1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master. 4 * 5 * Copyright (C) 2008-2012 ST-Ericsson AB 6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd. 7 * 8 * Author: Linus Walleij <linus.walleij@stericsson.com> 9 * 10 * Initial version inspired by: 11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c 12 * Initial adoption to PL022 by: 13 * Sachin Verma <sachin.verma@st.com> 14 */ 15 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/device.h> 19 #include <linux/ioport.h> 20 #include <linux/errno.h> 21 #include <linux/interrupt.h> 22 #include <linux/spi/spi.h> 23 #include <linux/delay.h> 24 #include <linux/clk.h> 25 #include <linux/err.h> 26 #include <linux/amba/bus.h> 27 #include <linux/amba/pl022.h> 28 #include <linux/io.h> 29 #include <linux/slab.h> 30 #include <linux/dmaengine.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/scatterlist.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/gpio.h> 35 #include <linux/of_gpio.h> 36 #include <linux/pinctrl/consumer.h> 37 38 /* 39 * This macro is used to define some register default values. 40 * reg is masked with mask, the OR:ed with an (again masked) 41 * val shifted sb steps to the left. 42 */ 43 #define SSP_WRITE_BITS(reg, val, mask, sb) \ 44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask)))) 45 46 /* 47 * This macro is also used to define some default values. 48 * It will just shift val by sb steps to the left and mask 49 * the result with mask. 50 */ 51 #define GEN_MASK_BITS(val, mask, sb) \ 52 (((val)<<(sb)) & (mask)) 53 54 #define DRIVE_TX 0 55 #define DO_NOT_DRIVE_TX 1 56 57 #define DO_NOT_QUEUE_DMA 0 58 #define QUEUE_DMA 1 59 60 #define RX_TRANSFER 1 61 #define TX_TRANSFER 2 62 63 /* 64 * Macros to access SSP Registers with their offsets 65 */ 66 #define SSP_CR0(r) (r + 0x000) 67 #define SSP_CR1(r) (r + 0x004) 68 #define SSP_DR(r) (r + 0x008) 69 #define SSP_SR(r) (r + 0x00C) 70 #define SSP_CPSR(r) (r + 0x010) 71 #define SSP_IMSC(r) (r + 0x014) 72 #define SSP_RIS(r) (r + 0x018) 73 #define SSP_MIS(r) (r + 0x01C) 74 #define SSP_ICR(r) (r + 0x020) 75 #define SSP_DMACR(r) (r + 0x024) 76 #define SSP_CSR(r) (r + 0x030) /* vendor extension */ 77 #define SSP_ITCR(r) (r + 0x080) 78 #define SSP_ITIP(r) (r + 0x084) 79 #define SSP_ITOP(r) (r + 0x088) 80 #define SSP_TDR(r) (r + 0x08C) 81 82 #define SSP_PID0(r) (r + 0xFE0) 83 #define SSP_PID1(r) (r + 0xFE4) 84 #define SSP_PID2(r) (r + 0xFE8) 85 #define SSP_PID3(r) (r + 0xFEC) 86 87 #define SSP_CID0(r) (r + 0xFF0) 88 #define SSP_CID1(r) (r + 0xFF4) 89 #define SSP_CID2(r) (r + 0xFF8) 90 #define SSP_CID3(r) (r + 0xFFC) 91 92 /* 93 * SSP Control Register 0 - SSP_CR0 94 */ 95 #define SSP_CR0_MASK_DSS (0x0FUL << 0) 96 #define SSP_CR0_MASK_FRF (0x3UL << 4) 97 #define SSP_CR0_MASK_SPO (0x1UL << 6) 98 #define SSP_CR0_MASK_SPH (0x1UL << 7) 99 #define SSP_CR0_MASK_SCR (0xFFUL << 8) 100 101 /* 102 * The ST version of this block moves som bits 103 * in SSP_CR0 and extends it to 32 bits 104 */ 105 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0) 106 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5) 107 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16) 108 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21) 109 110 /* 111 * SSP Control Register 0 - SSP_CR1 112 */ 113 #define SSP_CR1_MASK_LBM (0x1UL << 0) 114 #define SSP_CR1_MASK_SSE (0x1UL << 1) 115 #define SSP_CR1_MASK_MS (0x1UL << 2) 116 #define SSP_CR1_MASK_SOD (0x1UL << 3) 117 118 /* 119 * The ST version of this block adds some bits 120 * in SSP_CR1 121 */ 122 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4) 123 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5) 124 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6) 125 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7) 126 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10) 127 /* This one is only in the PL023 variant */ 128 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13) 129 130 /* 131 * SSP Status Register - SSP_SR 132 */ 133 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */ 134 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */ 135 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */ 136 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */ 137 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */ 138 139 /* 140 * SSP Clock Prescale Register - SSP_CPSR 141 */ 142 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0) 143 144 /* 145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC 146 */ 147 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */ 148 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */ 149 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */ 150 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */ 151 152 /* 153 * SSP Raw Interrupt Status Register - SSP_RIS 154 */ 155 /* Receive Overrun Raw Interrupt status */ 156 #define SSP_RIS_MASK_RORRIS (0x1UL << 0) 157 /* Receive Timeout Raw Interrupt status */ 158 #define SSP_RIS_MASK_RTRIS (0x1UL << 1) 159 /* Receive FIFO Raw Interrupt status */ 160 #define SSP_RIS_MASK_RXRIS (0x1UL << 2) 161 /* Transmit FIFO Raw Interrupt status */ 162 #define SSP_RIS_MASK_TXRIS (0x1UL << 3) 163 164 /* 165 * SSP Masked Interrupt Status Register - SSP_MIS 166 */ 167 /* Receive Overrun Masked Interrupt status */ 168 #define SSP_MIS_MASK_RORMIS (0x1UL << 0) 169 /* Receive Timeout Masked Interrupt status */ 170 #define SSP_MIS_MASK_RTMIS (0x1UL << 1) 171 /* Receive FIFO Masked Interrupt status */ 172 #define SSP_MIS_MASK_RXMIS (0x1UL << 2) 173 /* Transmit FIFO Masked Interrupt status */ 174 #define SSP_MIS_MASK_TXMIS (0x1UL << 3) 175 176 /* 177 * SSP Interrupt Clear Register - SSP_ICR 178 */ 179 /* Receive Overrun Raw Clear Interrupt bit */ 180 #define SSP_ICR_MASK_RORIC (0x1UL << 0) 181 /* Receive Timeout Clear Interrupt bit */ 182 #define SSP_ICR_MASK_RTIC (0x1UL << 1) 183 184 /* 185 * SSP DMA Control Register - SSP_DMACR 186 */ 187 /* Receive DMA Enable bit */ 188 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0) 189 /* Transmit DMA Enable bit */ 190 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1) 191 192 /* 193 * SSP Chip Select Control Register - SSP_CSR 194 * (vendor extension) 195 */ 196 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0) 197 198 /* 199 * SSP Integration Test control Register - SSP_ITCR 200 */ 201 #define SSP_ITCR_MASK_ITEN (0x1UL << 0) 202 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1) 203 204 /* 205 * SSP Integration Test Input Register - SSP_ITIP 206 */ 207 #define ITIP_MASK_SSPRXD (0x1UL << 0) 208 #define ITIP_MASK_SSPFSSIN (0x1UL << 1) 209 #define ITIP_MASK_SSPCLKIN (0x1UL << 2) 210 #define ITIP_MASK_RXDMAC (0x1UL << 3) 211 #define ITIP_MASK_TXDMAC (0x1UL << 4) 212 #define ITIP_MASK_SSPTXDIN (0x1UL << 5) 213 214 /* 215 * SSP Integration Test output Register - SSP_ITOP 216 */ 217 #define ITOP_MASK_SSPTXD (0x1UL << 0) 218 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1) 219 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2) 220 #define ITOP_MASK_SSPOEn (0x1UL << 3) 221 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4) 222 #define ITOP_MASK_RORINTR (0x1UL << 5) 223 #define ITOP_MASK_RTINTR (0x1UL << 6) 224 #define ITOP_MASK_RXINTR (0x1UL << 7) 225 #define ITOP_MASK_TXINTR (0x1UL << 8) 226 #define ITOP_MASK_INTR (0x1UL << 9) 227 #define ITOP_MASK_RXDMABREQ (0x1UL << 10) 228 #define ITOP_MASK_RXDMASREQ (0x1UL << 11) 229 #define ITOP_MASK_TXDMABREQ (0x1UL << 12) 230 #define ITOP_MASK_TXDMASREQ (0x1UL << 13) 231 232 /* 233 * SSP Test Data Register - SSP_TDR 234 */ 235 #define TDR_MASK_TESTDATA (0xFFFFFFFF) 236 237 /* 238 * Message State 239 * we use the spi_message.state (void *) pointer to 240 * hold a single state value, that's why all this 241 * (void *) casting is done here. 242 */ 243 #define STATE_START ((void *) 0) 244 #define STATE_RUNNING ((void *) 1) 245 #define STATE_DONE ((void *) 2) 246 #define STATE_ERROR ((void *) -1) 247 #define STATE_TIMEOUT ((void *) -2) 248 249 /* 250 * SSP State - Whether Enabled or Disabled 251 */ 252 #define SSP_DISABLED (0) 253 #define SSP_ENABLED (1) 254 255 /* 256 * SSP DMA State - Whether DMA Enabled or Disabled 257 */ 258 #define SSP_DMA_DISABLED (0) 259 #define SSP_DMA_ENABLED (1) 260 261 /* 262 * SSP Clock Defaults 263 */ 264 #define SSP_DEFAULT_CLKRATE 0x2 265 #define SSP_DEFAULT_PRESCALE 0x40 266 267 /* 268 * SSP Clock Parameter ranges 269 */ 270 #define CPSDVR_MIN 0x02 271 #define CPSDVR_MAX 0xFE 272 #define SCR_MIN 0x00 273 #define SCR_MAX 0xFF 274 275 /* 276 * SSP Interrupt related Macros 277 */ 278 #define DEFAULT_SSP_REG_IMSC 0x0UL 279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC 280 #define ENABLE_ALL_INTERRUPTS ( \ 281 SSP_IMSC_MASK_RORIM | \ 282 SSP_IMSC_MASK_RTIM | \ 283 SSP_IMSC_MASK_RXIM | \ 284 SSP_IMSC_MASK_TXIM \ 285 ) 286 287 #define CLEAR_ALL_INTERRUPTS 0x3 288 289 #define SPI_POLLING_TIMEOUT 1000 290 291 /* 292 * The type of reading going on on this chip 293 */ 294 enum ssp_reading { 295 READING_NULL, 296 READING_U8, 297 READING_U16, 298 READING_U32 299 }; 300 301 /** 302 * The type of writing going on on this chip 303 */ 304 enum ssp_writing { 305 WRITING_NULL, 306 WRITING_U8, 307 WRITING_U16, 308 WRITING_U32 309 }; 310 311 /** 312 * struct vendor_data - vendor-specific config parameters 313 * for PL022 derivates 314 * @fifodepth: depth of FIFOs (both) 315 * @max_bpw: maximum number of bits per word 316 * @unidir: supports unidirection transfers 317 * @extended_cr: 32 bit wide control register 0 with extra 318 * features and extra features in CR1 as found in the ST variants 319 * @pl023: supports a subset of the ST extensions called "PL023" 320 * @internal_cs_ctrl: supports chip select control register 321 */ 322 struct vendor_data { 323 int fifodepth; 324 int max_bpw; 325 bool unidir; 326 bool extended_cr; 327 bool pl023; 328 bool loopback; 329 bool internal_cs_ctrl; 330 }; 331 332 /** 333 * struct pl022 - This is the private SSP driver data structure 334 * @adev: AMBA device model hookup 335 * @vendor: vendor data for the IP block 336 * @phybase: the physical memory where the SSP device resides 337 * @virtbase: the virtual memory where the SSP is mapped 338 * @clk: outgoing clock "SPICLK" for the SPI bus 339 * @master: SPI framework hookup 340 * @master_info: controller-specific data from machine setup 341 * @pump_transfers: Tasklet used in Interrupt Transfer mode 342 * @cur_msg: Pointer to current spi_message being processed 343 * @cur_transfer: Pointer to current spi_transfer 344 * @cur_chip: pointer to current clients chip(assigned from controller_state) 345 * @next_msg_cs_active: the next message in the queue has been examined 346 * and it was found that it uses the same chip select as the previous 347 * message, so we left it active after the previous transfer, and it's 348 * active already. 349 * @tx: current position in TX buffer to be read 350 * @tx_end: end position in TX buffer to be read 351 * @rx: current position in RX buffer to be written 352 * @rx_end: end position in RX buffer to be written 353 * @read: the type of read currently going on 354 * @write: the type of write currently going on 355 * @exp_fifo_level: expected FIFO level 356 * @dma_rx_channel: optional channel for RX DMA 357 * @dma_tx_channel: optional channel for TX DMA 358 * @sgt_rx: scattertable for the RX transfer 359 * @sgt_tx: scattertable for the TX transfer 360 * @dummypage: a dummy page used for driving data on the bus with DMA 361 * @cur_cs: current chip select (gpio) 362 * @chipselects: list of chipselects (gpios) 363 */ 364 struct pl022 { 365 struct amba_device *adev; 366 struct vendor_data *vendor; 367 resource_size_t phybase; 368 void __iomem *virtbase; 369 struct clk *clk; 370 struct spi_master *master; 371 struct pl022_ssp_controller *master_info; 372 /* Message per-transfer pump */ 373 struct tasklet_struct pump_transfers; 374 struct spi_message *cur_msg; 375 struct spi_transfer *cur_transfer; 376 struct chip_data *cur_chip; 377 bool next_msg_cs_active; 378 void *tx; 379 void *tx_end; 380 void *rx; 381 void *rx_end; 382 enum ssp_reading read; 383 enum ssp_writing write; 384 u32 exp_fifo_level; 385 enum ssp_rx_level_trig rx_lev_trig; 386 enum ssp_tx_level_trig tx_lev_trig; 387 /* DMA settings */ 388 #ifdef CONFIG_DMA_ENGINE 389 struct dma_chan *dma_rx_channel; 390 struct dma_chan *dma_tx_channel; 391 struct sg_table sgt_rx; 392 struct sg_table sgt_tx; 393 char *dummypage; 394 bool dma_running; 395 #endif 396 int cur_cs; 397 int *chipselects; 398 }; 399 400 /** 401 * struct chip_data - To maintain runtime state of SSP for each client chip 402 * @cr0: Value of control register CR0 of SSP - on later ST variants this 403 * register is 32 bits wide rather than just 16 404 * @cr1: Value of control register CR1 of SSP 405 * @dmacr: Value of DMA control Register of SSP 406 * @cpsr: Value of Clock prescale register 407 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client 408 * @enable_dma: Whether to enable DMA or not 409 * @read: function ptr to be used to read when doing xfer for this chip 410 * @write: function ptr to be used to write when doing xfer for this chip 411 * @cs_control: chip select callback provided by chip 412 * @xfer_type: polling/interrupt/DMA 413 * 414 * Runtime state of the SSP controller, maintained per chip, 415 * This would be set according to the current message that would be served 416 */ 417 struct chip_data { 418 u32 cr0; 419 u16 cr1; 420 u16 dmacr; 421 u16 cpsr; 422 u8 n_bytes; 423 bool enable_dma; 424 enum ssp_reading read; 425 enum ssp_writing write; 426 void (*cs_control) (u32 command); 427 int xfer_type; 428 }; 429 430 /** 431 * null_cs_control - Dummy chip select function 432 * @command: select/delect the chip 433 * 434 * If no chip select function is provided by client this is used as dummy 435 * chip select 436 */ 437 static void null_cs_control(u32 command) 438 { 439 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command); 440 } 441 442 /** 443 * internal_cs_control - Control chip select signals via SSP_CSR. 444 * @pl022: SSP driver private data structure 445 * @command: select/delect the chip 446 * 447 * Used on controller with internal chip select control via SSP_CSR register 448 * (vendor extension). Each of the 5 LSB in the register controls one chip 449 * select signal. 450 */ 451 static void internal_cs_control(struct pl022 *pl022, u32 command) 452 { 453 u32 tmp; 454 455 tmp = readw(SSP_CSR(pl022->virtbase)); 456 if (command == SSP_CHIP_SELECT) 457 tmp &= ~BIT(pl022->cur_cs); 458 else 459 tmp |= BIT(pl022->cur_cs); 460 writew(tmp, SSP_CSR(pl022->virtbase)); 461 } 462 463 static void pl022_cs_control(struct pl022 *pl022, u32 command) 464 { 465 if (pl022->vendor->internal_cs_ctrl) 466 internal_cs_control(pl022, command); 467 else if (gpio_is_valid(pl022->cur_cs)) 468 gpio_set_value(pl022->cur_cs, command); 469 else 470 pl022->cur_chip->cs_control(command); 471 } 472 473 /** 474 * giveback - current spi_message is over, schedule next message and call 475 * callback of this message. Assumes that caller already 476 * set message->status; dma and pio irqs are blocked 477 * @pl022: SSP driver private data structure 478 */ 479 static void giveback(struct pl022 *pl022) 480 { 481 struct spi_transfer *last_transfer; 482 pl022->next_msg_cs_active = false; 483 484 last_transfer = list_last_entry(&pl022->cur_msg->transfers, 485 struct spi_transfer, transfer_list); 486 487 /* Delay if requested before any change in chip select */ 488 /* 489 * FIXME: This runs in interrupt context. 490 * Is this really smart? 491 */ 492 spi_transfer_delay_exec(last_transfer); 493 494 if (!last_transfer->cs_change) { 495 struct spi_message *next_msg; 496 497 /* 498 * cs_change was not set. We can keep the chip select 499 * enabled if there is message in the queue and it is 500 * for the same spi device. 501 * 502 * We cannot postpone this until pump_messages, because 503 * after calling msg->complete (below) the driver that 504 * sent the current message could be unloaded, which 505 * could invalidate the cs_control() callback... 506 */ 507 /* get a pointer to the next message, if any */ 508 next_msg = spi_get_next_queued_message(pl022->master); 509 510 /* 511 * see if the next and current messages point 512 * to the same spi device. 513 */ 514 if (next_msg && next_msg->spi != pl022->cur_msg->spi) 515 next_msg = NULL; 516 if (!next_msg || pl022->cur_msg->state == STATE_ERROR) 517 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 518 else 519 pl022->next_msg_cs_active = true; 520 521 } 522 523 pl022->cur_msg = NULL; 524 pl022->cur_transfer = NULL; 525 pl022->cur_chip = NULL; 526 527 /* disable the SPI/SSP operation */ 528 writew((readw(SSP_CR1(pl022->virtbase)) & 529 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 530 531 spi_finalize_current_message(pl022->master); 532 } 533 534 /** 535 * flush - flush the FIFO to reach a clean state 536 * @pl022: SSP driver private data structure 537 */ 538 static int flush(struct pl022 *pl022) 539 { 540 unsigned long limit = loops_per_jiffy << 1; 541 542 dev_dbg(&pl022->adev->dev, "flush\n"); 543 do { 544 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 545 readw(SSP_DR(pl022->virtbase)); 546 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--); 547 548 pl022->exp_fifo_level = 0; 549 550 return limit; 551 } 552 553 /** 554 * restore_state - Load configuration of current chip 555 * @pl022: SSP driver private data structure 556 */ 557 static void restore_state(struct pl022 *pl022) 558 { 559 struct chip_data *chip = pl022->cur_chip; 560 561 if (pl022->vendor->extended_cr) 562 writel(chip->cr0, SSP_CR0(pl022->virtbase)); 563 else 564 writew(chip->cr0, SSP_CR0(pl022->virtbase)); 565 writew(chip->cr1, SSP_CR1(pl022->virtbase)); 566 writew(chip->dmacr, SSP_DMACR(pl022->virtbase)); 567 writew(chip->cpsr, SSP_CPSR(pl022->virtbase)); 568 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); 569 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 570 } 571 572 /* 573 * Default SSP Register Values 574 */ 575 #define DEFAULT_SSP_REG_CR0 ( \ 576 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \ 577 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \ 578 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 579 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 580 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ 581 ) 582 583 /* ST versions have slightly different bit layout */ 584 #define DEFAULT_SSP_REG_CR0_ST ( \ 585 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ 586 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \ 587 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 588 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 589 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \ 590 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \ 591 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \ 592 ) 593 594 /* The PL023 version is slightly different again */ 595 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \ 596 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ 597 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 598 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 599 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ 600 ) 601 602 #define DEFAULT_SSP_REG_CR1 ( \ 603 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \ 604 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ 605 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ 606 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \ 607 ) 608 609 /* ST versions extend this register to use all 16 bits */ 610 #define DEFAULT_SSP_REG_CR1_ST ( \ 611 DEFAULT_SSP_REG_CR1 | \ 612 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ 613 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ 614 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\ 615 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ 616 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \ 617 ) 618 619 /* 620 * The PL023 variant has further differences: no loopback mode, no microwire 621 * support, and a new clock feedback delay setting. 622 */ 623 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \ 624 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ 625 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ 626 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \ 627 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ 628 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ 629 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ 630 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \ 631 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \ 632 ) 633 634 #define DEFAULT_SSP_REG_CPSR ( \ 635 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \ 636 ) 637 638 #define DEFAULT_SSP_REG_DMACR (\ 639 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \ 640 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \ 641 ) 642 643 /** 644 * load_ssp_default_config - Load default configuration for SSP 645 * @pl022: SSP driver private data structure 646 */ 647 static void load_ssp_default_config(struct pl022 *pl022) 648 { 649 if (pl022->vendor->pl023) { 650 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase)); 651 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase)); 652 } else if (pl022->vendor->extended_cr) { 653 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase)); 654 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase)); 655 } else { 656 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase)); 657 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase)); 658 } 659 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase)); 660 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase)); 661 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); 662 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 663 } 664 665 /** 666 * This will write to TX and read from RX according to the parameters 667 * set in pl022. 668 */ 669 static void readwriter(struct pl022 *pl022) 670 { 671 672 /* 673 * The FIFO depth is different between primecell variants. 674 * I believe filling in too much in the FIFO might cause 675 * errons in 8bit wide transfers on ARM variants (just 8 words 676 * FIFO, means only 8x8 = 64 bits in FIFO) at least. 677 * 678 * To prevent this issue, the TX FIFO is only filled to the 679 * unused RX FIFO fill length, regardless of what the TX 680 * FIFO status flag indicates. 681 */ 682 dev_dbg(&pl022->adev->dev, 683 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n", 684 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end); 685 686 /* Read as much as you can */ 687 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 688 && (pl022->rx < pl022->rx_end)) { 689 switch (pl022->read) { 690 case READING_NULL: 691 readw(SSP_DR(pl022->virtbase)); 692 break; 693 case READING_U8: 694 *(u8 *) (pl022->rx) = 695 readw(SSP_DR(pl022->virtbase)) & 0xFFU; 696 break; 697 case READING_U16: 698 *(u16 *) (pl022->rx) = 699 (u16) readw(SSP_DR(pl022->virtbase)); 700 break; 701 case READING_U32: 702 *(u32 *) (pl022->rx) = 703 readl(SSP_DR(pl022->virtbase)); 704 break; 705 } 706 pl022->rx += (pl022->cur_chip->n_bytes); 707 pl022->exp_fifo_level--; 708 } 709 /* 710 * Write as much as possible up to the RX FIFO size 711 */ 712 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth) 713 && (pl022->tx < pl022->tx_end)) { 714 switch (pl022->write) { 715 case WRITING_NULL: 716 writew(0x0, SSP_DR(pl022->virtbase)); 717 break; 718 case WRITING_U8: 719 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase)); 720 break; 721 case WRITING_U16: 722 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase)); 723 break; 724 case WRITING_U32: 725 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase)); 726 break; 727 } 728 pl022->tx += (pl022->cur_chip->n_bytes); 729 pl022->exp_fifo_level++; 730 /* 731 * This inner reader takes care of things appearing in the RX 732 * FIFO as we're transmitting. This will happen a lot since the 733 * clock starts running when you put things into the TX FIFO, 734 * and then things are continuously clocked into the RX FIFO. 735 */ 736 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 737 && (pl022->rx < pl022->rx_end)) { 738 switch (pl022->read) { 739 case READING_NULL: 740 readw(SSP_DR(pl022->virtbase)); 741 break; 742 case READING_U8: 743 *(u8 *) (pl022->rx) = 744 readw(SSP_DR(pl022->virtbase)) & 0xFFU; 745 break; 746 case READING_U16: 747 *(u16 *) (pl022->rx) = 748 (u16) readw(SSP_DR(pl022->virtbase)); 749 break; 750 case READING_U32: 751 *(u32 *) (pl022->rx) = 752 readl(SSP_DR(pl022->virtbase)); 753 break; 754 } 755 pl022->rx += (pl022->cur_chip->n_bytes); 756 pl022->exp_fifo_level--; 757 } 758 } 759 /* 760 * When we exit here the TX FIFO should be full and the RX FIFO 761 * should be empty 762 */ 763 } 764 765 /** 766 * next_transfer - Move to the Next transfer in the current spi message 767 * @pl022: SSP driver private data structure 768 * 769 * This function moves though the linked list of spi transfers in the 770 * current spi message and returns with the state of current spi 771 * message i.e whether its last transfer is done(STATE_DONE) or 772 * Next transfer is ready(STATE_RUNNING) 773 */ 774 static void *next_transfer(struct pl022 *pl022) 775 { 776 struct spi_message *msg = pl022->cur_msg; 777 struct spi_transfer *trans = pl022->cur_transfer; 778 779 /* Move to next transfer */ 780 if (trans->transfer_list.next != &msg->transfers) { 781 pl022->cur_transfer = 782 list_entry(trans->transfer_list.next, 783 struct spi_transfer, transfer_list); 784 return STATE_RUNNING; 785 } 786 return STATE_DONE; 787 } 788 789 /* 790 * This DMA functionality is only compiled in if we have 791 * access to the generic DMA devices/DMA engine. 792 */ 793 #ifdef CONFIG_DMA_ENGINE 794 static void unmap_free_dma_scatter(struct pl022 *pl022) 795 { 796 /* Unmap and free the SG tables */ 797 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl, 798 pl022->sgt_tx.nents, DMA_TO_DEVICE); 799 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl, 800 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 801 sg_free_table(&pl022->sgt_rx); 802 sg_free_table(&pl022->sgt_tx); 803 } 804 805 static void dma_callback(void *data) 806 { 807 struct pl022 *pl022 = data; 808 struct spi_message *msg = pl022->cur_msg; 809 810 BUG_ON(!pl022->sgt_rx.sgl); 811 812 #ifdef VERBOSE_DEBUG 813 /* 814 * Optionally dump out buffers to inspect contents, this is 815 * good if you want to convince yourself that the loopback 816 * read/write contents are the same, when adopting to a new 817 * DMA engine. 818 */ 819 { 820 struct scatterlist *sg; 821 unsigned int i; 822 823 dma_sync_sg_for_cpu(&pl022->adev->dev, 824 pl022->sgt_rx.sgl, 825 pl022->sgt_rx.nents, 826 DMA_FROM_DEVICE); 827 828 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) { 829 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i); 830 print_hex_dump(KERN_ERR, "SPI RX: ", 831 DUMP_PREFIX_OFFSET, 832 16, 833 1, 834 sg_virt(sg), 835 sg_dma_len(sg), 836 1); 837 } 838 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) { 839 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i); 840 print_hex_dump(KERN_ERR, "SPI TX: ", 841 DUMP_PREFIX_OFFSET, 842 16, 843 1, 844 sg_virt(sg), 845 sg_dma_len(sg), 846 1); 847 } 848 } 849 #endif 850 851 unmap_free_dma_scatter(pl022); 852 853 /* Update total bytes transferred */ 854 msg->actual_length += pl022->cur_transfer->len; 855 /* Move to next transfer */ 856 msg->state = next_transfer(pl022); 857 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change) 858 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 859 tasklet_schedule(&pl022->pump_transfers); 860 } 861 862 static void setup_dma_scatter(struct pl022 *pl022, 863 void *buffer, 864 unsigned int length, 865 struct sg_table *sgtab) 866 { 867 struct scatterlist *sg; 868 int bytesleft = length; 869 void *bufp = buffer; 870 int mapbytes; 871 int i; 872 873 if (buffer) { 874 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { 875 /* 876 * If there are less bytes left than what fits 877 * in the current page (plus page alignment offset) 878 * we just feed in this, else we stuff in as much 879 * as we can. 880 */ 881 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp))) 882 mapbytes = bytesleft; 883 else 884 mapbytes = PAGE_SIZE - offset_in_page(bufp); 885 sg_set_page(sg, virt_to_page(bufp), 886 mapbytes, offset_in_page(bufp)); 887 bufp += mapbytes; 888 bytesleft -= mapbytes; 889 dev_dbg(&pl022->adev->dev, 890 "set RX/TX target page @ %p, %d bytes, %d left\n", 891 bufp, mapbytes, bytesleft); 892 } 893 } else { 894 /* Map the dummy buffer on every page */ 895 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { 896 if (bytesleft < PAGE_SIZE) 897 mapbytes = bytesleft; 898 else 899 mapbytes = PAGE_SIZE; 900 sg_set_page(sg, virt_to_page(pl022->dummypage), 901 mapbytes, 0); 902 bytesleft -= mapbytes; 903 dev_dbg(&pl022->adev->dev, 904 "set RX/TX to dummy page %d bytes, %d left\n", 905 mapbytes, bytesleft); 906 907 } 908 } 909 BUG_ON(bytesleft); 910 } 911 912 /** 913 * configure_dma - configures the channels for the next transfer 914 * @pl022: SSP driver's private data structure 915 */ 916 static int configure_dma(struct pl022 *pl022) 917 { 918 struct dma_slave_config rx_conf = { 919 .src_addr = SSP_DR(pl022->phybase), 920 .direction = DMA_DEV_TO_MEM, 921 .device_fc = false, 922 }; 923 struct dma_slave_config tx_conf = { 924 .dst_addr = SSP_DR(pl022->phybase), 925 .direction = DMA_MEM_TO_DEV, 926 .device_fc = false, 927 }; 928 unsigned int pages; 929 int ret; 930 int rx_sglen, tx_sglen; 931 struct dma_chan *rxchan = pl022->dma_rx_channel; 932 struct dma_chan *txchan = pl022->dma_tx_channel; 933 struct dma_async_tx_descriptor *rxdesc; 934 struct dma_async_tx_descriptor *txdesc; 935 936 /* Check that the channels are available */ 937 if (!rxchan || !txchan) 938 return -ENODEV; 939 940 /* 941 * If supplied, the DMA burstsize should equal the FIFO trigger level. 942 * Notice that the DMA engine uses one-to-one mapping. Since we can 943 * not trigger on 2 elements this needs explicit mapping rather than 944 * calculation. 945 */ 946 switch (pl022->rx_lev_trig) { 947 case SSP_RX_1_OR_MORE_ELEM: 948 rx_conf.src_maxburst = 1; 949 break; 950 case SSP_RX_4_OR_MORE_ELEM: 951 rx_conf.src_maxburst = 4; 952 break; 953 case SSP_RX_8_OR_MORE_ELEM: 954 rx_conf.src_maxburst = 8; 955 break; 956 case SSP_RX_16_OR_MORE_ELEM: 957 rx_conf.src_maxburst = 16; 958 break; 959 case SSP_RX_32_OR_MORE_ELEM: 960 rx_conf.src_maxburst = 32; 961 break; 962 default: 963 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1; 964 break; 965 } 966 967 switch (pl022->tx_lev_trig) { 968 case SSP_TX_1_OR_MORE_EMPTY_LOC: 969 tx_conf.dst_maxburst = 1; 970 break; 971 case SSP_TX_4_OR_MORE_EMPTY_LOC: 972 tx_conf.dst_maxburst = 4; 973 break; 974 case SSP_TX_8_OR_MORE_EMPTY_LOC: 975 tx_conf.dst_maxburst = 8; 976 break; 977 case SSP_TX_16_OR_MORE_EMPTY_LOC: 978 tx_conf.dst_maxburst = 16; 979 break; 980 case SSP_TX_32_OR_MORE_EMPTY_LOC: 981 tx_conf.dst_maxburst = 32; 982 break; 983 default: 984 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1; 985 break; 986 } 987 988 switch (pl022->read) { 989 case READING_NULL: 990 /* Use the same as for writing */ 991 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 992 break; 993 case READING_U8: 994 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 995 break; 996 case READING_U16: 997 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 998 break; 999 case READING_U32: 1000 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1001 break; 1002 } 1003 1004 switch (pl022->write) { 1005 case WRITING_NULL: 1006 /* Use the same as for reading */ 1007 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 1008 break; 1009 case WRITING_U8: 1010 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1011 break; 1012 case WRITING_U16: 1013 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 1014 break; 1015 case WRITING_U32: 1016 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1017 break; 1018 } 1019 1020 /* SPI pecularity: we need to read and write the same width */ 1021 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 1022 rx_conf.src_addr_width = tx_conf.dst_addr_width; 1023 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 1024 tx_conf.dst_addr_width = rx_conf.src_addr_width; 1025 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width); 1026 1027 dmaengine_slave_config(rxchan, &rx_conf); 1028 dmaengine_slave_config(txchan, &tx_conf); 1029 1030 /* Create sglists for the transfers */ 1031 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE); 1032 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages); 1033 1034 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC); 1035 if (ret) 1036 goto err_alloc_rx_sg; 1037 1038 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC); 1039 if (ret) 1040 goto err_alloc_tx_sg; 1041 1042 /* Fill in the scatterlists for the RX+TX buffers */ 1043 setup_dma_scatter(pl022, pl022->rx, 1044 pl022->cur_transfer->len, &pl022->sgt_rx); 1045 setup_dma_scatter(pl022, pl022->tx, 1046 pl022->cur_transfer->len, &pl022->sgt_tx); 1047 1048 /* Map DMA buffers */ 1049 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl, 1050 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 1051 if (!rx_sglen) 1052 goto err_rx_sgmap; 1053 1054 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl, 1055 pl022->sgt_tx.nents, DMA_TO_DEVICE); 1056 if (!tx_sglen) 1057 goto err_tx_sgmap; 1058 1059 /* Send both scatterlists */ 1060 rxdesc = dmaengine_prep_slave_sg(rxchan, 1061 pl022->sgt_rx.sgl, 1062 rx_sglen, 1063 DMA_DEV_TO_MEM, 1064 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1065 if (!rxdesc) 1066 goto err_rxdesc; 1067 1068 txdesc = dmaengine_prep_slave_sg(txchan, 1069 pl022->sgt_tx.sgl, 1070 tx_sglen, 1071 DMA_MEM_TO_DEV, 1072 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1073 if (!txdesc) 1074 goto err_txdesc; 1075 1076 /* Put the callback on the RX transfer only, that should finish last */ 1077 rxdesc->callback = dma_callback; 1078 rxdesc->callback_param = pl022; 1079 1080 /* Submit and fire RX and TX with TX last so we're ready to read! */ 1081 dmaengine_submit(rxdesc); 1082 dmaengine_submit(txdesc); 1083 dma_async_issue_pending(rxchan); 1084 dma_async_issue_pending(txchan); 1085 pl022->dma_running = true; 1086 1087 return 0; 1088 1089 err_txdesc: 1090 dmaengine_terminate_all(txchan); 1091 err_rxdesc: 1092 dmaengine_terminate_all(rxchan); 1093 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl, 1094 pl022->sgt_tx.nents, DMA_TO_DEVICE); 1095 err_tx_sgmap: 1096 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl, 1097 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 1098 err_rx_sgmap: 1099 sg_free_table(&pl022->sgt_tx); 1100 err_alloc_tx_sg: 1101 sg_free_table(&pl022->sgt_rx); 1102 err_alloc_rx_sg: 1103 return -ENOMEM; 1104 } 1105 1106 static int pl022_dma_probe(struct pl022 *pl022) 1107 { 1108 dma_cap_mask_t mask; 1109 1110 /* Try to acquire a generic DMA engine slave channel */ 1111 dma_cap_zero(mask); 1112 dma_cap_set(DMA_SLAVE, mask); 1113 /* 1114 * We need both RX and TX channels to do DMA, else do none 1115 * of them. 1116 */ 1117 pl022->dma_rx_channel = dma_request_channel(mask, 1118 pl022->master_info->dma_filter, 1119 pl022->master_info->dma_rx_param); 1120 if (!pl022->dma_rx_channel) { 1121 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n"); 1122 goto err_no_rxchan; 1123 } 1124 1125 pl022->dma_tx_channel = dma_request_channel(mask, 1126 pl022->master_info->dma_filter, 1127 pl022->master_info->dma_tx_param); 1128 if (!pl022->dma_tx_channel) { 1129 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n"); 1130 goto err_no_txchan; 1131 } 1132 1133 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); 1134 if (!pl022->dummypage) 1135 goto err_no_dummypage; 1136 1137 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n", 1138 dma_chan_name(pl022->dma_rx_channel), 1139 dma_chan_name(pl022->dma_tx_channel)); 1140 1141 return 0; 1142 1143 err_no_dummypage: 1144 dma_release_channel(pl022->dma_tx_channel); 1145 err_no_txchan: 1146 dma_release_channel(pl022->dma_rx_channel); 1147 pl022->dma_rx_channel = NULL; 1148 err_no_rxchan: 1149 dev_err(&pl022->adev->dev, 1150 "Failed to work in dma mode, work without dma!\n"); 1151 return -ENODEV; 1152 } 1153 1154 static int pl022_dma_autoprobe(struct pl022 *pl022) 1155 { 1156 struct device *dev = &pl022->adev->dev; 1157 struct dma_chan *chan; 1158 int err; 1159 1160 /* automatically configure DMA channels from platform, normally using DT */ 1161 chan = dma_request_chan(dev, "rx"); 1162 if (IS_ERR(chan)) { 1163 err = PTR_ERR(chan); 1164 goto err_no_rxchan; 1165 } 1166 1167 pl022->dma_rx_channel = chan; 1168 1169 chan = dma_request_chan(dev, "tx"); 1170 if (IS_ERR(chan)) { 1171 err = PTR_ERR(chan); 1172 goto err_no_txchan; 1173 } 1174 1175 pl022->dma_tx_channel = chan; 1176 1177 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); 1178 if (!pl022->dummypage) { 1179 err = -ENOMEM; 1180 goto err_no_dummypage; 1181 } 1182 1183 return 0; 1184 1185 err_no_dummypage: 1186 dma_release_channel(pl022->dma_tx_channel); 1187 pl022->dma_tx_channel = NULL; 1188 err_no_txchan: 1189 dma_release_channel(pl022->dma_rx_channel); 1190 pl022->dma_rx_channel = NULL; 1191 err_no_rxchan: 1192 return err; 1193 } 1194 1195 static void terminate_dma(struct pl022 *pl022) 1196 { 1197 struct dma_chan *rxchan = pl022->dma_rx_channel; 1198 struct dma_chan *txchan = pl022->dma_tx_channel; 1199 1200 dmaengine_terminate_all(rxchan); 1201 dmaengine_terminate_all(txchan); 1202 unmap_free_dma_scatter(pl022); 1203 pl022->dma_running = false; 1204 } 1205 1206 static void pl022_dma_remove(struct pl022 *pl022) 1207 { 1208 if (pl022->dma_running) 1209 terminate_dma(pl022); 1210 if (pl022->dma_tx_channel) 1211 dma_release_channel(pl022->dma_tx_channel); 1212 if (pl022->dma_rx_channel) 1213 dma_release_channel(pl022->dma_rx_channel); 1214 kfree(pl022->dummypage); 1215 } 1216 1217 #else 1218 static inline int configure_dma(struct pl022 *pl022) 1219 { 1220 return -ENODEV; 1221 } 1222 1223 static inline int pl022_dma_autoprobe(struct pl022 *pl022) 1224 { 1225 return 0; 1226 } 1227 1228 static inline int pl022_dma_probe(struct pl022 *pl022) 1229 { 1230 return 0; 1231 } 1232 1233 static inline void pl022_dma_remove(struct pl022 *pl022) 1234 { 1235 } 1236 #endif 1237 1238 /** 1239 * pl022_interrupt_handler - Interrupt handler for SSP controller 1240 * 1241 * This function handles interrupts generated for an interrupt based transfer. 1242 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the 1243 * current message's state as STATE_ERROR and schedule the tasklet 1244 * pump_transfers which will do the postprocessing of the current message by 1245 * calling giveback(). Otherwise it reads data from RX FIFO till there is no 1246 * more data, and writes data in TX FIFO till it is not full. If we complete 1247 * the transfer we move to the next transfer and schedule the tasklet. 1248 */ 1249 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id) 1250 { 1251 struct pl022 *pl022 = dev_id; 1252 struct spi_message *msg = pl022->cur_msg; 1253 u16 irq_status = 0; 1254 1255 if (unlikely(!msg)) { 1256 dev_err(&pl022->adev->dev, 1257 "bad message state in interrupt handler"); 1258 /* Never fail */ 1259 return IRQ_HANDLED; 1260 } 1261 1262 /* Read the Interrupt Status Register */ 1263 irq_status = readw(SSP_MIS(pl022->virtbase)); 1264 1265 if (unlikely(!irq_status)) 1266 return IRQ_NONE; 1267 1268 /* 1269 * This handles the FIFO interrupts, the timeout 1270 * interrupts are flatly ignored, they cannot be 1271 * trusted. 1272 */ 1273 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) { 1274 /* 1275 * Overrun interrupt - bail out since our Data has been 1276 * corrupted 1277 */ 1278 dev_err(&pl022->adev->dev, "FIFO overrun\n"); 1279 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF) 1280 dev_err(&pl022->adev->dev, 1281 "RXFIFO is full\n"); 1282 1283 /* 1284 * Disable and clear interrupts, disable SSP, 1285 * mark message with bad status so it can be 1286 * retried. 1287 */ 1288 writew(DISABLE_ALL_INTERRUPTS, 1289 SSP_IMSC(pl022->virtbase)); 1290 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 1291 writew((readw(SSP_CR1(pl022->virtbase)) & 1292 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 1293 msg->state = STATE_ERROR; 1294 1295 /* Schedule message queue handler */ 1296 tasklet_schedule(&pl022->pump_transfers); 1297 return IRQ_HANDLED; 1298 } 1299 1300 readwriter(pl022); 1301 1302 if (pl022->tx == pl022->tx_end) { 1303 /* Disable Transmit interrupt, enable receive interrupt */ 1304 writew((readw(SSP_IMSC(pl022->virtbase)) & 1305 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM, 1306 SSP_IMSC(pl022->virtbase)); 1307 } 1308 1309 /* 1310 * Since all transactions must write as much as shall be read, 1311 * we can conclude the entire transaction once RX is complete. 1312 * At this point, all TX will always be finished. 1313 */ 1314 if (pl022->rx >= pl022->rx_end) { 1315 writew(DISABLE_ALL_INTERRUPTS, 1316 SSP_IMSC(pl022->virtbase)); 1317 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 1318 if (unlikely(pl022->rx > pl022->rx_end)) { 1319 dev_warn(&pl022->adev->dev, "read %u surplus " 1320 "bytes (did you request an odd " 1321 "number of bytes on a 16bit bus?)\n", 1322 (u32) (pl022->rx - pl022->rx_end)); 1323 } 1324 /* Update total bytes transferred */ 1325 msg->actual_length += pl022->cur_transfer->len; 1326 /* Move to next transfer */ 1327 msg->state = next_transfer(pl022); 1328 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change) 1329 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 1330 tasklet_schedule(&pl022->pump_transfers); 1331 return IRQ_HANDLED; 1332 } 1333 1334 return IRQ_HANDLED; 1335 } 1336 1337 /** 1338 * This sets up the pointers to memory for the next message to 1339 * send out on the SPI bus. 1340 */ 1341 static int set_up_next_transfer(struct pl022 *pl022, 1342 struct spi_transfer *transfer) 1343 { 1344 int residue; 1345 1346 /* Sanity check the message for this bus width */ 1347 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes; 1348 if (unlikely(residue != 0)) { 1349 dev_err(&pl022->adev->dev, 1350 "message of %u bytes to transmit but the current " 1351 "chip bus has a data width of %u bytes!\n", 1352 pl022->cur_transfer->len, 1353 pl022->cur_chip->n_bytes); 1354 dev_err(&pl022->adev->dev, "skipping this message\n"); 1355 return -EIO; 1356 } 1357 pl022->tx = (void *)transfer->tx_buf; 1358 pl022->tx_end = pl022->tx + pl022->cur_transfer->len; 1359 pl022->rx = (void *)transfer->rx_buf; 1360 pl022->rx_end = pl022->rx + pl022->cur_transfer->len; 1361 pl022->write = 1362 pl022->tx ? pl022->cur_chip->write : WRITING_NULL; 1363 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL; 1364 return 0; 1365 } 1366 1367 /** 1368 * pump_transfers - Tasklet function which schedules next transfer 1369 * when running in interrupt or DMA transfer mode. 1370 * @data: SSP driver private data structure 1371 * 1372 */ 1373 static void pump_transfers(unsigned long data) 1374 { 1375 struct pl022 *pl022 = (struct pl022 *) data; 1376 struct spi_message *message = NULL; 1377 struct spi_transfer *transfer = NULL; 1378 struct spi_transfer *previous = NULL; 1379 1380 /* Get current state information */ 1381 message = pl022->cur_msg; 1382 transfer = pl022->cur_transfer; 1383 1384 /* Handle for abort */ 1385 if (message->state == STATE_ERROR) { 1386 message->status = -EIO; 1387 giveback(pl022); 1388 return; 1389 } 1390 1391 /* Handle end of message */ 1392 if (message->state == STATE_DONE) { 1393 message->status = 0; 1394 giveback(pl022); 1395 return; 1396 } 1397 1398 /* Delay if requested at end of transfer before CS change */ 1399 if (message->state == STATE_RUNNING) { 1400 previous = list_entry(transfer->transfer_list.prev, 1401 struct spi_transfer, 1402 transfer_list); 1403 /* 1404 * FIXME: This runs in interrupt context. 1405 * Is this really smart? 1406 */ 1407 spi_transfer_delay_exec(previous); 1408 1409 /* Reselect chip select only if cs_change was requested */ 1410 if (previous->cs_change) 1411 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1412 } else { 1413 /* STATE_START */ 1414 message->state = STATE_RUNNING; 1415 } 1416 1417 if (set_up_next_transfer(pl022, transfer)) { 1418 message->state = STATE_ERROR; 1419 message->status = -EIO; 1420 giveback(pl022); 1421 return; 1422 } 1423 /* Flush the FIFOs and let's go! */ 1424 flush(pl022); 1425 1426 if (pl022->cur_chip->enable_dma) { 1427 if (configure_dma(pl022)) { 1428 dev_dbg(&pl022->adev->dev, 1429 "configuration of DMA failed, fall back to interrupt mode\n"); 1430 goto err_config_dma; 1431 } 1432 return; 1433 } 1434 1435 err_config_dma: 1436 /* enable all interrupts except RX */ 1437 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase)); 1438 } 1439 1440 static void do_interrupt_dma_transfer(struct pl022 *pl022) 1441 { 1442 /* 1443 * Default is to enable all interrupts except RX - 1444 * this will be enabled once TX is complete 1445 */ 1446 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM); 1447 1448 /* Enable target chip, if not already active */ 1449 if (!pl022->next_msg_cs_active) 1450 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1451 1452 if (set_up_next_transfer(pl022, pl022->cur_transfer)) { 1453 /* Error path */ 1454 pl022->cur_msg->state = STATE_ERROR; 1455 pl022->cur_msg->status = -EIO; 1456 giveback(pl022); 1457 return; 1458 } 1459 /* If we're using DMA, set up DMA here */ 1460 if (pl022->cur_chip->enable_dma) { 1461 /* Configure DMA transfer */ 1462 if (configure_dma(pl022)) { 1463 dev_dbg(&pl022->adev->dev, 1464 "configuration of DMA failed, fall back to interrupt mode\n"); 1465 goto err_config_dma; 1466 } 1467 /* Disable interrupts in DMA mode, IRQ from DMA controller */ 1468 irqflags = DISABLE_ALL_INTERRUPTS; 1469 } 1470 err_config_dma: 1471 /* Enable SSP, turn on interrupts */ 1472 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), 1473 SSP_CR1(pl022->virtbase)); 1474 writew(irqflags, SSP_IMSC(pl022->virtbase)); 1475 } 1476 1477 static void print_current_status(struct pl022 *pl022) 1478 { 1479 u32 read_cr0; 1480 u16 read_cr1, read_dmacr, read_sr; 1481 1482 if (pl022->vendor->extended_cr) 1483 read_cr0 = readl(SSP_CR0(pl022->virtbase)); 1484 else 1485 read_cr0 = readw(SSP_CR0(pl022->virtbase)); 1486 read_cr1 = readw(SSP_CR1(pl022->virtbase)); 1487 read_dmacr = readw(SSP_DMACR(pl022->virtbase)); 1488 read_sr = readw(SSP_SR(pl022->virtbase)); 1489 1490 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0); 1491 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1); 1492 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr); 1493 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr); 1494 dev_warn(&pl022->adev->dev, 1495 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n", 1496 pl022->exp_fifo_level, 1497 pl022->vendor->fifodepth); 1498 1499 } 1500 1501 static void do_polling_transfer(struct pl022 *pl022) 1502 { 1503 struct spi_message *message = NULL; 1504 struct spi_transfer *transfer = NULL; 1505 struct spi_transfer *previous = NULL; 1506 unsigned long time, timeout; 1507 1508 message = pl022->cur_msg; 1509 1510 while (message->state != STATE_DONE) { 1511 /* Handle for abort */ 1512 if (message->state == STATE_ERROR) 1513 break; 1514 transfer = pl022->cur_transfer; 1515 1516 /* Delay if requested at end of transfer */ 1517 if (message->state == STATE_RUNNING) { 1518 previous = 1519 list_entry(transfer->transfer_list.prev, 1520 struct spi_transfer, transfer_list); 1521 spi_transfer_delay_exec(previous); 1522 if (previous->cs_change) 1523 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1524 } else { 1525 /* STATE_START */ 1526 message->state = STATE_RUNNING; 1527 if (!pl022->next_msg_cs_active) 1528 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1529 } 1530 1531 /* Configuration Changing Per Transfer */ 1532 if (set_up_next_transfer(pl022, transfer)) { 1533 /* Error path */ 1534 message->state = STATE_ERROR; 1535 break; 1536 } 1537 /* Flush FIFOs and enable SSP */ 1538 flush(pl022); 1539 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), 1540 SSP_CR1(pl022->virtbase)); 1541 1542 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n"); 1543 1544 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT); 1545 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) { 1546 time = jiffies; 1547 readwriter(pl022); 1548 if (time_after(time, timeout)) { 1549 dev_warn(&pl022->adev->dev, 1550 "%s: timeout!\n", __func__); 1551 message->state = STATE_TIMEOUT; 1552 print_current_status(pl022); 1553 goto out; 1554 } 1555 cpu_relax(); 1556 } 1557 1558 /* Update total byte transferred */ 1559 message->actual_length += pl022->cur_transfer->len; 1560 /* Move to next transfer */ 1561 message->state = next_transfer(pl022); 1562 if (message->state != STATE_DONE 1563 && pl022->cur_transfer->cs_change) 1564 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 1565 } 1566 out: 1567 /* Handle end of message */ 1568 if (message->state == STATE_DONE) 1569 message->status = 0; 1570 else if (message->state == STATE_TIMEOUT) 1571 message->status = -EAGAIN; 1572 else 1573 message->status = -EIO; 1574 1575 giveback(pl022); 1576 return; 1577 } 1578 1579 static int pl022_transfer_one_message(struct spi_master *master, 1580 struct spi_message *msg) 1581 { 1582 struct pl022 *pl022 = spi_master_get_devdata(master); 1583 1584 /* Initial message state */ 1585 pl022->cur_msg = msg; 1586 msg->state = STATE_START; 1587 1588 pl022->cur_transfer = list_entry(msg->transfers.next, 1589 struct spi_transfer, transfer_list); 1590 1591 /* Setup the SPI using the per chip configuration */ 1592 pl022->cur_chip = spi_get_ctldata(msg->spi); 1593 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select]; 1594 1595 restore_state(pl022); 1596 flush(pl022); 1597 1598 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER) 1599 do_polling_transfer(pl022); 1600 else 1601 do_interrupt_dma_transfer(pl022); 1602 1603 return 0; 1604 } 1605 1606 static int pl022_unprepare_transfer_hardware(struct spi_master *master) 1607 { 1608 struct pl022 *pl022 = spi_master_get_devdata(master); 1609 1610 /* nothing more to do - disable spi/ssp and power off */ 1611 writew((readw(SSP_CR1(pl022->virtbase)) & 1612 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 1613 1614 return 0; 1615 } 1616 1617 static int verify_controller_parameters(struct pl022 *pl022, 1618 struct pl022_config_chip const *chip_info) 1619 { 1620 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI) 1621 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) { 1622 dev_err(&pl022->adev->dev, 1623 "interface is configured incorrectly\n"); 1624 return -EINVAL; 1625 } 1626 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) && 1627 (!pl022->vendor->unidir)) { 1628 dev_err(&pl022->adev->dev, 1629 "unidirectional mode not supported in this " 1630 "hardware version\n"); 1631 return -EINVAL; 1632 } 1633 if ((chip_info->hierarchy != SSP_MASTER) 1634 && (chip_info->hierarchy != SSP_SLAVE)) { 1635 dev_err(&pl022->adev->dev, 1636 "hierarchy is configured incorrectly\n"); 1637 return -EINVAL; 1638 } 1639 if ((chip_info->com_mode != INTERRUPT_TRANSFER) 1640 && (chip_info->com_mode != DMA_TRANSFER) 1641 && (chip_info->com_mode != POLLING_TRANSFER)) { 1642 dev_err(&pl022->adev->dev, 1643 "Communication mode is configured incorrectly\n"); 1644 return -EINVAL; 1645 } 1646 switch (chip_info->rx_lev_trig) { 1647 case SSP_RX_1_OR_MORE_ELEM: 1648 case SSP_RX_4_OR_MORE_ELEM: 1649 case SSP_RX_8_OR_MORE_ELEM: 1650 /* These are always OK, all variants can handle this */ 1651 break; 1652 case SSP_RX_16_OR_MORE_ELEM: 1653 if (pl022->vendor->fifodepth < 16) { 1654 dev_err(&pl022->adev->dev, 1655 "RX FIFO Trigger Level is configured incorrectly\n"); 1656 return -EINVAL; 1657 } 1658 break; 1659 case SSP_RX_32_OR_MORE_ELEM: 1660 if (pl022->vendor->fifodepth < 32) { 1661 dev_err(&pl022->adev->dev, 1662 "RX FIFO Trigger Level is configured incorrectly\n"); 1663 return -EINVAL; 1664 } 1665 break; 1666 default: 1667 dev_err(&pl022->adev->dev, 1668 "RX FIFO Trigger Level is configured incorrectly\n"); 1669 return -EINVAL; 1670 } 1671 switch (chip_info->tx_lev_trig) { 1672 case SSP_TX_1_OR_MORE_EMPTY_LOC: 1673 case SSP_TX_4_OR_MORE_EMPTY_LOC: 1674 case SSP_TX_8_OR_MORE_EMPTY_LOC: 1675 /* These are always OK, all variants can handle this */ 1676 break; 1677 case SSP_TX_16_OR_MORE_EMPTY_LOC: 1678 if (pl022->vendor->fifodepth < 16) { 1679 dev_err(&pl022->adev->dev, 1680 "TX FIFO Trigger Level is configured incorrectly\n"); 1681 return -EINVAL; 1682 } 1683 break; 1684 case SSP_TX_32_OR_MORE_EMPTY_LOC: 1685 if (pl022->vendor->fifodepth < 32) { 1686 dev_err(&pl022->adev->dev, 1687 "TX FIFO Trigger Level is configured incorrectly\n"); 1688 return -EINVAL; 1689 } 1690 break; 1691 default: 1692 dev_err(&pl022->adev->dev, 1693 "TX FIFO Trigger Level is configured incorrectly\n"); 1694 return -EINVAL; 1695 } 1696 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) { 1697 if ((chip_info->ctrl_len < SSP_BITS_4) 1698 || (chip_info->ctrl_len > SSP_BITS_32)) { 1699 dev_err(&pl022->adev->dev, 1700 "CTRL LEN is configured incorrectly\n"); 1701 return -EINVAL; 1702 } 1703 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO) 1704 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) { 1705 dev_err(&pl022->adev->dev, 1706 "Wait State is configured incorrectly\n"); 1707 return -EINVAL; 1708 } 1709 /* Half duplex is only available in the ST Micro version */ 1710 if (pl022->vendor->extended_cr) { 1711 if ((chip_info->duplex != 1712 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) 1713 && (chip_info->duplex != 1714 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) { 1715 dev_err(&pl022->adev->dev, 1716 "Microwire duplex mode is configured incorrectly\n"); 1717 return -EINVAL; 1718 } 1719 } else { 1720 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) 1721 dev_err(&pl022->adev->dev, 1722 "Microwire half duplex mode requested," 1723 " but this is only available in the" 1724 " ST version of PL022\n"); 1725 return -EINVAL; 1726 } 1727 } 1728 return 0; 1729 } 1730 1731 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr) 1732 { 1733 return rate / (cpsdvsr * (1 + scr)); 1734 } 1735 1736 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct 1737 ssp_clock_params * clk_freq) 1738 { 1739 /* Lets calculate the frequency parameters */ 1740 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN; 1741 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0, 1742 best_scr = 0, tmp, found = 0; 1743 1744 rate = clk_get_rate(pl022->clk); 1745 /* cpsdvscr = 2 & scr 0 */ 1746 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN); 1747 /* cpsdvsr = 254 & scr = 255 */ 1748 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX); 1749 1750 if (freq > max_tclk) 1751 dev_warn(&pl022->adev->dev, 1752 "Max speed that can be programmed is %d Hz, you requested %d\n", 1753 max_tclk, freq); 1754 1755 if (freq < min_tclk) { 1756 dev_err(&pl022->adev->dev, 1757 "Requested frequency: %d Hz is less than minimum possible %d Hz\n", 1758 freq, min_tclk); 1759 return -EINVAL; 1760 } 1761 1762 /* 1763 * best_freq will give closest possible available rate (<= requested 1764 * freq) for all values of scr & cpsdvsr. 1765 */ 1766 while ((cpsdvsr <= CPSDVR_MAX) && !found) { 1767 while (scr <= SCR_MAX) { 1768 tmp = spi_rate(rate, cpsdvsr, scr); 1769 1770 if (tmp > freq) { 1771 /* we need lower freq */ 1772 scr++; 1773 continue; 1774 } 1775 1776 /* 1777 * If found exact value, mark found and break. 1778 * If found more closer value, update and break. 1779 */ 1780 if (tmp > best_freq) { 1781 best_freq = tmp; 1782 best_cpsdvsr = cpsdvsr; 1783 best_scr = scr; 1784 1785 if (tmp == freq) 1786 found = 1; 1787 } 1788 /* 1789 * increased scr will give lower rates, which are not 1790 * required 1791 */ 1792 break; 1793 } 1794 cpsdvsr += 2; 1795 scr = SCR_MIN; 1796 } 1797 1798 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n", 1799 freq); 1800 1801 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF); 1802 clk_freq->scr = (u8) (best_scr & 0xFF); 1803 dev_dbg(&pl022->adev->dev, 1804 "SSP Target Frequency is: %u, Effective Frequency is %u\n", 1805 freq, best_freq); 1806 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n", 1807 clk_freq->cpsdvsr, clk_freq->scr); 1808 1809 return 0; 1810 } 1811 1812 /* 1813 * A piece of default chip info unless the platform 1814 * supplies it. 1815 */ 1816 static const struct pl022_config_chip pl022_default_chip_info = { 1817 .com_mode = POLLING_TRANSFER, 1818 .iface = SSP_INTERFACE_MOTOROLA_SPI, 1819 .hierarchy = SSP_SLAVE, 1820 .slave_tx_disable = DO_NOT_DRIVE_TX, 1821 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM, 1822 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC, 1823 .ctrl_len = SSP_BITS_8, 1824 .wait_state = SSP_MWIRE_WAIT_ZERO, 1825 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, 1826 .cs_control = null_cs_control, 1827 }; 1828 1829 /** 1830 * pl022_setup - setup function registered to SPI master framework 1831 * @spi: spi device which is requesting setup 1832 * 1833 * This function is registered to the SPI framework for this SPI master 1834 * controller. If it is the first time when setup is called by this device, 1835 * this function will initialize the runtime state for this chip and save 1836 * the same in the device structure. Else it will update the runtime info 1837 * with the updated chip info. Nothing is really being written to the 1838 * controller hardware here, that is not done until the actual transfer 1839 * commence. 1840 */ 1841 static int pl022_setup(struct spi_device *spi) 1842 { 1843 struct pl022_config_chip const *chip_info; 1844 struct pl022_config_chip chip_info_dt; 1845 struct chip_data *chip; 1846 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0}; 1847 int status = 0; 1848 struct pl022 *pl022 = spi_master_get_devdata(spi->master); 1849 unsigned int bits = spi->bits_per_word; 1850 u32 tmp; 1851 struct device_node *np = spi->dev.of_node; 1852 1853 if (!spi->max_speed_hz) 1854 return -EINVAL; 1855 1856 /* Get controller_state if one is supplied */ 1857 chip = spi_get_ctldata(spi); 1858 1859 if (chip == NULL) { 1860 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1861 if (!chip) 1862 return -ENOMEM; 1863 dev_dbg(&spi->dev, 1864 "allocated memory for controller's runtime state\n"); 1865 } 1866 1867 /* Get controller data if one is supplied */ 1868 chip_info = spi->controller_data; 1869 1870 if (chip_info == NULL) { 1871 if (np) { 1872 chip_info_dt = pl022_default_chip_info; 1873 1874 chip_info_dt.hierarchy = SSP_MASTER; 1875 of_property_read_u32(np, "pl022,interface", 1876 &chip_info_dt.iface); 1877 of_property_read_u32(np, "pl022,com-mode", 1878 &chip_info_dt.com_mode); 1879 of_property_read_u32(np, "pl022,rx-level-trig", 1880 &chip_info_dt.rx_lev_trig); 1881 of_property_read_u32(np, "pl022,tx-level-trig", 1882 &chip_info_dt.tx_lev_trig); 1883 of_property_read_u32(np, "pl022,ctrl-len", 1884 &chip_info_dt.ctrl_len); 1885 of_property_read_u32(np, "pl022,wait-state", 1886 &chip_info_dt.wait_state); 1887 of_property_read_u32(np, "pl022,duplex", 1888 &chip_info_dt.duplex); 1889 1890 chip_info = &chip_info_dt; 1891 } else { 1892 chip_info = &pl022_default_chip_info; 1893 /* spi_board_info.controller_data not is supplied */ 1894 dev_dbg(&spi->dev, 1895 "using default controller_data settings\n"); 1896 } 1897 } else 1898 dev_dbg(&spi->dev, 1899 "using user supplied controller_data settings\n"); 1900 1901 /* 1902 * We can override with custom divisors, else we use the board 1903 * frequency setting 1904 */ 1905 if ((0 == chip_info->clk_freq.cpsdvsr) 1906 && (0 == chip_info->clk_freq.scr)) { 1907 status = calculate_effective_freq(pl022, 1908 spi->max_speed_hz, 1909 &clk_freq); 1910 if (status < 0) 1911 goto err_config_params; 1912 } else { 1913 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq)); 1914 if ((clk_freq.cpsdvsr % 2) != 0) 1915 clk_freq.cpsdvsr = 1916 clk_freq.cpsdvsr - 1; 1917 } 1918 if ((clk_freq.cpsdvsr < CPSDVR_MIN) 1919 || (clk_freq.cpsdvsr > CPSDVR_MAX)) { 1920 status = -EINVAL; 1921 dev_err(&spi->dev, 1922 "cpsdvsr is configured incorrectly\n"); 1923 goto err_config_params; 1924 } 1925 1926 status = verify_controller_parameters(pl022, chip_info); 1927 if (status) { 1928 dev_err(&spi->dev, "controller data is incorrect"); 1929 goto err_config_params; 1930 } 1931 1932 pl022->rx_lev_trig = chip_info->rx_lev_trig; 1933 pl022->tx_lev_trig = chip_info->tx_lev_trig; 1934 1935 /* Now set controller state based on controller data */ 1936 chip->xfer_type = chip_info->com_mode; 1937 if (!chip_info->cs_control) { 1938 chip->cs_control = null_cs_control; 1939 if (!gpio_is_valid(pl022->chipselects[spi->chip_select])) 1940 dev_warn(&spi->dev, 1941 "invalid chip select\n"); 1942 } else 1943 chip->cs_control = chip_info->cs_control; 1944 1945 /* Check bits per word with vendor specific range */ 1946 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) { 1947 status = -ENOTSUPP; 1948 dev_err(&spi->dev, "illegal data size for this controller!\n"); 1949 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n", 1950 pl022->vendor->max_bpw); 1951 goto err_config_params; 1952 } else if (bits <= 8) { 1953 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n"); 1954 chip->n_bytes = 1; 1955 chip->read = READING_U8; 1956 chip->write = WRITING_U8; 1957 } else if (bits <= 16) { 1958 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n"); 1959 chip->n_bytes = 2; 1960 chip->read = READING_U16; 1961 chip->write = WRITING_U16; 1962 } else { 1963 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n"); 1964 chip->n_bytes = 4; 1965 chip->read = READING_U32; 1966 chip->write = WRITING_U32; 1967 } 1968 1969 /* Now Initialize all register settings required for this chip */ 1970 chip->cr0 = 0; 1971 chip->cr1 = 0; 1972 chip->dmacr = 0; 1973 chip->cpsr = 0; 1974 if ((chip_info->com_mode == DMA_TRANSFER) 1975 && ((pl022->master_info)->enable_dma)) { 1976 chip->enable_dma = true; 1977 dev_dbg(&spi->dev, "DMA mode set in controller state\n"); 1978 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, 1979 SSP_DMACR_MASK_RXDMAE, 0); 1980 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, 1981 SSP_DMACR_MASK_TXDMAE, 1); 1982 } else { 1983 chip->enable_dma = false; 1984 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n"); 1985 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, 1986 SSP_DMACR_MASK_RXDMAE, 0); 1987 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, 1988 SSP_DMACR_MASK_TXDMAE, 1); 1989 } 1990 1991 chip->cpsr = clk_freq.cpsdvsr; 1992 1993 /* Special setup for the ST micro extended control registers */ 1994 if (pl022->vendor->extended_cr) { 1995 u32 etx; 1996 1997 if (pl022->vendor->pl023) { 1998 /* These bits are only in the PL023 */ 1999 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay, 2000 SSP_CR1_MASK_FBCLKDEL_ST, 13); 2001 } else { 2002 /* These bits are in the PL022 but not PL023 */ 2003 SSP_WRITE_BITS(chip->cr0, chip_info->duplex, 2004 SSP_CR0_MASK_HALFDUP_ST, 5); 2005 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len, 2006 SSP_CR0_MASK_CSS_ST, 16); 2007 SSP_WRITE_BITS(chip->cr0, chip_info->iface, 2008 SSP_CR0_MASK_FRF_ST, 21); 2009 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state, 2010 SSP_CR1_MASK_MWAIT_ST, 6); 2011 } 2012 SSP_WRITE_BITS(chip->cr0, bits - 1, 2013 SSP_CR0_MASK_DSS_ST, 0); 2014 2015 if (spi->mode & SPI_LSB_FIRST) { 2016 tmp = SSP_RX_LSB; 2017 etx = SSP_TX_LSB; 2018 } else { 2019 tmp = SSP_RX_MSB; 2020 etx = SSP_TX_MSB; 2021 } 2022 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4); 2023 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5); 2024 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig, 2025 SSP_CR1_MASK_RXIFLSEL_ST, 7); 2026 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig, 2027 SSP_CR1_MASK_TXIFLSEL_ST, 10); 2028 } else { 2029 SSP_WRITE_BITS(chip->cr0, bits - 1, 2030 SSP_CR0_MASK_DSS, 0); 2031 SSP_WRITE_BITS(chip->cr0, chip_info->iface, 2032 SSP_CR0_MASK_FRF, 4); 2033 } 2034 2035 /* Stuff that is common for all versions */ 2036 if (spi->mode & SPI_CPOL) 2037 tmp = SSP_CLK_POL_IDLE_HIGH; 2038 else 2039 tmp = SSP_CLK_POL_IDLE_LOW; 2040 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6); 2041 2042 if (spi->mode & SPI_CPHA) 2043 tmp = SSP_CLK_SECOND_EDGE; 2044 else 2045 tmp = SSP_CLK_FIRST_EDGE; 2046 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7); 2047 2048 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8); 2049 /* Loopback is available on all versions except PL023 */ 2050 if (pl022->vendor->loopback) { 2051 if (spi->mode & SPI_LOOP) 2052 tmp = LOOPBACK_ENABLED; 2053 else 2054 tmp = LOOPBACK_DISABLED; 2055 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0); 2056 } 2057 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1); 2058 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2); 2059 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 2060 3); 2061 2062 /* Save controller_state */ 2063 spi_set_ctldata(spi, chip); 2064 return status; 2065 err_config_params: 2066 spi_set_ctldata(spi, NULL); 2067 kfree(chip); 2068 return status; 2069 } 2070 2071 /** 2072 * pl022_cleanup - cleanup function registered to SPI master framework 2073 * @spi: spi device which is requesting cleanup 2074 * 2075 * This function is registered to the SPI framework for this SPI master 2076 * controller. It will free the runtime state of chip. 2077 */ 2078 static void pl022_cleanup(struct spi_device *spi) 2079 { 2080 struct chip_data *chip = spi_get_ctldata(spi); 2081 2082 spi_set_ctldata(spi, NULL); 2083 kfree(chip); 2084 } 2085 2086 static struct pl022_ssp_controller * 2087 pl022_platform_data_dt_get(struct device *dev) 2088 { 2089 struct device_node *np = dev->of_node; 2090 struct pl022_ssp_controller *pd; 2091 u32 tmp = 0; 2092 2093 if (!np) { 2094 dev_err(dev, "no dt node defined\n"); 2095 return NULL; 2096 } 2097 2098 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL); 2099 if (!pd) 2100 return NULL; 2101 2102 pd->bus_id = -1; 2103 pd->enable_dma = 1; 2104 of_property_read_u32(np, "num-cs", &tmp); 2105 pd->num_chipselect = tmp; 2106 of_property_read_u32(np, "pl022,autosuspend-delay", 2107 &pd->autosuspend_delay); 2108 pd->rt = of_property_read_bool(np, "pl022,rt"); 2109 2110 return pd; 2111 } 2112 2113 static int pl022_probe(struct amba_device *adev, const struct amba_id *id) 2114 { 2115 struct device *dev = &adev->dev; 2116 struct pl022_ssp_controller *platform_info = 2117 dev_get_platdata(&adev->dev); 2118 struct spi_master *master; 2119 struct pl022 *pl022 = NULL; /*Data for this driver */ 2120 struct device_node *np = adev->dev.of_node; 2121 int status = 0, i, num_cs; 2122 2123 dev_info(&adev->dev, 2124 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid); 2125 if (!platform_info && IS_ENABLED(CONFIG_OF)) 2126 platform_info = pl022_platform_data_dt_get(dev); 2127 2128 if (!platform_info) { 2129 dev_err(dev, "probe: no platform data defined\n"); 2130 return -ENODEV; 2131 } 2132 2133 if (platform_info->num_chipselect) { 2134 num_cs = platform_info->num_chipselect; 2135 } else { 2136 dev_err(dev, "probe: no chip select defined\n"); 2137 return -ENODEV; 2138 } 2139 2140 /* Allocate master with space for data */ 2141 master = spi_alloc_master(dev, sizeof(struct pl022)); 2142 if (master == NULL) { 2143 dev_err(&adev->dev, "probe - cannot alloc SPI master\n"); 2144 return -ENOMEM; 2145 } 2146 2147 pl022 = spi_master_get_devdata(master); 2148 pl022->master = master; 2149 pl022->master_info = platform_info; 2150 pl022->adev = adev; 2151 pl022->vendor = id->data; 2152 pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int), 2153 GFP_KERNEL); 2154 if (!pl022->chipselects) { 2155 status = -ENOMEM; 2156 goto err_no_mem; 2157 } 2158 2159 /* 2160 * Bus Number Which has been Assigned to this SSP controller 2161 * on this board 2162 */ 2163 master->bus_num = platform_info->bus_id; 2164 master->num_chipselect = num_cs; 2165 master->cleanup = pl022_cleanup; 2166 master->setup = pl022_setup; 2167 master->auto_runtime_pm = true; 2168 master->transfer_one_message = pl022_transfer_one_message; 2169 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware; 2170 master->rt = platform_info->rt; 2171 master->dev.of_node = dev->of_node; 2172 2173 if (platform_info->num_chipselect && platform_info->chipselects) { 2174 for (i = 0; i < num_cs; i++) 2175 pl022->chipselects[i] = platform_info->chipselects[i]; 2176 } else if (pl022->vendor->internal_cs_ctrl) { 2177 for (i = 0; i < num_cs; i++) 2178 pl022->chipselects[i] = i; 2179 } else if (IS_ENABLED(CONFIG_OF)) { 2180 for (i = 0; i < num_cs; i++) { 2181 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i); 2182 2183 if (cs_gpio == -EPROBE_DEFER) { 2184 status = -EPROBE_DEFER; 2185 goto err_no_gpio; 2186 } 2187 2188 pl022->chipselects[i] = cs_gpio; 2189 2190 if (gpio_is_valid(cs_gpio)) { 2191 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022")) 2192 dev_err(&adev->dev, 2193 "could not request %d gpio\n", 2194 cs_gpio); 2195 else if (gpio_direction_output(cs_gpio, 1)) 2196 dev_err(&adev->dev, 2197 "could not set gpio %d as output\n", 2198 cs_gpio); 2199 } 2200 } 2201 } 2202 2203 /* 2204 * Supports mode 0-3, loopback, and active low CS. Transfers are 2205 * always MS bit first on the original pl022. 2206 */ 2207 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 2208 if (pl022->vendor->extended_cr) 2209 master->mode_bits |= SPI_LSB_FIRST; 2210 2211 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num); 2212 2213 status = amba_request_regions(adev, NULL); 2214 if (status) 2215 goto err_no_ioregion; 2216 2217 pl022->phybase = adev->res.start; 2218 pl022->virtbase = devm_ioremap(dev, adev->res.start, 2219 resource_size(&adev->res)); 2220 if (pl022->virtbase == NULL) { 2221 status = -ENOMEM; 2222 goto err_no_ioremap; 2223 } 2224 dev_info(&adev->dev, "mapped registers from %pa to %p\n", 2225 &adev->res.start, pl022->virtbase); 2226 2227 pl022->clk = devm_clk_get(&adev->dev, NULL); 2228 if (IS_ERR(pl022->clk)) { 2229 status = PTR_ERR(pl022->clk); 2230 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n"); 2231 goto err_no_clk; 2232 } 2233 2234 status = clk_prepare_enable(pl022->clk); 2235 if (status) { 2236 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n"); 2237 goto err_no_clk_en; 2238 } 2239 2240 /* Initialize transfer pump */ 2241 tasklet_init(&pl022->pump_transfers, pump_transfers, 2242 (unsigned long)pl022); 2243 2244 /* Disable SSP */ 2245 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)), 2246 SSP_CR1(pl022->virtbase)); 2247 load_ssp_default_config(pl022); 2248 2249 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler, 2250 0, "pl022", pl022); 2251 if (status < 0) { 2252 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status); 2253 goto err_no_irq; 2254 } 2255 2256 /* Get DMA channels, try autoconfiguration first */ 2257 status = pl022_dma_autoprobe(pl022); 2258 if (status == -EPROBE_DEFER) { 2259 dev_dbg(dev, "deferring probe to get DMA channel\n"); 2260 goto err_no_irq; 2261 } 2262 2263 /* If that failed, use channels from platform_info */ 2264 if (status == 0) 2265 platform_info->enable_dma = 1; 2266 else if (platform_info->enable_dma) { 2267 status = pl022_dma_probe(pl022); 2268 if (status != 0) 2269 platform_info->enable_dma = 0; 2270 } 2271 2272 /* Register with the SPI framework */ 2273 amba_set_drvdata(adev, pl022); 2274 status = devm_spi_register_master(&adev->dev, master); 2275 if (status != 0) { 2276 dev_err(&adev->dev, 2277 "probe - problem registering spi master\n"); 2278 goto err_spi_register; 2279 } 2280 dev_dbg(dev, "probe succeeded\n"); 2281 2282 /* let runtime pm put suspend */ 2283 if (platform_info->autosuspend_delay > 0) { 2284 dev_info(&adev->dev, 2285 "will use autosuspend for runtime pm, delay %dms\n", 2286 platform_info->autosuspend_delay); 2287 pm_runtime_set_autosuspend_delay(dev, 2288 platform_info->autosuspend_delay); 2289 pm_runtime_use_autosuspend(dev); 2290 } 2291 pm_runtime_put(dev); 2292 2293 return 0; 2294 2295 err_spi_register: 2296 if (platform_info->enable_dma) 2297 pl022_dma_remove(pl022); 2298 err_no_irq: 2299 clk_disable_unprepare(pl022->clk); 2300 err_no_clk_en: 2301 err_no_clk: 2302 err_no_ioremap: 2303 amba_release_regions(adev); 2304 err_no_ioregion: 2305 err_no_gpio: 2306 err_no_mem: 2307 spi_master_put(master); 2308 return status; 2309 } 2310 2311 static int 2312 pl022_remove(struct amba_device *adev) 2313 { 2314 struct pl022 *pl022 = amba_get_drvdata(adev); 2315 2316 if (!pl022) 2317 return 0; 2318 2319 /* 2320 * undo pm_runtime_put() in probe. I assume that we're not 2321 * accessing the primecell here. 2322 */ 2323 pm_runtime_get_noresume(&adev->dev); 2324 2325 load_ssp_default_config(pl022); 2326 if (pl022->master_info->enable_dma) 2327 pl022_dma_remove(pl022); 2328 2329 clk_disable_unprepare(pl022->clk); 2330 amba_release_regions(adev); 2331 tasklet_disable(&pl022->pump_transfers); 2332 return 0; 2333 } 2334 2335 #ifdef CONFIG_PM_SLEEP 2336 static int pl022_suspend(struct device *dev) 2337 { 2338 struct pl022 *pl022 = dev_get_drvdata(dev); 2339 int ret; 2340 2341 ret = spi_master_suspend(pl022->master); 2342 if (ret) 2343 return ret; 2344 2345 ret = pm_runtime_force_suspend(dev); 2346 if (ret) { 2347 spi_master_resume(pl022->master); 2348 return ret; 2349 } 2350 2351 pinctrl_pm_select_sleep_state(dev); 2352 2353 dev_dbg(dev, "suspended\n"); 2354 return 0; 2355 } 2356 2357 static int pl022_resume(struct device *dev) 2358 { 2359 struct pl022 *pl022 = dev_get_drvdata(dev); 2360 int ret; 2361 2362 ret = pm_runtime_force_resume(dev); 2363 if (ret) 2364 dev_err(dev, "problem resuming\n"); 2365 2366 /* Start the queue running */ 2367 ret = spi_master_resume(pl022->master); 2368 if (!ret) 2369 dev_dbg(dev, "resumed\n"); 2370 2371 return ret; 2372 } 2373 #endif 2374 2375 #ifdef CONFIG_PM 2376 static int pl022_runtime_suspend(struct device *dev) 2377 { 2378 struct pl022 *pl022 = dev_get_drvdata(dev); 2379 2380 clk_disable_unprepare(pl022->clk); 2381 pinctrl_pm_select_idle_state(dev); 2382 2383 return 0; 2384 } 2385 2386 static int pl022_runtime_resume(struct device *dev) 2387 { 2388 struct pl022 *pl022 = dev_get_drvdata(dev); 2389 2390 pinctrl_pm_select_default_state(dev); 2391 clk_prepare_enable(pl022->clk); 2392 2393 return 0; 2394 } 2395 #endif 2396 2397 static const struct dev_pm_ops pl022_dev_pm_ops = { 2398 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume) 2399 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL) 2400 }; 2401 2402 static struct vendor_data vendor_arm = { 2403 .fifodepth = 8, 2404 .max_bpw = 16, 2405 .unidir = false, 2406 .extended_cr = false, 2407 .pl023 = false, 2408 .loopback = true, 2409 .internal_cs_ctrl = false, 2410 }; 2411 2412 static struct vendor_data vendor_st = { 2413 .fifodepth = 32, 2414 .max_bpw = 32, 2415 .unidir = false, 2416 .extended_cr = true, 2417 .pl023 = false, 2418 .loopback = true, 2419 .internal_cs_ctrl = false, 2420 }; 2421 2422 static struct vendor_data vendor_st_pl023 = { 2423 .fifodepth = 32, 2424 .max_bpw = 32, 2425 .unidir = false, 2426 .extended_cr = true, 2427 .pl023 = true, 2428 .loopback = false, 2429 .internal_cs_ctrl = false, 2430 }; 2431 2432 static struct vendor_data vendor_lsi = { 2433 .fifodepth = 8, 2434 .max_bpw = 16, 2435 .unidir = false, 2436 .extended_cr = false, 2437 .pl023 = false, 2438 .loopback = true, 2439 .internal_cs_ctrl = true, 2440 }; 2441 2442 static const struct amba_id pl022_ids[] = { 2443 { 2444 /* 2445 * ARM PL022 variant, this has a 16bit wide 2446 * and 8 locations deep TX/RX FIFO 2447 */ 2448 .id = 0x00041022, 2449 .mask = 0x000fffff, 2450 .data = &vendor_arm, 2451 }, 2452 { 2453 /* 2454 * ST Micro derivative, this has 32bit wide 2455 * and 32 locations deep TX/RX FIFO 2456 */ 2457 .id = 0x01080022, 2458 .mask = 0xffffffff, 2459 .data = &vendor_st, 2460 }, 2461 { 2462 /* 2463 * ST-Ericsson derivative "PL023" (this is not 2464 * an official ARM number), this is a PL022 SSP block 2465 * stripped to SPI mode only, it has 32bit wide 2466 * and 32 locations deep TX/RX FIFO but no extended 2467 * CR0/CR1 register 2468 */ 2469 .id = 0x00080023, 2470 .mask = 0xffffffff, 2471 .data = &vendor_st_pl023, 2472 }, 2473 { 2474 /* 2475 * PL022 variant that has a chip select control register whih 2476 * allows control of 5 output signals nCS[0:4]. 2477 */ 2478 .id = 0x000b6022, 2479 .mask = 0x000fffff, 2480 .data = &vendor_lsi, 2481 }, 2482 { 0, 0 }, 2483 }; 2484 2485 MODULE_DEVICE_TABLE(amba, pl022_ids); 2486 2487 static struct amba_driver pl022_driver = { 2488 .drv = { 2489 .name = "ssp-pl022", 2490 .pm = &pl022_dev_pm_ops, 2491 }, 2492 .id_table = pl022_ids, 2493 .probe = pl022_probe, 2494 .remove = pl022_remove, 2495 }; 2496 2497 static int __init pl022_init(void) 2498 { 2499 return amba_driver_register(&pl022_driver); 2500 } 2501 subsys_initcall(pl022_init); 2502 2503 static void __exit pl022_exit(void) 2504 { 2505 amba_driver_unregister(&pl022_driver); 2506 } 2507 module_exit(pl022_exit); 2508 2509 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>"); 2510 MODULE_DESCRIPTION("PL022 SSP Controller Driver"); 2511 MODULE_LICENSE("GPL"); 2512