xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision 495e3ff3)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2009 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 
44 /*
45  * This macro is used to define some register default values.
46  * reg is masked with mask, the OR:ed with an (again masked)
47  * val shifted sb steps to the left.
48  */
49 #define SSP_WRITE_BITS(reg, val, mask, sb) \
50  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
51 
52 /*
53  * This macro is also used to define some default values.
54  * It will just shift val by sb steps to the left and mask
55  * the result with mask.
56  */
57 #define GEN_MASK_BITS(val, mask, sb) \
58  (((val)<<(sb)) & (mask))
59 
60 #define DRIVE_TX		0
61 #define DO_NOT_DRIVE_TX		1
62 
63 #define DO_NOT_QUEUE_DMA	0
64 #define QUEUE_DMA		1
65 
66 #define RX_TRANSFER		1
67 #define TX_TRANSFER		2
68 
69 /*
70  * Macros to access SSP Registers with their offsets
71  */
72 #define SSP_CR0(r)	(r + 0x000)
73 #define SSP_CR1(r)	(r + 0x004)
74 #define SSP_DR(r)	(r + 0x008)
75 #define SSP_SR(r)	(r + 0x00C)
76 #define SSP_CPSR(r)	(r + 0x010)
77 #define SSP_IMSC(r)	(r + 0x014)
78 #define SSP_RIS(r)	(r + 0x018)
79 #define SSP_MIS(r)	(r + 0x01C)
80 #define SSP_ICR(r)	(r + 0x020)
81 #define SSP_DMACR(r)	(r + 0x024)
82 #define SSP_ITCR(r)	(r + 0x080)
83 #define SSP_ITIP(r)	(r + 0x084)
84 #define SSP_ITOP(r)	(r + 0x088)
85 #define SSP_TDR(r)	(r + 0x08C)
86 
87 #define SSP_PID0(r)	(r + 0xFE0)
88 #define SSP_PID1(r)	(r + 0xFE4)
89 #define SSP_PID2(r)	(r + 0xFE8)
90 #define SSP_PID3(r)	(r + 0xFEC)
91 
92 #define SSP_CID0(r)	(r + 0xFF0)
93 #define SSP_CID1(r)	(r + 0xFF4)
94 #define SSP_CID2(r)	(r + 0xFF8)
95 #define SSP_CID3(r)	(r + 0xFFC)
96 
97 /*
98  * SSP Control Register 0  - SSP_CR0
99  */
100 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
101 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
102 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
103 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
104 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
105 
106 /*
107  * The ST version of this block moves som bits
108  * in SSP_CR0 and extends it to 32 bits
109  */
110 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
111 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
112 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
113 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
114 
115 /*
116  * SSP Control Register 0  - SSP_CR1
117  */
118 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
119 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
120 #define SSP_CR1_MASK_MS		(0x1UL << 2)
121 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
122 
123 /*
124  * The ST version of this block adds some bits
125  * in SSP_CR1
126  */
127 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
128 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
129 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
130 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
131 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
132 /* This one is only in the PL023 variant */
133 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
134 
135 /*
136  * SSP Status Register - SSP_SR
137  */
138 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
139 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
140 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
141 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
142 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
143 
144 /*
145  * SSP Clock Prescale Register  - SSP_CPSR
146  */
147 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
148 
149 /*
150  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
151  */
152 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
153 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
154 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
155 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
156 
157 /*
158  * SSP Raw Interrupt Status Register - SSP_RIS
159  */
160 /* Receive Overrun Raw Interrupt status */
161 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
162 /* Receive Timeout Raw Interrupt status */
163 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
164 /* Receive FIFO Raw Interrupt status */
165 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
166 /* Transmit FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
168 
169 /*
170  * SSP Masked Interrupt Status Register - SSP_MIS
171  */
172 /* Receive Overrun Masked Interrupt status */
173 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
174 /* Receive Timeout Masked Interrupt status */
175 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
176 /* Receive FIFO Masked Interrupt status */
177 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
178 /* Transmit FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
180 
181 /*
182  * SSP Interrupt Clear Register - SSP_ICR
183  */
184 /* Receive Overrun Raw Clear Interrupt bit */
185 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
186 /* Receive Timeout Clear Interrupt bit */
187 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
188 
189 /*
190  * SSP DMA Control Register - SSP_DMACR
191  */
192 /* Receive DMA Enable bit */
193 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
194 /* Transmit DMA Enable bit */
195 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
196 
197 /*
198  * SSP Integration Test control Register - SSP_ITCR
199  */
200 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
201 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
202 
203 /*
204  * SSP Integration Test Input Register - SSP_ITIP
205  */
206 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
207 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
208 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
209 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
210 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
211 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
212 
213 /*
214  * SSP Integration Test output Register - SSP_ITOP
215  */
216 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
217 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
218 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
219 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
220 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
221 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
222 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
223 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
224 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
225 #define ITOP_MASK_INTR			 (0x1UL << 9)
226 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
227 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
228 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
229 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
230 
231 /*
232  * SSP Test Data Register - SSP_TDR
233  */
234 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
235 
236 /*
237  * Message State
238  * we use the spi_message.state (void *) pointer to
239  * hold a single state value, that's why all this
240  * (void *) casting is done here.
241  */
242 #define STATE_START			((void *) 0)
243 #define STATE_RUNNING			((void *) 1)
244 #define STATE_DONE			((void *) 2)
245 #define STATE_ERROR			((void *) -1)
246 
247 /*
248  * SSP State - Whether Enabled or Disabled
249  */
250 #define SSP_DISABLED			(0)
251 #define SSP_ENABLED			(1)
252 
253 /*
254  * SSP DMA State - Whether DMA Enabled or Disabled
255  */
256 #define SSP_DMA_DISABLED		(0)
257 #define SSP_DMA_ENABLED			(1)
258 
259 /*
260  * SSP Clock Defaults
261  */
262 #define SSP_DEFAULT_CLKRATE 0x2
263 #define SSP_DEFAULT_PRESCALE 0x40
264 
265 /*
266  * SSP Clock Parameter ranges
267  */
268 #define CPSDVR_MIN 0x02
269 #define CPSDVR_MAX 0xFE
270 #define SCR_MIN 0x00
271 #define SCR_MAX 0xFF
272 
273 /*
274  * SSP Interrupt related Macros
275  */
276 #define DEFAULT_SSP_REG_IMSC  0x0UL
277 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
278 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
279 
280 #define CLEAR_ALL_INTERRUPTS  0x3
281 
282 #define SPI_POLLING_TIMEOUT 1000
283 
284 /*
285  * The type of reading going on on this chip
286  */
287 enum ssp_reading {
288 	READING_NULL,
289 	READING_U8,
290 	READING_U16,
291 	READING_U32
292 };
293 
294 /**
295  * The type of writing going on on this chip
296  */
297 enum ssp_writing {
298 	WRITING_NULL,
299 	WRITING_U8,
300 	WRITING_U16,
301 	WRITING_U32
302 };
303 
304 /**
305  * struct vendor_data - vendor-specific config parameters
306  * for PL022 derivates
307  * @fifodepth: depth of FIFOs (both)
308  * @max_bpw: maximum number of bits per word
309  * @unidir: supports unidirection transfers
310  * @extended_cr: 32 bit wide control register 0 with extra
311  * features and extra features in CR1 as found in the ST variants
312  * @pl023: supports a subset of the ST extensions called "PL023"
313  */
314 struct vendor_data {
315 	int fifodepth;
316 	int max_bpw;
317 	bool unidir;
318 	bool extended_cr;
319 	bool pl023;
320 	bool loopback;
321 };
322 
323 /**
324  * struct pl022 - This is the private SSP driver data structure
325  * @adev: AMBA device model hookup
326  * @vendor: vendor data for the IP block
327  * @phybase: the physical memory where the SSP device resides
328  * @virtbase: the virtual memory where the SSP is mapped
329  * @clk: outgoing clock "SPICLK" for the SPI bus
330  * @master: SPI framework hookup
331  * @master_info: controller-specific data from machine setup
332  * @kworker: thread struct for message pump
333  * @kworker_task: pointer to task for message pump kworker thread
334  * @pump_messages: work struct for scheduling work to the message pump
335  * @queue_lock: spinlock to syncronise access to message queue
336  * @queue: message queue
337  * @busy: message pump is busy
338  * @running: message pump is running
339  * @pump_transfers: Tasklet used in Interrupt Transfer mode
340  * @cur_msg: Pointer to current spi_message being processed
341  * @cur_transfer: Pointer to current spi_transfer
342  * @cur_chip: pointer to current clients chip(assigned from controller_state)
343  * @next_msg_cs_active: the next message in the queue has been examined
344  *  and it was found that it uses the same chip select as the previous
345  *  message, so we left it active after the previous transfer, and it's
346  *  active already.
347  * @tx: current position in TX buffer to be read
348  * @tx_end: end position in TX buffer to be read
349  * @rx: current position in RX buffer to be written
350  * @rx_end: end position in RX buffer to be written
351  * @read: the type of read currently going on
352  * @write: the type of write currently going on
353  * @exp_fifo_level: expected FIFO level
354  * @dma_rx_channel: optional channel for RX DMA
355  * @dma_tx_channel: optional channel for TX DMA
356  * @sgt_rx: scattertable for the RX transfer
357  * @sgt_tx: scattertable for the TX transfer
358  * @dummypage: a dummy page used for driving data on the bus with DMA
359  */
360 struct pl022 {
361 	struct amba_device		*adev;
362 	struct vendor_data		*vendor;
363 	resource_size_t			phybase;
364 	void __iomem			*virtbase;
365 	struct clk			*clk;
366 	struct spi_master		*master;
367 	struct pl022_ssp_controller	*master_info;
368 	/* Message per-transfer pump */
369 	struct tasklet_struct		pump_transfers;
370 	struct spi_message		*cur_msg;
371 	struct spi_transfer		*cur_transfer;
372 	struct chip_data		*cur_chip;
373 	bool				next_msg_cs_active;
374 	void				*tx;
375 	void				*tx_end;
376 	void				*rx;
377 	void				*rx_end;
378 	enum ssp_reading		read;
379 	enum ssp_writing		write;
380 	u32				exp_fifo_level;
381 	enum ssp_rx_level_trig		rx_lev_trig;
382 	enum ssp_tx_level_trig		tx_lev_trig;
383 	/* DMA settings */
384 #ifdef CONFIG_DMA_ENGINE
385 	struct dma_chan			*dma_rx_channel;
386 	struct dma_chan			*dma_tx_channel;
387 	struct sg_table			sgt_rx;
388 	struct sg_table			sgt_tx;
389 	char				*dummypage;
390 	bool				dma_running;
391 #endif
392 };
393 
394 /**
395  * struct chip_data - To maintain runtime state of SSP for each client chip
396  * @cr0: Value of control register CR0 of SSP - on later ST variants this
397  *       register is 32 bits wide rather than just 16
398  * @cr1: Value of control register CR1 of SSP
399  * @dmacr: Value of DMA control Register of SSP
400  * @cpsr: Value of Clock prescale register
401  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
402  * @enable_dma: Whether to enable DMA or not
403  * @read: function ptr to be used to read when doing xfer for this chip
404  * @write: function ptr to be used to write when doing xfer for this chip
405  * @cs_control: chip select callback provided by chip
406  * @xfer_type: polling/interrupt/DMA
407  *
408  * Runtime state of the SSP controller, maintained per chip,
409  * This would be set according to the current message that would be served
410  */
411 struct chip_data {
412 	u32 cr0;
413 	u16 cr1;
414 	u16 dmacr;
415 	u16 cpsr;
416 	u8 n_bytes;
417 	bool enable_dma;
418 	enum ssp_reading read;
419 	enum ssp_writing write;
420 	void (*cs_control) (u32 command);
421 	int xfer_type;
422 };
423 
424 /**
425  * null_cs_control - Dummy chip select function
426  * @command: select/delect the chip
427  *
428  * If no chip select function is provided by client this is used as dummy
429  * chip select
430  */
431 static void null_cs_control(u32 command)
432 {
433 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
434 }
435 
436 /**
437  * giveback - current spi_message is over, schedule next message and call
438  * callback of this message. Assumes that caller already
439  * set message->status; dma and pio irqs are blocked
440  * @pl022: SSP driver private data structure
441  */
442 static void giveback(struct pl022 *pl022)
443 {
444 	struct spi_transfer *last_transfer;
445 	pl022->next_msg_cs_active = false;
446 
447 	last_transfer = list_entry(pl022->cur_msg->transfers.prev,
448 					struct spi_transfer,
449 					transfer_list);
450 
451 	/* Delay if requested before any change in chip select */
452 	if (last_transfer->delay_usecs)
453 		/*
454 		 * FIXME: This runs in interrupt context.
455 		 * Is this really smart?
456 		 */
457 		udelay(last_transfer->delay_usecs);
458 
459 	if (!last_transfer->cs_change) {
460 		struct spi_message *next_msg;
461 
462 		/*
463 		 * cs_change was not set. We can keep the chip select
464 		 * enabled if there is message in the queue and it is
465 		 * for the same spi device.
466 		 *
467 		 * We cannot postpone this until pump_messages, because
468 		 * after calling msg->complete (below) the driver that
469 		 * sent the current message could be unloaded, which
470 		 * could invalidate the cs_control() callback...
471 		 */
472 		/* get a pointer to the next message, if any */
473 		next_msg = spi_get_next_queued_message(pl022->master);
474 
475 		/*
476 		 * see if the next and current messages point
477 		 * to the same spi device.
478 		 */
479 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
480 			next_msg = NULL;
481 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
482 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
483 		else
484 			pl022->next_msg_cs_active = true;
485 
486 	}
487 
488 	pl022->cur_msg = NULL;
489 	pl022->cur_transfer = NULL;
490 	pl022->cur_chip = NULL;
491 	spi_finalize_current_message(pl022->master);
492 
493 	/* disable the SPI/SSP operation */
494 	writew((readw(SSP_CR1(pl022->virtbase)) &
495 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
496 
497 }
498 
499 /**
500  * flush - flush the FIFO to reach a clean state
501  * @pl022: SSP driver private data structure
502  */
503 static int flush(struct pl022 *pl022)
504 {
505 	unsigned long limit = loops_per_jiffy << 1;
506 
507 	dev_dbg(&pl022->adev->dev, "flush\n");
508 	do {
509 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
510 			readw(SSP_DR(pl022->virtbase));
511 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
512 
513 	pl022->exp_fifo_level = 0;
514 
515 	return limit;
516 }
517 
518 /**
519  * restore_state - Load configuration of current chip
520  * @pl022: SSP driver private data structure
521  */
522 static void restore_state(struct pl022 *pl022)
523 {
524 	struct chip_data *chip = pl022->cur_chip;
525 
526 	if (pl022->vendor->extended_cr)
527 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
528 	else
529 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
530 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
531 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
532 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
533 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
534 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
535 }
536 
537 /*
538  * Default SSP Register Values
539  */
540 #define DEFAULT_SSP_REG_CR0 ( \
541 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
542 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
543 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
544 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
545 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
546 )
547 
548 /* ST versions have slightly different bit layout */
549 #define DEFAULT_SSP_REG_CR0_ST ( \
550 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
551 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
552 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
553 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
554 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
555 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
556 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
557 )
558 
559 /* The PL023 version is slightly different again */
560 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
561 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
562 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
563 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
564 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
565 )
566 
567 #define DEFAULT_SSP_REG_CR1 ( \
568 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
569 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
570 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
571 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
572 )
573 
574 /* ST versions extend this register to use all 16 bits */
575 #define DEFAULT_SSP_REG_CR1_ST ( \
576 	DEFAULT_SSP_REG_CR1 | \
577 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
578 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
579 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
580 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
581 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
582 )
583 
584 /*
585  * The PL023 variant has further differences: no loopback mode, no microwire
586  * support, and a new clock feedback delay setting.
587  */
588 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
589 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
590 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
591 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
592 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
593 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
594 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
595 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
596 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
597 )
598 
599 #define DEFAULT_SSP_REG_CPSR ( \
600 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
601 )
602 
603 #define DEFAULT_SSP_REG_DMACR (\
604 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
605 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
606 )
607 
608 /**
609  * load_ssp_default_config - Load default configuration for SSP
610  * @pl022: SSP driver private data structure
611  */
612 static void load_ssp_default_config(struct pl022 *pl022)
613 {
614 	if (pl022->vendor->pl023) {
615 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
616 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
617 	} else if (pl022->vendor->extended_cr) {
618 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
619 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
620 	} else {
621 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
622 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
623 	}
624 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
625 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
626 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
627 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
628 }
629 
630 /**
631  * This will write to TX and read from RX according to the parameters
632  * set in pl022.
633  */
634 static void readwriter(struct pl022 *pl022)
635 {
636 
637 	/*
638 	 * The FIFO depth is different between primecell variants.
639 	 * I believe filling in too much in the FIFO might cause
640 	 * errons in 8bit wide transfers on ARM variants (just 8 words
641 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
642 	 *
643 	 * To prevent this issue, the TX FIFO is only filled to the
644 	 * unused RX FIFO fill length, regardless of what the TX
645 	 * FIFO status flag indicates.
646 	 */
647 	dev_dbg(&pl022->adev->dev,
648 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
649 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
650 
651 	/* Read as much as you can */
652 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
653 	       && (pl022->rx < pl022->rx_end)) {
654 		switch (pl022->read) {
655 		case READING_NULL:
656 			readw(SSP_DR(pl022->virtbase));
657 			break;
658 		case READING_U8:
659 			*(u8 *) (pl022->rx) =
660 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
661 			break;
662 		case READING_U16:
663 			*(u16 *) (pl022->rx) =
664 				(u16) readw(SSP_DR(pl022->virtbase));
665 			break;
666 		case READING_U32:
667 			*(u32 *) (pl022->rx) =
668 				readl(SSP_DR(pl022->virtbase));
669 			break;
670 		}
671 		pl022->rx += (pl022->cur_chip->n_bytes);
672 		pl022->exp_fifo_level--;
673 	}
674 	/*
675 	 * Write as much as possible up to the RX FIFO size
676 	 */
677 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
678 	       && (pl022->tx < pl022->tx_end)) {
679 		switch (pl022->write) {
680 		case WRITING_NULL:
681 			writew(0x0, SSP_DR(pl022->virtbase));
682 			break;
683 		case WRITING_U8:
684 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
685 			break;
686 		case WRITING_U16:
687 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
688 			break;
689 		case WRITING_U32:
690 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
691 			break;
692 		}
693 		pl022->tx += (pl022->cur_chip->n_bytes);
694 		pl022->exp_fifo_level++;
695 		/*
696 		 * This inner reader takes care of things appearing in the RX
697 		 * FIFO as we're transmitting. This will happen a lot since the
698 		 * clock starts running when you put things into the TX FIFO,
699 		 * and then things are continuously clocked into the RX FIFO.
700 		 */
701 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
702 		       && (pl022->rx < pl022->rx_end)) {
703 			switch (pl022->read) {
704 			case READING_NULL:
705 				readw(SSP_DR(pl022->virtbase));
706 				break;
707 			case READING_U8:
708 				*(u8 *) (pl022->rx) =
709 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
710 				break;
711 			case READING_U16:
712 				*(u16 *) (pl022->rx) =
713 					(u16) readw(SSP_DR(pl022->virtbase));
714 				break;
715 			case READING_U32:
716 				*(u32 *) (pl022->rx) =
717 					readl(SSP_DR(pl022->virtbase));
718 				break;
719 			}
720 			pl022->rx += (pl022->cur_chip->n_bytes);
721 			pl022->exp_fifo_level--;
722 		}
723 	}
724 	/*
725 	 * When we exit here the TX FIFO should be full and the RX FIFO
726 	 * should be empty
727 	 */
728 }
729 
730 /**
731  * next_transfer - Move to the Next transfer in the current spi message
732  * @pl022: SSP driver private data structure
733  *
734  * This function moves though the linked list of spi transfers in the
735  * current spi message and returns with the state of current spi
736  * message i.e whether its last transfer is done(STATE_DONE) or
737  * Next transfer is ready(STATE_RUNNING)
738  */
739 static void *next_transfer(struct pl022 *pl022)
740 {
741 	struct spi_message *msg = pl022->cur_msg;
742 	struct spi_transfer *trans = pl022->cur_transfer;
743 
744 	/* Move to next transfer */
745 	if (trans->transfer_list.next != &msg->transfers) {
746 		pl022->cur_transfer =
747 		    list_entry(trans->transfer_list.next,
748 			       struct spi_transfer, transfer_list);
749 		return STATE_RUNNING;
750 	}
751 	return STATE_DONE;
752 }
753 
754 /*
755  * This DMA functionality is only compiled in if we have
756  * access to the generic DMA devices/DMA engine.
757  */
758 #ifdef CONFIG_DMA_ENGINE
759 static void unmap_free_dma_scatter(struct pl022 *pl022)
760 {
761 	/* Unmap and free the SG tables */
762 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
763 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
764 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
765 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
766 	sg_free_table(&pl022->sgt_rx);
767 	sg_free_table(&pl022->sgt_tx);
768 }
769 
770 static void dma_callback(void *data)
771 {
772 	struct pl022 *pl022 = data;
773 	struct spi_message *msg = pl022->cur_msg;
774 
775 	BUG_ON(!pl022->sgt_rx.sgl);
776 
777 #ifdef VERBOSE_DEBUG
778 	/*
779 	 * Optionally dump out buffers to inspect contents, this is
780 	 * good if you want to convince yourself that the loopback
781 	 * read/write contents are the same, when adopting to a new
782 	 * DMA engine.
783 	 */
784 	{
785 		struct scatterlist *sg;
786 		unsigned int i;
787 
788 		dma_sync_sg_for_cpu(&pl022->adev->dev,
789 				    pl022->sgt_rx.sgl,
790 				    pl022->sgt_rx.nents,
791 				    DMA_FROM_DEVICE);
792 
793 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
794 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
795 			print_hex_dump(KERN_ERR, "SPI RX: ",
796 				       DUMP_PREFIX_OFFSET,
797 				       16,
798 				       1,
799 				       sg_virt(sg),
800 				       sg_dma_len(sg),
801 				       1);
802 		}
803 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
804 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
805 			print_hex_dump(KERN_ERR, "SPI TX: ",
806 				       DUMP_PREFIX_OFFSET,
807 				       16,
808 				       1,
809 				       sg_virt(sg),
810 				       sg_dma_len(sg),
811 				       1);
812 		}
813 	}
814 #endif
815 
816 	unmap_free_dma_scatter(pl022);
817 
818 	/* Update total bytes transferred */
819 	msg->actual_length += pl022->cur_transfer->len;
820 	if (pl022->cur_transfer->cs_change)
821 		pl022->cur_chip->
822 			cs_control(SSP_CHIP_DESELECT);
823 
824 	/* Move to next transfer */
825 	msg->state = next_transfer(pl022);
826 	tasklet_schedule(&pl022->pump_transfers);
827 }
828 
829 static void setup_dma_scatter(struct pl022 *pl022,
830 			      void *buffer,
831 			      unsigned int length,
832 			      struct sg_table *sgtab)
833 {
834 	struct scatterlist *sg;
835 	int bytesleft = length;
836 	void *bufp = buffer;
837 	int mapbytes;
838 	int i;
839 
840 	if (buffer) {
841 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
842 			/*
843 			 * If there are less bytes left than what fits
844 			 * in the current page (plus page alignment offset)
845 			 * we just feed in this, else we stuff in as much
846 			 * as we can.
847 			 */
848 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
849 				mapbytes = bytesleft;
850 			else
851 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
852 			sg_set_page(sg, virt_to_page(bufp),
853 				    mapbytes, offset_in_page(bufp));
854 			bufp += mapbytes;
855 			bytesleft -= mapbytes;
856 			dev_dbg(&pl022->adev->dev,
857 				"set RX/TX target page @ %p, %d bytes, %d left\n",
858 				bufp, mapbytes, bytesleft);
859 		}
860 	} else {
861 		/* Map the dummy buffer on every page */
862 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
863 			if (bytesleft < PAGE_SIZE)
864 				mapbytes = bytesleft;
865 			else
866 				mapbytes = PAGE_SIZE;
867 			sg_set_page(sg, virt_to_page(pl022->dummypage),
868 				    mapbytes, 0);
869 			bytesleft -= mapbytes;
870 			dev_dbg(&pl022->adev->dev,
871 				"set RX/TX to dummy page %d bytes, %d left\n",
872 				mapbytes, bytesleft);
873 
874 		}
875 	}
876 	BUG_ON(bytesleft);
877 }
878 
879 /**
880  * configure_dma - configures the channels for the next transfer
881  * @pl022: SSP driver's private data structure
882  */
883 static int configure_dma(struct pl022 *pl022)
884 {
885 	struct dma_slave_config rx_conf = {
886 		.src_addr = SSP_DR(pl022->phybase),
887 		.direction = DMA_DEV_TO_MEM,
888 		.device_fc = false,
889 	};
890 	struct dma_slave_config tx_conf = {
891 		.dst_addr = SSP_DR(pl022->phybase),
892 		.direction = DMA_MEM_TO_DEV,
893 		.device_fc = false,
894 	};
895 	unsigned int pages;
896 	int ret;
897 	int rx_sglen, tx_sglen;
898 	struct dma_chan *rxchan = pl022->dma_rx_channel;
899 	struct dma_chan *txchan = pl022->dma_tx_channel;
900 	struct dma_async_tx_descriptor *rxdesc;
901 	struct dma_async_tx_descriptor *txdesc;
902 
903 	/* Check that the channels are available */
904 	if (!rxchan || !txchan)
905 		return -ENODEV;
906 
907 	/*
908 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
909 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
910 	 * not trigger on 2 elements this needs explicit mapping rather than
911 	 * calculation.
912 	 */
913 	switch (pl022->rx_lev_trig) {
914 	case SSP_RX_1_OR_MORE_ELEM:
915 		rx_conf.src_maxburst = 1;
916 		break;
917 	case SSP_RX_4_OR_MORE_ELEM:
918 		rx_conf.src_maxburst = 4;
919 		break;
920 	case SSP_RX_8_OR_MORE_ELEM:
921 		rx_conf.src_maxburst = 8;
922 		break;
923 	case SSP_RX_16_OR_MORE_ELEM:
924 		rx_conf.src_maxburst = 16;
925 		break;
926 	case SSP_RX_32_OR_MORE_ELEM:
927 		rx_conf.src_maxburst = 32;
928 		break;
929 	default:
930 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
931 		break;
932 	}
933 
934 	switch (pl022->tx_lev_trig) {
935 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
936 		tx_conf.dst_maxburst = 1;
937 		break;
938 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
939 		tx_conf.dst_maxburst = 4;
940 		break;
941 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
942 		tx_conf.dst_maxburst = 8;
943 		break;
944 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
945 		tx_conf.dst_maxburst = 16;
946 		break;
947 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
948 		tx_conf.dst_maxburst = 32;
949 		break;
950 	default:
951 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
952 		break;
953 	}
954 
955 	switch (pl022->read) {
956 	case READING_NULL:
957 		/* Use the same as for writing */
958 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
959 		break;
960 	case READING_U8:
961 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
962 		break;
963 	case READING_U16:
964 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
965 		break;
966 	case READING_U32:
967 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
968 		break;
969 	}
970 
971 	switch (pl022->write) {
972 	case WRITING_NULL:
973 		/* Use the same as for reading */
974 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
975 		break;
976 	case WRITING_U8:
977 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
978 		break;
979 	case WRITING_U16:
980 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
981 		break;
982 	case WRITING_U32:
983 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
984 		break;
985 	}
986 
987 	/* SPI pecularity: we need to read and write the same width */
988 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
989 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
990 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
991 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
992 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
993 
994 	dmaengine_slave_config(rxchan, &rx_conf);
995 	dmaengine_slave_config(txchan, &tx_conf);
996 
997 	/* Create sglists for the transfers */
998 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
999 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1000 
1001 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1002 	if (ret)
1003 		goto err_alloc_rx_sg;
1004 
1005 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1006 	if (ret)
1007 		goto err_alloc_tx_sg;
1008 
1009 	/* Fill in the scatterlists for the RX+TX buffers */
1010 	setup_dma_scatter(pl022, pl022->rx,
1011 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1012 	setup_dma_scatter(pl022, pl022->tx,
1013 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1014 
1015 	/* Map DMA buffers */
1016 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1017 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1018 	if (!rx_sglen)
1019 		goto err_rx_sgmap;
1020 
1021 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1022 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1023 	if (!tx_sglen)
1024 		goto err_tx_sgmap;
1025 
1026 	/* Send both scatterlists */
1027 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1028 				      pl022->sgt_rx.sgl,
1029 				      rx_sglen,
1030 				      DMA_DEV_TO_MEM,
1031 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1032 	if (!rxdesc)
1033 		goto err_rxdesc;
1034 
1035 	txdesc = dmaengine_prep_slave_sg(txchan,
1036 				      pl022->sgt_tx.sgl,
1037 				      tx_sglen,
1038 				      DMA_MEM_TO_DEV,
1039 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1040 	if (!txdesc)
1041 		goto err_txdesc;
1042 
1043 	/* Put the callback on the RX transfer only, that should finish last */
1044 	rxdesc->callback = dma_callback;
1045 	rxdesc->callback_param = pl022;
1046 
1047 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1048 	dmaengine_submit(rxdesc);
1049 	dmaengine_submit(txdesc);
1050 	dma_async_issue_pending(rxchan);
1051 	dma_async_issue_pending(txchan);
1052 	pl022->dma_running = true;
1053 
1054 	return 0;
1055 
1056 err_txdesc:
1057 	dmaengine_terminate_all(txchan);
1058 err_rxdesc:
1059 	dmaengine_terminate_all(rxchan);
1060 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1061 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1062 err_tx_sgmap:
1063 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1064 		     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1065 err_rx_sgmap:
1066 	sg_free_table(&pl022->sgt_tx);
1067 err_alloc_tx_sg:
1068 	sg_free_table(&pl022->sgt_rx);
1069 err_alloc_rx_sg:
1070 	return -ENOMEM;
1071 }
1072 
1073 static int __devinit pl022_dma_probe(struct pl022 *pl022)
1074 {
1075 	dma_cap_mask_t mask;
1076 
1077 	/* Try to acquire a generic DMA engine slave channel */
1078 	dma_cap_zero(mask);
1079 	dma_cap_set(DMA_SLAVE, mask);
1080 	/*
1081 	 * We need both RX and TX channels to do DMA, else do none
1082 	 * of them.
1083 	 */
1084 	pl022->dma_rx_channel = dma_request_channel(mask,
1085 					    pl022->master_info->dma_filter,
1086 					    pl022->master_info->dma_rx_param);
1087 	if (!pl022->dma_rx_channel) {
1088 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1089 		goto err_no_rxchan;
1090 	}
1091 
1092 	pl022->dma_tx_channel = dma_request_channel(mask,
1093 					    pl022->master_info->dma_filter,
1094 					    pl022->master_info->dma_tx_param);
1095 	if (!pl022->dma_tx_channel) {
1096 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1097 		goto err_no_txchan;
1098 	}
1099 
1100 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1101 	if (!pl022->dummypage) {
1102 		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1103 		goto err_no_dummypage;
1104 	}
1105 
1106 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1107 		 dma_chan_name(pl022->dma_rx_channel),
1108 		 dma_chan_name(pl022->dma_tx_channel));
1109 
1110 	return 0;
1111 
1112 err_no_dummypage:
1113 	dma_release_channel(pl022->dma_tx_channel);
1114 err_no_txchan:
1115 	dma_release_channel(pl022->dma_rx_channel);
1116 	pl022->dma_rx_channel = NULL;
1117 err_no_rxchan:
1118 	dev_err(&pl022->adev->dev,
1119 			"Failed to work in dma mode, work without dma!\n");
1120 	return -ENODEV;
1121 }
1122 
1123 static void terminate_dma(struct pl022 *pl022)
1124 {
1125 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1126 	struct dma_chan *txchan = pl022->dma_tx_channel;
1127 
1128 	dmaengine_terminate_all(rxchan);
1129 	dmaengine_terminate_all(txchan);
1130 	unmap_free_dma_scatter(pl022);
1131 	pl022->dma_running = false;
1132 }
1133 
1134 static void pl022_dma_remove(struct pl022 *pl022)
1135 {
1136 	if (pl022->dma_running)
1137 		terminate_dma(pl022);
1138 	if (pl022->dma_tx_channel)
1139 		dma_release_channel(pl022->dma_tx_channel);
1140 	if (pl022->dma_rx_channel)
1141 		dma_release_channel(pl022->dma_rx_channel);
1142 	kfree(pl022->dummypage);
1143 }
1144 
1145 #else
1146 static inline int configure_dma(struct pl022 *pl022)
1147 {
1148 	return -ENODEV;
1149 }
1150 
1151 static inline int pl022_dma_probe(struct pl022 *pl022)
1152 {
1153 	return 0;
1154 }
1155 
1156 static inline void pl022_dma_remove(struct pl022 *pl022)
1157 {
1158 }
1159 #endif
1160 
1161 /**
1162  * pl022_interrupt_handler - Interrupt handler for SSP controller
1163  *
1164  * This function handles interrupts generated for an interrupt based transfer.
1165  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1166  * current message's state as STATE_ERROR and schedule the tasklet
1167  * pump_transfers which will do the postprocessing of the current message by
1168  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1169  * more data, and writes data in TX FIFO till it is not full. If we complete
1170  * the transfer we move to the next transfer and schedule the tasklet.
1171  */
1172 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1173 {
1174 	struct pl022 *pl022 = dev_id;
1175 	struct spi_message *msg = pl022->cur_msg;
1176 	u16 irq_status = 0;
1177 	u16 flag = 0;
1178 
1179 	if (unlikely(!msg)) {
1180 		dev_err(&pl022->adev->dev,
1181 			"bad message state in interrupt handler");
1182 		/* Never fail */
1183 		return IRQ_HANDLED;
1184 	}
1185 
1186 	/* Read the Interrupt Status Register */
1187 	irq_status = readw(SSP_MIS(pl022->virtbase));
1188 
1189 	if (unlikely(!irq_status))
1190 		return IRQ_NONE;
1191 
1192 	/*
1193 	 * This handles the FIFO interrupts, the timeout
1194 	 * interrupts are flatly ignored, they cannot be
1195 	 * trusted.
1196 	 */
1197 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1198 		/*
1199 		 * Overrun interrupt - bail out since our Data has been
1200 		 * corrupted
1201 		 */
1202 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1203 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1204 			dev_err(&pl022->adev->dev,
1205 				"RXFIFO is full\n");
1206 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1207 			dev_err(&pl022->adev->dev,
1208 				"TXFIFO is full\n");
1209 
1210 		/*
1211 		 * Disable and clear interrupts, disable SSP,
1212 		 * mark message with bad status so it can be
1213 		 * retried.
1214 		 */
1215 		writew(DISABLE_ALL_INTERRUPTS,
1216 		       SSP_IMSC(pl022->virtbase));
1217 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1218 		writew((readw(SSP_CR1(pl022->virtbase)) &
1219 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1220 		msg->state = STATE_ERROR;
1221 
1222 		/* Schedule message queue handler */
1223 		tasklet_schedule(&pl022->pump_transfers);
1224 		return IRQ_HANDLED;
1225 	}
1226 
1227 	readwriter(pl022);
1228 
1229 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1230 		flag = 1;
1231 		/* Disable Transmit interrupt, enable receive interrupt */
1232 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1233 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1234 		       SSP_IMSC(pl022->virtbase));
1235 	}
1236 
1237 	/*
1238 	 * Since all transactions must write as much as shall be read,
1239 	 * we can conclude the entire transaction once RX is complete.
1240 	 * At this point, all TX will always be finished.
1241 	 */
1242 	if (pl022->rx >= pl022->rx_end) {
1243 		writew(DISABLE_ALL_INTERRUPTS,
1244 		       SSP_IMSC(pl022->virtbase));
1245 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1246 		if (unlikely(pl022->rx > pl022->rx_end)) {
1247 			dev_warn(&pl022->adev->dev, "read %u surplus "
1248 				 "bytes (did you request an odd "
1249 				 "number of bytes on a 16bit bus?)\n",
1250 				 (u32) (pl022->rx - pl022->rx_end));
1251 		}
1252 		/* Update total bytes transferred */
1253 		msg->actual_length += pl022->cur_transfer->len;
1254 		if (pl022->cur_transfer->cs_change)
1255 			pl022->cur_chip->
1256 				cs_control(SSP_CHIP_DESELECT);
1257 		/* Move to next transfer */
1258 		msg->state = next_transfer(pl022);
1259 		tasklet_schedule(&pl022->pump_transfers);
1260 		return IRQ_HANDLED;
1261 	}
1262 
1263 	return IRQ_HANDLED;
1264 }
1265 
1266 /**
1267  * This sets up the pointers to memory for the next message to
1268  * send out on the SPI bus.
1269  */
1270 static int set_up_next_transfer(struct pl022 *pl022,
1271 				struct spi_transfer *transfer)
1272 {
1273 	int residue;
1274 
1275 	/* Sanity check the message for this bus width */
1276 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1277 	if (unlikely(residue != 0)) {
1278 		dev_err(&pl022->adev->dev,
1279 			"message of %u bytes to transmit but the current "
1280 			"chip bus has a data width of %u bytes!\n",
1281 			pl022->cur_transfer->len,
1282 			pl022->cur_chip->n_bytes);
1283 		dev_err(&pl022->adev->dev, "skipping this message\n");
1284 		return -EIO;
1285 	}
1286 	pl022->tx = (void *)transfer->tx_buf;
1287 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1288 	pl022->rx = (void *)transfer->rx_buf;
1289 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1290 	pl022->write =
1291 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1292 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1293 	return 0;
1294 }
1295 
1296 /**
1297  * pump_transfers - Tasklet function which schedules next transfer
1298  * when running in interrupt or DMA transfer mode.
1299  * @data: SSP driver private data structure
1300  *
1301  */
1302 static void pump_transfers(unsigned long data)
1303 {
1304 	struct pl022 *pl022 = (struct pl022 *) data;
1305 	struct spi_message *message = NULL;
1306 	struct spi_transfer *transfer = NULL;
1307 	struct spi_transfer *previous = NULL;
1308 
1309 	/* Get current state information */
1310 	message = pl022->cur_msg;
1311 	transfer = pl022->cur_transfer;
1312 
1313 	/* Handle for abort */
1314 	if (message->state == STATE_ERROR) {
1315 		message->status = -EIO;
1316 		giveback(pl022);
1317 		return;
1318 	}
1319 
1320 	/* Handle end of message */
1321 	if (message->state == STATE_DONE) {
1322 		message->status = 0;
1323 		giveback(pl022);
1324 		return;
1325 	}
1326 
1327 	/* Delay if requested at end of transfer before CS change */
1328 	if (message->state == STATE_RUNNING) {
1329 		previous = list_entry(transfer->transfer_list.prev,
1330 					struct spi_transfer,
1331 					transfer_list);
1332 		if (previous->delay_usecs)
1333 			/*
1334 			 * FIXME: This runs in interrupt context.
1335 			 * Is this really smart?
1336 			 */
1337 			udelay(previous->delay_usecs);
1338 
1339 		/* Reselect chip select only if cs_change was requested */
1340 		if (previous->cs_change)
1341 			pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1342 	} else {
1343 		/* STATE_START */
1344 		message->state = STATE_RUNNING;
1345 	}
1346 
1347 	if (set_up_next_transfer(pl022, transfer)) {
1348 		message->state = STATE_ERROR;
1349 		message->status = -EIO;
1350 		giveback(pl022);
1351 		return;
1352 	}
1353 	/* Flush the FIFOs and let's go! */
1354 	flush(pl022);
1355 
1356 	if (pl022->cur_chip->enable_dma) {
1357 		if (configure_dma(pl022)) {
1358 			dev_dbg(&pl022->adev->dev,
1359 				"configuration of DMA failed, fall back to interrupt mode\n");
1360 			goto err_config_dma;
1361 		}
1362 		return;
1363 	}
1364 
1365 err_config_dma:
1366 	/* enable all interrupts except RX */
1367 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1368 }
1369 
1370 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1371 {
1372 	/*
1373 	 * Default is to enable all interrupts except RX -
1374 	 * this will be enabled once TX is complete
1375 	 */
1376 	u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1377 
1378 	/* Enable target chip, if not already active */
1379 	if (!pl022->next_msg_cs_active)
1380 		pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1381 
1382 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1383 		/* Error path */
1384 		pl022->cur_msg->state = STATE_ERROR;
1385 		pl022->cur_msg->status = -EIO;
1386 		giveback(pl022);
1387 		return;
1388 	}
1389 	/* If we're using DMA, set up DMA here */
1390 	if (pl022->cur_chip->enable_dma) {
1391 		/* Configure DMA transfer */
1392 		if (configure_dma(pl022)) {
1393 			dev_dbg(&pl022->adev->dev,
1394 				"configuration of DMA failed, fall back to interrupt mode\n");
1395 			goto err_config_dma;
1396 		}
1397 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1398 		irqflags = DISABLE_ALL_INTERRUPTS;
1399 	}
1400 err_config_dma:
1401 	/* Enable SSP, turn on interrupts */
1402 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1403 	       SSP_CR1(pl022->virtbase));
1404 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1405 }
1406 
1407 static void do_polling_transfer(struct pl022 *pl022)
1408 {
1409 	struct spi_message *message = NULL;
1410 	struct spi_transfer *transfer = NULL;
1411 	struct spi_transfer *previous = NULL;
1412 	struct chip_data *chip;
1413 	unsigned long time, timeout;
1414 
1415 	chip = pl022->cur_chip;
1416 	message = pl022->cur_msg;
1417 
1418 	while (message->state != STATE_DONE) {
1419 		/* Handle for abort */
1420 		if (message->state == STATE_ERROR)
1421 			break;
1422 		transfer = pl022->cur_transfer;
1423 
1424 		/* Delay if requested at end of transfer */
1425 		if (message->state == STATE_RUNNING) {
1426 			previous =
1427 			    list_entry(transfer->transfer_list.prev,
1428 				       struct spi_transfer, transfer_list);
1429 			if (previous->delay_usecs)
1430 				udelay(previous->delay_usecs);
1431 			if (previous->cs_change)
1432 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1433 		} else {
1434 			/* STATE_START */
1435 			message->state = STATE_RUNNING;
1436 			if (!pl022->next_msg_cs_active)
1437 				pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1438 		}
1439 
1440 		/* Configuration Changing Per Transfer */
1441 		if (set_up_next_transfer(pl022, transfer)) {
1442 			/* Error path */
1443 			message->state = STATE_ERROR;
1444 			break;
1445 		}
1446 		/* Flush FIFOs and enable SSP */
1447 		flush(pl022);
1448 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1449 		       SSP_CR1(pl022->virtbase));
1450 
1451 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1452 
1453 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1454 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1455 			time = jiffies;
1456 			readwriter(pl022);
1457 			if (time_after(time, timeout)) {
1458 				dev_warn(&pl022->adev->dev,
1459 				"%s: timeout!\n", __func__);
1460 				message->state = STATE_ERROR;
1461 				goto out;
1462 			}
1463 			cpu_relax();
1464 		}
1465 
1466 		/* Update total byte transferred */
1467 		message->actual_length += pl022->cur_transfer->len;
1468 		if (pl022->cur_transfer->cs_change)
1469 			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1470 		/* Move to next transfer */
1471 		message->state = next_transfer(pl022);
1472 	}
1473 out:
1474 	/* Handle end of message */
1475 	if (message->state == STATE_DONE)
1476 		message->status = 0;
1477 	else
1478 		message->status = -EIO;
1479 
1480 	giveback(pl022);
1481 	return;
1482 }
1483 
1484 static int pl022_transfer_one_message(struct spi_master *master,
1485 				      struct spi_message *msg)
1486 {
1487 	struct pl022 *pl022 = spi_master_get_devdata(master);
1488 
1489 	/* Initial message state */
1490 	pl022->cur_msg = msg;
1491 	msg->state = STATE_START;
1492 
1493 	pl022->cur_transfer = list_entry(msg->transfers.next,
1494 					 struct spi_transfer, transfer_list);
1495 
1496 	/* Setup the SPI using the per chip configuration */
1497 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1498 
1499 	restore_state(pl022);
1500 	flush(pl022);
1501 
1502 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1503 		do_polling_transfer(pl022);
1504 	else
1505 		do_interrupt_dma_transfer(pl022);
1506 
1507 	return 0;
1508 }
1509 
1510 static int pl022_prepare_transfer_hardware(struct spi_master *master)
1511 {
1512 	struct pl022 *pl022 = spi_master_get_devdata(master);
1513 
1514 	/*
1515 	 * Just make sure we have all we need to run the transfer by syncing
1516 	 * with the runtime PM framework.
1517 	 */
1518 	pm_runtime_get_sync(&pl022->adev->dev);
1519 	return 0;
1520 }
1521 
1522 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1523 {
1524 	struct pl022 *pl022 = spi_master_get_devdata(master);
1525 
1526 	/* nothing more to do - disable spi/ssp and power off */
1527 	writew((readw(SSP_CR1(pl022->virtbase)) &
1528 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1529 
1530 	if (pl022->master_info->autosuspend_delay > 0) {
1531 		pm_runtime_mark_last_busy(&pl022->adev->dev);
1532 		pm_runtime_put_autosuspend(&pl022->adev->dev);
1533 	} else {
1534 		pm_runtime_put(&pl022->adev->dev);
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 static int verify_controller_parameters(struct pl022 *pl022,
1541 				struct pl022_config_chip const *chip_info)
1542 {
1543 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1544 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1545 		dev_err(&pl022->adev->dev,
1546 			"interface is configured incorrectly\n");
1547 		return -EINVAL;
1548 	}
1549 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1550 	    (!pl022->vendor->unidir)) {
1551 		dev_err(&pl022->adev->dev,
1552 			"unidirectional mode not supported in this "
1553 			"hardware version\n");
1554 		return -EINVAL;
1555 	}
1556 	if ((chip_info->hierarchy != SSP_MASTER)
1557 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1558 		dev_err(&pl022->adev->dev,
1559 			"hierarchy is configured incorrectly\n");
1560 		return -EINVAL;
1561 	}
1562 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1563 	    && (chip_info->com_mode != DMA_TRANSFER)
1564 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1565 		dev_err(&pl022->adev->dev,
1566 			"Communication mode is configured incorrectly\n");
1567 		return -EINVAL;
1568 	}
1569 	switch (chip_info->rx_lev_trig) {
1570 	case SSP_RX_1_OR_MORE_ELEM:
1571 	case SSP_RX_4_OR_MORE_ELEM:
1572 	case SSP_RX_8_OR_MORE_ELEM:
1573 		/* These are always OK, all variants can handle this */
1574 		break;
1575 	case SSP_RX_16_OR_MORE_ELEM:
1576 		if (pl022->vendor->fifodepth < 16) {
1577 			dev_err(&pl022->adev->dev,
1578 			"RX FIFO Trigger Level is configured incorrectly\n");
1579 			return -EINVAL;
1580 		}
1581 		break;
1582 	case SSP_RX_32_OR_MORE_ELEM:
1583 		if (pl022->vendor->fifodepth < 32) {
1584 			dev_err(&pl022->adev->dev,
1585 			"RX FIFO Trigger Level is configured incorrectly\n");
1586 			return -EINVAL;
1587 		}
1588 		break;
1589 	default:
1590 		dev_err(&pl022->adev->dev,
1591 			"RX FIFO Trigger Level is configured incorrectly\n");
1592 		return -EINVAL;
1593 		break;
1594 	}
1595 	switch (chip_info->tx_lev_trig) {
1596 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1597 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1598 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1599 		/* These are always OK, all variants can handle this */
1600 		break;
1601 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1602 		if (pl022->vendor->fifodepth < 16) {
1603 			dev_err(&pl022->adev->dev,
1604 			"TX FIFO Trigger Level is configured incorrectly\n");
1605 			return -EINVAL;
1606 		}
1607 		break;
1608 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1609 		if (pl022->vendor->fifodepth < 32) {
1610 			dev_err(&pl022->adev->dev,
1611 			"TX FIFO Trigger Level is configured incorrectly\n");
1612 			return -EINVAL;
1613 		}
1614 		break;
1615 	default:
1616 		dev_err(&pl022->adev->dev,
1617 			"TX FIFO Trigger Level is configured incorrectly\n");
1618 		return -EINVAL;
1619 		break;
1620 	}
1621 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1622 		if ((chip_info->ctrl_len < SSP_BITS_4)
1623 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1624 			dev_err(&pl022->adev->dev,
1625 				"CTRL LEN is configured incorrectly\n");
1626 			return -EINVAL;
1627 		}
1628 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1629 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1630 			dev_err(&pl022->adev->dev,
1631 				"Wait State is configured incorrectly\n");
1632 			return -EINVAL;
1633 		}
1634 		/* Half duplex is only available in the ST Micro version */
1635 		if (pl022->vendor->extended_cr) {
1636 			if ((chip_info->duplex !=
1637 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1638 			    && (chip_info->duplex !=
1639 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1640 				dev_err(&pl022->adev->dev,
1641 					"Microwire duplex mode is configured incorrectly\n");
1642 				return -EINVAL;
1643 			}
1644 		} else {
1645 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1646 				dev_err(&pl022->adev->dev,
1647 					"Microwire half duplex mode requested,"
1648 					" but this is only available in the"
1649 					" ST version of PL022\n");
1650 			return -EINVAL;
1651 		}
1652 	}
1653 	return 0;
1654 }
1655 
1656 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1657 {
1658 	return rate / (cpsdvsr * (1 + scr));
1659 }
1660 
1661 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1662 				    ssp_clock_params * clk_freq)
1663 {
1664 	/* Lets calculate the frequency parameters */
1665 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1666 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1667 		best_scr = 0, tmp, found = 0;
1668 
1669 	rate = clk_get_rate(pl022->clk);
1670 	/* cpsdvscr = 2 & scr 0 */
1671 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1672 	/* cpsdvsr = 254 & scr = 255 */
1673 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1674 
1675 	if (freq > max_tclk)
1676 		dev_warn(&pl022->adev->dev,
1677 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1678 			max_tclk, freq);
1679 
1680 	if (freq < min_tclk) {
1681 		dev_err(&pl022->adev->dev,
1682 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1683 			freq, min_tclk);
1684 		return -EINVAL;
1685 	}
1686 
1687 	/*
1688 	 * best_freq will give closest possible available rate (<= requested
1689 	 * freq) for all values of scr & cpsdvsr.
1690 	 */
1691 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1692 		while (scr <= SCR_MAX) {
1693 			tmp = spi_rate(rate, cpsdvsr, scr);
1694 
1695 			if (tmp > freq) {
1696 				/* we need lower freq */
1697 				scr++;
1698 				continue;
1699 			}
1700 
1701 			/*
1702 			 * If found exact value, mark found and break.
1703 			 * If found more closer value, update and break.
1704 			 */
1705 			if (tmp > best_freq) {
1706 				best_freq = tmp;
1707 				best_cpsdvsr = cpsdvsr;
1708 				best_scr = scr;
1709 
1710 				if (tmp == freq)
1711 					found = 1;
1712 			}
1713 			/*
1714 			 * increased scr will give lower rates, which are not
1715 			 * required
1716 			 */
1717 			break;
1718 		}
1719 		cpsdvsr += 2;
1720 		scr = SCR_MIN;
1721 	}
1722 
1723 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1724 			freq);
1725 
1726 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1727 	clk_freq->scr = (u8) (best_scr & 0xFF);
1728 	dev_dbg(&pl022->adev->dev,
1729 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1730 		freq, best_freq);
1731 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1732 		clk_freq->cpsdvsr, clk_freq->scr);
1733 
1734 	return 0;
1735 }
1736 
1737 /*
1738  * A piece of default chip info unless the platform
1739  * supplies it.
1740  */
1741 static const struct pl022_config_chip pl022_default_chip_info = {
1742 	.com_mode = POLLING_TRANSFER,
1743 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1744 	.hierarchy = SSP_SLAVE,
1745 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1746 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1747 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1748 	.ctrl_len = SSP_BITS_8,
1749 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1750 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1751 	.cs_control = null_cs_control,
1752 };
1753 
1754 /**
1755  * pl022_setup - setup function registered to SPI master framework
1756  * @spi: spi device which is requesting setup
1757  *
1758  * This function is registered to the SPI framework for this SPI master
1759  * controller. If it is the first time when setup is called by this device,
1760  * this function will initialize the runtime state for this chip and save
1761  * the same in the device structure. Else it will update the runtime info
1762  * with the updated chip info. Nothing is really being written to the
1763  * controller hardware here, that is not done until the actual transfer
1764  * commence.
1765  */
1766 static int pl022_setup(struct spi_device *spi)
1767 {
1768 	struct pl022_config_chip const *chip_info;
1769 	struct chip_data *chip;
1770 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1771 	int status = 0;
1772 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1773 	unsigned int bits = spi->bits_per_word;
1774 	u32 tmp;
1775 
1776 	if (!spi->max_speed_hz)
1777 		return -EINVAL;
1778 
1779 	/* Get controller_state if one is supplied */
1780 	chip = spi_get_ctldata(spi);
1781 
1782 	if (chip == NULL) {
1783 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1784 		if (!chip) {
1785 			dev_err(&spi->dev,
1786 				"cannot allocate controller state\n");
1787 			return -ENOMEM;
1788 		}
1789 		dev_dbg(&spi->dev,
1790 			"allocated memory for controller's runtime state\n");
1791 	}
1792 
1793 	/* Get controller data if one is supplied */
1794 	chip_info = spi->controller_data;
1795 
1796 	if (chip_info == NULL) {
1797 		chip_info = &pl022_default_chip_info;
1798 		/* spi_board_info.controller_data not is supplied */
1799 		dev_dbg(&spi->dev,
1800 			"using default controller_data settings\n");
1801 	} else
1802 		dev_dbg(&spi->dev,
1803 			"using user supplied controller_data settings\n");
1804 
1805 	/*
1806 	 * We can override with custom divisors, else we use the board
1807 	 * frequency setting
1808 	 */
1809 	if ((0 == chip_info->clk_freq.cpsdvsr)
1810 	    && (0 == chip_info->clk_freq.scr)) {
1811 		status = calculate_effective_freq(pl022,
1812 						  spi->max_speed_hz,
1813 						  &clk_freq);
1814 		if (status < 0)
1815 			goto err_config_params;
1816 	} else {
1817 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1818 		if ((clk_freq.cpsdvsr % 2) != 0)
1819 			clk_freq.cpsdvsr =
1820 				clk_freq.cpsdvsr - 1;
1821 	}
1822 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1823 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1824 		status = -EINVAL;
1825 		dev_err(&spi->dev,
1826 			"cpsdvsr is configured incorrectly\n");
1827 		goto err_config_params;
1828 	}
1829 
1830 	status = verify_controller_parameters(pl022, chip_info);
1831 	if (status) {
1832 		dev_err(&spi->dev, "controller data is incorrect");
1833 		goto err_config_params;
1834 	}
1835 
1836 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1837 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1838 
1839 	/* Now set controller state based on controller data */
1840 	chip->xfer_type = chip_info->com_mode;
1841 	if (!chip_info->cs_control) {
1842 		chip->cs_control = null_cs_control;
1843 		dev_warn(&spi->dev,
1844 			 "chip select function is NULL for this chip\n");
1845 	} else
1846 		chip->cs_control = chip_info->cs_control;
1847 
1848 	/* Check bits per word with vendor specific range */
1849 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1850 		status = -ENOTSUPP;
1851 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1852 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1853 				pl022->vendor->max_bpw);
1854 		goto err_config_params;
1855 	} else if (bits <= 8) {
1856 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1857 		chip->n_bytes = 1;
1858 		chip->read = READING_U8;
1859 		chip->write = WRITING_U8;
1860 	} else if (bits <= 16) {
1861 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1862 		chip->n_bytes = 2;
1863 		chip->read = READING_U16;
1864 		chip->write = WRITING_U16;
1865 	} else {
1866 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1867 		chip->n_bytes = 4;
1868 		chip->read = READING_U32;
1869 		chip->write = WRITING_U32;
1870 	}
1871 
1872 	/* Now Initialize all register settings required for this chip */
1873 	chip->cr0 = 0;
1874 	chip->cr1 = 0;
1875 	chip->dmacr = 0;
1876 	chip->cpsr = 0;
1877 	if ((chip_info->com_mode == DMA_TRANSFER)
1878 	    && ((pl022->master_info)->enable_dma)) {
1879 		chip->enable_dma = true;
1880 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1881 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1882 			       SSP_DMACR_MASK_RXDMAE, 0);
1883 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1884 			       SSP_DMACR_MASK_TXDMAE, 1);
1885 	} else {
1886 		chip->enable_dma = false;
1887 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1888 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1889 			       SSP_DMACR_MASK_RXDMAE, 0);
1890 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1891 			       SSP_DMACR_MASK_TXDMAE, 1);
1892 	}
1893 
1894 	chip->cpsr = clk_freq.cpsdvsr;
1895 
1896 	/* Special setup for the ST micro extended control registers */
1897 	if (pl022->vendor->extended_cr) {
1898 		u32 etx;
1899 
1900 		if (pl022->vendor->pl023) {
1901 			/* These bits are only in the PL023 */
1902 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1903 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1904 		} else {
1905 			/* These bits are in the PL022 but not PL023 */
1906 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1907 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1908 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1909 				       SSP_CR0_MASK_CSS_ST, 16);
1910 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1911 				       SSP_CR0_MASK_FRF_ST, 21);
1912 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1913 				       SSP_CR1_MASK_MWAIT_ST, 6);
1914 		}
1915 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1916 			       SSP_CR0_MASK_DSS_ST, 0);
1917 
1918 		if (spi->mode & SPI_LSB_FIRST) {
1919 			tmp = SSP_RX_LSB;
1920 			etx = SSP_TX_LSB;
1921 		} else {
1922 			tmp = SSP_RX_MSB;
1923 			etx = SSP_TX_MSB;
1924 		}
1925 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1926 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1927 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1928 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
1929 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1930 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
1931 	} else {
1932 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1933 			       SSP_CR0_MASK_DSS, 0);
1934 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1935 			       SSP_CR0_MASK_FRF, 4);
1936 	}
1937 
1938 	/* Stuff that is common for all versions */
1939 	if (spi->mode & SPI_CPOL)
1940 		tmp = SSP_CLK_POL_IDLE_HIGH;
1941 	else
1942 		tmp = SSP_CLK_POL_IDLE_LOW;
1943 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1944 
1945 	if (spi->mode & SPI_CPHA)
1946 		tmp = SSP_CLK_SECOND_EDGE;
1947 	else
1948 		tmp = SSP_CLK_FIRST_EDGE;
1949 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1950 
1951 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1952 	/* Loopback is available on all versions except PL023 */
1953 	if (pl022->vendor->loopback) {
1954 		if (spi->mode & SPI_LOOP)
1955 			tmp = LOOPBACK_ENABLED;
1956 		else
1957 			tmp = LOOPBACK_DISABLED;
1958 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1959 	}
1960 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1961 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1962 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1963 		3);
1964 
1965 	/* Save controller_state */
1966 	spi_set_ctldata(spi, chip);
1967 	return status;
1968  err_config_params:
1969 	spi_set_ctldata(spi, NULL);
1970 	kfree(chip);
1971 	return status;
1972 }
1973 
1974 /**
1975  * pl022_cleanup - cleanup function registered to SPI master framework
1976  * @spi: spi device which is requesting cleanup
1977  *
1978  * This function is registered to the SPI framework for this SPI master
1979  * controller. It will free the runtime state of chip.
1980  */
1981 static void pl022_cleanup(struct spi_device *spi)
1982 {
1983 	struct chip_data *chip = spi_get_ctldata(spi);
1984 
1985 	spi_set_ctldata(spi, NULL);
1986 	kfree(chip);
1987 }
1988 
1989 static int __devinit
1990 pl022_probe(struct amba_device *adev, const struct amba_id *id)
1991 {
1992 	struct device *dev = &adev->dev;
1993 	struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
1994 	struct spi_master *master;
1995 	struct pl022 *pl022 = NULL;	/*Data for this driver */
1996 	int status = 0;
1997 
1998 	dev_info(&adev->dev,
1999 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2000 	if (platform_info == NULL) {
2001 		dev_err(&adev->dev, "probe - no platform data supplied\n");
2002 		status = -ENODEV;
2003 		goto err_no_pdata;
2004 	}
2005 
2006 	/* Allocate master with space for data */
2007 	master = spi_alloc_master(dev, sizeof(struct pl022));
2008 	if (master == NULL) {
2009 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2010 		status = -ENOMEM;
2011 		goto err_no_master;
2012 	}
2013 
2014 	pl022 = spi_master_get_devdata(master);
2015 	pl022->master = master;
2016 	pl022->master_info = platform_info;
2017 	pl022->adev = adev;
2018 	pl022->vendor = id->data;
2019 
2020 	/*
2021 	 * Bus Number Which has been Assigned to this SSP controller
2022 	 * on this board
2023 	 */
2024 	master->bus_num = platform_info->bus_id;
2025 	master->num_chipselect = platform_info->num_chipselect;
2026 	master->cleanup = pl022_cleanup;
2027 	master->setup = pl022_setup;
2028 	master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2029 	master->transfer_one_message = pl022_transfer_one_message;
2030 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2031 	master->rt = platform_info->rt;
2032 
2033 	/*
2034 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2035 	 * always MS bit first on the original pl022.
2036 	 */
2037 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2038 	if (pl022->vendor->extended_cr)
2039 		master->mode_bits |= SPI_LSB_FIRST;
2040 
2041 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2042 
2043 	status = amba_request_regions(adev, NULL);
2044 	if (status)
2045 		goto err_no_ioregion;
2046 
2047 	pl022->phybase = adev->res.start;
2048 	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2049 	if (pl022->virtbase == NULL) {
2050 		status = -ENOMEM;
2051 		goto err_no_ioremap;
2052 	}
2053 	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2054 	       adev->res.start, pl022->virtbase);
2055 
2056 	pm_runtime_enable(dev);
2057 	pm_runtime_resume(dev);
2058 
2059 	pl022->clk = clk_get(&adev->dev, NULL);
2060 	if (IS_ERR(pl022->clk)) {
2061 		status = PTR_ERR(pl022->clk);
2062 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2063 		goto err_no_clk;
2064 	}
2065 
2066 	status = clk_prepare(pl022->clk);
2067 	if (status) {
2068 		dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2069 		goto  err_clk_prep;
2070 	}
2071 
2072 	status = clk_enable(pl022->clk);
2073 	if (status) {
2074 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2075 		goto err_no_clk_en;
2076 	}
2077 
2078 	/* Initialize transfer pump */
2079 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2080 		     (unsigned long)pl022);
2081 
2082 	/* Disable SSP */
2083 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2084 	       SSP_CR1(pl022->virtbase));
2085 	load_ssp_default_config(pl022);
2086 
2087 	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2088 			     pl022);
2089 	if (status < 0) {
2090 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2091 		goto err_no_irq;
2092 	}
2093 
2094 	/* Get DMA channels */
2095 	if (platform_info->enable_dma) {
2096 		status = pl022_dma_probe(pl022);
2097 		if (status != 0)
2098 			platform_info->enable_dma = 0;
2099 	}
2100 
2101 	/* Register with the SPI framework */
2102 	amba_set_drvdata(adev, pl022);
2103 	status = spi_register_master(master);
2104 	if (status != 0) {
2105 		dev_err(&adev->dev,
2106 			"probe - problem registering spi master\n");
2107 		goto err_spi_register;
2108 	}
2109 	dev_dbg(dev, "probe succeeded\n");
2110 
2111 	/* let runtime pm put suspend */
2112 	if (platform_info->autosuspend_delay > 0) {
2113 		dev_info(&adev->dev,
2114 			"will use autosuspend for runtime pm, delay %dms\n",
2115 			platform_info->autosuspend_delay);
2116 		pm_runtime_set_autosuspend_delay(dev,
2117 			platform_info->autosuspend_delay);
2118 		pm_runtime_use_autosuspend(dev);
2119 		pm_runtime_put_autosuspend(dev);
2120 	} else {
2121 		pm_runtime_put(dev);
2122 	}
2123 	return 0;
2124 
2125  err_spi_register:
2126 	if (platform_info->enable_dma)
2127 		pl022_dma_remove(pl022);
2128 
2129 	free_irq(adev->irq[0], pl022);
2130  err_no_irq:
2131 	clk_disable(pl022->clk);
2132  err_no_clk_en:
2133 	clk_unprepare(pl022->clk);
2134  err_clk_prep:
2135 	clk_put(pl022->clk);
2136  err_no_clk:
2137 	iounmap(pl022->virtbase);
2138  err_no_ioremap:
2139 	amba_release_regions(adev);
2140  err_no_ioregion:
2141 	spi_master_put(master);
2142  err_no_master:
2143  err_no_pdata:
2144 	return status;
2145 }
2146 
2147 static int __devexit
2148 pl022_remove(struct amba_device *adev)
2149 {
2150 	struct pl022 *pl022 = amba_get_drvdata(adev);
2151 
2152 	if (!pl022)
2153 		return 0;
2154 
2155 	/*
2156 	 * undo pm_runtime_put() in probe.  I assume that we're not
2157 	 * accessing the primecell here.
2158 	 */
2159 	pm_runtime_get_noresume(&adev->dev);
2160 
2161 	load_ssp_default_config(pl022);
2162 	if (pl022->master_info->enable_dma)
2163 		pl022_dma_remove(pl022);
2164 
2165 	free_irq(adev->irq[0], pl022);
2166 	clk_disable(pl022->clk);
2167 	clk_unprepare(pl022->clk);
2168 	clk_put(pl022->clk);
2169 	pm_runtime_disable(&adev->dev);
2170 	iounmap(pl022->virtbase);
2171 	amba_release_regions(adev);
2172 	tasklet_disable(&pl022->pump_transfers);
2173 	spi_unregister_master(pl022->master);
2174 	amba_set_drvdata(adev, NULL);
2175 	return 0;
2176 }
2177 
2178 #ifdef CONFIG_SUSPEND
2179 static int pl022_suspend(struct device *dev)
2180 {
2181 	struct pl022 *pl022 = dev_get_drvdata(dev);
2182 	int ret;
2183 
2184 	ret = spi_master_suspend(pl022->master);
2185 	if (ret) {
2186 		dev_warn(dev, "cannot suspend master\n");
2187 		return ret;
2188 	}
2189 
2190 	dev_dbg(dev, "suspended\n");
2191 	return 0;
2192 }
2193 
2194 static int pl022_resume(struct device *dev)
2195 {
2196 	struct pl022 *pl022 = dev_get_drvdata(dev);
2197 	int ret;
2198 
2199 	/* Start the queue running */
2200 	ret = spi_master_resume(pl022->master);
2201 	if (ret)
2202 		dev_err(dev, "problem starting queue (%d)\n", ret);
2203 	else
2204 		dev_dbg(dev, "resumed\n");
2205 
2206 	return ret;
2207 }
2208 #endif	/* CONFIG_PM */
2209 
2210 #ifdef CONFIG_PM_RUNTIME
2211 static int pl022_runtime_suspend(struct device *dev)
2212 {
2213 	struct pl022 *pl022 = dev_get_drvdata(dev);
2214 
2215 	clk_disable(pl022->clk);
2216 
2217 	return 0;
2218 }
2219 
2220 static int pl022_runtime_resume(struct device *dev)
2221 {
2222 	struct pl022 *pl022 = dev_get_drvdata(dev);
2223 
2224 	clk_enable(pl022->clk);
2225 
2226 	return 0;
2227 }
2228 #endif
2229 
2230 static const struct dev_pm_ops pl022_dev_pm_ops = {
2231 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2232 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2233 };
2234 
2235 static struct vendor_data vendor_arm = {
2236 	.fifodepth = 8,
2237 	.max_bpw = 16,
2238 	.unidir = false,
2239 	.extended_cr = false,
2240 	.pl023 = false,
2241 	.loopback = true,
2242 };
2243 
2244 static struct vendor_data vendor_st = {
2245 	.fifodepth = 32,
2246 	.max_bpw = 32,
2247 	.unidir = false,
2248 	.extended_cr = true,
2249 	.pl023 = false,
2250 	.loopback = true,
2251 };
2252 
2253 static struct vendor_data vendor_st_pl023 = {
2254 	.fifodepth = 32,
2255 	.max_bpw = 32,
2256 	.unidir = false,
2257 	.extended_cr = true,
2258 	.pl023 = true,
2259 	.loopback = false,
2260 };
2261 
2262 static struct amba_id pl022_ids[] = {
2263 	{
2264 		/*
2265 		 * ARM PL022 variant, this has a 16bit wide
2266 		 * and 8 locations deep TX/RX FIFO
2267 		 */
2268 		.id	= 0x00041022,
2269 		.mask	= 0x000fffff,
2270 		.data	= &vendor_arm,
2271 	},
2272 	{
2273 		/*
2274 		 * ST Micro derivative, this has 32bit wide
2275 		 * and 32 locations deep TX/RX FIFO
2276 		 */
2277 		.id	= 0x01080022,
2278 		.mask	= 0xffffffff,
2279 		.data	= &vendor_st,
2280 	},
2281 	{
2282 		/*
2283 		 * ST-Ericsson derivative "PL023" (this is not
2284 		 * an official ARM number), this is a PL022 SSP block
2285 		 * stripped to SPI mode only, it has 32bit wide
2286 		 * and 32 locations deep TX/RX FIFO but no extended
2287 		 * CR0/CR1 register
2288 		 */
2289 		.id	= 0x00080023,
2290 		.mask	= 0xffffffff,
2291 		.data	= &vendor_st_pl023,
2292 	},
2293 	{ 0, 0 },
2294 };
2295 
2296 MODULE_DEVICE_TABLE(amba, pl022_ids);
2297 
2298 static struct amba_driver pl022_driver = {
2299 	.drv = {
2300 		.name	= "ssp-pl022",
2301 		.pm	= &pl022_dev_pm_ops,
2302 	},
2303 	.id_table	= pl022_ids,
2304 	.probe		= pl022_probe,
2305 	.remove		= __devexit_p(pl022_remove),
2306 };
2307 
2308 static int __init pl022_init(void)
2309 {
2310 	return amba_driver_register(&pl022_driver);
2311 }
2312 subsys_initcall(pl022_init);
2313 
2314 static void __exit pl022_exit(void)
2315 {
2316 	amba_driver_unregister(&pl022_driver);
2317 }
2318 module_exit(pl022_exit);
2319 
2320 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2321 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2322 MODULE_LICENSE("GPL");
2323