xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4  *
5  * Copyright (C) 2008-2012 ST-Ericsson AB
6  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7  *
8  * Author: Linus Walleij <linus.walleij@stericsson.com>
9  *
10  * Initial version inspired by:
11  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12  * Initial adoption to PL022 by:
13  *      Sachin Verma <sachin.verma@st.com>
14  */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/spi/spi.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/amba/bus.h>
27 #include <linux/amba/pl022.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/dmaengine.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/scatterlist.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/gpio.h>
35 #include <linux/of_gpio.h>
36 #include <linux/pinctrl/consumer.h>
37 
38 /*
39  * This macro is used to define some register default values.
40  * reg is masked with mask, the OR:ed with an (again masked)
41  * val shifted sb steps to the left.
42  */
43 #define SSP_WRITE_BITS(reg, val, mask, sb) \
44  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
45 
46 /*
47  * This macro is also used to define some default values.
48  * It will just shift val by sb steps to the left and mask
49  * the result with mask.
50  */
51 #define GEN_MASK_BITS(val, mask, sb) \
52  (((val)<<(sb)) & (mask))
53 
54 #define DRIVE_TX		0
55 #define DO_NOT_DRIVE_TX		1
56 
57 #define DO_NOT_QUEUE_DMA	0
58 #define QUEUE_DMA		1
59 
60 #define RX_TRANSFER		1
61 #define TX_TRANSFER		2
62 
63 /*
64  * Macros to access SSP Registers with their offsets
65  */
66 #define SSP_CR0(r)	(r + 0x000)
67 #define SSP_CR1(r)	(r + 0x004)
68 #define SSP_DR(r)	(r + 0x008)
69 #define SSP_SR(r)	(r + 0x00C)
70 #define SSP_CPSR(r)	(r + 0x010)
71 #define SSP_IMSC(r)	(r + 0x014)
72 #define SSP_RIS(r)	(r + 0x018)
73 #define SSP_MIS(r)	(r + 0x01C)
74 #define SSP_ICR(r)	(r + 0x020)
75 #define SSP_DMACR(r)	(r + 0x024)
76 #define SSP_CSR(r)	(r + 0x030) /* vendor extension */
77 #define SSP_ITCR(r)	(r + 0x080)
78 #define SSP_ITIP(r)	(r + 0x084)
79 #define SSP_ITOP(r)	(r + 0x088)
80 #define SSP_TDR(r)	(r + 0x08C)
81 
82 #define SSP_PID0(r)	(r + 0xFE0)
83 #define SSP_PID1(r)	(r + 0xFE4)
84 #define SSP_PID2(r)	(r + 0xFE8)
85 #define SSP_PID3(r)	(r + 0xFEC)
86 
87 #define SSP_CID0(r)	(r + 0xFF0)
88 #define SSP_CID1(r)	(r + 0xFF4)
89 #define SSP_CID2(r)	(r + 0xFF8)
90 #define SSP_CID3(r)	(r + 0xFFC)
91 
92 /*
93  * SSP Control Register 0  - SSP_CR0
94  */
95 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
96 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
97 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
98 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
99 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
100 
101 /*
102  * The ST version of this block moves som bits
103  * in SSP_CR0 and extends it to 32 bits
104  */
105 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
106 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
107 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
108 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
109 
110 /*
111  * SSP Control Register 0  - SSP_CR1
112  */
113 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
114 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
115 #define SSP_CR1_MASK_MS		(0x1UL << 2)
116 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
117 
118 /*
119  * The ST version of this block adds some bits
120  * in SSP_CR1
121  */
122 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
123 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
124 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
125 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
126 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
127 /* This one is only in the PL023 variant */
128 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
129 
130 /*
131  * SSP Status Register - SSP_SR
132  */
133 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
134 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
135 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
136 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
137 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
138 
139 /*
140  * SSP Clock Prescale Register  - SSP_CPSR
141  */
142 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
143 
144 /*
145  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
146  */
147 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
148 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
149 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
150 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
151 
152 /*
153  * SSP Raw Interrupt Status Register - SSP_RIS
154  */
155 /* Receive Overrun Raw Interrupt status */
156 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
157 /* Receive Timeout Raw Interrupt status */
158 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
159 /* Receive FIFO Raw Interrupt status */
160 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
161 /* Transmit FIFO Raw Interrupt status */
162 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
163 
164 /*
165  * SSP Masked Interrupt Status Register - SSP_MIS
166  */
167 /* Receive Overrun Masked Interrupt status */
168 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
169 /* Receive Timeout Masked Interrupt status */
170 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
171 /* Receive FIFO Masked Interrupt status */
172 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
173 /* Transmit FIFO Masked Interrupt status */
174 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
175 
176 /*
177  * SSP Interrupt Clear Register - SSP_ICR
178  */
179 /* Receive Overrun Raw Clear Interrupt bit */
180 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
181 /* Receive Timeout Clear Interrupt bit */
182 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
183 
184 /*
185  * SSP DMA Control Register - SSP_DMACR
186  */
187 /* Receive DMA Enable bit */
188 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
189 /* Transmit DMA Enable bit */
190 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
191 
192 /*
193  * SSP Chip Select Control Register - SSP_CSR
194  * (vendor extension)
195  */
196 #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
197 
198 /*
199  * SSP Integration Test control Register - SSP_ITCR
200  */
201 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
202 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
203 
204 /*
205  * SSP Integration Test Input Register - SSP_ITIP
206  */
207 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
208 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
209 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
210 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
211 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
212 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
213 
214 /*
215  * SSP Integration Test output Register - SSP_ITOP
216  */
217 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
218 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
219 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
220 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
221 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
222 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
223 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
224 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
225 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
226 #define ITOP_MASK_INTR			 (0x1UL << 9)
227 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
228 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
229 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
230 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
231 
232 /*
233  * SSP Test Data Register - SSP_TDR
234  */
235 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
236 
237 /*
238  * Message State
239  * we use the spi_message.state (void *) pointer to
240  * hold a single state value, that's why all this
241  * (void *) casting is done here.
242  */
243 #define STATE_START			((void *) 0)
244 #define STATE_RUNNING			((void *) 1)
245 #define STATE_DONE			((void *) 2)
246 #define STATE_ERROR			((void *) -1)
247 #define STATE_TIMEOUT			((void *) -2)
248 
249 /*
250  * SSP State - Whether Enabled or Disabled
251  */
252 #define SSP_DISABLED			(0)
253 #define SSP_ENABLED			(1)
254 
255 /*
256  * SSP DMA State - Whether DMA Enabled or Disabled
257  */
258 #define SSP_DMA_DISABLED		(0)
259 #define SSP_DMA_ENABLED			(1)
260 
261 /*
262  * SSP Clock Defaults
263  */
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
266 
267 /*
268  * SSP Clock Parameter ranges
269  */
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
272 #define SCR_MIN 0x00
273 #define SCR_MAX 0xFF
274 
275 /*
276  * SSP Interrupt related Macros
277  */
278 #define DEFAULT_SSP_REG_IMSC  0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS ( \
281 	SSP_IMSC_MASK_RORIM | \
282 	SSP_IMSC_MASK_RTIM | \
283 	SSP_IMSC_MASK_RXIM | \
284 	SSP_IMSC_MASK_TXIM \
285 )
286 
287 #define CLEAR_ALL_INTERRUPTS  0x3
288 
289 #define SPI_POLLING_TIMEOUT 1000
290 
291 /*
292  * The type of reading going on on this chip
293  */
294 enum ssp_reading {
295 	READING_NULL,
296 	READING_U8,
297 	READING_U16,
298 	READING_U32
299 };
300 
301 /**
302  * The type of writing going on on this chip
303  */
304 enum ssp_writing {
305 	WRITING_NULL,
306 	WRITING_U8,
307 	WRITING_U16,
308 	WRITING_U32
309 };
310 
311 /**
312  * struct vendor_data - vendor-specific config parameters
313  * for PL022 derivates
314  * @fifodepth: depth of FIFOs (both)
315  * @max_bpw: maximum number of bits per word
316  * @unidir: supports unidirection transfers
317  * @extended_cr: 32 bit wide control register 0 with extra
318  * features and extra features in CR1 as found in the ST variants
319  * @pl023: supports a subset of the ST extensions called "PL023"
320  * @internal_cs_ctrl: supports chip select control register
321  */
322 struct vendor_data {
323 	int fifodepth;
324 	int max_bpw;
325 	bool unidir;
326 	bool extended_cr;
327 	bool pl023;
328 	bool loopback;
329 	bool internal_cs_ctrl;
330 };
331 
332 /**
333  * struct pl022 - This is the private SSP driver data structure
334  * @adev: AMBA device model hookup
335  * @vendor: vendor data for the IP block
336  * @phybase: the physical memory where the SSP device resides
337  * @virtbase: the virtual memory where the SSP is mapped
338  * @clk: outgoing clock "SPICLK" for the SPI bus
339  * @master: SPI framework hookup
340  * @master_info: controller-specific data from machine setup
341  * @pump_transfers: Tasklet used in Interrupt Transfer mode
342  * @cur_msg: Pointer to current spi_message being processed
343  * @cur_transfer: Pointer to current spi_transfer
344  * @cur_chip: pointer to current clients chip(assigned from controller_state)
345  * @next_msg_cs_active: the next message in the queue has been examined
346  *  and it was found that it uses the same chip select as the previous
347  *  message, so we left it active after the previous transfer, and it's
348  *  active already.
349  * @tx: current position in TX buffer to be read
350  * @tx_end: end position in TX buffer to be read
351  * @rx: current position in RX buffer to be written
352  * @rx_end: end position in RX buffer to be written
353  * @read: the type of read currently going on
354  * @write: the type of write currently going on
355  * @exp_fifo_level: expected FIFO level
356  * @dma_rx_channel: optional channel for RX DMA
357  * @dma_tx_channel: optional channel for TX DMA
358  * @sgt_rx: scattertable for the RX transfer
359  * @sgt_tx: scattertable for the TX transfer
360  * @dummypage: a dummy page used for driving data on the bus with DMA
361  * @cur_cs: current chip select (gpio)
362  * @chipselects: list of chipselects (gpios)
363  */
364 struct pl022 {
365 	struct amba_device		*adev;
366 	struct vendor_data		*vendor;
367 	resource_size_t			phybase;
368 	void __iomem			*virtbase;
369 	struct clk			*clk;
370 	struct spi_master		*master;
371 	struct pl022_ssp_controller	*master_info;
372 	/* Message per-transfer pump */
373 	struct tasklet_struct		pump_transfers;
374 	struct spi_message		*cur_msg;
375 	struct spi_transfer		*cur_transfer;
376 	struct chip_data		*cur_chip;
377 	bool				next_msg_cs_active;
378 	void				*tx;
379 	void				*tx_end;
380 	void				*rx;
381 	void				*rx_end;
382 	enum ssp_reading		read;
383 	enum ssp_writing		write;
384 	u32				exp_fifo_level;
385 	enum ssp_rx_level_trig		rx_lev_trig;
386 	enum ssp_tx_level_trig		tx_lev_trig;
387 	/* DMA settings */
388 #ifdef CONFIG_DMA_ENGINE
389 	struct dma_chan			*dma_rx_channel;
390 	struct dma_chan			*dma_tx_channel;
391 	struct sg_table			sgt_rx;
392 	struct sg_table			sgt_tx;
393 	char				*dummypage;
394 	bool				dma_running;
395 #endif
396 	int cur_cs;
397 	int *chipselects;
398 };
399 
400 /**
401  * struct chip_data - To maintain runtime state of SSP for each client chip
402  * @cr0: Value of control register CR0 of SSP - on later ST variants this
403  *       register is 32 bits wide rather than just 16
404  * @cr1: Value of control register CR1 of SSP
405  * @dmacr: Value of DMA control Register of SSP
406  * @cpsr: Value of Clock prescale register
407  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
408  * @enable_dma: Whether to enable DMA or not
409  * @read: function ptr to be used to read when doing xfer for this chip
410  * @write: function ptr to be used to write when doing xfer for this chip
411  * @cs_control: chip select callback provided by chip
412  * @xfer_type: polling/interrupt/DMA
413  *
414  * Runtime state of the SSP controller, maintained per chip,
415  * This would be set according to the current message that would be served
416  */
417 struct chip_data {
418 	u32 cr0;
419 	u16 cr1;
420 	u16 dmacr;
421 	u16 cpsr;
422 	u8 n_bytes;
423 	bool enable_dma;
424 	enum ssp_reading read;
425 	enum ssp_writing write;
426 	void (*cs_control) (u32 command);
427 	int xfer_type;
428 };
429 
430 /**
431  * null_cs_control - Dummy chip select function
432  * @command: select/delect the chip
433  *
434  * If no chip select function is provided by client this is used as dummy
435  * chip select
436  */
437 static void null_cs_control(u32 command)
438 {
439 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
440 }
441 
442 /**
443  * internal_cs_control - Control chip select signals via SSP_CSR.
444  * @pl022: SSP driver private data structure
445  * @command: select/delect the chip
446  *
447  * Used on controller with internal chip select control via SSP_CSR register
448  * (vendor extension). Each of the 5 LSB in the register controls one chip
449  * select signal.
450  */
451 static void internal_cs_control(struct pl022 *pl022, u32 command)
452 {
453 	u32 tmp;
454 
455 	tmp = readw(SSP_CSR(pl022->virtbase));
456 	if (command == SSP_CHIP_SELECT)
457 		tmp &= ~BIT(pl022->cur_cs);
458 	else
459 		tmp |= BIT(pl022->cur_cs);
460 	writew(tmp, SSP_CSR(pl022->virtbase));
461 }
462 
463 static void pl022_cs_control(struct pl022 *pl022, u32 command)
464 {
465 	if (pl022->vendor->internal_cs_ctrl)
466 		internal_cs_control(pl022, command);
467 	else if (gpio_is_valid(pl022->cur_cs))
468 		gpio_set_value(pl022->cur_cs, command);
469 	else
470 		pl022->cur_chip->cs_control(command);
471 }
472 
473 /**
474  * giveback - current spi_message is over, schedule next message and call
475  * callback of this message. Assumes that caller already
476  * set message->status; dma and pio irqs are blocked
477  * @pl022: SSP driver private data structure
478  */
479 static void giveback(struct pl022 *pl022)
480 {
481 	struct spi_transfer *last_transfer;
482 	pl022->next_msg_cs_active = false;
483 
484 	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
485 					struct spi_transfer, transfer_list);
486 
487 	/* Delay if requested before any change in chip select */
488 	/*
489 	 * FIXME: This runs in interrupt context.
490 	 * Is this really smart?
491 	 */
492 	spi_transfer_delay_exec(last_transfer);
493 
494 	if (!last_transfer->cs_change) {
495 		struct spi_message *next_msg;
496 
497 		/*
498 		 * cs_change was not set. We can keep the chip select
499 		 * enabled if there is message in the queue and it is
500 		 * for the same spi device.
501 		 *
502 		 * We cannot postpone this until pump_messages, because
503 		 * after calling msg->complete (below) the driver that
504 		 * sent the current message could be unloaded, which
505 		 * could invalidate the cs_control() callback...
506 		 */
507 		/* get a pointer to the next message, if any */
508 		next_msg = spi_get_next_queued_message(pl022->master);
509 
510 		/*
511 		 * see if the next and current messages point
512 		 * to the same spi device.
513 		 */
514 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
515 			next_msg = NULL;
516 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
517 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
518 		else
519 			pl022->next_msg_cs_active = true;
520 
521 	}
522 
523 	pl022->cur_msg = NULL;
524 	pl022->cur_transfer = NULL;
525 	pl022->cur_chip = NULL;
526 
527 	/* disable the SPI/SSP operation */
528 	writew((readw(SSP_CR1(pl022->virtbase)) &
529 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
530 
531 	spi_finalize_current_message(pl022->master);
532 }
533 
534 /**
535  * flush - flush the FIFO to reach a clean state
536  * @pl022: SSP driver private data structure
537  */
538 static int flush(struct pl022 *pl022)
539 {
540 	unsigned long limit = loops_per_jiffy << 1;
541 
542 	dev_dbg(&pl022->adev->dev, "flush\n");
543 	do {
544 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
545 			readw(SSP_DR(pl022->virtbase));
546 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
547 
548 	pl022->exp_fifo_level = 0;
549 
550 	return limit;
551 }
552 
553 /**
554  * restore_state - Load configuration of current chip
555  * @pl022: SSP driver private data structure
556  */
557 static void restore_state(struct pl022 *pl022)
558 {
559 	struct chip_data *chip = pl022->cur_chip;
560 
561 	if (pl022->vendor->extended_cr)
562 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
563 	else
564 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
565 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
566 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
567 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
568 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
569 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
570 }
571 
572 /*
573  * Default SSP Register Values
574  */
575 #define DEFAULT_SSP_REG_CR0 ( \
576 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
577 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
578 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
579 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
580 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
581 )
582 
583 /* ST versions have slightly different bit layout */
584 #define DEFAULT_SSP_REG_CR0_ST ( \
585 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
586 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
587 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
590 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
591 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
592 )
593 
594 /* The PL023 version is slightly different again */
595 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
596 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
597 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
598 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
599 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
600 )
601 
602 #define DEFAULT_SSP_REG_CR1 ( \
603 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
604 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
605 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
606 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
607 )
608 
609 /* ST versions extend this register to use all 16 bits */
610 #define DEFAULT_SSP_REG_CR1_ST ( \
611 	DEFAULT_SSP_REG_CR1 | \
612 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
613 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
614 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
615 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
616 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
617 )
618 
619 /*
620  * The PL023 variant has further differences: no loopback mode, no microwire
621  * support, and a new clock feedback delay setting.
622  */
623 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
624 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
625 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
626 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
627 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
628 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
629 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
630 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
631 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
632 )
633 
634 #define DEFAULT_SSP_REG_CPSR ( \
635 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
636 )
637 
638 #define DEFAULT_SSP_REG_DMACR (\
639 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
640 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
641 )
642 
643 /**
644  * load_ssp_default_config - Load default configuration for SSP
645  * @pl022: SSP driver private data structure
646  */
647 static void load_ssp_default_config(struct pl022 *pl022)
648 {
649 	if (pl022->vendor->pl023) {
650 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
651 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
652 	} else if (pl022->vendor->extended_cr) {
653 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
654 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
655 	} else {
656 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
657 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
658 	}
659 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
660 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
661 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
662 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
663 }
664 
665 /**
666  * This will write to TX and read from RX according to the parameters
667  * set in pl022.
668  */
669 static void readwriter(struct pl022 *pl022)
670 {
671 
672 	/*
673 	 * The FIFO depth is different between primecell variants.
674 	 * I believe filling in too much in the FIFO might cause
675 	 * errons in 8bit wide transfers on ARM variants (just 8 words
676 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
677 	 *
678 	 * To prevent this issue, the TX FIFO is only filled to the
679 	 * unused RX FIFO fill length, regardless of what the TX
680 	 * FIFO status flag indicates.
681 	 */
682 	dev_dbg(&pl022->adev->dev,
683 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
684 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
685 
686 	/* Read as much as you can */
687 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
688 	       && (pl022->rx < pl022->rx_end)) {
689 		switch (pl022->read) {
690 		case READING_NULL:
691 			readw(SSP_DR(pl022->virtbase));
692 			break;
693 		case READING_U8:
694 			*(u8 *) (pl022->rx) =
695 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
696 			break;
697 		case READING_U16:
698 			*(u16 *) (pl022->rx) =
699 				(u16) readw(SSP_DR(pl022->virtbase));
700 			break;
701 		case READING_U32:
702 			*(u32 *) (pl022->rx) =
703 				readl(SSP_DR(pl022->virtbase));
704 			break;
705 		}
706 		pl022->rx += (pl022->cur_chip->n_bytes);
707 		pl022->exp_fifo_level--;
708 	}
709 	/*
710 	 * Write as much as possible up to the RX FIFO size
711 	 */
712 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
713 	       && (pl022->tx < pl022->tx_end)) {
714 		switch (pl022->write) {
715 		case WRITING_NULL:
716 			writew(0x0, SSP_DR(pl022->virtbase));
717 			break;
718 		case WRITING_U8:
719 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
720 			break;
721 		case WRITING_U16:
722 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
723 			break;
724 		case WRITING_U32:
725 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
726 			break;
727 		}
728 		pl022->tx += (pl022->cur_chip->n_bytes);
729 		pl022->exp_fifo_level++;
730 		/*
731 		 * This inner reader takes care of things appearing in the RX
732 		 * FIFO as we're transmitting. This will happen a lot since the
733 		 * clock starts running when you put things into the TX FIFO,
734 		 * and then things are continuously clocked into the RX FIFO.
735 		 */
736 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
737 		       && (pl022->rx < pl022->rx_end)) {
738 			switch (pl022->read) {
739 			case READING_NULL:
740 				readw(SSP_DR(pl022->virtbase));
741 				break;
742 			case READING_U8:
743 				*(u8 *) (pl022->rx) =
744 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
745 				break;
746 			case READING_U16:
747 				*(u16 *) (pl022->rx) =
748 					(u16) readw(SSP_DR(pl022->virtbase));
749 				break;
750 			case READING_U32:
751 				*(u32 *) (pl022->rx) =
752 					readl(SSP_DR(pl022->virtbase));
753 				break;
754 			}
755 			pl022->rx += (pl022->cur_chip->n_bytes);
756 			pl022->exp_fifo_level--;
757 		}
758 	}
759 	/*
760 	 * When we exit here the TX FIFO should be full and the RX FIFO
761 	 * should be empty
762 	 */
763 }
764 
765 /**
766  * next_transfer - Move to the Next transfer in the current spi message
767  * @pl022: SSP driver private data structure
768  *
769  * This function moves though the linked list of spi transfers in the
770  * current spi message and returns with the state of current spi
771  * message i.e whether its last transfer is done(STATE_DONE) or
772  * Next transfer is ready(STATE_RUNNING)
773  */
774 static void *next_transfer(struct pl022 *pl022)
775 {
776 	struct spi_message *msg = pl022->cur_msg;
777 	struct spi_transfer *trans = pl022->cur_transfer;
778 
779 	/* Move to next transfer */
780 	if (trans->transfer_list.next != &msg->transfers) {
781 		pl022->cur_transfer =
782 		    list_entry(trans->transfer_list.next,
783 			       struct spi_transfer, transfer_list);
784 		return STATE_RUNNING;
785 	}
786 	return STATE_DONE;
787 }
788 
789 /*
790  * This DMA functionality is only compiled in if we have
791  * access to the generic DMA devices/DMA engine.
792  */
793 #ifdef CONFIG_DMA_ENGINE
794 static void unmap_free_dma_scatter(struct pl022 *pl022)
795 {
796 	/* Unmap and free the SG tables */
797 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
798 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
799 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
800 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
801 	sg_free_table(&pl022->sgt_rx);
802 	sg_free_table(&pl022->sgt_tx);
803 }
804 
805 static void dma_callback(void *data)
806 {
807 	struct pl022 *pl022 = data;
808 	struct spi_message *msg = pl022->cur_msg;
809 
810 	BUG_ON(!pl022->sgt_rx.sgl);
811 
812 #ifdef VERBOSE_DEBUG
813 	/*
814 	 * Optionally dump out buffers to inspect contents, this is
815 	 * good if you want to convince yourself that the loopback
816 	 * read/write contents are the same, when adopting to a new
817 	 * DMA engine.
818 	 */
819 	{
820 		struct scatterlist *sg;
821 		unsigned int i;
822 
823 		dma_sync_sg_for_cpu(&pl022->adev->dev,
824 				    pl022->sgt_rx.sgl,
825 				    pl022->sgt_rx.nents,
826 				    DMA_FROM_DEVICE);
827 
828 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
829 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
830 			print_hex_dump(KERN_ERR, "SPI RX: ",
831 				       DUMP_PREFIX_OFFSET,
832 				       16,
833 				       1,
834 				       sg_virt(sg),
835 				       sg_dma_len(sg),
836 				       1);
837 		}
838 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
839 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
840 			print_hex_dump(KERN_ERR, "SPI TX: ",
841 				       DUMP_PREFIX_OFFSET,
842 				       16,
843 				       1,
844 				       sg_virt(sg),
845 				       sg_dma_len(sg),
846 				       1);
847 		}
848 	}
849 #endif
850 
851 	unmap_free_dma_scatter(pl022);
852 
853 	/* Update total bytes transferred */
854 	msg->actual_length += pl022->cur_transfer->len;
855 	/* Move to next transfer */
856 	msg->state = next_transfer(pl022);
857 	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
858 		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
859 	tasklet_schedule(&pl022->pump_transfers);
860 }
861 
862 static void setup_dma_scatter(struct pl022 *pl022,
863 			      void *buffer,
864 			      unsigned int length,
865 			      struct sg_table *sgtab)
866 {
867 	struct scatterlist *sg;
868 	int bytesleft = length;
869 	void *bufp = buffer;
870 	int mapbytes;
871 	int i;
872 
873 	if (buffer) {
874 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
875 			/*
876 			 * If there are less bytes left than what fits
877 			 * in the current page (plus page alignment offset)
878 			 * we just feed in this, else we stuff in as much
879 			 * as we can.
880 			 */
881 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
882 				mapbytes = bytesleft;
883 			else
884 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
885 			sg_set_page(sg, virt_to_page(bufp),
886 				    mapbytes, offset_in_page(bufp));
887 			bufp += mapbytes;
888 			bytesleft -= mapbytes;
889 			dev_dbg(&pl022->adev->dev,
890 				"set RX/TX target page @ %p, %d bytes, %d left\n",
891 				bufp, mapbytes, bytesleft);
892 		}
893 	} else {
894 		/* Map the dummy buffer on every page */
895 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
896 			if (bytesleft < PAGE_SIZE)
897 				mapbytes = bytesleft;
898 			else
899 				mapbytes = PAGE_SIZE;
900 			sg_set_page(sg, virt_to_page(pl022->dummypage),
901 				    mapbytes, 0);
902 			bytesleft -= mapbytes;
903 			dev_dbg(&pl022->adev->dev,
904 				"set RX/TX to dummy page %d bytes, %d left\n",
905 				mapbytes, bytesleft);
906 
907 		}
908 	}
909 	BUG_ON(bytesleft);
910 }
911 
912 /**
913  * configure_dma - configures the channels for the next transfer
914  * @pl022: SSP driver's private data structure
915  */
916 static int configure_dma(struct pl022 *pl022)
917 {
918 	struct dma_slave_config rx_conf = {
919 		.src_addr = SSP_DR(pl022->phybase),
920 		.direction = DMA_DEV_TO_MEM,
921 		.device_fc = false,
922 	};
923 	struct dma_slave_config tx_conf = {
924 		.dst_addr = SSP_DR(pl022->phybase),
925 		.direction = DMA_MEM_TO_DEV,
926 		.device_fc = false,
927 	};
928 	unsigned int pages;
929 	int ret;
930 	int rx_sglen, tx_sglen;
931 	struct dma_chan *rxchan = pl022->dma_rx_channel;
932 	struct dma_chan *txchan = pl022->dma_tx_channel;
933 	struct dma_async_tx_descriptor *rxdesc;
934 	struct dma_async_tx_descriptor *txdesc;
935 
936 	/* Check that the channels are available */
937 	if (!rxchan || !txchan)
938 		return -ENODEV;
939 
940 	/*
941 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
942 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
943 	 * not trigger on 2 elements this needs explicit mapping rather than
944 	 * calculation.
945 	 */
946 	switch (pl022->rx_lev_trig) {
947 	case SSP_RX_1_OR_MORE_ELEM:
948 		rx_conf.src_maxburst = 1;
949 		break;
950 	case SSP_RX_4_OR_MORE_ELEM:
951 		rx_conf.src_maxburst = 4;
952 		break;
953 	case SSP_RX_8_OR_MORE_ELEM:
954 		rx_conf.src_maxburst = 8;
955 		break;
956 	case SSP_RX_16_OR_MORE_ELEM:
957 		rx_conf.src_maxburst = 16;
958 		break;
959 	case SSP_RX_32_OR_MORE_ELEM:
960 		rx_conf.src_maxburst = 32;
961 		break;
962 	default:
963 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
964 		break;
965 	}
966 
967 	switch (pl022->tx_lev_trig) {
968 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
969 		tx_conf.dst_maxburst = 1;
970 		break;
971 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
972 		tx_conf.dst_maxburst = 4;
973 		break;
974 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
975 		tx_conf.dst_maxburst = 8;
976 		break;
977 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
978 		tx_conf.dst_maxburst = 16;
979 		break;
980 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
981 		tx_conf.dst_maxburst = 32;
982 		break;
983 	default:
984 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
985 		break;
986 	}
987 
988 	switch (pl022->read) {
989 	case READING_NULL:
990 		/* Use the same as for writing */
991 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
992 		break;
993 	case READING_U8:
994 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
995 		break;
996 	case READING_U16:
997 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
998 		break;
999 	case READING_U32:
1000 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1001 		break;
1002 	}
1003 
1004 	switch (pl022->write) {
1005 	case WRITING_NULL:
1006 		/* Use the same as for reading */
1007 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1008 		break;
1009 	case WRITING_U8:
1010 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1011 		break;
1012 	case WRITING_U16:
1013 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1014 		break;
1015 	case WRITING_U32:
1016 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1017 		break;
1018 	}
1019 
1020 	/* SPI pecularity: we need to read and write the same width */
1021 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1022 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1023 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1024 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1025 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1026 
1027 	dmaengine_slave_config(rxchan, &rx_conf);
1028 	dmaengine_slave_config(txchan, &tx_conf);
1029 
1030 	/* Create sglists for the transfers */
1031 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1032 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1033 
1034 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1035 	if (ret)
1036 		goto err_alloc_rx_sg;
1037 
1038 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1039 	if (ret)
1040 		goto err_alloc_tx_sg;
1041 
1042 	/* Fill in the scatterlists for the RX+TX buffers */
1043 	setup_dma_scatter(pl022, pl022->rx,
1044 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1045 	setup_dma_scatter(pl022, pl022->tx,
1046 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1047 
1048 	/* Map DMA buffers */
1049 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1050 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1051 	if (!rx_sglen)
1052 		goto err_rx_sgmap;
1053 
1054 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1055 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1056 	if (!tx_sglen)
1057 		goto err_tx_sgmap;
1058 
1059 	/* Send both scatterlists */
1060 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1061 				      pl022->sgt_rx.sgl,
1062 				      rx_sglen,
1063 				      DMA_DEV_TO_MEM,
1064 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1065 	if (!rxdesc)
1066 		goto err_rxdesc;
1067 
1068 	txdesc = dmaengine_prep_slave_sg(txchan,
1069 				      pl022->sgt_tx.sgl,
1070 				      tx_sglen,
1071 				      DMA_MEM_TO_DEV,
1072 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1073 	if (!txdesc)
1074 		goto err_txdesc;
1075 
1076 	/* Put the callback on the RX transfer only, that should finish last */
1077 	rxdesc->callback = dma_callback;
1078 	rxdesc->callback_param = pl022;
1079 
1080 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1081 	dmaengine_submit(rxdesc);
1082 	dmaengine_submit(txdesc);
1083 	dma_async_issue_pending(rxchan);
1084 	dma_async_issue_pending(txchan);
1085 	pl022->dma_running = true;
1086 
1087 	return 0;
1088 
1089 err_txdesc:
1090 	dmaengine_terminate_all(txchan);
1091 err_rxdesc:
1092 	dmaengine_terminate_all(rxchan);
1093 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1094 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1095 err_tx_sgmap:
1096 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1097 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1098 err_rx_sgmap:
1099 	sg_free_table(&pl022->sgt_tx);
1100 err_alloc_tx_sg:
1101 	sg_free_table(&pl022->sgt_rx);
1102 err_alloc_rx_sg:
1103 	return -ENOMEM;
1104 }
1105 
1106 static int pl022_dma_probe(struct pl022 *pl022)
1107 {
1108 	dma_cap_mask_t mask;
1109 
1110 	/* Try to acquire a generic DMA engine slave channel */
1111 	dma_cap_zero(mask);
1112 	dma_cap_set(DMA_SLAVE, mask);
1113 	/*
1114 	 * We need both RX and TX channels to do DMA, else do none
1115 	 * of them.
1116 	 */
1117 	pl022->dma_rx_channel = dma_request_channel(mask,
1118 					    pl022->master_info->dma_filter,
1119 					    pl022->master_info->dma_rx_param);
1120 	if (!pl022->dma_rx_channel) {
1121 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1122 		goto err_no_rxchan;
1123 	}
1124 
1125 	pl022->dma_tx_channel = dma_request_channel(mask,
1126 					    pl022->master_info->dma_filter,
1127 					    pl022->master_info->dma_tx_param);
1128 	if (!pl022->dma_tx_channel) {
1129 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1130 		goto err_no_txchan;
1131 	}
1132 
1133 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1134 	if (!pl022->dummypage)
1135 		goto err_no_dummypage;
1136 
1137 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1138 		 dma_chan_name(pl022->dma_rx_channel),
1139 		 dma_chan_name(pl022->dma_tx_channel));
1140 
1141 	return 0;
1142 
1143 err_no_dummypage:
1144 	dma_release_channel(pl022->dma_tx_channel);
1145 err_no_txchan:
1146 	dma_release_channel(pl022->dma_rx_channel);
1147 	pl022->dma_rx_channel = NULL;
1148 err_no_rxchan:
1149 	dev_err(&pl022->adev->dev,
1150 			"Failed to work in dma mode, work without dma!\n");
1151 	return -ENODEV;
1152 }
1153 
1154 static int pl022_dma_autoprobe(struct pl022 *pl022)
1155 {
1156 	struct device *dev = &pl022->adev->dev;
1157 	struct dma_chan *chan;
1158 	int err;
1159 
1160 	/* automatically configure DMA channels from platform, normally using DT */
1161 	chan = dma_request_chan(dev, "rx");
1162 	if (IS_ERR(chan)) {
1163 		err = PTR_ERR(chan);
1164 		goto err_no_rxchan;
1165 	}
1166 
1167 	pl022->dma_rx_channel = chan;
1168 
1169 	chan = dma_request_chan(dev, "tx");
1170 	if (IS_ERR(chan)) {
1171 		err = PTR_ERR(chan);
1172 		goto err_no_txchan;
1173 	}
1174 
1175 	pl022->dma_tx_channel = chan;
1176 
1177 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1178 	if (!pl022->dummypage) {
1179 		err = -ENOMEM;
1180 		goto err_no_dummypage;
1181 	}
1182 
1183 	return 0;
1184 
1185 err_no_dummypage:
1186 	dma_release_channel(pl022->dma_tx_channel);
1187 	pl022->dma_tx_channel = NULL;
1188 err_no_txchan:
1189 	dma_release_channel(pl022->dma_rx_channel);
1190 	pl022->dma_rx_channel = NULL;
1191 err_no_rxchan:
1192 	return err;
1193 }
1194 
1195 static void terminate_dma(struct pl022 *pl022)
1196 {
1197 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1198 	struct dma_chan *txchan = pl022->dma_tx_channel;
1199 
1200 	dmaengine_terminate_all(rxchan);
1201 	dmaengine_terminate_all(txchan);
1202 	unmap_free_dma_scatter(pl022);
1203 	pl022->dma_running = false;
1204 }
1205 
1206 static void pl022_dma_remove(struct pl022 *pl022)
1207 {
1208 	if (pl022->dma_running)
1209 		terminate_dma(pl022);
1210 	if (pl022->dma_tx_channel)
1211 		dma_release_channel(pl022->dma_tx_channel);
1212 	if (pl022->dma_rx_channel)
1213 		dma_release_channel(pl022->dma_rx_channel);
1214 	kfree(pl022->dummypage);
1215 }
1216 
1217 #else
1218 static inline int configure_dma(struct pl022 *pl022)
1219 {
1220 	return -ENODEV;
1221 }
1222 
1223 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1224 {
1225 	return 0;
1226 }
1227 
1228 static inline int pl022_dma_probe(struct pl022 *pl022)
1229 {
1230 	return 0;
1231 }
1232 
1233 static inline void pl022_dma_remove(struct pl022 *pl022)
1234 {
1235 }
1236 #endif
1237 
1238 /**
1239  * pl022_interrupt_handler - Interrupt handler for SSP controller
1240  *
1241  * This function handles interrupts generated for an interrupt based transfer.
1242  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1243  * current message's state as STATE_ERROR and schedule the tasklet
1244  * pump_transfers which will do the postprocessing of the current message by
1245  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1246  * more data, and writes data in TX FIFO till it is not full. If we complete
1247  * the transfer we move to the next transfer and schedule the tasklet.
1248  */
1249 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1250 {
1251 	struct pl022 *pl022 = dev_id;
1252 	struct spi_message *msg = pl022->cur_msg;
1253 	u16 irq_status = 0;
1254 
1255 	if (unlikely(!msg)) {
1256 		dev_err(&pl022->adev->dev,
1257 			"bad message state in interrupt handler");
1258 		/* Never fail */
1259 		return IRQ_HANDLED;
1260 	}
1261 
1262 	/* Read the Interrupt Status Register */
1263 	irq_status = readw(SSP_MIS(pl022->virtbase));
1264 
1265 	if (unlikely(!irq_status))
1266 		return IRQ_NONE;
1267 
1268 	/*
1269 	 * This handles the FIFO interrupts, the timeout
1270 	 * interrupts are flatly ignored, they cannot be
1271 	 * trusted.
1272 	 */
1273 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1274 		/*
1275 		 * Overrun interrupt - bail out since our Data has been
1276 		 * corrupted
1277 		 */
1278 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1279 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1280 			dev_err(&pl022->adev->dev,
1281 				"RXFIFO is full\n");
1282 
1283 		/*
1284 		 * Disable and clear interrupts, disable SSP,
1285 		 * mark message with bad status so it can be
1286 		 * retried.
1287 		 */
1288 		writew(DISABLE_ALL_INTERRUPTS,
1289 		       SSP_IMSC(pl022->virtbase));
1290 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1291 		writew((readw(SSP_CR1(pl022->virtbase)) &
1292 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1293 		msg->state = STATE_ERROR;
1294 
1295 		/* Schedule message queue handler */
1296 		tasklet_schedule(&pl022->pump_transfers);
1297 		return IRQ_HANDLED;
1298 	}
1299 
1300 	readwriter(pl022);
1301 
1302 	if (pl022->tx == pl022->tx_end) {
1303 		/* Disable Transmit interrupt, enable receive interrupt */
1304 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1305 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1306 		       SSP_IMSC(pl022->virtbase));
1307 	}
1308 
1309 	/*
1310 	 * Since all transactions must write as much as shall be read,
1311 	 * we can conclude the entire transaction once RX is complete.
1312 	 * At this point, all TX will always be finished.
1313 	 */
1314 	if (pl022->rx >= pl022->rx_end) {
1315 		writew(DISABLE_ALL_INTERRUPTS,
1316 		       SSP_IMSC(pl022->virtbase));
1317 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1318 		if (unlikely(pl022->rx > pl022->rx_end)) {
1319 			dev_warn(&pl022->adev->dev, "read %u surplus "
1320 				 "bytes (did you request an odd "
1321 				 "number of bytes on a 16bit bus?)\n",
1322 				 (u32) (pl022->rx - pl022->rx_end));
1323 		}
1324 		/* Update total bytes transferred */
1325 		msg->actual_length += pl022->cur_transfer->len;
1326 		/* Move to next transfer */
1327 		msg->state = next_transfer(pl022);
1328 		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1329 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1330 		tasklet_schedule(&pl022->pump_transfers);
1331 		return IRQ_HANDLED;
1332 	}
1333 
1334 	return IRQ_HANDLED;
1335 }
1336 
1337 /**
1338  * This sets up the pointers to memory for the next message to
1339  * send out on the SPI bus.
1340  */
1341 static int set_up_next_transfer(struct pl022 *pl022,
1342 				struct spi_transfer *transfer)
1343 {
1344 	int residue;
1345 
1346 	/* Sanity check the message for this bus width */
1347 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1348 	if (unlikely(residue != 0)) {
1349 		dev_err(&pl022->adev->dev,
1350 			"message of %u bytes to transmit but the current "
1351 			"chip bus has a data width of %u bytes!\n",
1352 			pl022->cur_transfer->len,
1353 			pl022->cur_chip->n_bytes);
1354 		dev_err(&pl022->adev->dev, "skipping this message\n");
1355 		return -EIO;
1356 	}
1357 	pl022->tx = (void *)transfer->tx_buf;
1358 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1359 	pl022->rx = (void *)transfer->rx_buf;
1360 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1361 	pl022->write =
1362 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1363 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1364 	return 0;
1365 }
1366 
1367 /**
1368  * pump_transfers - Tasklet function which schedules next transfer
1369  * when running in interrupt or DMA transfer mode.
1370  * @data: SSP driver private data structure
1371  *
1372  */
1373 static void pump_transfers(unsigned long data)
1374 {
1375 	struct pl022 *pl022 = (struct pl022 *) data;
1376 	struct spi_message *message = NULL;
1377 	struct spi_transfer *transfer = NULL;
1378 	struct spi_transfer *previous = NULL;
1379 
1380 	/* Get current state information */
1381 	message = pl022->cur_msg;
1382 	transfer = pl022->cur_transfer;
1383 
1384 	/* Handle for abort */
1385 	if (message->state == STATE_ERROR) {
1386 		message->status = -EIO;
1387 		giveback(pl022);
1388 		return;
1389 	}
1390 
1391 	/* Handle end of message */
1392 	if (message->state == STATE_DONE) {
1393 		message->status = 0;
1394 		giveback(pl022);
1395 		return;
1396 	}
1397 
1398 	/* Delay if requested at end of transfer before CS change */
1399 	if (message->state == STATE_RUNNING) {
1400 		previous = list_entry(transfer->transfer_list.prev,
1401 					struct spi_transfer,
1402 					transfer_list);
1403 		/*
1404 		 * FIXME: This runs in interrupt context.
1405 		 * Is this really smart?
1406 		 */
1407 		spi_transfer_delay_exec(previous);
1408 
1409 		/* Reselect chip select only if cs_change was requested */
1410 		if (previous->cs_change)
1411 			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1412 	} else {
1413 		/* STATE_START */
1414 		message->state = STATE_RUNNING;
1415 	}
1416 
1417 	if (set_up_next_transfer(pl022, transfer)) {
1418 		message->state = STATE_ERROR;
1419 		message->status = -EIO;
1420 		giveback(pl022);
1421 		return;
1422 	}
1423 	/* Flush the FIFOs and let's go! */
1424 	flush(pl022);
1425 
1426 	if (pl022->cur_chip->enable_dma) {
1427 		if (configure_dma(pl022)) {
1428 			dev_dbg(&pl022->adev->dev,
1429 				"configuration of DMA failed, fall back to interrupt mode\n");
1430 			goto err_config_dma;
1431 		}
1432 		return;
1433 	}
1434 
1435 err_config_dma:
1436 	/* enable all interrupts except RX */
1437 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1438 }
1439 
1440 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1441 {
1442 	/*
1443 	 * Default is to enable all interrupts except RX -
1444 	 * this will be enabled once TX is complete
1445 	 */
1446 	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1447 
1448 	/* Enable target chip, if not already active */
1449 	if (!pl022->next_msg_cs_active)
1450 		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1451 
1452 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1453 		/* Error path */
1454 		pl022->cur_msg->state = STATE_ERROR;
1455 		pl022->cur_msg->status = -EIO;
1456 		giveback(pl022);
1457 		return;
1458 	}
1459 	/* If we're using DMA, set up DMA here */
1460 	if (pl022->cur_chip->enable_dma) {
1461 		/* Configure DMA transfer */
1462 		if (configure_dma(pl022)) {
1463 			dev_dbg(&pl022->adev->dev,
1464 				"configuration of DMA failed, fall back to interrupt mode\n");
1465 			goto err_config_dma;
1466 		}
1467 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1468 		irqflags = DISABLE_ALL_INTERRUPTS;
1469 	}
1470 err_config_dma:
1471 	/* Enable SSP, turn on interrupts */
1472 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1473 	       SSP_CR1(pl022->virtbase));
1474 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1475 }
1476 
1477 static void print_current_status(struct pl022 *pl022)
1478 {
1479 	u32 read_cr0;
1480 	u16 read_cr1, read_dmacr, read_sr;
1481 
1482 	if (pl022->vendor->extended_cr)
1483 		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1484 	else
1485 		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1486 	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1487 	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1488 	read_sr = readw(SSP_SR(pl022->virtbase));
1489 
1490 	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1491 	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1492 	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1493 	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1494 	dev_warn(&pl022->adev->dev,
1495 			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1496 			pl022->exp_fifo_level,
1497 			pl022->vendor->fifodepth);
1498 
1499 }
1500 
1501 static void do_polling_transfer(struct pl022 *pl022)
1502 {
1503 	struct spi_message *message = NULL;
1504 	struct spi_transfer *transfer = NULL;
1505 	struct spi_transfer *previous = NULL;
1506 	unsigned long time, timeout;
1507 
1508 	message = pl022->cur_msg;
1509 
1510 	while (message->state != STATE_DONE) {
1511 		/* Handle for abort */
1512 		if (message->state == STATE_ERROR)
1513 			break;
1514 		transfer = pl022->cur_transfer;
1515 
1516 		/* Delay if requested at end of transfer */
1517 		if (message->state == STATE_RUNNING) {
1518 			previous =
1519 			    list_entry(transfer->transfer_list.prev,
1520 				       struct spi_transfer, transfer_list);
1521 			spi_transfer_delay_exec(previous);
1522 			if (previous->cs_change)
1523 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1524 		} else {
1525 			/* STATE_START */
1526 			message->state = STATE_RUNNING;
1527 			if (!pl022->next_msg_cs_active)
1528 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1529 		}
1530 
1531 		/* Configuration Changing Per Transfer */
1532 		if (set_up_next_transfer(pl022, transfer)) {
1533 			/* Error path */
1534 			message->state = STATE_ERROR;
1535 			break;
1536 		}
1537 		/* Flush FIFOs and enable SSP */
1538 		flush(pl022);
1539 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1540 		       SSP_CR1(pl022->virtbase));
1541 
1542 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1543 
1544 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1545 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1546 			time = jiffies;
1547 			readwriter(pl022);
1548 			if (time_after(time, timeout)) {
1549 				dev_warn(&pl022->adev->dev,
1550 				"%s: timeout!\n", __func__);
1551 				message->state = STATE_TIMEOUT;
1552 				print_current_status(pl022);
1553 				goto out;
1554 			}
1555 			cpu_relax();
1556 		}
1557 
1558 		/* Update total byte transferred */
1559 		message->actual_length += pl022->cur_transfer->len;
1560 		/* Move to next transfer */
1561 		message->state = next_transfer(pl022);
1562 		if (message->state != STATE_DONE
1563 		    && pl022->cur_transfer->cs_change)
1564 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1565 	}
1566 out:
1567 	/* Handle end of message */
1568 	if (message->state == STATE_DONE)
1569 		message->status = 0;
1570 	else if (message->state == STATE_TIMEOUT)
1571 		message->status = -EAGAIN;
1572 	else
1573 		message->status = -EIO;
1574 
1575 	giveback(pl022);
1576 	return;
1577 }
1578 
1579 static int pl022_transfer_one_message(struct spi_master *master,
1580 				      struct spi_message *msg)
1581 {
1582 	struct pl022 *pl022 = spi_master_get_devdata(master);
1583 
1584 	/* Initial message state */
1585 	pl022->cur_msg = msg;
1586 	msg->state = STATE_START;
1587 
1588 	pl022->cur_transfer = list_entry(msg->transfers.next,
1589 					 struct spi_transfer, transfer_list);
1590 
1591 	/* Setup the SPI using the per chip configuration */
1592 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1593 	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1594 
1595 	restore_state(pl022);
1596 	flush(pl022);
1597 
1598 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1599 		do_polling_transfer(pl022);
1600 	else
1601 		do_interrupt_dma_transfer(pl022);
1602 
1603 	return 0;
1604 }
1605 
1606 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1607 {
1608 	struct pl022 *pl022 = spi_master_get_devdata(master);
1609 
1610 	/* nothing more to do - disable spi/ssp and power off */
1611 	writew((readw(SSP_CR1(pl022->virtbase)) &
1612 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1613 
1614 	return 0;
1615 }
1616 
1617 static int verify_controller_parameters(struct pl022 *pl022,
1618 				struct pl022_config_chip const *chip_info)
1619 {
1620 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1621 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1622 		dev_err(&pl022->adev->dev,
1623 			"interface is configured incorrectly\n");
1624 		return -EINVAL;
1625 	}
1626 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1627 	    (!pl022->vendor->unidir)) {
1628 		dev_err(&pl022->adev->dev,
1629 			"unidirectional mode not supported in this "
1630 			"hardware version\n");
1631 		return -EINVAL;
1632 	}
1633 	if ((chip_info->hierarchy != SSP_MASTER)
1634 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1635 		dev_err(&pl022->adev->dev,
1636 			"hierarchy is configured incorrectly\n");
1637 		return -EINVAL;
1638 	}
1639 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1640 	    && (chip_info->com_mode != DMA_TRANSFER)
1641 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1642 		dev_err(&pl022->adev->dev,
1643 			"Communication mode is configured incorrectly\n");
1644 		return -EINVAL;
1645 	}
1646 	switch (chip_info->rx_lev_trig) {
1647 	case SSP_RX_1_OR_MORE_ELEM:
1648 	case SSP_RX_4_OR_MORE_ELEM:
1649 	case SSP_RX_8_OR_MORE_ELEM:
1650 		/* These are always OK, all variants can handle this */
1651 		break;
1652 	case SSP_RX_16_OR_MORE_ELEM:
1653 		if (pl022->vendor->fifodepth < 16) {
1654 			dev_err(&pl022->adev->dev,
1655 			"RX FIFO Trigger Level is configured incorrectly\n");
1656 			return -EINVAL;
1657 		}
1658 		break;
1659 	case SSP_RX_32_OR_MORE_ELEM:
1660 		if (pl022->vendor->fifodepth < 32) {
1661 			dev_err(&pl022->adev->dev,
1662 			"RX FIFO Trigger Level is configured incorrectly\n");
1663 			return -EINVAL;
1664 		}
1665 		break;
1666 	default:
1667 		dev_err(&pl022->adev->dev,
1668 			"RX FIFO Trigger Level is configured incorrectly\n");
1669 		return -EINVAL;
1670 	}
1671 	switch (chip_info->tx_lev_trig) {
1672 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1673 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1674 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1675 		/* These are always OK, all variants can handle this */
1676 		break;
1677 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1678 		if (pl022->vendor->fifodepth < 16) {
1679 			dev_err(&pl022->adev->dev,
1680 			"TX FIFO Trigger Level is configured incorrectly\n");
1681 			return -EINVAL;
1682 		}
1683 		break;
1684 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1685 		if (pl022->vendor->fifodepth < 32) {
1686 			dev_err(&pl022->adev->dev,
1687 			"TX FIFO Trigger Level is configured incorrectly\n");
1688 			return -EINVAL;
1689 		}
1690 		break;
1691 	default:
1692 		dev_err(&pl022->adev->dev,
1693 			"TX FIFO Trigger Level is configured incorrectly\n");
1694 		return -EINVAL;
1695 	}
1696 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1697 		if ((chip_info->ctrl_len < SSP_BITS_4)
1698 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1699 			dev_err(&pl022->adev->dev,
1700 				"CTRL LEN is configured incorrectly\n");
1701 			return -EINVAL;
1702 		}
1703 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1704 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1705 			dev_err(&pl022->adev->dev,
1706 				"Wait State is configured incorrectly\n");
1707 			return -EINVAL;
1708 		}
1709 		/* Half duplex is only available in the ST Micro version */
1710 		if (pl022->vendor->extended_cr) {
1711 			if ((chip_info->duplex !=
1712 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1713 			    && (chip_info->duplex !=
1714 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1715 				dev_err(&pl022->adev->dev,
1716 					"Microwire duplex mode is configured incorrectly\n");
1717 				return -EINVAL;
1718 			}
1719 		} else {
1720 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1721 				dev_err(&pl022->adev->dev,
1722 					"Microwire half duplex mode requested,"
1723 					" but this is only available in the"
1724 					" ST version of PL022\n");
1725 			return -EINVAL;
1726 		}
1727 	}
1728 	return 0;
1729 }
1730 
1731 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1732 {
1733 	return rate / (cpsdvsr * (1 + scr));
1734 }
1735 
1736 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1737 				    ssp_clock_params * clk_freq)
1738 {
1739 	/* Lets calculate the frequency parameters */
1740 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1741 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1742 		best_scr = 0, tmp, found = 0;
1743 
1744 	rate = clk_get_rate(pl022->clk);
1745 	/* cpsdvscr = 2 & scr 0 */
1746 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1747 	/* cpsdvsr = 254 & scr = 255 */
1748 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1749 
1750 	if (freq > max_tclk)
1751 		dev_warn(&pl022->adev->dev,
1752 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1753 			max_tclk, freq);
1754 
1755 	if (freq < min_tclk) {
1756 		dev_err(&pl022->adev->dev,
1757 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1758 			freq, min_tclk);
1759 		return -EINVAL;
1760 	}
1761 
1762 	/*
1763 	 * best_freq will give closest possible available rate (<= requested
1764 	 * freq) for all values of scr & cpsdvsr.
1765 	 */
1766 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1767 		while (scr <= SCR_MAX) {
1768 			tmp = spi_rate(rate, cpsdvsr, scr);
1769 
1770 			if (tmp > freq) {
1771 				/* we need lower freq */
1772 				scr++;
1773 				continue;
1774 			}
1775 
1776 			/*
1777 			 * If found exact value, mark found and break.
1778 			 * If found more closer value, update and break.
1779 			 */
1780 			if (tmp > best_freq) {
1781 				best_freq = tmp;
1782 				best_cpsdvsr = cpsdvsr;
1783 				best_scr = scr;
1784 
1785 				if (tmp == freq)
1786 					found = 1;
1787 			}
1788 			/*
1789 			 * increased scr will give lower rates, which are not
1790 			 * required
1791 			 */
1792 			break;
1793 		}
1794 		cpsdvsr += 2;
1795 		scr = SCR_MIN;
1796 	}
1797 
1798 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1799 			freq);
1800 
1801 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1802 	clk_freq->scr = (u8) (best_scr & 0xFF);
1803 	dev_dbg(&pl022->adev->dev,
1804 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1805 		freq, best_freq);
1806 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1807 		clk_freq->cpsdvsr, clk_freq->scr);
1808 
1809 	return 0;
1810 }
1811 
1812 /*
1813  * A piece of default chip info unless the platform
1814  * supplies it.
1815  */
1816 static const struct pl022_config_chip pl022_default_chip_info = {
1817 	.com_mode = POLLING_TRANSFER,
1818 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1819 	.hierarchy = SSP_SLAVE,
1820 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1821 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1822 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1823 	.ctrl_len = SSP_BITS_8,
1824 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1825 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1826 	.cs_control = null_cs_control,
1827 };
1828 
1829 /**
1830  * pl022_setup - setup function registered to SPI master framework
1831  * @spi: spi device which is requesting setup
1832  *
1833  * This function is registered to the SPI framework for this SPI master
1834  * controller. If it is the first time when setup is called by this device,
1835  * this function will initialize the runtime state for this chip and save
1836  * the same in the device structure. Else it will update the runtime info
1837  * with the updated chip info. Nothing is really being written to the
1838  * controller hardware here, that is not done until the actual transfer
1839  * commence.
1840  */
1841 static int pl022_setup(struct spi_device *spi)
1842 {
1843 	struct pl022_config_chip const *chip_info;
1844 	struct pl022_config_chip chip_info_dt;
1845 	struct chip_data *chip;
1846 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1847 	int status = 0;
1848 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1849 	unsigned int bits = spi->bits_per_word;
1850 	u32 tmp;
1851 	struct device_node *np = spi->dev.of_node;
1852 
1853 	if (!spi->max_speed_hz)
1854 		return -EINVAL;
1855 
1856 	/* Get controller_state if one is supplied */
1857 	chip = spi_get_ctldata(spi);
1858 
1859 	if (chip == NULL) {
1860 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1861 		if (!chip)
1862 			return -ENOMEM;
1863 		dev_dbg(&spi->dev,
1864 			"allocated memory for controller's runtime state\n");
1865 	}
1866 
1867 	/* Get controller data if one is supplied */
1868 	chip_info = spi->controller_data;
1869 
1870 	if (chip_info == NULL) {
1871 		if (np) {
1872 			chip_info_dt = pl022_default_chip_info;
1873 
1874 			chip_info_dt.hierarchy = SSP_MASTER;
1875 			of_property_read_u32(np, "pl022,interface",
1876 				&chip_info_dt.iface);
1877 			of_property_read_u32(np, "pl022,com-mode",
1878 				&chip_info_dt.com_mode);
1879 			of_property_read_u32(np, "pl022,rx-level-trig",
1880 				&chip_info_dt.rx_lev_trig);
1881 			of_property_read_u32(np, "pl022,tx-level-trig",
1882 				&chip_info_dt.tx_lev_trig);
1883 			of_property_read_u32(np, "pl022,ctrl-len",
1884 				&chip_info_dt.ctrl_len);
1885 			of_property_read_u32(np, "pl022,wait-state",
1886 				&chip_info_dt.wait_state);
1887 			of_property_read_u32(np, "pl022,duplex",
1888 				&chip_info_dt.duplex);
1889 
1890 			chip_info = &chip_info_dt;
1891 		} else {
1892 			chip_info = &pl022_default_chip_info;
1893 			/* spi_board_info.controller_data not is supplied */
1894 			dev_dbg(&spi->dev,
1895 				"using default controller_data settings\n");
1896 		}
1897 	} else
1898 		dev_dbg(&spi->dev,
1899 			"using user supplied controller_data settings\n");
1900 
1901 	/*
1902 	 * We can override with custom divisors, else we use the board
1903 	 * frequency setting
1904 	 */
1905 	if ((0 == chip_info->clk_freq.cpsdvsr)
1906 	    && (0 == chip_info->clk_freq.scr)) {
1907 		status = calculate_effective_freq(pl022,
1908 						  spi->max_speed_hz,
1909 						  &clk_freq);
1910 		if (status < 0)
1911 			goto err_config_params;
1912 	} else {
1913 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1914 		if ((clk_freq.cpsdvsr % 2) != 0)
1915 			clk_freq.cpsdvsr =
1916 				clk_freq.cpsdvsr - 1;
1917 	}
1918 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1919 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1920 		status = -EINVAL;
1921 		dev_err(&spi->dev,
1922 			"cpsdvsr is configured incorrectly\n");
1923 		goto err_config_params;
1924 	}
1925 
1926 	status = verify_controller_parameters(pl022, chip_info);
1927 	if (status) {
1928 		dev_err(&spi->dev, "controller data is incorrect");
1929 		goto err_config_params;
1930 	}
1931 
1932 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1933 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1934 
1935 	/* Now set controller state based on controller data */
1936 	chip->xfer_type = chip_info->com_mode;
1937 	if (!chip_info->cs_control) {
1938 		chip->cs_control = null_cs_control;
1939 		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1940 			dev_warn(&spi->dev,
1941 				 "invalid chip select\n");
1942 	} else
1943 		chip->cs_control = chip_info->cs_control;
1944 
1945 	/* Check bits per word with vendor specific range */
1946 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1947 		status = -ENOTSUPP;
1948 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1949 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1950 				pl022->vendor->max_bpw);
1951 		goto err_config_params;
1952 	} else if (bits <= 8) {
1953 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1954 		chip->n_bytes = 1;
1955 		chip->read = READING_U8;
1956 		chip->write = WRITING_U8;
1957 	} else if (bits <= 16) {
1958 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1959 		chip->n_bytes = 2;
1960 		chip->read = READING_U16;
1961 		chip->write = WRITING_U16;
1962 	} else {
1963 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1964 		chip->n_bytes = 4;
1965 		chip->read = READING_U32;
1966 		chip->write = WRITING_U32;
1967 	}
1968 
1969 	/* Now Initialize all register settings required for this chip */
1970 	chip->cr0 = 0;
1971 	chip->cr1 = 0;
1972 	chip->dmacr = 0;
1973 	chip->cpsr = 0;
1974 	if ((chip_info->com_mode == DMA_TRANSFER)
1975 	    && ((pl022->master_info)->enable_dma)) {
1976 		chip->enable_dma = true;
1977 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1978 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1979 			       SSP_DMACR_MASK_RXDMAE, 0);
1980 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1981 			       SSP_DMACR_MASK_TXDMAE, 1);
1982 	} else {
1983 		chip->enable_dma = false;
1984 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1985 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1986 			       SSP_DMACR_MASK_RXDMAE, 0);
1987 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1988 			       SSP_DMACR_MASK_TXDMAE, 1);
1989 	}
1990 
1991 	chip->cpsr = clk_freq.cpsdvsr;
1992 
1993 	/* Special setup for the ST micro extended control registers */
1994 	if (pl022->vendor->extended_cr) {
1995 		u32 etx;
1996 
1997 		if (pl022->vendor->pl023) {
1998 			/* These bits are only in the PL023 */
1999 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2000 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2001 		} else {
2002 			/* These bits are in the PL022 but not PL023 */
2003 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2004 				       SSP_CR0_MASK_HALFDUP_ST, 5);
2005 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2006 				       SSP_CR0_MASK_CSS_ST, 16);
2007 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2008 				       SSP_CR0_MASK_FRF_ST, 21);
2009 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2010 				       SSP_CR1_MASK_MWAIT_ST, 6);
2011 		}
2012 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2013 			       SSP_CR0_MASK_DSS_ST, 0);
2014 
2015 		if (spi->mode & SPI_LSB_FIRST) {
2016 			tmp = SSP_RX_LSB;
2017 			etx = SSP_TX_LSB;
2018 		} else {
2019 			tmp = SSP_RX_MSB;
2020 			etx = SSP_TX_MSB;
2021 		}
2022 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2023 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2024 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2025 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2026 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2027 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2028 	} else {
2029 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2030 			       SSP_CR0_MASK_DSS, 0);
2031 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2032 			       SSP_CR0_MASK_FRF, 4);
2033 	}
2034 
2035 	/* Stuff that is common for all versions */
2036 	if (spi->mode & SPI_CPOL)
2037 		tmp = SSP_CLK_POL_IDLE_HIGH;
2038 	else
2039 		tmp = SSP_CLK_POL_IDLE_LOW;
2040 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2041 
2042 	if (spi->mode & SPI_CPHA)
2043 		tmp = SSP_CLK_SECOND_EDGE;
2044 	else
2045 		tmp = SSP_CLK_FIRST_EDGE;
2046 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2047 
2048 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2049 	/* Loopback is available on all versions except PL023 */
2050 	if (pl022->vendor->loopback) {
2051 		if (spi->mode & SPI_LOOP)
2052 			tmp = LOOPBACK_ENABLED;
2053 		else
2054 			tmp = LOOPBACK_DISABLED;
2055 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2056 	}
2057 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2058 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2059 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2060 		3);
2061 
2062 	/* Save controller_state */
2063 	spi_set_ctldata(spi, chip);
2064 	return status;
2065  err_config_params:
2066 	spi_set_ctldata(spi, NULL);
2067 	kfree(chip);
2068 	return status;
2069 }
2070 
2071 /**
2072  * pl022_cleanup - cleanup function registered to SPI master framework
2073  * @spi: spi device which is requesting cleanup
2074  *
2075  * This function is registered to the SPI framework for this SPI master
2076  * controller. It will free the runtime state of chip.
2077  */
2078 static void pl022_cleanup(struct spi_device *spi)
2079 {
2080 	struct chip_data *chip = spi_get_ctldata(spi);
2081 
2082 	spi_set_ctldata(spi, NULL);
2083 	kfree(chip);
2084 }
2085 
2086 static struct pl022_ssp_controller *
2087 pl022_platform_data_dt_get(struct device *dev)
2088 {
2089 	struct device_node *np = dev->of_node;
2090 	struct pl022_ssp_controller *pd;
2091 	u32 tmp = 0;
2092 
2093 	if (!np) {
2094 		dev_err(dev, "no dt node defined\n");
2095 		return NULL;
2096 	}
2097 
2098 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2099 	if (!pd)
2100 		return NULL;
2101 
2102 	pd->bus_id = -1;
2103 	pd->enable_dma = 1;
2104 	of_property_read_u32(np, "num-cs", &tmp);
2105 	pd->num_chipselect = tmp;
2106 	of_property_read_u32(np, "pl022,autosuspend-delay",
2107 			     &pd->autosuspend_delay);
2108 	pd->rt = of_property_read_bool(np, "pl022,rt");
2109 
2110 	return pd;
2111 }
2112 
2113 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2114 {
2115 	struct device *dev = &adev->dev;
2116 	struct pl022_ssp_controller *platform_info =
2117 			dev_get_platdata(&adev->dev);
2118 	struct spi_master *master;
2119 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2120 	struct device_node *np = adev->dev.of_node;
2121 	int status = 0, i, num_cs;
2122 
2123 	dev_info(&adev->dev,
2124 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2125 	if (!platform_info && IS_ENABLED(CONFIG_OF))
2126 		platform_info = pl022_platform_data_dt_get(dev);
2127 
2128 	if (!platform_info) {
2129 		dev_err(dev, "probe: no platform data defined\n");
2130 		return -ENODEV;
2131 	}
2132 
2133 	if (platform_info->num_chipselect) {
2134 		num_cs = platform_info->num_chipselect;
2135 	} else {
2136 		dev_err(dev, "probe: no chip select defined\n");
2137 		return -ENODEV;
2138 	}
2139 
2140 	/* Allocate master with space for data */
2141 	master = spi_alloc_master(dev, sizeof(struct pl022));
2142 	if (master == NULL) {
2143 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2144 		return -ENOMEM;
2145 	}
2146 
2147 	pl022 = spi_master_get_devdata(master);
2148 	pl022->master = master;
2149 	pl022->master_info = platform_info;
2150 	pl022->adev = adev;
2151 	pl022->vendor = id->data;
2152 	pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2153 					  GFP_KERNEL);
2154 	if (!pl022->chipselects) {
2155 		status = -ENOMEM;
2156 		goto err_no_mem;
2157 	}
2158 
2159 	/*
2160 	 * Bus Number Which has been Assigned to this SSP controller
2161 	 * on this board
2162 	 */
2163 	master->bus_num = platform_info->bus_id;
2164 	master->num_chipselect = num_cs;
2165 	master->cleanup = pl022_cleanup;
2166 	master->setup = pl022_setup;
2167 	master->auto_runtime_pm = true;
2168 	master->transfer_one_message = pl022_transfer_one_message;
2169 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2170 	master->rt = platform_info->rt;
2171 	master->dev.of_node = dev->of_node;
2172 
2173 	if (platform_info->num_chipselect && platform_info->chipselects) {
2174 		for (i = 0; i < num_cs; i++)
2175 			pl022->chipselects[i] = platform_info->chipselects[i];
2176 	} else if (pl022->vendor->internal_cs_ctrl) {
2177 		for (i = 0; i < num_cs; i++)
2178 			pl022->chipselects[i] = i;
2179 	} else if (IS_ENABLED(CONFIG_OF)) {
2180 		for (i = 0; i < num_cs; i++) {
2181 			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2182 
2183 			if (cs_gpio == -EPROBE_DEFER) {
2184 				status = -EPROBE_DEFER;
2185 				goto err_no_gpio;
2186 			}
2187 
2188 			pl022->chipselects[i] = cs_gpio;
2189 
2190 			if (gpio_is_valid(cs_gpio)) {
2191 				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2192 					dev_err(&adev->dev,
2193 						"could not request %d gpio\n",
2194 						cs_gpio);
2195 				else if (gpio_direction_output(cs_gpio, 1))
2196 					dev_err(&adev->dev,
2197 						"could not set gpio %d as output\n",
2198 						cs_gpio);
2199 			}
2200 		}
2201 	}
2202 
2203 	/*
2204 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2205 	 * always MS bit first on the original pl022.
2206 	 */
2207 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2208 	if (pl022->vendor->extended_cr)
2209 		master->mode_bits |= SPI_LSB_FIRST;
2210 
2211 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2212 
2213 	status = amba_request_regions(adev, NULL);
2214 	if (status)
2215 		goto err_no_ioregion;
2216 
2217 	pl022->phybase = adev->res.start;
2218 	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2219 				       resource_size(&adev->res));
2220 	if (pl022->virtbase == NULL) {
2221 		status = -ENOMEM;
2222 		goto err_no_ioremap;
2223 	}
2224 	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2225 		&adev->res.start, pl022->virtbase);
2226 
2227 	pl022->clk = devm_clk_get(&adev->dev, NULL);
2228 	if (IS_ERR(pl022->clk)) {
2229 		status = PTR_ERR(pl022->clk);
2230 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2231 		goto err_no_clk;
2232 	}
2233 
2234 	status = clk_prepare_enable(pl022->clk);
2235 	if (status) {
2236 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2237 		goto err_no_clk_en;
2238 	}
2239 
2240 	/* Initialize transfer pump */
2241 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2242 		     (unsigned long)pl022);
2243 
2244 	/* Disable SSP */
2245 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2246 	       SSP_CR1(pl022->virtbase));
2247 	load_ssp_default_config(pl022);
2248 
2249 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2250 				  0, "pl022", pl022);
2251 	if (status < 0) {
2252 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2253 		goto err_no_irq;
2254 	}
2255 
2256 	/* Get DMA channels, try autoconfiguration first */
2257 	status = pl022_dma_autoprobe(pl022);
2258 	if (status == -EPROBE_DEFER) {
2259 		dev_dbg(dev, "deferring probe to get DMA channel\n");
2260 		goto err_no_irq;
2261 	}
2262 
2263 	/* If that failed, use channels from platform_info */
2264 	if (status == 0)
2265 		platform_info->enable_dma = 1;
2266 	else if (platform_info->enable_dma) {
2267 		status = pl022_dma_probe(pl022);
2268 		if (status != 0)
2269 			platform_info->enable_dma = 0;
2270 	}
2271 
2272 	/* Register with the SPI framework */
2273 	amba_set_drvdata(adev, pl022);
2274 	status = devm_spi_register_master(&adev->dev, master);
2275 	if (status != 0) {
2276 		dev_err(&adev->dev,
2277 			"probe - problem registering spi master\n");
2278 		goto err_spi_register;
2279 	}
2280 	dev_dbg(dev, "probe succeeded\n");
2281 
2282 	/* let runtime pm put suspend */
2283 	if (platform_info->autosuspend_delay > 0) {
2284 		dev_info(&adev->dev,
2285 			"will use autosuspend for runtime pm, delay %dms\n",
2286 			platform_info->autosuspend_delay);
2287 		pm_runtime_set_autosuspend_delay(dev,
2288 			platform_info->autosuspend_delay);
2289 		pm_runtime_use_autosuspend(dev);
2290 	}
2291 	pm_runtime_put(dev);
2292 
2293 	return 0;
2294 
2295  err_spi_register:
2296 	if (platform_info->enable_dma)
2297 		pl022_dma_remove(pl022);
2298  err_no_irq:
2299 	clk_disable_unprepare(pl022->clk);
2300  err_no_clk_en:
2301  err_no_clk:
2302  err_no_ioremap:
2303 	amba_release_regions(adev);
2304  err_no_ioregion:
2305  err_no_gpio:
2306  err_no_mem:
2307 	spi_master_put(master);
2308 	return status;
2309 }
2310 
2311 static int
2312 pl022_remove(struct amba_device *adev)
2313 {
2314 	struct pl022 *pl022 = amba_get_drvdata(adev);
2315 
2316 	if (!pl022)
2317 		return 0;
2318 
2319 	/*
2320 	 * undo pm_runtime_put() in probe.  I assume that we're not
2321 	 * accessing the primecell here.
2322 	 */
2323 	pm_runtime_get_noresume(&adev->dev);
2324 
2325 	load_ssp_default_config(pl022);
2326 	if (pl022->master_info->enable_dma)
2327 		pl022_dma_remove(pl022);
2328 
2329 	clk_disable_unprepare(pl022->clk);
2330 	amba_release_regions(adev);
2331 	tasklet_disable(&pl022->pump_transfers);
2332 	return 0;
2333 }
2334 
2335 #ifdef CONFIG_PM_SLEEP
2336 static int pl022_suspend(struct device *dev)
2337 {
2338 	struct pl022 *pl022 = dev_get_drvdata(dev);
2339 	int ret;
2340 
2341 	ret = spi_master_suspend(pl022->master);
2342 	if (ret)
2343 		return ret;
2344 
2345 	ret = pm_runtime_force_suspend(dev);
2346 	if (ret) {
2347 		spi_master_resume(pl022->master);
2348 		return ret;
2349 	}
2350 
2351 	pinctrl_pm_select_sleep_state(dev);
2352 
2353 	dev_dbg(dev, "suspended\n");
2354 	return 0;
2355 }
2356 
2357 static int pl022_resume(struct device *dev)
2358 {
2359 	struct pl022 *pl022 = dev_get_drvdata(dev);
2360 	int ret;
2361 
2362 	ret = pm_runtime_force_resume(dev);
2363 	if (ret)
2364 		dev_err(dev, "problem resuming\n");
2365 
2366 	/* Start the queue running */
2367 	ret = spi_master_resume(pl022->master);
2368 	if (!ret)
2369 		dev_dbg(dev, "resumed\n");
2370 
2371 	return ret;
2372 }
2373 #endif
2374 
2375 #ifdef CONFIG_PM
2376 static int pl022_runtime_suspend(struct device *dev)
2377 {
2378 	struct pl022 *pl022 = dev_get_drvdata(dev);
2379 
2380 	clk_disable_unprepare(pl022->clk);
2381 	pinctrl_pm_select_idle_state(dev);
2382 
2383 	return 0;
2384 }
2385 
2386 static int pl022_runtime_resume(struct device *dev)
2387 {
2388 	struct pl022 *pl022 = dev_get_drvdata(dev);
2389 
2390 	pinctrl_pm_select_default_state(dev);
2391 	clk_prepare_enable(pl022->clk);
2392 
2393 	return 0;
2394 }
2395 #endif
2396 
2397 static const struct dev_pm_ops pl022_dev_pm_ops = {
2398 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2399 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2400 };
2401 
2402 static struct vendor_data vendor_arm = {
2403 	.fifodepth = 8,
2404 	.max_bpw = 16,
2405 	.unidir = false,
2406 	.extended_cr = false,
2407 	.pl023 = false,
2408 	.loopback = true,
2409 	.internal_cs_ctrl = false,
2410 };
2411 
2412 static struct vendor_data vendor_st = {
2413 	.fifodepth = 32,
2414 	.max_bpw = 32,
2415 	.unidir = false,
2416 	.extended_cr = true,
2417 	.pl023 = false,
2418 	.loopback = true,
2419 	.internal_cs_ctrl = false,
2420 };
2421 
2422 static struct vendor_data vendor_st_pl023 = {
2423 	.fifodepth = 32,
2424 	.max_bpw = 32,
2425 	.unidir = false,
2426 	.extended_cr = true,
2427 	.pl023 = true,
2428 	.loopback = false,
2429 	.internal_cs_ctrl = false,
2430 };
2431 
2432 static struct vendor_data vendor_lsi = {
2433 	.fifodepth = 8,
2434 	.max_bpw = 16,
2435 	.unidir = false,
2436 	.extended_cr = false,
2437 	.pl023 = false,
2438 	.loopback = true,
2439 	.internal_cs_ctrl = true,
2440 };
2441 
2442 static const struct amba_id pl022_ids[] = {
2443 	{
2444 		/*
2445 		 * ARM PL022 variant, this has a 16bit wide
2446 		 * and 8 locations deep TX/RX FIFO
2447 		 */
2448 		.id	= 0x00041022,
2449 		.mask	= 0x000fffff,
2450 		.data	= &vendor_arm,
2451 	},
2452 	{
2453 		/*
2454 		 * ST Micro derivative, this has 32bit wide
2455 		 * and 32 locations deep TX/RX FIFO
2456 		 */
2457 		.id	= 0x01080022,
2458 		.mask	= 0xffffffff,
2459 		.data	= &vendor_st,
2460 	},
2461 	{
2462 		/*
2463 		 * ST-Ericsson derivative "PL023" (this is not
2464 		 * an official ARM number), this is a PL022 SSP block
2465 		 * stripped to SPI mode only, it has 32bit wide
2466 		 * and 32 locations deep TX/RX FIFO but no extended
2467 		 * CR0/CR1 register
2468 		 */
2469 		.id	= 0x00080023,
2470 		.mask	= 0xffffffff,
2471 		.data	= &vendor_st_pl023,
2472 	},
2473 	{
2474 		/*
2475 		 * PL022 variant that has a chip select control register whih
2476 		 * allows control of 5 output signals nCS[0:4].
2477 		 */
2478 		.id	= 0x000b6022,
2479 		.mask	= 0x000fffff,
2480 		.data	= &vendor_lsi,
2481 	},
2482 	{ 0, 0 },
2483 };
2484 
2485 MODULE_DEVICE_TABLE(amba, pl022_ids);
2486 
2487 static struct amba_driver pl022_driver = {
2488 	.drv = {
2489 		.name	= "ssp-pl022",
2490 		.pm	= &pl022_dev_pm_ops,
2491 	},
2492 	.id_table	= pl022_ids,
2493 	.probe		= pl022_probe,
2494 	.remove		= pl022_remove,
2495 };
2496 
2497 static int __init pl022_init(void)
2498 {
2499 	return amba_driver_register(&pl022_driver);
2500 }
2501 subsys_initcall(pl022_init);
2502 
2503 static void __exit pl022_exit(void)
2504 {
2505 	amba_driver_unregister(&pl022_driver);
2506 }
2507 module_exit(pl022_exit);
2508 
2509 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2510 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2511 MODULE_LICENSE("GPL");
2512