365 		return -EIO;
1366 	}
1367 	pl022->tx = (void *)transfer->tx_buf;
1368 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1369 	pl022->rx = (void *)transfer->rx_buf;
1370 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1371 	pl022->write =
1372 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1373 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1374 	return 0;
1375 }
1376 
1377 /**
1378  * pump_transfers - Tasklet function which schedules next transfer
1379  * when running in interrupt or DMA transfer mode.
1380  * @data: SSP driver private data structure
1381  *
1382  */
1383 static void pump_transfers(unsigned long data)
1384 {
1385 	struct pl022 *pl022 = (struct pl022 *) data;
1386 	struct spi_message *message = NULL;
1387 	struct spi_transfer *transfer = NULL;
1388 	struct spi_transfer *previous = NULL;
1389 
1390 	/* Get current state information */
1391 	message = pl022->cur_msg;
1392 	transfer = pl022->cur_transfer;
1393 
1394 	/* Handle for abort */
1395 	if (message->state == STATE_ERROR) {
1396 		message->status = -EIO;
1397 		giveback(pl022);
1398 		return;
1399 	}
1400 
1401 	/* Handle end of message */
1402 	if (message->state == STATE_DONE) {
1403 		message->status = 0;
1404 		giveback(pl022);
1405 		return;
1406 	}
1407 
1408 	/* Delay if requested at end of transfer before CS change */
1409 	if (message->state == STATE_RUNNING) {
1410 		previous = list_entry(transfer->transfer_list.prev,
1411 					struct spi_transfer,
1412 					transfer_list);
1413 		if (previous->delay_usecs)
1414 			/*
1415 			 * FIXME: This runs in interrupt context.
1416 			 * Is this really smart?
1417 			 */
1418 			udelay(previous->delay_usecs);
1419 
1420 		/* Reselect chip select only if cs_change was requested */
1421 		if (previous->cs_change)
1422 			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1423 	} else {
1424 		/* STATE_START */
1425 		message->state = STATE_RUNNING;
1426 	}
1427 
1428 	if (set_up_next_transfer(pl022, transfer)) {
1429 		message->state = STATE_ERROR;
1430 		message->status = -EIO;
1431 		giveback(pl022);
1432 		return;
1433 	}
1434 	/* Flush the FIFOs and let's go! */
1435 	flush(pl022);
1436 
1437 	if (pl022->cur_chip->enable_dma) {
1438 		if (configure_dma(pl022)) {
1439 			dev_dbg(&pl022->adev->dev,
1440 				"configuration of DMA failed, fall back to interrupt mode\n");
1441 			goto err_config_dma;
1442 		}
1443 		return;
1444 	}
1445 
1446 err_config_dma:
1447 	/* enable all interrupts except RX */
1448 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1449 }
1450 
1451 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1452 {
1453 	/*
1454 	 * Default is to enable all interrupts except RX -
1455 	 * this will be enabled once TX is complete
1456 	 */
1457 	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1458 
1459 	/* Enable target chip, if not already active */
1460 	if (!pl022->next_msg_cs_active)
1461 		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1462 
1463 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1464 		/* Error path */
1465 		pl022->cur_msg->state = STATE_ERROR;
1466 		pl022->cur_msg->status = -EIO;
1467 		giveback(pl022);
1468 		return;
1469 	}
1470 	/* If we're using DMA, set up DMA here */
1471 	if (pl022->cur_chip->enable_dma) {
1472 		/* Configure DMA transfer */
1473 		if (configure_dma(pl022)) {
1474 			dev_dbg(&pl022->adev->dev,
1475 				"configuration of DMA failed, fall back to interrupt mode\n");
1476 			goto err_config_dma;
1477 		}
1478 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1479 		irqflags = DISABLE_ALL_INTERRUPTS;
1480 	}
1481 err_config_dma:
1482 	/* Enable SSP, turn on interrupts */
1483 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1484 	       SSP_CR1(pl022->virtbase));
1485 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1486 }
1487 
1488 static void print_current_status(struct pl022 *pl022)
1489 {
1490 	u32 read_cr0;
1491 	u16 read_cr1, read_dmacr, read_sr;
1492 
1493 	if (pl022->vendor->extended_cr)
1494 		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1495 	else
1496 		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1497 	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1498 	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1499 	read_sr = readw(SSP_SR(pl022->virtbase));
1500 
1501 	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1502 	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1503 	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1504 	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1505 	dev_warn(&pl022->adev->dev,
1506 			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1507 			pl022->exp_fifo_level,
1508 			pl022->vendor->fifodepth);
1509 
1510 }
1511 
1512 static void do_polling_transfer(struct pl022 *pl022)
1513 {
1514 	struct spi_message *message = NULL;
1515 	struct spi_transfer *transfer = NULL;
1516 	struct spi_transfer *previous = NULL;
1517 	unsigned long time, timeout;
1518 
1519 	message = pl022->cur_msg;
1520 
1521 	while (message->state != STATE_DONE) {
1522 		/* Handle for abort */
1523 		if (message->state == STATE_ERROR)
1524 			break;
1525 		transfer = pl022->cur_transfer;
1526 
1527 		/* Delay if requested at end of transfer */
1528 		if (message->state == STATE_RUNNING) {
1529 			previous =
1530 			    list_entry(transfer->transfer_list.prev,
1531 				       struct spi_transfer, transfer_list);
1532 			if (previous->delay_usecs)
1533 				udelay(previous->delay_usecs);
1534 			if (previous->cs_change)
1535 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1536 		} else {
1537 			/* STATE_START */
1538 			message->state = STATE_RUNNING;
1539 			if (!pl022->next_msg_cs_active)
1540 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1541 		}
1542 
1543 		/* Configuration Changing Per Transfer */
1544 		if (set_up_next_transfer(pl022, transfer)) {
1545 			/* Error path */
1546 			message->state = STATE_ERROR;
1547 			break;
1548 		}
1549 		/* Flush FIFOs and enable SSP */
1550 		flush(pl022);
1551 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1552 		       SSP_CR1(pl022->virtbase));
1553 
1554 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1555 
1556 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1557 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1558 			time = jiffies;
1559 			readwriter(pl022);
1560 			if (time_after(time, timeout)) {
1561 				dev_warn(&pl022->adev->dev,
1562 				"%s: timeout!\n", __func__);
1563 				message->state = STATE_TIMEOUT;
1564 				print_current_status(pl022);
1565 				goto out;
1566 			}
1567 			cpu_relax();
1568 		}
1569 
1570 		/* Update total byte transferred */
1571 		message->actual_length += pl022->cur_transfer->len;
1572 		/* Move to next transfer */
1573 		message->state = next_transfer(pl022);
1574 		if (message->state != STATE_DONE
1575 		    && pl022->cur_transfer->cs_change)
1576 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1577 	}
1578 out:
1579 	/* Handle end of message */
1580 	if (message->state == STATE_DONE)
1581 		message->status = 0;
1582 	else if (message->state == STATE_TIMEOUT)
1583 		message->status = -EAGAIN;
1584 	else
1585 		message->status = -EIO;
1586 
1587 	giveback(pl022);
1588 	return;
1589 }
1590 
1591 static int pl022_transfer_one_message(struct spi_master *master,
1592 				      struct spi_message *msg)
1593 {
1594 	struct pl022 *pl022 = spi_master_get_devdata(master);
1595 
1596 	/* Initial message state */
1597 	pl022->cur_msg = msg;
1598 	msg->state = STATE_START;
1599 
1600 	pl022->cur_transfer = list_entry(msg->transfers.next,
1601 					 struct spi_transfer, transfer_list);
1602 
1603 	/* Setup the SPI using the per chip configuration */
1604 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1605 	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1606 
1607 	restore_state(pl022);
1608 	flush(pl022);
1609 
1610 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1611 		do_polling_transfer(pl022);
1612 	else
1613 		do_interrupt_dma_transfer(pl022);
1614 
1615 	return 0;
1616 }
1617 
1618 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1619 {
1620 	struct pl022 *pl022 = spi_master_get_devdata(master);
1621 
1622 	/* nothing more to do - disable spi/ssp and power off */
1623 	writew((readw(SSP_CR1(pl022->virtbase)) &
1624 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1625 
1626 	return 0;
1627 }
1628 
1629 static int verify_controller_parameters(struct pl022 *pl022,
1630 				struct pl022_config_chip const *chip_info)
1631 {
1632 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1633 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1634 		dev_err(&pl022->adev->dev,
1635 			"interface is configured incorrectly\n");
1636 		return -EINVAL;
1637 	}
1638 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1639 	    (!pl022->vendor->unidir)) {
1640 		dev_err(&pl022->adev->dev,
1641 			"unidirectional mode not supported in this "
1642 			"hardware version\n");
1643 		return -EINVAL;
1644 	}
1645 	if ((chip_info->hierarchy != SSP_MASTER)
1646 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1647 		dev_err(&pl022->adev->dev,
1648 			"hierarchy is configured incorrectly\n");
1649 		return -EINVAL;
1650 	}
1651 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1652 	    && (chip_info->com_mode != DMA_TRANSFER)
1653 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1654 		dev_err(&pl022->adev->dev,
1655 			"Communication mode is configured incorrectly\n");
1656 		return -EINVAL;
1657 	}
1658 	switch (chip_info->rx_lev_trig) {
1659 	case SSP_RX_1_OR_MORE_ELEM:
1660 	case SSP_RX_4_OR_MORE_ELEM:
1661 	case SSP_RX_8_OR_MORE_ELEM:
1662 		/* These are always OK, all variants can handle this */
1663 		break;
1664 	case SSP_RX_16_OR_MORE_ELEM:
1665 		if (pl022->vendor->fifodepth < 16) {
1666 			dev_err(&pl022->adev->dev,
1667 			"RX FIFO Trigger Level is configured incorrectly\n");
1668 			return -EINVAL;
1669 		}
1670 		break;
1671 	case SSP_RX_32_OR_MORE_ELEM:
1672 		if (pl022->vendor->fifodepth < 32) {
1673 			dev_err(&pl022->adev->dev,
1674 			"RX FIFO Trigger Level is configured incorrectly\n");
1675 			return -EINVAL;
1676 		}
1677 		break;
1678 	default:
1679 		dev_err(&pl022->adev->dev,
1680 			"RX FIFO Trigger Level is configured incorrectly\n");
1681 		return -EINVAL;
1682 	}
1683 	switch (chip_info->tx_lev_trig) {
1684 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1685 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1686 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1687 		/* These are always OK, all variants can handle this */
1688 		break;
1689 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1690 		if (pl022->vendor->fifodepth < 16) {
1691 			dev_err(&pl022->adev->dev,
1692 			"TX FIFO Trigger Level is configured incorrectly\n");
1693 			return -EINVAL;
1694 		}
1695 		break;
1696 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1697 		if (pl022->vendor->fifodepth < 32) {
1698 			dev_err(&pl022->adev->dev,
1699 			"TX FIFO Trigger Level is configured incorrectly\n");
1700 			return -EINVAL;
1701 		}
1702 		break;
1703 	default:
1704 		dev_err(&pl022->adev->dev,
1705 			"TX FIFO Trigger Level is configured incorrectly\n");
1706 		return -EINVAL;
1707 	}
1708 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1709 		if ((chip_info->ctrl_len < SSP_BITS_4)
1710 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1711 			dev_err(&pl022->adev->dev,
1712 				"CTRL LEN is configured incorrectly\n");
1713 			return -EINVAL;
1714 		}
1715 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1716 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1717 			dev_err(&pl022->adev->dev,
1718 				"Wait State is configured incorrectly\n");
1719 			return -EINVAL;
1720 		}
1721 		/* Half duplex is only available in the ST Micro version */
1722 		if (pl022->vendor->extended_cr) {
1723 			if ((chip_info->duplex !=
1724 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1725 			    && (chip_info->duplex !=
1726 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1727 				dev_err(&pl022->adev->dev,
1728 					"Microwire duplex mode is configured incorrectly\n");
1729 				return -EINVAL;
1730 			}
1731 		} else {
1732 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1733 				dev_err(&pl022->adev->dev,
1734 					"Microwire half duplex mode requested,"
1735 					" but this is only available in the"
1736 					" ST version of PL022\n");
1737 			return -EINVAL;
1738 		}
1739 	}
1740 	return 0;
1741 }
1742 
1743 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1744 {
1745 	return rate / (cpsdvsr * (1 + scr));
1746 }
1747 
1748 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1749 				    ssp_clock_params * clk_freq)
1750 {
1751 	/* Lets calculate the frequency parameters */
1752 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1753 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1754 		best_scr = 0, tmp, found = 0;
1755 
1756 	rate = clk_get_rate(pl022->clk);
1757 	/* cpsdvscr = 2 & scr 0 */
1758 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1759 	/* cpsdvsr = 254 & scr = 255 */
1760 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1761 
1762 	if (freq > max_tclk)
1763 		dev_warn(&pl022->adev->dev,
1764 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1765 			max_tclk, freq);
1766 
1767 	if (freq < min_tclk) {
1768 		dev_err(&pl022->adev->dev,
1769 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1770 			freq, min_tclk);
1771 		return -EINVAL;
1772 	}
1773 
1774 	/*
1775 	 * best_freq will give closest possible available rate (<= requested
1776 	 * freq) for all values of scr & cpsdvsr.
1777 	 */
1778 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1779 		while (scr <= SCR_MAX) {
1780 			tmp = spi_rate(rate, cpsdvsr, scr);
1781 
1782 			if (tmp > freq) {
1783 				/* we need lower freq */
1784 				scr++;
1785 				continue;
1786 			}
1787 
1788 			/*
1789 			 * If found exact value, mark found and break.
1790 			 * If found more closer value, update and break.
1791 			 */
1792 			if (tmp > best_freq) {
1793 				best_freq = tmp;
1794 				best_cpsdvsr = cpsdvsr;
1795 				best_scr = scr;
1796 
1797 				if (tmp == freq)
1798 					found = 1;
1799 			}
1800 			/*
1801 			 * increased scr will give lower rates, which are not
1802 			 * required
1803 			 */
1804 			break;
1805 		}
1806 		cpsdvsr += 2;
1807 		scr = SCR_MIN;
1808 	}
1809 
1810 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1811 			freq);
1812 
1813 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1814 	clk_freq->scr = (u8) (best_scr & 0xFF);
1815 	dev_dbg(&pl022->adev->dev,
1816 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1817 		freq, best_freq);
1818 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1819 		clk_freq->cpsdvsr, clk_freq->scr);
1820 
1821 	return 0;
1822 }
1823 
1824 /*
1825  * A piece of default chip info unless the platform
1826  * supplies it.
1827  */
1828 static const struct pl022_config_chip pl022_default_chip_info = {
1829 	.com_mode = POLLING_TRANSFER,
1830 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1831 	.hierarchy = SSP_SLAVE,
1832 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1833 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1834 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1835 	.ctrl_len = SSP_BITS_8,
1836 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1837 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1838 	.cs_control = null_cs_control,
1839 };
1840 
1841 /**
1842  * pl022_setup - setup function registered to SPI master framework
1843  * @spi: spi device which is requesting setup
1844  *
1845  * This function is registered to the SPI framework for this SPI master
1846  * controller. If it is the first time when setup is called by this device,
1847  * this function will initialize the runtime state for this chip and save
1848  * the same in the device structure. Else it will update the runtime info
1849  * with the updated chip info. Nothing is really being written to the
1850  * controller hardware here, that is not done until the actual transfer
1851  * commence.
1852  */
1853 static int pl022_setup(struct spi_device *spi)
1854 {
1855 	struct pl022_config_chip const *chip_info;
1856 	struct pl022_config_chip chip_info_dt;
1857 	struct chip_data *chip;
1858 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1859 	int status = 0;
1860 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1861 	unsigned int bits = spi->bits_per_word;
1862 	u32 tmp;
1863 	struct device_node *np = spi->dev.of_node;
1864 
1865 	if (!spi->max_speed_hz)
1866 		return -EINVAL;
1867 
1868 	/* Get controller_state if one is supplied */
1869 	chip = spi_get_ctldata(spi);
1870 
1871 	if (chip == NULL) {
1872 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1873 		if (!chip)
1874 			return -ENOMEM;
1875 		dev_dbg(&spi->dev,
1876 			"allocated memory for controller's runtime state\n");
1877 	}
1878 
1879 	/* Get controller data if one is supplied */
1880 	chip_info = spi->controller_data;
1881 
1882 	if (chip_info == NULL) {
1883 		if (np) {
1884 			chip_info_dt = pl022_default_chip_info;
1885 
1886 			chip_info_dt.hierarchy = SSP_MASTER;
1887 			of_property_read_u32(np, "pl022,interface",
1888 				&chip_info_dt.iface);
1889 			of_property_read_u32(np, "pl022,com-mode",
1890 				&chip_info_dt.com_mode);
1891 			of_property_read_u32(np, "pl022,rx-level-trig",
1892 				&chip_info_dt.rx_lev_trig);
1893 			of_property_read_u32(np, "pl022,tx-level-trig",
1894 				&chip_info_dt.tx_lev_trig);
1895 			of_property_read_u32(np, "pl022,ctrl-len",
1896 				&chip_info_dt.ctrl_len);
1897 			of_property_read_u32(np, "pl022,wait-state",
1898 				&chip_info_dt.wait_state);
1899 			of_property_read_u32(np, "pl022,duplex",
1900 				&chip_info_dt.duplex);
1901 
1902 			chip_info = &chip_info_dt;
1903 		} else {
1904 			chip_info = &pl022_default_chip_info;
1905 			/* spi_board_info.controller_data not is supplied */
1906 			dev_dbg(&spi->dev,
1907 				"using default controller_data settings\n");
1908 		}
1909 	} else
1910 		dev_dbg(&spi->dev,
1911 			"using user supplied controller_data settings\n");
1912 
1913 	/*
1914 	 * We can override with custom divisors, else we use the board
1915 	 * frequency setting
1916 	 */
1917 	if ((0 == chip_info->clk_freq.cpsdvsr)
1918 	    && (0 == chip_info->clk_freq.scr)) {
1919 		status = calculate_effective_freq(pl022,
1920 						  spi->max_speed_hz,
1921 						  &clk_freq);
1922 		if (status < 0)
1923 			goto err_config_params;
1924 	} else {
1925 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1926 		if ((clk_freq.cpsdvsr % 2) != 0)
1927 			clk_freq.cpsdvsr =
1928 				clk_freq.cpsdvsr - 1;
1929 	}
1930 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1931 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1932 		status = -EINVAL;
1933 		dev_err(&spi->dev,
1934 			"cpsdvsr is configured incorrectly\n");
1935 		goto err_config_params;
1936 	}
1937 
1938 	status = verify_controller_parameters(pl022, chip_info);
1939 	if (status) {
1940 		dev_err(&spi->dev, "controller data is incorrect");
1941 		goto err_config_params;
1942 	}
1943 
1944 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1945 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1946 
1947 	/* Now set controller state based on controller data */
1948 	chip->xfer_type = chip_info->com_mode;
1949 	if (!chip_info->cs_control) {
1950 		chip->cs_control = null_cs_control;
1951 		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1952 			dev_warn(&spi->dev,
1953 				 "invalid chip select\n");
1954 	} else
1955 		chip->cs_control = chip_info->cs_control;
1956 
1957 	/* Check bits per word with vendor specific range */
1958 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1959 		status = -ENOTSUPP;
1960 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1961 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1962 				pl022->vendor->max_bpw);
1963 		goto err_config_params;
1964 	} else if (bits <= 8) {
1965 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1966 		chip->n_bytes = 1;
1967 		chip->read = READING_U8;
1968 		chip->write = WRITING_U8;
1969 	} else if (bits <= 16) {
1970 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1971 		chip->n_bytes = 2;
1972 		chip->read = READING_U16;
1973 		chip->write = WRITING_U16;
1974 	} else {
1975 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1976 		chip->n_bytes = 4;
1977 		chip->read = READING_U32;
1978 		chip->write = WRITING_U32;
1979 	}
1980 
1981 	/* Now Initialize all register settings required for this chip */
1982 	chip->cr0 = 0;
1983 	chip->cr1 = 0;
1984 	chip->dmacr = 0;
1985 	chip->cpsr = 0;
1986 	if ((chip_info->com_mode == DMA_TRANSFER)
1987 	    && ((pl022->master_info)->enable_dma)) {
1988 		chip->enable_dma = true;
1989 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1990 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1991 			       SSP_DMACR_MASK_RXDMAE, 0);
1992 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1993 			       SSP_DMACR_MASK_TXDMAE, 1);
1994 	} else {
1995 		chip->enable_dma = false;
1996 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1997 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1998 			       SSP_DMACR_MASK_RXDMAE, 0);
1999 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2000 			       SSP_DMACR_MASK_TXDMAE, 1);
2001 	}
2002 
2003 	chip->cpsr = clk_freq.cpsdvsr;
2004 
2005 	/* Special setup for the ST micro extended control registers */
2006 	if (pl022->vendor->extended_cr) {
2007 		u32 etx;
2008 
2009 		if (pl022->vendor->pl023) {
2010 			/* These bits are only in the PL023 */
2011 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2012 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2013 		} else {
2014 			/* These bits are in the PL022 but not PL023 */
2015 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2016 				       SSP_CR0_MASK_HALFDUP_ST, 5);
2017 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2018 				       SSP_CR0_MASK_CSS_ST, 16);
2019 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2020 				       SSP_CR0_MASK_FRF_ST, 21);
2021 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2022 				       SSP_CR1_MASK_MWAIT_ST, 6);
2023 		}
2024 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2025 			       SSP_CR0_MASK_DSS_ST, 0);
2026 
2027 		if (spi->mode & SPI_LSB_FIRST) {
2028 			tmp = SSP_RX_LSB;
2029 			etx = SSP_TX_LSB;
2030 		} else {
2031 			tmp = SSP_RX_MSB;
2032 			etx = SSP_TX_MSB;
2033 		}
2034 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2035 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2036 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2037 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2038 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2039 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2040 	} else {
2041 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2042 			       SSP_CR0_MASK_DSS, 0);
2043 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2044 			       SSP_CR0_MASK_FRF, 4);
2045 	}
2046 
2047 	/* Stuff that is common for all versions */
2048 	if (spi->mode & SPI_CPOL)
2049 		tmp = SSP_CLK_POL_IDLE_HIGH;
2050 	else
2051 		tmp = SSP_CLK_POL_IDLE_LOW;
2052 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2053 
2054 	if (spi->mode & SPI_CPHA)
2055 		tmp = SSP_CLK_SECOND_EDGE;
2056 	else
2057 		tmp = SSP_CLK_FIRST_EDGE;
2058 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2059 
2060 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2061 	/* Loopback is available on all versions except PL023 */
2062 	if (pl022->vendor->loopback) {
2063 		if (spi->mode & SPI_LOOP)
2064 			tmp = LOOPBACK_ENABLED;
2065 		else
2066 			tmp = LOOPBACK_DISABLED;
2067 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2068 	}
2069 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2070 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2071 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2072 		3);
2073 
2074 	/* Save controller_state */
2075 	spi_set_ctldata(spi, chip);
2076 	return status;
2077  err_config_params:
2078 	spi_set_ctldata(spi, NULL);
2079 	kfree(chip);
2080 	return status;
2081 }
2082 
2083 /**
2084  * pl022_cleanup - cleanup function registered to SPI master framework
2085  * @spi: spi device which is requesting cleanup
2086  *
2087  * This function is registered to the SPI framework for this SPI master
2088  * controller. It will free the runtime state of chip.
2089  */
2090 static void pl022_cleanup(struct spi_device *spi)
2091 {
2092 	struct chip_data *chip = spi_get_ctldata(spi);
2093 
2094 	spi_set_ctldata(spi, NULL);
2095 	kfree(chip);
2096 }
2097 
2098 static struct pl022_ssp_controller *
2099 pl022_platform_data_dt_get(struct device *dev)
2100 {
2101 	struct device_node *np = dev->of_node;
2102 	struct pl022_ssp_controller *pd;
2103 	u32 tmp = 0;
2104 
2105 	if (!np) {
2106 		dev_err(dev, "no dt node defined\n");
2107 		return NULL;
2108 	}
2109 
2110 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2111 	if (!pd)
2112 		return NULL;
2113 
2114 	pd->bus_id = -1;
2115 	pd->enable_dma = 1;
2116 	of_property_read_u32(np, "num-cs", &tmp);
2117 	pd->num_chipselect = tmp;
2118 	of_property_read_u32(np, "pl022,autosuspend-delay",
2119 			     &pd->autosuspend_delay);
2120 	pd->rt = of_property_read_bool(np, "pl022,rt");
2121 
2122 	return pd;
2123 }
2124 
2125 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2126 {
2127 	struct device *dev = &adev->dev;
2128 	struct pl022_ssp_controller *platform_info =
2129 			dev_get_platdata(&adev->dev);
2130 	struct spi_master *master;
2131 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2132 	struct device_node *np = adev->dev.of_node;
2133 	int status = 0, i, num_cs;
2134 
2135 	dev_info(&adev->dev,
2136 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2137 	if (!platform_info && IS_ENABLED(CONFIG_OF))
2138 		platform_info = pl022_platform_data_dt_get(dev);
2139 
2140 	if (!platform_info) {
2141 		dev_err(dev, "probe: no platform data defined\n");
2142 		return -ENODEV;
2143 	}
2144 
2145 	if (platform_info->num_chipselect) {
2146 		num_cs = platform_info->num_chipselect;
2147 	} else {
2148 		dev_err(dev, "probe: no chip select defined\n");
2149 		return -ENODEV;
2150 	}
2151 
2152 	/* Allocate master with space for data */
2153 	master = spi_alloc_master(dev, sizeof(struct pl022));
2154 	if (master == NULL) {
2155 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2156 		return -ENOMEM;
2157 	}
2158 
2159 	pl022 = spi_master_get_devdata(master);
2160 	pl022->master = master;
2161 	pl022->master_info = platform_info;
2162 	pl022->adev = adev;
2163 	pl022->vendor = id->data;
2164 	pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2165 					  GFP_KERNEL);
2166 	if (!pl022->chipselects) {
2167 		status = -ENOMEM;
2168 		goto err_no_mem;
2169 	}
2170 
2171 	/*
2172 	 * Bus Number Which has been Assigned to this SSP controller
2173 	 * on this board
2174 	 */
2175 	master->bus_num = platform_info->bus_id;
2176 	master->num_chipselect = num_cs;
2177 	master->cleanup = pl022_cleanup;
2178 	master->setup = pl022_setup;
2179 	master->auto_runtime_pm = true;
2180 	master->transfer_one_message = pl022_transfer_one_message;
2181 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2182 	master->rt = platform_info->rt;
2183 	master->dev.of_node = dev->of_node;
2184 
2185 	if (platform_info->num_chipselect && platform_info->chipselects) {
2186 		for (i = 0; i < num_cs; i++)
2187 			pl022->chipselects[i] = platform_info->chipselects[i];
2188 	} else if (pl022->vendor->internal_cs_ctrl) {
2189 		for (i = 0; i < num_cs; i++)
2190 			pl022->chipselects[i] = i;
2191 	} else if (IS_ENABLED(CONFIG_OF)) {
2192 		for (i = 0; i < num_cs; i++) {
2193 			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2194 
2195 			if (cs_gpio == -EPROBE_DEFER) {
2196 				status = -EPROBE_DEFER;
2197 				goto err_no_gpio;
2198 			}
2199 
2200 			pl022->chipselects[i] = cs_gpio;
2201 
2202 			if (gpio_is_valid(cs_gpio)) {
2203 				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2204 					dev_err(&adev->dev,
2205 						"could not request %d gpio\n",
2206 						cs_gpio);
2207 				else if (gpio_direction_output(cs_gpio, 1))
2208 					dev_err(&adev->dev,
2209 						"could not set gpio %d as output\n",
2210 						cs_gpio);
2211 			}
2212 		}
2213 	}
2214 
2215 	/*
2216 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2217 	 * always MS bit first on the original pl022.
2218 	 */
2219 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2220 	if (pl022->vendor->extended_cr)
2221 		master->mode_bits |= SPI_LSB_FIRST;
2222 
2223 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2224 
2225 	status = amba_request_regions(adev, NULL);
2226 	if (status)
2227 		goto err_no_ioregion;
2228 
2229 	pl022->phybase = adev->res.start;
2230 	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2231 				       resource_size(&adev->res));
2232 	if (pl022->virtbase == NULL) {
2233 		status = -ENOMEM;
2234 		goto err_no_ioremap;
2235 	}
2236 	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2237 		&adev->res.start, pl022->virtbase);
2238 
2239 	pl022->clk = devm_clk_get(&adev->dev, NULL);
2240 	if (IS_ERR(pl022->clk)) {
2241 		status = PTR_ERR(pl022->clk);
2242 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2243 		goto err_no_clk;
2244 	}
2245 
2246 	status = clk_prepare_enable(pl022->clk);
2247 	if (status) {
2248 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2249 		goto err_no_clk_en;
2250 	}
2251 
2252 	/* Initialize transfer pump */
2253 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2254 		     (unsigned long)pl022);
2255 
2256 	/* Disable SSP */
2257 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2258 	       SSP_CR1(pl022->virtbase));
2259 	load_ssp_default_config(pl022);
2260 
2261 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2262 				  0, "pl022", pl022);
2263 	if (status < 0) {
2264 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2265 		goto err_no_irq;
2266 	}
2267 
2268 	/* Get DMA channels, try autoconfiguration first */
2269 	status = pl022_dma_autoprobe(pl022);
2270 	if (status == -EPROBE_DEFER) {
2271 		dev_dbg(dev, "deferring probe to get DMA channel\n");
2272 		goto err_no_irq;
2273 	}
2274 
2275 	/* If that failed, use channels from platform_info */
2276 	if (status == 0)
2277 		platform_info->enable_dma = 1;
2278 	else if (platform_info->enable_dma) {
2279 		status = pl022_dma_probe(pl022);
2280 		if (status != 0)
2281 			platform_info->enable_dma = 0;
2282 	}
2283 
2284 	/* Register with the SPI framework */
2285 	amba_set_drvdata(adev, pl022);
2286 	status = devm_spi_register_master(&adev->dev, master);
2287 	if (status != 0) {
2288 		dev_err(&adev->dev,
2289 			"probe - problem registering spi master\n");
2290 		goto err_spi_register;
2291 	}
2292 	dev_dbg(dev, "probe succeeded\n");
2293 
2294 	/* let runtime pm put suspend */
2295 	if (platform_info->autosuspend_delay > 0) {
2296 		dev_info(&adev->dev,
2297 			"will use autosuspend for runtime pm, delay %dms\n",
2298 			platform_info->autosuspend_delay);
2299 		pm_runtime_set_autosuspend_delay(dev,
2300 			platform_info->autosuspend_delay);
2301 		pm_runtime_use_autosuspend(dev);
2302 	}
2303 	pm_runtime_put(dev);
2304 
2305 	return 0;
2306 
2307  err_spi_register:
2308 	if (platform_info->enable_dma)
2309 		pl022_dma_remove(pl022);
2310  err_no_irq:
2311 	clk_disable_unprepare(pl022->clk);
2312  err_no_clk_en:
2313  err_no_clk:
2314  err_no_ioremap:
2315 	amba_release_regions(adev);
2316  err_no_ioregion:
2317  err_no_gpio:
2318  err_no_mem:
2319 	spi_master_put(master);
2320 	return status;
2321 }
2322 
2323 static int
2324 pl022_remove(struct amba_device *adev)
2325 {
2326 	struct pl022 *pl022 = amba_get_drvdata(adev);
2327 
2328 	if (!pl022)
2329 		return 0;
2330 
2331 	/*
2332 	 * undo pm_runtime_put() in probe.  I assume that we're not
2333 	 * accessing the primecell here.
2334 	 */
2335 	pm_runtime_get_noresume(&adev->dev);
2336 
2337 	load_ssp_default_config(pl022);
2338 	if (pl022->master_info->enable_dma)
2339 		pl022_dma_remove(pl022);
2340 
2341 	clk_disable_unprepare(pl022->clk);
2342 	amba_release_regions(adev);
2343 	tasklet_disable(&pl022->pump_transfers);
2344 	return 0;
2345 }
2346 
2347 #ifdef CONFIG_PM_SLEEP
2348 static int pl022_suspend(struct device *dev)
2349 {
2350 	struct pl022 *pl022 = dev_get_drvdata(dev);
2351 	int ret;
2352 
2353 	ret = spi_master_suspend(pl022->master);
2354 	if (ret)
2355 		return ret;
2356 
2357 	ret = pm_runtime_force_suspend(dev);
2358 	if (ret) {
2359 		spi_master_resume(pl022->master);
2360 		return ret;
2361 	}
2362 
2363 	pinctrl_pm_select_sleep_state(dev);
2364 
2365 	dev_dbg(dev, "suspended\n");
2366 	return 0;
2367 }
2368 
2369 static int pl022_resume(struct device *dev)
2370 {
2371 	struct pl022 *pl022 = dev_get_drvdata(dev);
2372 	int ret;
2373 
2374 	ret = pm_runtime_force_resume(dev);
2375 	if (ret)
2376 		dev_err(dev, "problem resuming\n");
2377 
2378 	/* Start the queue running */
2379 	ret = spi_master_resume(pl022->master);
2380 	if (!ret)
2381 		dev_dbg(dev, "resumed\n");
2382 
2383 	return ret;
2384 }
2385 #endif
2386 
2387 #ifdef CONFIG_PM
2388 static int pl022_runtime_suspend(struct device *dev)
2389 {
2390 	struct pl022 *pl022 = dev_get_drvdata(dev);
2391 
2392 	clk_disable_unprepare(pl022->clk);
2393 	pinctrl_pm_select_idle_state(dev);
2394 
2395 	return 0;
2396 }
2397 
2398 static int pl022_runtime_resume(struct device *dev)
2399 {
2400 	struct pl022 *pl022 = dev_get_drvdata(dev);
2401 
2402 	pinctrl_pm_select_default_state(dev);
2403 	clk_prepare_enable(pl022->clk);
2404 
2405 	return 0;
2406 }
2407 #endif
2408 
2409 static const struct dev_pm_ops pl022_dev_pm_ops = {
2410 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2411 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2412 };
2413 
2414 static struct vendor_data vendor_arm = {
2415 	.fifodepth = 8,
2416 	.max_bpw = 16,
2417 	.unidir = false,
2418 	.extended_cr = false,
2419 	.pl023 = false,
2420 	.loopback = true,
2421 	.internal_cs_ctrl = false,
2422 };
2423 
2424 static struct vendor_data vendor_st = {
2425 	.fifodepth = 32,
2426 	.max_bpw = 32,
2427 	.unidir = false,
2428 	.extended_cr = true,
2429 	.pl023 = false,
2430 	.loopback = true,
2431 	.internal_cs_ctrl = false,
2432 };
2433 
2434 static struct vendor_data vendor_st_pl023 = {
2435 	.fifodepth = 32,
2436 	.max_bpw = 32,
2437 	.unidir = false,
2438 	.extended_cr = true,
2439 	.pl023 = true,
2440 	.loopback = false,
2441 	.internal_cs_ctrl = false,
2442 };
2443 
2444 static struct vendor_data vendor_lsi = {
2445 	.fifodepth = 8,
2446 	.max_bpw = 16,
2447 	.unidir = false,
2448 	.extended_cr = false,
2449 	.pl023 = false,
2450 	.loopback = true,
2451 	.internal_cs_ctrl = true,
2452 };
2453 
2454 static const struct amba_id pl022_ids[] = {
2455 	{
2456 		/*
2457 		 * ARM PL022 variant, this has a 16bit wide
2458 		 * and 8 locations deep TX/RX FIFO
2459 		 */
2460 		.id	= 0x00041022,
2461 		.mask	= 0x000fffff,
2462 		.data	= &vendor_arm,
2463 	},
2464 	{
2465 		/*
2466 		 * ST Micro derivative, this has 32bit wide
2467 		 * and 32 locations deep TX/RX FIFO
2468 		 */
2469 		.id	= 0x01080022,
2470 		.mask	= 0xffffffff,
2471 		.data	= &vendor_st,
2472 	},
2473 	{
2474 		/*
2475 		 * ST-Ericsson derivative "PL023" (this is not
2476 		 * an official ARM number), this is a PL022 SSP block
2477 		 * stripped to SPI mode only, it has 32bit wide
2478 		 * and 32 locations deep TX/RX FIFO but no extended
2479 		 * CR0/CR1 register
2480 		 */
2481 		.id	= 0x00080023,
2482 		.mask	= 0xffffffff,
2483 		.data	= &vendor_st_pl023,
2484 	},
2485 	{
2486 		/*
2487 		 * PL022 variant that has a chip select control register whih
2488 		 * allows control of 5 output signals nCS[0:4].
2489 		 */
2490 		.id	= 0x000b6022,
2491 		.mask	= 0x000fffff,
2492 		.data	= &vendor_lsi,
2493 	},
2494 	{ 0, 0 },
2495 };
2496 
2497 MODULE_DEVICE_TABLE(amba, pl022_ids);
2498 
2499 static struct amba_driver pl022_driver = {
2500 	.drv = {
2501 		.name	= "ssp-pl022",
2502 		.pm	= &pl022_dev_pm_ops,
2503 	},
2504 	.id_table	= pl022_ids,
2505 	.probe		= pl022_probe,
2506 	.remove		= pl022_remove,
2507 };
2508 
2509 static int __init pl022_init(void)
2510 {
2511 	return amba_driver_register(&pl022_driver);
2512 }
2513 subsys_initcall(pl022_init);
2514 
2515 static void __exit pl022_exit(void)
2516 {
2517 	amba_driver_unregister(&pl022_driver);
2518 }
2519 module_exit(pl022_exit);
2520 
2521 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2522 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2523 MODULE_LICENSE("GPL");
2524