1 /* 2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master. 3 * 4 * Copyright (C) 2008-2012 ST-Ericsson AB 5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd. 6 * 7 * Author: Linus Walleij <linus.walleij@stericsson.com> 8 * 9 * Initial version inspired by: 10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c 11 * Initial adoption to PL022 by: 12 * Sachin Verma <sachin.verma@st.com> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or 17 * (at your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/ioport.h> 29 #include <linux/errno.h> 30 #include <linux/interrupt.h> 31 #include <linux/spi/spi.h> 32 #include <linux/delay.h> 33 #include <linux/clk.h> 34 #include <linux/err.h> 35 #include <linux/amba/bus.h> 36 #include <linux/amba/pl022.h> 37 #include <linux/io.h> 38 #include <linux/slab.h> 39 #include <linux/dmaengine.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/scatterlist.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/gpio.h> 44 #include <linux/of_gpio.h> 45 #include <linux/pinctrl/consumer.h> 46 47 /* 48 * This macro is used to define some register default values. 49 * reg is masked with mask, the OR:ed with an (again masked) 50 * val shifted sb steps to the left. 51 */ 52 #define SSP_WRITE_BITS(reg, val, mask, sb) \ 53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask)))) 54 55 /* 56 * This macro is also used to define some default values. 57 * It will just shift val by sb steps to the left and mask 58 * the result with mask. 59 */ 60 #define GEN_MASK_BITS(val, mask, sb) \ 61 (((val)<<(sb)) & (mask)) 62 63 #define DRIVE_TX 0 64 #define DO_NOT_DRIVE_TX 1 65 66 #define DO_NOT_QUEUE_DMA 0 67 #define QUEUE_DMA 1 68 69 #define RX_TRANSFER 1 70 #define TX_TRANSFER 2 71 72 /* 73 * Macros to access SSP Registers with their offsets 74 */ 75 #define SSP_CR0(r) (r + 0x000) 76 #define SSP_CR1(r) (r + 0x004) 77 #define SSP_DR(r) (r + 0x008) 78 #define SSP_SR(r) (r + 0x00C) 79 #define SSP_CPSR(r) (r + 0x010) 80 #define SSP_IMSC(r) (r + 0x014) 81 #define SSP_RIS(r) (r + 0x018) 82 #define SSP_MIS(r) (r + 0x01C) 83 #define SSP_ICR(r) (r + 0x020) 84 #define SSP_DMACR(r) (r + 0x024) 85 #define SSP_ITCR(r) (r + 0x080) 86 #define SSP_ITIP(r) (r + 0x084) 87 #define SSP_ITOP(r) (r + 0x088) 88 #define SSP_TDR(r) (r + 0x08C) 89 90 #define SSP_PID0(r) (r + 0xFE0) 91 #define SSP_PID1(r) (r + 0xFE4) 92 #define SSP_PID2(r) (r + 0xFE8) 93 #define SSP_PID3(r) (r + 0xFEC) 94 95 #define SSP_CID0(r) (r + 0xFF0) 96 #define SSP_CID1(r) (r + 0xFF4) 97 #define SSP_CID2(r) (r + 0xFF8) 98 #define SSP_CID3(r) (r + 0xFFC) 99 100 /* 101 * SSP Control Register 0 - SSP_CR0 102 */ 103 #define SSP_CR0_MASK_DSS (0x0FUL << 0) 104 #define SSP_CR0_MASK_FRF (0x3UL << 4) 105 #define SSP_CR0_MASK_SPO (0x1UL << 6) 106 #define SSP_CR0_MASK_SPH (0x1UL << 7) 107 #define SSP_CR0_MASK_SCR (0xFFUL << 8) 108 109 /* 110 * The ST version of this block moves som bits 111 * in SSP_CR0 and extends it to 32 bits 112 */ 113 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0) 114 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5) 115 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16) 116 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21) 117 118 /* 119 * SSP Control Register 0 - SSP_CR1 120 */ 121 #define SSP_CR1_MASK_LBM (0x1UL << 0) 122 #define SSP_CR1_MASK_SSE (0x1UL << 1) 123 #define SSP_CR1_MASK_MS (0x1UL << 2) 124 #define SSP_CR1_MASK_SOD (0x1UL << 3) 125 126 /* 127 * The ST version of this block adds some bits 128 * in SSP_CR1 129 */ 130 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4) 131 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5) 132 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6) 133 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7) 134 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10) 135 /* This one is only in the PL023 variant */ 136 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13) 137 138 /* 139 * SSP Status Register - SSP_SR 140 */ 141 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */ 142 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */ 143 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */ 144 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */ 145 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */ 146 147 /* 148 * SSP Clock Prescale Register - SSP_CPSR 149 */ 150 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0) 151 152 /* 153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC 154 */ 155 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */ 156 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */ 157 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */ 158 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */ 159 160 /* 161 * SSP Raw Interrupt Status Register - SSP_RIS 162 */ 163 /* Receive Overrun Raw Interrupt status */ 164 #define SSP_RIS_MASK_RORRIS (0x1UL << 0) 165 /* Receive Timeout Raw Interrupt status */ 166 #define SSP_RIS_MASK_RTRIS (0x1UL << 1) 167 /* Receive FIFO Raw Interrupt status */ 168 #define SSP_RIS_MASK_RXRIS (0x1UL << 2) 169 /* Transmit FIFO Raw Interrupt status */ 170 #define SSP_RIS_MASK_TXRIS (0x1UL << 3) 171 172 /* 173 * SSP Masked Interrupt Status Register - SSP_MIS 174 */ 175 /* Receive Overrun Masked Interrupt status */ 176 #define SSP_MIS_MASK_RORMIS (0x1UL << 0) 177 /* Receive Timeout Masked Interrupt status */ 178 #define SSP_MIS_MASK_RTMIS (0x1UL << 1) 179 /* Receive FIFO Masked Interrupt status */ 180 #define SSP_MIS_MASK_RXMIS (0x1UL << 2) 181 /* Transmit FIFO Masked Interrupt status */ 182 #define SSP_MIS_MASK_TXMIS (0x1UL << 3) 183 184 /* 185 * SSP Interrupt Clear Register - SSP_ICR 186 */ 187 /* Receive Overrun Raw Clear Interrupt bit */ 188 #define SSP_ICR_MASK_RORIC (0x1UL << 0) 189 /* Receive Timeout Clear Interrupt bit */ 190 #define SSP_ICR_MASK_RTIC (0x1UL << 1) 191 192 /* 193 * SSP DMA Control Register - SSP_DMACR 194 */ 195 /* Receive DMA Enable bit */ 196 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0) 197 /* Transmit DMA Enable bit */ 198 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1) 199 200 /* 201 * SSP Integration Test control Register - SSP_ITCR 202 */ 203 #define SSP_ITCR_MASK_ITEN (0x1UL << 0) 204 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1) 205 206 /* 207 * SSP Integration Test Input Register - SSP_ITIP 208 */ 209 #define ITIP_MASK_SSPRXD (0x1UL << 0) 210 #define ITIP_MASK_SSPFSSIN (0x1UL << 1) 211 #define ITIP_MASK_SSPCLKIN (0x1UL << 2) 212 #define ITIP_MASK_RXDMAC (0x1UL << 3) 213 #define ITIP_MASK_TXDMAC (0x1UL << 4) 214 #define ITIP_MASK_SSPTXDIN (0x1UL << 5) 215 216 /* 217 * SSP Integration Test output Register - SSP_ITOP 218 */ 219 #define ITOP_MASK_SSPTXD (0x1UL << 0) 220 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1) 221 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2) 222 #define ITOP_MASK_SSPOEn (0x1UL << 3) 223 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4) 224 #define ITOP_MASK_RORINTR (0x1UL << 5) 225 #define ITOP_MASK_RTINTR (0x1UL << 6) 226 #define ITOP_MASK_RXINTR (0x1UL << 7) 227 #define ITOP_MASK_TXINTR (0x1UL << 8) 228 #define ITOP_MASK_INTR (0x1UL << 9) 229 #define ITOP_MASK_RXDMABREQ (0x1UL << 10) 230 #define ITOP_MASK_RXDMASREQ (0x1UL << 11) 231 #define ITOP_MASK_TXDMABREQ (0x1UL << 12) 232 #define ITOP_MASK_TXDMASREQ (0x1UL << 13) 233 234 /* 235 * SSP Test Data Register - SSP_TDR 236 */ 237 #define TDR_MASK_TESTDATA (0xFFFFFFFF) 238 239 /* 240 * Message State 241 * we use the spi_message.state (void *) pointer to 242 * hold a single state value, that's why all this 243 * (void *) casting is done here. 244 */ 245 #define STATE_START ((void *) 0) 246 #define STATE_RUNNING ((void *) 1) 247 #define STATE_DONE ((void *) 2) 248 #define STATE_ERROR ((void *) -1) 249 250 /* 251 * SSP State - Whether Enabled or Disabled 252 */ 253 #define SSP_DISABLED (0) 254 #define SSP_ENABLED (1) 255 256 /* 257 * SSP DMA State - Whether DMA Enabled or Disabled 258 */ 259 #define SSP_DMA_DISABLED (0) 260 #define SSP_DMA_ENABLED (1) 261 262 /* 263 * SSP Clock Defaults 264 */ 265 #define SSP_DEFAULT_CLKRATE 0x2 266 #define SSP_DEFAULT_PRESCALE 0x40 267 268 /* 269 * SSP Clock Parameter ranges 270 */ 271 #define CPSDVR_MIN 0x02 272 #define CPSDVR_MAX 0xFE 273 #define SCR_MIN 0x00 274 #define SCR_MAX 0xFF 275 276 /* 277 * SSP Interrupt related Macros 278 */ 279 #define DEFAULT_SSP_REG_IMSC 0x0UL 280 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC 281 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC) 282 283 #define CLEAR_ALL_INTERRUPTS 0x3 284 285 #define SPI_POLLING_TIMEOUT 1000 286 287 /* 288 * The type of reading going on on this chip 289 */ 290 enum ssp_reading { 291 READING_NULL, 292 READING_U8, 293 READING_U16, 294 READING_U32 295 }; 296 297 /** 298 * The type of writing going on on this chip 299 */ 300 enum ssp_writing { 301 WRITING_NULL, 302 WRITING_U8, 303 WRITING_U16, 304 WRITING_U32 305 }; 306 307 /** 308 * struct vendor_data - vendor-specific config parameters 309 * for PL022 derivates 310 * @fifodepth: depth of FIFOs (both) 311 * @max_bpw: maximum number of bits per word 312 * @unidir: supports unidirection transfers 313 * @extended_cr: 32 bit wide control register 0 with extra 314 * features and extra features in CR1 as found in the ST variants 315 * @pl023: supports a subset of the ST extensions called "PL023" 316 */ 317 struct vendor_data { 318 int fifodepth; 319 int max_bpw; 320 bool unidir; 321 bool extended_cr; 322 bool pl023; 323 bool loopback; 324 }; 325 326 /** 327 * struct pl022 - This is the private SSP driver data structure 328 * @adev: AMBA device model hookup 329 * @vendor: vendor data for the IP block 330 * @phybase: the physical memory where the SSP device resides 331 * @virtbase: the virtual memory where the SSP is mapped 332 * @clk: outgoing clock "SPICLK" for the SPI bus 333 * @master: SPI framework hookup 334 * @master_info: controller-specific data from machine setup 335 * @kworker: thread struct for message pump 336 * @kworker_task: pointer to task for message pump kworker thread 337 * @pump_messages: work struct for scheduling work to the message pump 338 * @queue_lock: spinlock to syncronise access to message queue 339 * @queue: message queue 340 * @busy: message pump is busy 341 * @running: message pump is running 342 * @pump_transfers: Tasklet used in Interrupt Transfer mode 343 * @cur_msg: Pointer to current spi_message being processed 344 * @cur_transfer: Pointer to current spi_transfer 345 * @cur_chip: pointer to current clients chip(assigned from controller_state) 346 * @next_msg_cs_active: the next message in the queue has been examined 347 * and it was found that it uses the same chip select as the previous 348 * message, so we left it active after the previous transfer, and it's 349 * active already. 350 * @tx: current position in TX buffer to be read 351 * @tx_end: end position in TX buffer to be read 352 * @rx: current position in RX buffer to be written 353 * @rx_end: end position in RX buffer to be written 354 * @read: the type of read currently going on 355 * @write: the type of write currently going on 356 * @exp_fifo_level: expected FIFO level 357 * @dma_rx_channel: optional channel for RX DMA 358 * @dma_tx_channel: optional channel for TX DMA 359 * @sgt_rx: scattertable for the RX transfer 360 * @sgt_tx: scattertable for the TX transfer 361 * @dummypage: a dummy page used for driving data on the bus with DMA 362 * @cur_cs: current chip select (gpio) 363 * @chipselects: list of chipselects (gpios) 364 */ 365 struct pl022 { 366 struct amba_device *adev; 367 struct vendor_data *vendor; 368 resource_size_t phybase; 369 void __iomem *virtbase; 370 struct clk *clk; 371 struct spi_master *master; 372 struct pl022_ssp_controller *master_info; 373 /* Message per-transfer pump */ 374 struct tasklet_struct pump_transfers; 375 struct spi_message *cur_msg; 376 struct spi_transfer *cur_transfer; 377 struct chip_data *cur_chip; 378 bool next_msg_cs_active; 379 void *tx; 380 void *tx_end; 381 void *rx; 382 void *rx_end; 383 enum ssp_reading read; 384 enum ssp_writing write; 385 u32 exp_fifo_level; 386 enum ssp_rx_level_trig rx_lev_trig; 387 enum ssp_tx_level_trig tx_lev_trig; 388 /* DMA settings */ 389 #ifdef CONFIG_DMA_ENGINE 390 struct dma_chan *dma_rx_channel; 391 struct dma_chan *dma_tx_channel; 392 struct sg_table sgt_rx; 393 struct sg_table sgt_tx; 394 char *dummypage; 395 bool dma_running; 396 #endif 397 int cur_cs; 398 int *chipselects; 399 }; 400 401 /** 402 * struct chip_data - To maintain runtime state of SSP for each client chip 403 * @cr0: Value of control register CR0 of SSP - on later ST variants this 404 * register is 32 bits wide rather than just 16 405 * @cr1: Value of control register CR1 of SSP 406 * @dmacr: Value of DMA control Register of SSP 407 * @cpsr: Value of Clock prescale register 408 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client 409 * @enable_dma: Whether to enable DMA or not 410 * @read: function ptr to be used to read when doing xfer for this chip 411 * @write: function ptr to be used to write when doing xfer for this chip 412 * @cs_control: chip select callback provided by chip 413 * @xfer_type: polling/interrupt/DMA 414 * 415 * Runtime state of the SSP controller, maintained per chip, 416 * This would be set according to the current message that would be served 417 */ 418 struct chip_data { 419 u32 cr0; 420 u16 cr1; 421 u16 dmacr; 422 u16 cpsr; 423 u8 n_bytes; 424 bool enable_dma; 425 enum ssp_reading read; 426 enum ssp_writing write; 427 void (*cs_control) (u32 command); 428 int xfer_type; 429 }; 430 431 /** 432 * null_cs_control - Dummy chip select function 433 * @command: select/delect the chip 434 * 435 * If no chip select function is provided by client this is used as dummy 436 * chip select 437 */ 438 static void null_cs_control(u32 command) 439 { 440 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command); 441 } 442 443 static void pl022_cs_control(struct pl022 *pl022, u32 command) 444 { 445 if (gpio_is_valid(pl022->cur_cs)) 446 gpio_set_value(pl022->cur_cs, command); 447 else 448 pl022->cur_chip->cs_control(command); 449 } 450 451 /** 452 * giveback - current spi_message is over, schedule next message and call 453 * callback of this message. Assumes that caller already 454 * set message->status; dma and pio irqs are blocked 455 * @pl022: SSP driver private data structure 456 */ 457 static void giveback(struct pl022 *pl022) 458 { 459 struct spi_transfer *last_transfer; 460 pl022->next_msg_cs_active = false; 461 462 last_transfer = list_last_entry(&pl022->cur_msg->transfers, 463 struct spi_transfer, transfer_list); 464 465 /* Delay if requested before any change in chip select */ 466 if (last_transfer->delay_usecs) 467 /* 468 * FIXME: This runs in interrupt context. 469 * Is this really smart? 470 */ 471 udelay(last_transfer->delay_usecs); 472 473 if (!last_transfer->cs_change) { 474 struct spi_message *next_msg; 475 476 /* 477 * cs_change was not set. We can keep the chip select 478 * enabled if there is message in the queue and it is 479 * for the same spi device. 480 * 481 * We cannot postpone this until pump_messages, because 482 * after calling msg->complete (below) the driver that 483 * sent the current message could be unloaded, which 484 * could invalidate the cs_control() callback... 485 */ 486 /* get a pointer to the next message, if any */ 487 next_msg = spi_get_next_queued_message(pl022->master); 488 489 /* 490 * see if the next and current messages point 491 * to the same spi device. 492 */ 493 if (next_msg && next_msg->spi != pl022->cur_msg->spi) 494 next_msg = NULL; 495 if (!next_msg || pl022->cur_msg->state == STATE_ERROR) 496 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 497 else 498 pl022->next_msg_cs_active = true; 499 500 } 501 502 pl022->cur_msg = NULL; 503 pl022->cur_transfer = NULL; 504 pl022->cur_chip = NULL; 505 spi_finalize_current_message(pl022->master); 506 507 /* disable the SPI/SSP operation */ 508 writew((readw(SSP_CR1(pl022->virtbase)) & 509 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 510 511 } 512 513 /** 514 * flush - flush the FIFO to reach a clean state 515 * @pl022: SSP driver private data structure 516 */ 517 static int flush(struct pl022 *pl022) 518 { 519 unsigned long limit = loops_per_jiffy << 1; 520 521 dev_dbg(&pl022->adev->dev, "flush\n"); 522 do { 523 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 524 readw(SSP_DR(pl022->virtbase)); 525 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--); 526 527 pl022->exp_fifo_level = 0; 528 529 return limit; 530 } 531 532 /** 533 * restore_state - Load configuration of current chip 534 * @pl022: SSP driver private data structure 535 */ 536 static void restore_state(struct pl022 *pl022) 537 { 538 struct chip_data *chip = pl022->cur_chip; 539 540 if (pl022->vendor->extended_cr) 541 writel(chip->cr0, SSP_CR0(pl022->virtbase)); 542 else 543 writew(chip->cr0, SSP_CR0(pl022->virtbase)); 544 writew(chip->cr1, SSP_CR1(pl022->virtbase)); 545 writew(chip->dmacr, SSP_DMACR(pl022->virtbase)); 546 writew(chip->cpsr, SSP_CPSR(pl022->virtbase)); 547 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); 548 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 549 } 550 551 /* 552 * Default SSP Register Values 553 */ 554 #define DEFAULT_SSP_REG_CR0 ( \ 555 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \ 556 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \ 557 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 558 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 559 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ 560 ) 561 562 /* ST versions have slightly different bit layout */ 563 #define DEFAULT_SSP_REG_CR0_ST ( \ 564 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ 565 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \ 566 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 567 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 568 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \ 569 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \ 570 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \ 571 ) 572 573 /* The PL023 version is slightly different again */ 574 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \ 575 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ 576 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 577 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 578 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ 579 ) 580 581 #define DEFAULT_SSP_REG_CR1 ( \ 582 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \ 583 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ 584 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ 585 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \ 586 ) 587 588 /* ST versions extend this register to use all 16 bits */ 589 #define DEFAULT_SSP_REG_CR1_ST ( \ 590 DEFAULT_SSP_REG_CR1 | \ 591 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ 592 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ 593 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\ 594 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ 595 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \ 596 ) 597 598 /* 599 * The PL023 variant has further differences: no loopback mode, no microwire 600 * support, and a new clock feedback delay setting. 601 */ 602 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \ 603 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ 604 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ 605 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \ 606 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ 607 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ 608 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ 609 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \ 610 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \ 611 ) 612 613 #define DEFAULT_SSP_REG_CPSR ( \ 614 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \ 615 ) 616 617 #define DEFAULT_SSP_REG_DMACR (\ 618 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \ 619 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \ 620 ) 621 622 /** 623 * load_ssp_default_config - Load default configuration for SSP 624 * @pl022: SSP driver private data structure 625 */ 626 static void load_ssp_default_config(struct pl022 *pl022) 627 { 628 if (pl022->vendor->pl023) { 629 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase)); 630 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase)); 631 } else if (pl022->vendor->extended_cr) { 632 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase)); 633 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase)); 634 } else { 635 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase)); 636 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase)); 637 } 638 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase)); 639 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase)); 640 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); 641 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 642 } 643 644 /** 645 * This will write to TX and read from RX according to the parameters 646 * set in pl022. 647 */ 648 static void readwriter(struct pl022 *pl022) 649 { 650 651 /* 652 * The FIFO depth is different between primecell variants. 653 * I believe filling in too much in the FIFO might cause 654 * errons in 8bit wide transfers on ARM variants (just 8 words 655 * FIFO, means only 8x8 = 64 bits in FIFO) at least. 656 * 657 * To prevent this issue, the TX FIFO is only filled to the 658 * unused RX FIFO fill length, regardless of what the TX 659 * FIFO status flag indicates. 660 */ 661 dev_dbg(&pl022->adev->dev, 662 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n", 663 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end); 664 665 /* Read as much as you can */ 666 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 667 && (pl022->rx < pl022->rx_end)) { 668 switch (pl022->read) { 669 case READING_NULL: 670 readw(SSP_DR(pl022->virtbase)); 671 break; 672 case READING_U8: 673 *(u8 *) (pl022->rx) = 674 readw(SSP_DR(pl022->virtbase)) & 0xFFU; 675 break; 676 case READING_U16: 677 *(u16 *) (pl022->rx) = 678 (u16) readw(SSP_DR(pl022->virtbase)); 679 break; 680 case READING_U32: 681 *(u32 *) (pl022->rx) = 682 readl(SSP_DR(pl022->virtbase)); 683 break; 684 } 685 pl022->rx += (pl022->cur_chip->n_bytes); 686 pl022->exp_fifo_level--; 687 } 688 /* 689 * Write as much as possible up to the RX FIFO size 690 */ 691 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth) 692 && (pl022->tx < pl022->tx_end)) { 693 switch (pl022->write) { 694 case WRITING_NULL: 695 writew(0x0, SSP_DR(pl022->virtbase)); 696 break; 697 case WRITING_U8: 698 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase)); 699 break; 700 case WRITING_U16: 701 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase)); 702 break; 703 case WRITING_U32: 704 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase)); 705 break; 706 } 707 pl022->tx += (pl022->cur_chip->n_bytes); 708 pl022->exp_fifo_level++; 709 /* 710 * This inner reader takes care of things appearing in the RX 711 * FIFO as we're transmitting. This will happen a lot since the 712 * clock starts running when you put things into the TX FIFO, 713 * and then things are continuously clocked into the RX FIFO. 714 */ 715 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 716 && (pl022->rx < pl022->rx_end)) { 717 switch (pl022->read) { 718 case READING_NULL: 719 readw(SSP_DR(pl022->virtbase)); 720 break; 721 case READING_U8: 722 *(u8 *) (pl022->rx) = 723 readw(SSP_DR(pl022->virtbase)) & 0xFFU; 724 break; 725 case READING_U16: 726 *(u16 *) (pl022->rx) = 727 (u16) readw(SSP_DR(pl022->virtbase)); 728 break; 729 case READING_U32: 730 *(u32 *) (pl022->rx) = 731 readl(SSP_DR(pl022->virtbase)); 732 break; 733 } 734 pl022->rx += (pl022->cur_chip->n_bytes); 735 pl022->exp_fifo_level--; 736 } 737 } 738 /* 739 * When we exit here the TX FIFO should be full and the RX FIFO 740 * should be empty 741 */ 742 } 743 744 /** 745 * next_transfer - Move to the Next transfer in the current spi message 746 * @pl022: SSP driver private data structure 747 * 748 * This function moves though the linked list of spi transfers in the 749 * current spi message and returns with the state of current spi 750 * message i.e whether its last transfer is done(STATE_DONE) or 751 * Next transfer is ready(STATE_RUNNING) 752 */ 753 static void *next_transfer(struct pl022 *pl022) 754 { 755 struct spi_message *msg = pl022->cur_msg; 756 struct spi_transfer *trans = pl022->cur_transfer; 757 758 /* Move to next transfer */ 759 if (trans->transfer_list.next != &msg->transfers) { 760 pl022->cur_transfer = 761 list_entry(trans->transfer_list.next, 762 struct spi_transfer, transfer_list); 763 return STATE_RUNNING; 764 } 765 return STATE_DONE; 766 } 767 768 /* 769 * This DMA functionality is only compiled in if we have 770 * access to the generic DMA devices/DMA engine. 771 */ 772 #ifdef CONFIG_DMA_ENGINE 773 static void unmap_free_dma_scatter(struct pl022 *pl022) 774 { 775 /* Unmap and free the SG tables */ 776 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl, 777 pl022->sgt_tx.nents, DMA_TO_DEVICE); 778 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl, 779 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 780 sg_free_table(&pl022->sgt_rx); 781 sg_free_table(&pl022->sgt_tx); 782 } 783 784 static void dma_callback(void *data) 785 { 786 struct pl022 *pl022 = data; 787 struct spi_message *msg = pl022->cur_msg; 788 789 BUG_ON(!pl022->sgt_rx.sgl); 790 791 #ifdef VERBOSE_DEBUG 792 /* 793 * Optionally dump out buffers to inspect contents, this is 794 * good if you want to convince yourself that the loopback 795 * read/write contents are the same, when adopting to a new 796 * DMA engine. 797 */ 798 { 799 struct scatterlist *sg; 800 unsigned int i; 801 802 dma_sync_sg_for_cpu(&pl022->adev->dev, 803 pl022->sgt_rx.sgl, 804 pl022->sgt_rx.nents, 805 DMA_FROM_DEVICE); 806 807 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) { 808 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i); 809 print_hex_dump(KERN_ERR, "SPI RX: ", 810 DUMP_PREFIX_OFFSET, 811 16, 812 1, 813 sg_virt(sg), 814 sg_dma_len(sg), 815 1); 816 } 817 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) { 818 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i); 819 print_hex_dump(KERN_ERR, "SPI TX: ", 820 DUMP_PREFIX_OFFSET, 821 16, 822 1, 823 sg_virt(sg), 824 sg_dma_len(sg), 825 1); 826 } 827 } 828 #endif 829 830 unmap_free_dma_scatter(pl022); 831 832 /* Update total bytes transferred */ 833 msg->actual_length += pl022->cur_transfer->len; 834 if (pl022->cur_transfer->cs_change) 835 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 836 837 /* Move to next transfer */ 838 msg->state = next_transfer(pl022); 839 tasklet_schedule(&pl022->pump_transfers); 840 } 841 842 static void setup_dma_scatter(struct pl022 *pl022, 843 void *buffer, 844 unsigned int length, 845 struct sg_table *sgtab) 846 { 847 struct scatterlist *sg; 848 int bytesleft = length; 849 void *bufp = buffer; 850 int mapbytes; 851 int i; 852 853 if (buffer) { 854 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { 855 /* 856 * If there are less bytes left than what fits 857 * in the current page (plus page alignment offset) 858 * we just feed in this, else we stuff in as much 859 * as we can. 860 */ 861 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp))) 862 mapbytes = bytesleft; 863 else 864 mapbytes = PAGE_SIZE - offset_in_page(bufp); 865 sg_set_page(sg, virt_to_page(bufp), 866 mapbytes, offset_in_page(bufp)); 867 bufp += mapbytes; 868 bytesleft -= mapbytes; 869 dev_dbg(&pl022->adev->dev, 870 "set RX/TX target page @ %p, %d bytes, %d left\n", 871 bufp, mapbytes, bytesleft); 872 } 873 } else { 874 /* Map the dummy buffer on every page */ 875 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { 876 if (bytesleft < PAGE_SIZE) 877 mapbytes = bytesleft; 878 else 879 mapbytes = PAGE_SIZE; 880 sg_set_page(sg, virt_to_page(pl022->dummypage), 881 mapbytes, 0); 882 bytesleft -= mapbytes; 883 dev_dbg(&pl022->adev->dev, 884 "set RX/TX to dummy page %d bytes, %d left\n", 885 mapbytes, bytesleft); 886 887 } 888 } 889 BUG_ON(bytesleft); 890 } 891 892 /** 893 * configure_dma - configures the channels for the next transfer 894 * @pl022: SSP driver's private data structure 895 */ 896 static int configure_dma(struct pl022 *pl022) 897 { 898 struct dma_slave_config rx_conf = { 899 .src_addr = SSP_DR(pl022->phybase), 900 .direction = DMA_DEV_TO_MEM, 901 .device_fc = false, 902 }; 903 struct dma_slave_config tx_conf = { 904 .dst_addr = SSP_DR(pl022->phybase), 905 .direction = DMA_MEM_TO_DEV, 906 .device_fc = false, 907 }; 908 unsigned int pages; 909 int ret; 910 int rx_sglen, tx_sglen; 911 struct dma_chan *rxchan = pl022->dma_rx_channel; 912 struct dma_chan *txchan = pl022->dma_tx_channel; 913 struct dma_async_tx_descriptor *rxdesc; 914 struct dma_async_tx_descriptor *txdesc; 915 916 /* Check that the channels are available */ 917 if (!rxchan || !txchan) 918 return -ENODEV; 919 920 /* 921 * If supplied, the DMA burstsize should equal the FIFO trigger level. 922 * Notice that the DMA engine uses one-to-one mapping. Since we can 923 * not trigger on 2 elements this needs explicit mapping rather than 924 * calculation. 925 */ 926 switch (pl022->rx_lev_trig) { 927 case SSP_RX_1_OR_MORE_ELEM: 928 rx_conf.src_maxburst = 1; 929 break; 930 case SSP_RX_4_OR_MORE_ELEM: 931 rx_conf.src_maxburst = 4; 932 break; 933 case SSP_RX_8_OR_MORE_ELEM: 934 rx_conf.src_maxburst = 8; 935 break; 936 case SSP_RX_16_OR_MORE_ELEM: 937 rx_conf.src_maxburst = 16; 938 break; 939 case SSP_RX_32_OR_MORE_ELEM: 940 rx_conf.src_maxburst = 32; 941 break; 942 default: 943 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1; 944 break; 945 } 946 947 switch (pl022->tx_lev_trig) { 948 case SSP_TX_1_OR_MORE_EMPTY_LOC: 949 tx_conf.dst_maxburst = 1; 950 break; 951 case SSP_TX_4_OR_MORE_EMPTY_LOC: 952 tx_conf.dst_maxburst = 4; 953 break; 954 case SSP_TX_8_OR_MORE_EMPTY_LOC: 955 tx_conf.dst_maxburst = 8; 956 break; 957 case SSP_TX_16_OR_MORE_EMPTY_LOC: 958 tx_conf.dst_maxburst = 16; 959 break; 960 case SSP_TX_32_OR_MORE_EMPTY_LOC: 961 tx_conf.dst_maxburst = 32; 962 break; 963 default: 964 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1; 965 break; 966 } 967 968 switch (pl022->read) { 969 case READING_NULL: 970 /* Use the same as for writing */ 971 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 972 break; 973 case READING_U8: 974 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 975 break; 976 case READING_U16: 977 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 978 break; 979 case READING_U32: 980 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 981 break; 982 } 983 984 switch (pl022->write) { 985 case WRITING_NULL: 986 /* Use the same as for reading */ 987 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 988 break; 989 case WRITING_U8: 990 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 991 break; 992 case WRITING_U16: 993 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 994 break; 995 case WRITING_U32: 996 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 997 break; 998 } 999 1000 /* SPI pecularity: we need to read and write the same width */ 1001 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 1002 rx_conf.src_addr_width = tx_conf.dst_addr_width; 1003 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 1004 tx_conf.dst_addr_width = rx_conf.src_addr_width; 1005 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width); 1006 1007 dmaengine_slave_config(rxchan, &rx_conf); 1008 dmaengine_slave_config(txchan, &tx_conf); 1009 1010 /* Create sglists for the transfers */ 1011 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE); 1012 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages); 1013 1014 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC); 1015 if (ret) 1016 goto err_alloc_rx_sg; 1017 1018 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC); 1019 if (ret) 1020 goto err_alloc_tx_sg; 1021 1022 /* Fill in the scatterlists for the RX+TX buffers */ 1023 setup_dma_scatter(pl022, pl022->rx, 1024 pl022->cur_transfer->len, &pl022->sgt_rx); 1025 setup_dma_scatter(pl022, pl022->tx, 1026 pl022->cur_transfer->len, &pl022->sgt_tx); 1027 1028 /* Map DMA buffers */ 1029 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl, 1030 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 1031 if (!rx_sglen) 1032 goto err_rx_sgmap; 1033 1034 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl, 1035 pl022->sgt_tx.nents, DMA_TO_DEVICE); 1036 if (!tx_sglen) 1037 goto err_tx_sgmap; 1038 1039 /* Send both scatterlists */ 1040 rxdesc = dmaengine_prep_slave_sg(rxchan, 1041 pl022->sgt_rx.sgl, 1042 rx_sglen, 1043 DMA_DEV_TO_MEM, 1044 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1045 if (!rxdesc) 1046 goto err_rxdesc; 1047 1048 txdesc = dmaengine_prep_slave_sg(txchan, 1049 pl022->sgt_tx.sgl, 1050 tx_sglen, 1051 DMA_MEM_TO_DEV, 1052 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1053 if (!txdesc) 1054 goto err_txdesc; 1055 1056 /* Put the callback on the RX transfer only, that should finish last */ 1057 rxdesc->callback = dma_callback; 1058 rxdesc->callback_param = pl022; 1059 1060 /* Submit and fire RX and TX with TX last so we're ready to read! */ 1061 dmaengine_submit(rxdesc); 1062 dmaengine_submit(txdesc); 1063 dma_async_issue_pending(rxchan); 1064 dma_async_issue_pending(txchan); 1065 pl022->dma_running = true; 1066 1067 return 0; 1068 1069 err_txdesc: 1070 dmaengine_terminate_all(txchan); 1071 err_rxdesc: 1072 dmaengine_terminate_all(rxchan); 1073 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl, 1074 pl022->sgt_tx.nents, DMA_TO_DEVICE); 1075 err_tx_sgmap: 1076 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl, 1077 pl022->sgt_tx.nents, DMA_FROM_DEVICE); 1078 err_rx_sgmap: 1079 sg_free_table(&pl022->sgt_tx); 1080 err_alloc_tx_sg: 1081 sg_free_table(&pl022->sgt_rx); 1082 err_alloc_rx_sg: 1083 return -ENOMEM; 1084 } 1085 1086 static int pl022_dma_probe(struct pl022 *pl022) 1087 { 1088 dma_cap_mask_t mask; 1089 1090 /* Try to acquire a generic DMA engine slave channel */ 1091 dma_cap_zero(mask); 1092 dma_cap_set(DMA_SLAVE, mask); 1093 /* 1094 * We need both RX and TX channels to do DMA, else do none 1095 * of them. 1096 */ 1097 pl022->dma_rx_channel = dma_request_channel(mask, 1098 pl022->master_info->dma_filter, 1099 pl022->master_info->dma_rx_param); 1100 if (!pl022->dma_rx_channel) { 1101 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n"); 1102 goto err_no_rxchan; 1103 } 1104 1105 pl022->dma_tx_channel = dma_request_channel(mask, 1106 pl022->master_info->dma_filter, 1107 pl022->master_info->dma_tx_param); 1108 if (!pl022->dma_tx_channel) { 1109 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n"); 1110 goto err_no_txchan; 1111 } 1112 1113 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); 1114 if (!pl022->dummypage) 1115 goto err_no_dummypage; 1116 1117 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n", 1118 dma_chan_name(pl022->dma_rx_channel), 1119 dma_chan_name(pl022->dma_tx_channel)); 1120 1121 return 0; 1122 1123 err_no_dummypage: 1124 dma_release_channel(pl022->dma_tx_channel); 1125 err_no_txchan: 1126 dma_release_channel(pl022->dma_rx_channel); 1127 pl022->dma_rx_channel = NULL; 1128 err_no_rxchan: 1129 dev_err(&pl022->adev->dev, 1130 "Failed to work in dma mode, work without dma!\n"); 1131 return -ENODEV; 1132 } 1133 1134 static int pl022_dma_autoprobe(struct pl022 *pl022) 1135 { 1136 struct device *dev = &pl022->adev->dev; 1137 1138 /* automatically configure DMA channels from platform, normally using DT */ 1139 pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx"); 1140 if (!pl022->dma_rx_channel) 1141 goto err_no_rxchan; 1142 1143 pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx"); 1144 if (!pl022->dma_tx_channel) 1145 goto err_no_txchan; 1146 1147 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); 1148 if (!pl022->dummypage) 1149 goto err_no_dummypage; 1150 1151 return 0; 1152 1153 err_no_dummypage: 1154 dma_release_channel(pl022->dma_tx_channel); 1155 pl022->dma_tx_channel = NULL; 1156 err_no_txchan: 1157 dma_release_channel(pl022->dma_rx_channel); 1158 pl022->dma_rx_channel = NULL; 1159 err_no_rxchan: 1160 return -ENODEV; 1161 } 1162 1163 static void terminate_dma(struct pl022 *pl022) 1164 { 1165 struct dma_chan *rxchan = pl022->dma_rx_channel; 1166 struct dma_chan *txchan = pl022->dma_tx_channel; 1167 1168 dmaengine_terminate_all(rxchan); 1169 dmaengine_terminate_all(txchan); 1170 unmap_free_dma_scatter(pl022); 1171 pl022->dma_running = false; 1172 } 1173 1174 static void pl022_dma_remove(struct pl022 *pl022) 1175 { 1176 if (pl022->dma_running) 1177 terminate_dma(pl022); 1178 if (pl022->dma_tx_channel) 1179 dma_release_channel(pl022->dma_tx_channel); 1180 if (pl022->dma_rx_channel) 1181 dma_release_channel(pl022->dma_rx_channel); 1182 kfree(pl022->dummypage); 1183 } 1184 1185 #else 1186 static inline int configure_dma(struct pl022 *pl022) 1187 { 1188 return -ENODEV; 1189 } 1190 1191 static inline int pl022_dma_autoprobe(struct pl022 *pl022) 1192 { 1193 return 0; 1194 } 1195 1196 static inline int pl022_dma_probe(struct pl022 *pl022) 1197 { 1198 return 0; 1199 } 1200 1201 static inline void pl022_dma_remove(struct pl022 *pl022) 1202 { 1203 } 1204 #endif 1205 1206 /** 1207 * pl022_interrupt_handler - Interrupt handler for SSP controller 1208 * 1209 * This function handles interrupts generated for an interrupt based transfer. 1210 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the 1211 * current message's state as STATE_ERROR and schedule the tasklet 1212 * pump_transfers which will do the postprocessing of the current message by 1213 * calling giveback(). Otherwise it reads data from RX FIFO till there is no 1214 * more data, and writes data in TX FIFO till it is not full. If we complete 1215 * the transfer we move to the next transfer and schedule the tasklet. 1216 */ 1217 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id) 1218 { 1219 struct pl022 *pl022 = dev_id; 1220 struct spi_message *msg = pl022->cur_msg; 1221 u16 irq_status = 0; 1222 u16 flag = 0; 1223 1224 if (unlikely(!msg)) { 1225 dev_err(&pl022->adev->dev, 1226 "bad message state in interrupt handler"); 1227 /* Never fail */ 1228 return IRQ_HANDLED; 1229 } 1230 1231 /* Read the Interrupt Status Register */ 1232 irq_status = readw(SSP_MIS(pl022->virtbase)); 1233 1234 if (unlikely(!irq_status)) 1235 return IRQ_NONE; 1236 1237 /* 1238 * This handles the FIFO interrupts, the timeout 1239 * interrupts are flatly ignored, they cannot be 1240 * trusted. 1241 */ 1242 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) { 1243 /* 1244 * Overrun interrupt - bail out since our Data has been 1245 * corrupted 1246 */ 1247 dev_err(&pl022->adev->dev, "FIFO overrun\n"); 1248 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF) 1249 dev_err(&pl022->adev->dev, 1250 "RXFIFO is full\n"); 1251 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF) 1252 dev_err(&pl022->adev->dev, 1253 "TXFIFO is full\n"); 1254 1255 /* 1256 * Disable and clear interrupts, disable SSP, 1257 * mark message with bad status so it can be 1258 * retried. 1259 */ 1260 writew(DISABLE_ALL_INTERRUPTS, 1261 SSP_IMSC(pl022->virtbase)); 1262 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 1263 writew((readw(SSP_CR1(pl022->virtbase)) & 1264 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 1265 msg->state = STATE_ERROR; 1266 1267 /* Schedule message queue handler */ 1268 tasklet_schedule(&pl022->pump_transfers); 1269 return IRQ_HANDLED; 1270 } 1271 1272 readwriter(pl022); 1273 1274 if ((pl022->tx == pl022->tx_end) && (flag == 0)) { 1275 flag = 1; 1276 /* Disable Transmit interrupt, enable receive interrupt */ 1277 writew((readw(SSP_IMSC(pl022->virtbase)) & 1278 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM, 1279 SSP_IMSC(pl022->virtbase)); 1280 } 1281 1282 /* 1283 * Since all transactions must write as much as shall be read, 1284 * we can conclude the entire transaction once RX is complete. 1285 * At this point, all TX will always be finished. 1286 */ 1287 if (pl022->rx >= pl022->rx_end) { 1288 writew(DISABLE_ALL_INTERRUPTS, 1289 SSP_IMSC(pl022->virtbase)); 1290 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 1291 if (unlikely(pl022->rx > pl022->rx_end)) { 1292 dev_warn(&pl022->adev->dev, "read %u surplus " 1293 "bytes (did you request an odd " 1294 "number of bytes on a 16bit bus?)\n", 1295 (u32) (pl022->rx - pl022->rx_end)); 1296 } 1297 /* Update total bytes transferred */ 1298 msg->actual_length += pl022->cur_transfer->len; 1299 if (pl022->cur_transfer->cs_change) 1300 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 1301 /* Move to next transfer */ 1302 msg->state = next_transfer(pl022); 1303 tasklet_schedule(&pl022->pump_transfers); 1304 return IRQ_HANDLED; 1305 } 1306 1307 return IRQ_HANDLED; 1308 } 1309 1310 /** 1311 * This sets up the pointers to memory for the next message to 1312 * send out on the SPI bus. 1313 */ 1314 static int set_up_next_transfer(struct pl022 *pl022, 1315 struct spi_transfer *transfer) 1316 { 1317 int residue; 1318 1319 /* Sanity check the message for this bus width */ 1320 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes; 1321 if (unlikely(residue != 0)) { 1322 dev_err(&pl022->adev->dev, 1323 "message of %u bytes to transmit but the current " 1324 "chip bus has a data width of %u bytes!\n", 1325 pl022->cur_transfer->len, 1326 pl022->cur_chip->n_bytes); 1327 dev_err(&pl022->adev->dev, "skipping this message\n"); 1328 return -EIO; 1329 } 1330 pl022->tx = (void *)transfer->tx_buf; 1331 pl022->tx_end = pl022->tx + pl022->cur_transfer->len; 1332 pl022->rx = (void *)transfer->rx_buf; 1333 pl022->rx_end = pl022->rx + pl022->cur_transfer->len; 1334 pl022->write = 1335 pl022->tx ? pl022->cur_chip->write : WRITING_NULL; 1336 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL; 1337 return 0; 1338 } 1339 1340 /** 1341 * pump_transfers - Tasklet function which schedules next transfer 1342 * when running in interrupt or DMA transfer mode. 1343 * @data: SSP driver private data structure 1344 * 1345 */ 1346 static void pump_transfers(unsigned long data) 1347 { 1348 struct pl022 *pl022 = (struct pl022 *) data; 1349 struct spi_message *message = NULL; 1350 struct spi_transfer *transfer = NULL; 1351 struct spi_transfer *previous = NULL; 1352 1353 /* Get current state information */ 1354 message = pl022->cur_msg; 1355 transfer = pl022->cur_transfer; 1356 1357 /* Handle for abort */ 1358 if (message->state == STATE_ERROR) { 1359 message->status = -EIO; 1360 giveback(pl022); 1361 return; 1362 } 1363 1364 /* Handle end of message */ 1365 if (message->state == STATE_DONE) { 1366 message->status = 0; 1367 giveback(pl022); 1368 return; 1369 } 1370 1371 /* Delay if requested at end of transfer before CS change */ 1372 if (message->state == STATE_RUNNING) { 1373 previous = list_entry(transfer->transfer_list.prev, 1374 struct spi_transfer, 1375 transfer_list); 1376 if (previous->delay_usecs) 1377 /* 1378 * FIXME: This runs in interrupt context. 1379 * Is this really smart? 1380 */ 1381 udelay(previous->delay_usecs); 1382 1383 /* Reselect chip select only if cs_change was requested */ 1384 if (previous->cs_change) 1385 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1386 } else { 1387 /* STATE_START */ 1388 message->state = STATE_RUNNING; 1389 } 1390 1391 if (set_up_next_transfer(pl022, transfer)) { 1392 message->state = STATE_ERROR; 1393 message->status = -EIO; 1394 giveback(pl022); 1395 return; 1396 } 1397 /* Flush the FIFOs and let's go! */ 1398 flush(pl022); 1399 1400 if (pl022->cur_chip->enable_dma) { 1401 if (configure_dma(pl022)) { 1402 dev_dbg(&pl022->adev->dev, 1403 "configuration of DMA failed, fall back to interrupt mode\n"); 1404 goto err_config_dma; 1405 } 1406 return; 1407 } 1408 1409 err_config_dma: 1410 /* enable all interrupts except RX */ 1411 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase)); 1412 } 1413 1414 static void do_interrupt_dma_transfer(struct pl022 *pl022) 1415 { 1416 /* 1417 * Default is to enable all interrupts except RX - 1418 * this will be enabled once TX is complete 1419 */ 1420 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM); 1421 1422 /* Enable target chip, if not already active */ 1423 if (!pl022->next_msg_cs_active) 1424 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1425 1426 if (set_up_next_transfer(pl022, pl022->cur_transfer)) { 1427 /* Error path */ 1428 pl022->cur_msg->state = STATE_ERROR; 1429 pl022->cur_msg->status = -EIO; 1430 giveback(pl022); 1431 return; 1432 } 1433 /* If we're using DMA, set up DMA here */ 1434 if (pl022->cur_chip->enable_dma) { 1435 /* Configure DMA transfer */ 1436 if (configure_dma(pl022)) { 1437 dev_dbg(&pl022->adev->dev, 1438 "configuration of DMA failed, fall back to interrupt mode\n"); 1439 goto err_config_dma; 1440 } 1441 /* Disable interrupts in DMA mode, IRQ from DMA controller */ 1442 irqflags = DISABLE_ALL_INTERRUPTS; 1443 } 1444 err_config_dma: 1445 /* Enable SSP, turn on interrupts */ 1446 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), 1447 SSP_CR1(pl022->virtbase)); 1448 writew(irqflags, SSP_IMSC(pl022->virtbase)); 1449 } 1450 1451 static void do_polling_transfer(struct pl022 *pl022) 1452 { 1453 struct spi_message *message = NULL; 1454 struct spi_transfer *transfer = NULL; 1455 struct spi_transfer *previous = NULL; 1456 struct chip_data *chip; 1457 unsigned long time, timeout; 1458 1459 chip = pl022->cur_chip; 1460 message = pl022->cur_msg; 1461 1462 while (message->state != STATE_DONE) { 1463 /* Handle for abort */ 1464 if (message->state == STATE_ERROR) 1465 break; 1466 transfer = pl022->cur_transfer; 1467 1468 /* Delay if requested at end of transfer */ 1469 if (message->state == STATE_RUNNING) { 1470 previous = 1471 list_entry(transfer->transfer_list.prev, 1472 struct spi_transfer, transfer_list); 1473 if (previous->delay_usecs) 1474 udelay(previous->delay_usecs); 1475 if (previous->cs_change) 1476 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1477 } else { 1478 /* STATE_START */ 1479 message->state = STATE_RUNNING; 1480 if (!pl022->next_msg_cs_active) 1481 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1482 } 1483 1484 /* Configuration Changing Per Transfer */ 1485 if (set_up_next_transfer(pl022, transfer)) { 1486 /* Error path */ 1487 message->state = STATE_ERROR; 1488 break; 1489 } 1490 /* Flush FIFOs and enable SSP */ 1491 flush(pl022); 1492 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), 1493 SSP_CR1(pl022->virtbase)); 1494 1495 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n"); 1496 1497 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT); 1498 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) { 1499 time = jiffies; 1500 readwriter(pl022); 1501 if (time_after(time, timeout)) { 1502 dev_warn(&pl022->adev->dev, 1503 "%s: timeout!\n", __func__); 1504 message->state = STATE_ERROR; 1505 goto out; 1506 } 1507 cpu_relax(); 1508 } 1509 1510 /* Update total byte transferred */ 1511 message->actual_length += pl022->cur_transfer->len; 1512 if (pl022->cur_transfer->cs_change) 1513 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 1514 /* Move to next transfer */ 1515 message->state = next_transfer(pl022); 1516 } 1517 out: 1518 /* Handle end of message */ 1519 if (message->state == STATE_DONE) 1520 message->status = 0; 1521 else 1522 message->status = -EIO; 1523 1524 giveback(pl022); 1525 return; 1526 } 1527 1528 static int pl022_transfer_one_message(struct spi_master *master, 1529 struct spi_message *msg) 1530 { 1531 struct pl022 *pl022 = spi_master_get_devdata(master); 1532 1533 /* Initial message state */ 1534 pl022->cur_msg = msg; 1535 msg->state = STATE_START; 1536 1537 pl022->cur_transfer = list_entry(msg->transfers.next, 1538 struct spi_transfer, transfer_list); 1539 1540 /* Setup the SPI using the per chip configuration */ 1541 pl022->cur_chip = spi_get_ctldata(msg->spi); 1542 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select]; 1543 1544 restore_state(pl022); 1545 flush(pl022); 1546 1547 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER) 1548 do_polling_transfer(pl022); 1549 else 1550 do_interrupt_dma_transfer(pl022); 1551 1552 return 0; 1553 } 1554 1555 static int pl022_unprepare_transfer_hardware(struct spi_master *master) 1556 { 1557 struct pl022 *pl022 = spi_master_get_devdata(master); 1558 1559 /* nothing more to do - disable spi/ssp and power off */ 1560 writew((readw(SSP_CR1(pl022->virtbase)) & 1561 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 1562 1563 return 0; 1564 } 1565 1566 static int verify_controller_parameters(struct pl022 *pl022, 1567 struct pl022_config_chip const *chip_info) 1568 { 1569 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI) 1570 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) { 1571 dev_err(&pl022->adev->dev, 1572 "interface is configured incorrectly\n"); 1573 return -EINVAL; 1574 } 1575 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) && 1576 (!pl022->vendor->unidir)) { 1577 dev_err(&pl022->adev->dev, 1578 "unidirectional mode not supported in this " 1579 "hardware version\n"); 1580 return -EINVAL; 1581 } 1582 if ((chip_info->hierarchy != SSP_MASTER) 1583 && (chip_info->hierarchy != SSP_SLAVE)) { 1584 dev_err(&pl022->adev->dev, 1585 "hierarchy is configured incorrectly\n"); 1586 return -EINVAL; 1587 } 1588 if ((chip_info->com_mode != INTERRUPT_TRANSFER) 1589 && (chip_info->com_mode != DMA_TRANSFER) 1590 && (chip_info->com_mode != POLLING_TRANSFER)) { 1591 dev_err(&pl022->adev->dev, 1592 "Communication mode is configured incorrectly\n"); 1593 return -EINVAL; 1594 } 1595 switch (chip_info->rx_lev_trig) { 1596 case SSP_RX_1_OR_MORE_ELEM: 1597 case SSP_RX_4_OR_MORE_ELEM: 1598 case SSP_RX_8_OR_MORE_ELEM: 1599 /* These are always OK, all variants can handle this */ 1600 break; 1601 case SSP_RX_16_OR_MORE_ELEM: 1602 if (pl022->vendor->fifodepth < 16) { 1603 dev_err(&pl022->adev->dev, 1604 "RX FIFO Trigger Level is configured incorrectly\n"); 1605 return -EINVAL; 1606 } 1607 break; 1608 case SSP_RX_32_OR_MORE_ELEM: 1609 if (pl022->vendor->fifodepth < 32) { 1610 dev_err(&pl022->adev->dev, 1611 "RX FIFO Trigger Level is configured incorrectly\n"); 1612 return -EINVAL; 1613 } 1614 break; 1615 default: 1616 dev_err(&pl022->adev->dev, 1617 "RX FIFO Trigger Level is configured incorrectly\n"); 1618 return -EINVAL; 1619 } 1620 switch (chip_info->tx_lev_trig) { 1621 case SSP_TX_1_OR_MORE_EMPTY_LOC: 1622 case SSP_TX_4_OR_MORE_EMPTY_LOC: 1623 case SSP_TX_8_OR_MORE_EMPTY_LOC: 1624 /* These are always OK, all variants can handle this */ 1625 break; 1626 case SSP_TX_16_OR_MORE_EMPTY_LOC: 1627 if (pl022->vendor->fifodepth < 16) { 1628 dev_err(&pl022->adev->dev, 1629 "TX FIFO Trigger Level is configured incorrectly\n"); 1630 return -EINVAL; 1631 } 1632 break; 1633 case SSP_TX_32_OR_MORE_EMPTY_LOC: 1634 if (pl022->vendor->fifodepth < 32) { 1635 dev_err(&pl022->adev->dev, 1636 "TX FIFO Trigger Level is configured incorrectly\n"); 1637 return -EINVAL; 1638 } 1639 break; 1640 default: 1641 dev_err(&pl022->adev->dev, 1642 "TX FIFO Trigger Level is configured incorrectly\n"); 1643 return -EINVAL; 1644 } 1645 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) { 1646 if ((chip_info->ctrl_len < SSP_BITS_4) 1647 || (chip_info->ctrl_len > SSP_BITS_32)) { 1648 dev_err(&pl022->adev->dev, 1649 "CTRL LEN is configured incorrectly\n"); 1650 return -EINVAL; 1651 } 1652 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO) 1653 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) { 1654 dev_err(&pl022->adev->dev, 1655 "Wait State is configured incorrectly\n"); 1656 return -EINVAL; 1657 } 1658 /* Half duplex is only available in the ST Micro version */ 1659 if (pl022->vendor->extended_cr) { 1660 if ((chip_info->duplex != 1661 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) 1662 && (chip_info->duplex != 1663 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) { 1664 dev_err(&pl022->adev->dev, 1665 "Microwire duplex mode is configured incorrectly\n"); 1666 return -EINVAL; 1667 } 1668 } else { 1669 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) 1670 dev_err(&pl022->adev->dev, 1671 "Microwire half duplex mode requested," 1672 " but this is only available in the" 1673 " ST version of PL022\n"); 1674 return -EINVAL; 1675 } 1676 } 1677 return 0; 1678 } 1679 1680 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr) 1681 { 1682 return rate / (cpsdvsr * (1 + scr)); 1683 } 1684 1685 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct 1686 ssp_clock_params * clk_freq) 1687 { 1688 /* Lets calculate the frequency parameters */ 1689 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN; 1690 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0, 1691 best_scr = 0, tmp, found = 0; 1692 1693 rate = clk_get_rate(pl022->clk); 1694 /* cpsdvscr = 2 & scr 0 */ 1695 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN); 1696 /* cpsdvsr = 254 & scr = 255 */ 1697 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX); 1698 1699 if (freq > max_tclk) 1700 dev_warn(&pl022->adev->dev, 1701 "Max speed that can be programmed is %d Hz, you requested %d\n", 1702 max_tclk, freq); 1703 1704 if (freq < min_tclk) { 1705 dev_err(&pl022->adev->dev, 1706 "Requested frequency: %d Hz is less than minimum possible %d Hz\n", 1707 freq, min_tclk); 1708 return -EINVAL; 1709 } 1710 1711 /* 1712 * best_freq will give closest possible available rate (<= requested 1713 * freq) for all values of scr & cpsdvsr. 1714 */ 1715 while ((cpsdvsr <= CPSDVR_MAX) && !found) { 1716 while (scr <= SCR_MAX) { 1717 tmp = spi_rate(rate, cpsdvsr, scr); 1718 1719 if (tmp > freq) { 1720 /* we need lower freq */ 1721 scr++; 1722 continue; 1723 } 1724 1725 /* 1726 * If found exact value, mark found and break. 1727 * If found more closer value, update and break. 1728 */ 1729 if (tmp > best_freq) { 1730 best_freq = tmp; 1731 best_cpsdvsr = cpsdvsr; 1732 best_scr = scr; 1733 1734 if (tmp == freq) 1735 found = 1; 1736 } 1737 /* 1738 * increased scr will give lower rates, which are not 1739 * required 1740 */ 1741 break; 1742 } 1743 cpsdvsr += 2; 1744 scr = SCR_MIN; 1745 } 1746 1747 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n", 1748 freq); 1749 1750 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF); 1751 clk_freq->scr = (u8) (best_scr & 0xFF); 1752 dev_dbg(&pl022->adev->dev, 1753 "SSP Target Frequency is: %u, Effective Frequency is %u\n", 1754 freq, best_freq); 1755 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n", 1756 clk_freq->cpsdvsr, clk_freq->scr); 1757 1758 return 0; 1759 } 1760 1761 /* 1762 * A piece of default chip info unless the platform 1763 * supplies it. 1764 */ 1765 static const struct pl022_config_chip pl022_default_chip_info = { 1766 .com_mode = POLLING_TRANSFER, 1767 .iface = SSP_INTERFACE_MOTOROLA_SPI, 1768 .hierarchy = SSP_SLAVE, 1769 .slave_tx_disable = DO_NOT_DRIVE_TX, 1770 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM, 1771 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC, 1772 .ctrl_len = SSP_BITS_8, 1773 .wait_state = SSP_MWIRE_WAIT_ZERO, 1774 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, 1775 .cs_control = null_cs_control, 1776 }; 1777 1778 /** 1779 * pl022_setup - setup function registered to SPI master framework 1780 * @spi: spi device which is requesting setup 1781 * 1782 * This function is registered to the SPI framework for this SPI master 1783 * controller. If it is the first time when setup is called by this device, 1784 * this function will initialize the runtime state for this chip and save 1785 * the same in the device structure. Else it will update the runtime info 1786 * with the updated chip info. Nothing is really being written to the 1787 * controller hardware here, that is not done until the actual transfer 1788 * commence. 1789 */ 1790 static int pl022_setup(struct spi_device *spi) 1791 { 1792 struct pl022_config_chip const *chip_info; 1793 struct pl022_config_chip chip_info_dt; 1794 struct chip_data *chip; 1795 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0}; 1796 int status = 0; 1797 struct pl022 *pl022 = spi_master_get_devdata(spi->master); 1798 unsigned int bits = spi->bits_per_word; 1799 u32 tmp; 1800 struct device_node *np = spi->dev.of_node; 1801 1802 if (!spi->max_speed_hz) 1803 return -EINVAL; 1804 1805 /* Get controller_state if one is supplied */ 1806 chip = spi_get_ctldata(spi); 1807 1808 if (chip == NULL) { 1809 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1810 if (!chip) 1811 return -ENOMEM; 1812 dev_dbg(&spi->dev, 1813 "allocated memory for controller's runtime state\n"); 1814 } 1815 1816 /* Get controller data if one is supplied */ 1817 chip_info = spi->controller_data; 1818 1819 if (chip_info == NULL) { 1820 if (np) { 1821 chip_info_dt = pl022_default_chip_info; 1822 1823 chip_info_dt.hierarchy = SSP_MASTER; 1824 of_property_read_u32(np, "pl022,interface", 1825 &chip_info_dt.iface); 1826 of_property_read_u32(np, "pl022,com-mode", 1827 &chip_info_dt.com_mode); 1828 of_property_read_u32(np, "pl022,rx-level-trig", 1829 &chip_info_dt.rx_lev_trig); 1830 of_property_read_u32(np, "pl022,tx-level-trig", 1831 &chip_info_dt.tx_lev_trig); 1832 of_property_read_u32(np, "pl022,ctrl-len", 1833 &chip_info_dt.ctrl_len); 1834 of_property_read_u32(np, "pl022,wait-state", 1835 &chip_info_dt.wait_state); 1836 of_property_read_u32(np, "pl022,duplex", 1837 &chip_info_dt.duplex); 1838 1839 chip_info = &chip_info_dt; 1840 } else { 1841 chip_info = &pl022_default_chip_info; 1842 /* spi_board_info.controller_data not is supplied */ 1843 dev_dbg(&spi->dev, 1844 "using default controller_data settings\n"); 1845 } 1846 } else 1847 dev_dbg(&spi->dev, 1848 "using user supplied controller_data settings\n"); 1849 1850 /* 1851 * We can override with custom divisors, else we use the board 1852 * frequency setting 1853 */ 1854 if ((0 == chip_info->clk_freq.cpsdvsr) 1855 && (0 == chip_info->clk_freq.scr)) { 1856 status = calculate_effective_freq(pl022, 1857 spi->max_speed_hz, 1858 &clk_freq); 1859 if (status < 0) 1860 goto err_config_params; 1861 } else { 1862 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq)); 1863 if ((clk_freq.cpsdvsr % 2) != 0) 1864 clk_freq.cpsdvsr = 1865 clk_freq.cpsdvsr - 1; 1866 } 1867 if ((clk_freq.cpsdvsr < CPSDVR_MIN) 1868 || (clk_freq.cpsdvsr > CPSDVR_MAX)) { 1869 status = -EINVAL; 1870 dev_err(&spi->dev, 1871 "cpsdvsr is configured incorrectly\n"); 1872 goto err_config_params; 1873 } 1874 1875 status = verify_controller_parameters(pl022, chip_info); 1876 if (status) { 1877 dev_err(&spi->dev, "controller data is incorrect"); 1878 goto err_config_params; 1879 } 1880 1881 pl022->rx_lev_trig = chip_info->rx_lev_trig; 1882 pl022->tx_lev_trig = chip_info->tx_lev_trig; 1883 1884 /* Now set controller state based on controller data */ 1885 chip->xfer_type = chip_info->com_mode; 1886 if (!chip_info->cs_control) { 1887 chip->cs_control = null_cs_control; 1888 if (!gpio_is_valid(pl022->chipselects[spi->chip_select])) 1889 dev_warn(&spi->dev, 1890 "invalid chip select\n"); 1891 } else 1892 chip->cs_control = chip_info->cs_control; 1893 1894 /* Check bits per word with vendor specific range */ 1895 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) { 1896 status = -ENOTSUPP; 1897 dev_err(&spi->dev, "illegal data size for this controller!\n"); 1898 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n", 1899 pl022->vendor->max_bpw); 1900 goto err_config_params; 1901 } else if (bits <= 8) { 1902 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n"); 1903 chip->n_bytes = 1; 1904 chip->read = READING_U8; 1905 chip->write = WRITING_U8; 1906 } else if (bits <= 16) { 1907 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n"); 1908 chip->n_bytes = 2; 1909 chip->read = READING_U16; 1910 chip->write = WRITING_U16; 1911 } else { 1912 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n"); 1913 chip->n_bytes = 4; 1914 chip->read = READING_U32; 1915 chip->write = WRITING_U32; 1916 } 1917 1918 /* Now Initialize all register settings required for this chip */ 1919 chip->cr0 = 0; 1920 chip->cr1 = 0; 1921 chip->dmacr = 0; 1922 chip->cpsr = 0; 1923 if ((chip_info->com_mode == DMA_TRANSFER) 1924 && ((pl022->master_info)->enable_dma)) { 1925 chip->enable_dma = true; 1926 dev_dbg(&spi->dev, "DMA mode set in controller state\n"); 1927 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, 1928 SSP_DMACR_MASK_RXDMAE, 0); 1929 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, 1930 SSP_DMACR_MASK_TXDMAE, 1); 1931 } else { 1932 chip->enable_dma = false; 1933 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n"); 1934 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, 1935 SSP_DMACR_MASK_RXDMAE, 0); 1936 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, 1937 SSP_DMACR_MASK_TXDMAE, 1); 1938 } 1939 1940 chip->cpsr = clk_freq.cpsdvsr; 1941 1942 /* Special setup for the ST micro extended control registers */ 1943 if (pl022->vendor->extended_cr) { 1944 u32 etx; 1945 1946 if (pl022->vendor->pl023) { 1947 /* These bits are only in the PL023 */ 1948 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay, 1949 SSP_CR1_MASK_FBCLKDEL_ST, 13); 1950 } else { 1951 /* These bits are in the PL022 but not PL023 */ 1952 SSP_WRITE_BITS(chip->cr0, chip_info->duplex, 1953 SSP_CR0_MASK_HALFDUP_ST, 5); 1954 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len, 1955 SSP_CR0_MASK_CSS_ST, 16); 1956 SSP_WRITE_BITS(chip->cr0, chip_info->iface, 1957 SSP_CR0_MASK_FRF_ST, 21); 1958 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state, 1959 SSP_CR1_MASK_MWAIT_ST, 6); 1960 } 1961 SSP_WRITE_BITS(chip->cr0, bits - 1, 1962 SSP_CR0_MASK_DSS_ST, 0); 1963 1964 if (spi->mode & SPI_LSB_FIRST) { 1965 tmp = SSP_RX_LSB; 1966 etx = SSP_TX_LSB; 1967 } else { 1968 tmp = SSP_RX_MSB; 1969 etx = SSP_TX_MSB; 1970 } 1971 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4); 1972 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5); 1973 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig, 1974 SSP_CR1_MASK_RXIFLSEL_ST, 7); 1975 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig, 1976 SSP_CR1_MASK_TXIFLSEL_ST, 10); 1977 } else { 1978 SSP_WRITE_BITS(chip->cr0, bits - 1, 1979 SSP_CR0_MASK_DSS, 0); 1980 SSP_WRITE_BITS(chip->cr0, chip_info->iface, 1981 SSP_CR0_MASK_FRF, 4); 1982 } 1983 1984 /* Stuff that is common for all versions */ 1985 if (spi->mode & SPI_CPOL) 1986 tmp = SSP_CLK_POL_IDLE_HIGH; 1987 else 1988 tmp = SSP_CLK_POL_IDLE_LOW; 1989 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6); 1990 1991 if (spi->mode & SPI_CPHA) 1992 tmp = SSP_CLK_SECOND_EDGE; 1993 else 1994 tmp = SSP_CLK_FIRST_EDGE; 1995 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7); 1996 1997 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8); 1998 /* Loopback is available on all versions except PL023 */ 1999 if (pl022->vendor->loopback) { 2000 if (spi->mode & SPI_LOOP) 2001 tmp = LOOPBACK_ENABLED; 2002 else 2003 tmp = LOOPBACK_DISABLED; 2004 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0); 2005 } 2006 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1); 2007 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2); 2008 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 2009 3); 2010 2011 /* Save controller_state */ 2012 spi_set_ctldata(spi, chip); 2013 return status; 2014 err_config_params: 2015 spi_set_ctldata(spi, NULL); 2016 kfree(chip); 2017 return status; 2018 } 2019 2020 /** 2021 * pl022_cleanup - cleanup function registered to SPI master framework 2022 * @spi: spi device which is requesting cleanup 2023 * 2024 * This function is registered to the SPI framework for this SPI master 2025 * controller. It will free the runtime state of chip. 2026 */ 2027 static void pl022_cleanup(struct spi_device *spi) 2028 { 2029 struct chip_data *chip = spi_get_ctldata(spi); 2030 2031 spi_set_ctldata(spi, NULL); 2032 kfree(chip); 2033 } 2034 2035 static struct pl022_ssp_controller * 2036 pl022_platform_data_dt_get(struct device *dev) 2037 { 2038 struct device_node *np = dev->of_node; 2039 struct pl022_ssp_controller *pd; 2040 u32 tmp; 2041 2042 if (!np) { 2043 dev_err(dev, "no dt node defined\n"); 2044 return NULL; 2045 } 2046 2047 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL); 2048 if (!pd) 2049 return NULL; 2050 2051 pd->bus_id = -1; 2052 pd->enable_dma = 1; 2053 of_property_read_u32(np, "num-cs", &tmp); 2054 pd->num_chipselect = tmp; 2055 of_property_read_u32(np, "pl022,autosuspend-delay", 2056 &pd->autosuspend_delay); 2057 pd->rt = of_property_read_bool(np, "pl022,rt"); 2058 2059 return pd; 2060 } 2061 2062 static int pl022_probe(struct amba_device *adev, const struct amba_id *id) 2063 { 2064 struct device *dev = &adev->dev; 2065 struct pl022_ssp_controller *platform_info = 2066 dev_get_platdata(&adev->dev); 2067 struct spi_master *master; 2068 struct pl022 *pl022 = NULL; /*Data for this driver */ 2069 struct device_node *np = adev->dev.of_node; 2070 int status = 0, i, num_cs; 2071 2072 dev_info(&adev->dev, 2073 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid); 2074 if (!platform_info && IS_ENABLED(CONFIG_OF)) 2075 platform_info = pl022_platform_data_dt_get(dev); 2076 2077 if (!platform_info) { 2078 dev_err(dev, "probe: no platform data defined\n"); 2079 return -ENODEV; 2080 } 2081 2082 if (platform_info->num_chipselect) { 2083 num_cs = platform_info->num_chipselect; 2084 } else { 2085 dev_err(dev, "probe: no chip select defined\n"); 2086 return -ENODEV; 2087 } 2088 2089 /* Allocate master with space for data */ 2090 master = spi_alloc_master(dev, sizeof(struct pl022)); 2091 if (master == NULL) { 2092 dev_err(&adev->dev, "probe - cannot alloc SPI master\n"); 2093 return -ENOMEM; 2094 } 2095 2096 pl022 = spi_master_get_devdata(master); 2097 pl022->master = master; 2098 pl022->master_info = platform_info; 2099 pl022->adev = adev; 2100 pl022->vendor = id->data; 2101 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int), 2102 GFP_KERNEL); 2103 2104 /* 2105 * Bus Number Which has been Assigned to this SSP controller 2106 * on this board 2107 */ 2108 master->bus_num = platform_info->bus_id; 2109 master->num_chipselect = num_cs; 2110 master->cleanup = pl022_cleanup; 2111 master->setup = pl022_setup; 2112 master->auto_runtime_pm = true; 2113 master->transfer_one_message = pl022_transfer_one_message; 2114 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware; 2115 master->rt = platform_info->rt; 2116 master->dev.of_node = dev->of_node; 2117 2118 if (platform_info->num_chipselect && platform_info->chipselects) { 2119 for (i = 0; i < num_cs; i++) 2120 pl022->chipselects[i] = platform_info->chipselects[i]; 2121 } else if (IS_ENABLED(CONFIG_OF)) { 2122 for (i = 0; i < num_cs; i++) { 2123 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i); 2124 2125 if (cs_gpio == -EPROBE_DEFER) { 2126 status = -EPROBE_DEFER; 2127 goto err_no_gpio; 2128 } 2129 2130 pl022->chipselects[i] = cs_gpio; 2131 2132 if (gpio_is_valid(cs_gpio)) { 2133 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022")) 2134 dev_err(&adev->dev, 2135 "could not request %d gpio\n", 2136 cs_gpio); 2137 else if (gpio_direction_output(cs_gpio, 1)) 2138 dev_err(&adev->dev, 2139 "could set gpio %d as output\n", 2140 cs_gpio); 2141 } 2142 } 2143 } 2144 2145 /* 2146 * Supports mode 0-3, loopback, and active low CS. Transfers are 2147 * always MS bit first on the original pl022. 2148 */ 2149 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 2150 if (pl022->vendor->extended_cr) 2151 master->mode_bits |= SPI_LSB_FIRST; 2152 2153 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num); 2154 2155 status = amba_request_regions(adev, NULL); 2156 if (status) 2157 goto err_no_ioregion; 2158 2159 pl022->phybase = adev->res.start; 2160 pl022->virtbase = devm_ioremap(dev, adev->res.start, 2161 resource_size(&adev->res)); 2162 if (pl022->virtbase == NULL) { 2163 status = -ENOMEM; 2164 goto err_no_ioremap; 2165 } 2166 dev_info(&adev->dev, "mapped registers from %pa to %p\n", 2167 &adev->res.start, pl022->virtbase); 2168 2169 pl022->clk = devm_clk_get(&adev->dev, NULL); 2170 if (IS_ERR(pl022->clk)) { 2171 status = PTR_ERR(pl022->clk); 2172 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n"); 2173 goto err_no_clk; 2174 } 2175 2176 status = clk_prepare_enable(pl022->clk); 2177 if (status) { 2178 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n"); 2179 goto err_no_clk_en; 2180 } 2181 2182 /* Initialize transfer pump */ 2183 tasklet_init(&pl022->pump_transfers, pump_transfers, 2184 (unsigned long)pl022); 2185 2186 /* Disable SSP */ 2187 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)), 2188 SSP_CR1(pl022->virtbase)); 2189 load_ssp_default_config(pl022); 2190 2191 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler, 2192 0, "pl022", pl022); 2193 if (status < 0) { 2194 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status); 2195 goto err_no_irq; 2196 } 2197 2198 /* Get DMA channels, try autoconfiguration first */ 2199 status = pl022_dma_autoprobe(pl022); 2200 2201 /* If that failed, use channels from platform_info */ 2202 if (status == 0) 2203 platform_info->enable_dma = 1; 2204 else if (platform_info->enable_dma) { 2205 status = pl022_dma_probe(pl022); 2206 if (status != 0) 2207 platform_info->enable_dma = 0; 2208 } 2209 2210 /* Register with the SPI framework */ 2211 amba_set_drvdata(adev, pl022); 2212 status = devm_spi_register_master(&adev->dev, master); 2213 if (status != 0) { 2214 dev_err(&adev->dev, 2215 "probe - problem registering spi master\n"); 2216 goto err_spi_register; 2217 } 2218 dev_dbg(dev, "probe succeeded\n"); 2219 2220 /* let runtime pm put suspend */ 2221 if (platform_info->autosuspend_delay > 0) { 2222 dev_info(&adev->dev, 2223 "will use autosuspend for runtime pm, delay %dms\n", 2224 platform_info->autosuspend_delay); 2225 pm_runtime_set_autosuspend_delay(dev, 2226 platform_info->autosuspend_delay); 2227 pm_runtime_use_autosuspend(dev); 2228 } 2229 pm_runtime_put(dev); 2230 2231 return 0; 2232 2233 err_spi_register: 2234 if (platform_info->enable_dma) 2235 pl022_dma_remove(pl022); 2236 err_no_irq: 2237 clk_disable_unprepare(pl022->clk); 2238 err_no_clk_en: 2239 err_no_clk: 2240 err_no_ioremap: 2241 amba_release_regions(adev); 2242 err_no_ioregion: 2243 err_no_gpio: 2244 spi_master_put(master); 2245 return status; 2246 } 2247 2248 static int 2249 pl022_remove(struct amba_device *adev) 2250 { 2251 struct pl022 *pl022 = amba_get_drvdata(adev); 2252 2253 if (!pl022) 2254 return 0; 2255 2256 /* 2257 * undo pm_runtime_put() in probe. I assume that we're not 2258 * accessing the primecell here. 2259 */ 2260 pm_runtime_get_noresume(&adev->dev); 2261 2262 load_ssp_default_config(pl022); 2263 if (pl022->master_info->enable_dma) 2264 pl022_dma_remove(pl022); 2265 2266 clk_disable_unprepare(pl022->clk); 2267 amba_release_regions(adev); 2268 tasklet_disable(&pl022->pump_transfers); 2269 return 0; 2270 } 2271 2272 #ifdef CONFIG_PM_SLEEP 2273 static int pl022_suspend(struct device *dev) 2274 { 2275 struct pl022 *pl022 = dev_get_drvdata(dev); 2276 int ret; 2277 2278 ret = spi_master_suspend(pl022->master); 2279 if (ret) { 2280 dev_warn(dev, "cannot suspend master\n"); 2281 return ret; 2282 } 2283 2284 ret = pm_runtime_force_suspend(dev); 2285 if (ret) { 2286 spi_master_resume(pl022->master); 2287 return ret; 2288 } 2289 2290 pinctrl_pm_select_sleep_state(dev); 2291 2292 dev_dbg(dev, "suspended\n"); 2293 return 0; 2294 } 2295 2296 static int pl022_resume(struct device *dev) 2297 { 2298 struct pl022 *pl022 = dev_get_drvdata(dev); 2299 int ret; 2300 2301 ret = pm_runtime_force_resume(dev); 2302 if (ret) 2303 dev_err(dev, "problem resuming\n"); 2304 2305 /* Start the queue running */ 2306 ret = spi_master_resume(pl022->master); 2307 if (ret) 2308 dev_err(dev, "problem starting queue (%d)\n", ret); 2309 else 2310 dev_dbg(dev, "resumed\n"); 2311 2312 return ret; 2313 } 2314 #endif 2315 2316 #ifdef CONFIG_PM 2317 static int pl022_runtime_suspend(struct device *dev) 2318 { 2319 struct pl022 *pl022 = dev_get_drvdata(dev); 2320 2321 clk_disable_unprepare(pl022->clk); 2322 pinctrl_pm_select_idle_state(dev); 2323 2324 return 0; 2325 } 2326 2327 static int pl022_runtime_resume(struct device *dev) 2328 { 2329 struct pl022 *pl022 = dev_get_drvdata(dev); 2330 2331 pinctrl_pm_select_default_state(dev); 2332 clk_prepare_enable(pl022->clk); 2333 2334 return 0; 2335 } 2336 #endif 2337 2338 static const struct dev_pm_ops pl022_dev_pm_ops = { 2339 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume) 2340 SET_PM_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL) 2341 }; 2342 2343 static struct vendor_data vendor_arm = { 2344 .fifodepth = 8, 2345 .max_bpw = 16, 2346 .unidir = false, 2347 .extended_cr = false, 2348 .pl023 = false, 2349 .loopback = true, 2350 }; 2351 2352 static struct vendor_data vendor_st = { 2353 .fifodepth = 32, 2354 .max_bpw = 32, 2355 .unidir = false, 2356 .extended_cr = true, 2357 .pl023 = false, 2358 .loopback = true, 2359 }; 2360 2361 static struct vendor_data vendor_st_pl023 = { 2362 .fifodepth = 32, 2363 .max_bpw = 32, 2364 .unidir = false, 2365 .extended_cr = true, 2366 .pl023 = true, 2367 .loopback = false, 2368 }; 2369 2370 static struct amba_id pl022_ids[] = { 2371 { 2372 /* 2373 * ARM PL022 variant, this has a 16bit wide 2374 * and 8 locations deep TX/RX FIFO 2375 */ 2376 .id = 0x00041022, 2377 .mask = 0x000fffff, 2378 .data = &vendor_arm, 2379 }, 2380 { 2381 /* 2382 * ST Micro derivative, this has 32bit wide 2383 * and 32 locations deep TX/RX FIFO 2384 */ 2385 .id = 0x01080022, 2386 .mask = 0xffffffff, 2387 .data = &vendor_st, 2388 }, 2389 { 2390 /* 2391 * ST-Ericsson derivative "PL023" (this is not 2392 * an official ARM number), this is a PL022 SSP block 2393 * stripped to SPI mode only, it has 32bit wide 2394 * and 32 locations deep TX/RX FIFO but no extended 2395 * CR0/CR1 register 2396 */ 2397 .id = 0x00080023, 2398 .mask = 0xffffffff, 2399 .data = &vendor_st_pl023, 2400 }, 2401 { 0, 0 }, 2402 }; 2403 2404 MODULE_DEVICE_TABLE(amba, pl022_ids); 2405 2406 static struct amba_driver pl022_driver = { 2407 .drv = { 2408 .name = "ssp-pl022", 2409 .pm = &pl022_dev_pm_ops, 2410 }, 2411 .id_table = pl022_ids, 2412 .probe = pl022_probe, 2413 .remove = pl022_remove, 2414 }; 2415 2416 static int __init pl022_init(void) 2417 { 2418 return amba_driver_register(&pl022_driver); 2419 } 2420 subsys_initcall(pl022_init); 2421 2422 static void __exit pl022_exit(void) 2423 { 2424 amba_driver_unregister(&pl022_driver); 2425 } 2426 module_exit(pl022_exit); 2427 2428 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>"); 2429 MODULE_DESCRIPTION("PL022 SSP Controller Driver"); 2430 MODULE_LICENSE("GPL"); 2431