xref: /openbmc/linux/drivers/spi/spi-pl022.c (revision 0883c2c0)
1 /*
2  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3  *
4  * Copyright (C) 2008-2012 ST-Ericsson AB
5  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6  *
7  * Author: Linus Walleij <linus.walleij@stericsson.com>
8  *
9  * Initial version inspired by:
10  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11  * Initial adoption to PL022 by:
12  *      Sachin Verma <sachin.verma@st.com>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
46 
47 /*
48  * This macro is used to define some register default values.
49  * reg is masked with mask, the OR:ed with an (again masked)
50  * val shifted sb steps to the left.
51  */
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 
55 /*
56  * This macro is also used to define some default values.
57  * It will just shift val by sb steps to the left and mask
58  * the result with mask.
59  */
60 #define GEN_MASK_BITS(val, mask, sb) \
61  (((val)<<(sb)) & (mask))
62 
63 #define DRIVE_TX		0
64 #define DO_NOT_DRIVE_TX		1
65 
66 #define DO_NOT_QUEUE_DMA	0
67 #define QUEUE_DMA		1
68 
69 #define RX_TRANSFER		1
70 #define TX_TRANSFER		2
71 
72 /*
73  * Macros to access SSP Registers with their offsets
74  */
75 #define SSP_CR0(r)	(r + 0x000)
76 #define SSP_CR1(r)	(r + 0x004)
77 #define SSP_DR(r)	(r + 0x008)
78 #define SSP_SR(r)	(r + 0x00C)
79 #define SSP_CPSR(r)	(r + 0x010)
80 #define SSP_IMSC(r)	(r + 0x014)
81 #define SSP_RIS(r)	(r + 0x018)
82 #define SSP_MIS(r)	(r + 0x01C)
83 #define SSP_ICR(r)	(r + 0x020)
84 #define SSP_DMACR(r)	(r + 0x024)
85 #define SSP_CSR(r)	(r + 0x030) /* vendor extension */
86 #define SSP_ITCR(r)	(r + 0x080)
87 #define SSP_ITIP(r)	(r + 0x084)
88 #define SSP_ITOP(r)	(r + 0x088)
89 #define SSP_TDR(r)	(r + 0x08C)
90 
91 #define SSP_PID0(r)	(r + 0xFE0)
92 #define SSP_PID1(r)	(r + 0xFE4)
93 #define SSP_PID2(r)	(r + 0xFE8)
94 #define SSP_PID3(r)	(r + 0xFEC)
95 
96 #define SSP_CID0(r)	(r + 0xFF0)
97 #define SSP_CID1(r)	(r + 0xFF4)
98 #define SSP_CID2(r)	(r + 0xFF8)
99 #define SSP_CID3(r)	(r + 0xFFC)
100 
101 /*
102  * SSP Control Register 0  - SSP_CR0
103  */
104 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
105 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
106 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
107 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
108 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
109 
110 /*
111  * The ST version of this block moves som bits
112  * in SSP_CR0 and extends it to 32 bits
113  */
114 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
115 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
116 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
117 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
118 
119 /*
120  * SSP Control Register 0  - SSP_CR1
121  */
122 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
123 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
124 #define SSP_CR1_MASK_MS		(0x1UL << 2)
125 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
126 
127 /*
128  * The ST version of this block adds some bits
129  * in SSP_CR1
130  */
131 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
132 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
133 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
134 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
135 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
136 /* This one is only in the PL023 variant */
137 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138 
139 /*
140  * SSP Status Register - SSP_SR
141  */
142 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
143 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
144 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
145 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
146 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
147 
148 /*
149  * SSP Clock Prescale Register  - SSP_CPSR
150  */
151 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
152 
153 /*
154  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155  */
156 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
157 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
158 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
159 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160 
161 /*
162  * SSP Raw Interrupt Status Register - SSP_RIS
163  */
164 /* Receive Overrun Raw Interrupt status */
165 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
166 /* Receive Timeout Raw Interrupt status */
167 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
168 /* Receive FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
170 /* Transmit FIFO Raw Interrupt status */
171 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
172 
173 /*
174  * SSP Masked Interrupt Status Register - SSP_MIS
175  */
176 /* Receive Overrun Masked Interrupt status */
177 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
178 /* Receive Timeout Masked Interrupt status */
179 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
180 /* Receive FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
182 /* Transmit FIFO Masked Interrupt status */
183 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
184 
185 /*
186  * SSP Interrupt Clear Register - SSP_ICR
187  */
188 /* Receive Overrun Raw Clear Interrupt bit */
189 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
190 /* Receive Timeout Clear Interrupt bit */
191 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
192 
193 /*
194  * SSP DMA Control Register - SSP_DMACR
195  */
196 /* Receive DMA Enable bit */
197 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
198 /* Transmit DMA Enable bit */
199 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
200 
201 /*
202  * SSP Chip Select Control Register - SSP_CSR
203  * (vendor extension)
204  */
205 #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
206 
207 /*
208  * SSP Integration Test control Register - SSP_ITCR
209  */
210 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
211 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
212 
213 /*
214  * SSP Integration Test Input Register - SSP_ITIP
215  */
216 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
217 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
218 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
219 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
220 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
221 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
222 
223 /*
224  * SSP Integration Test output Register - SSP_ITOP
225  */
226 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
227 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
228 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
229 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
230 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
231 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
232 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
233 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
234 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
235 #define ITOP_MASK_INTR			 (0x1UL << 9)
236 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
237 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
238 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
239 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
240 
241 /*
242  * SSP Test Data Register - SSP_TDR
243  */
244 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
245 
246 /*
247  * Message State
248  * we use the spi_message.state (void *) pointer to
249  * hold a single state value, that's why all this
250  * (void *) casting is done here.
251  */
252 #define STATE_START			((void *) 0)
253 #define STATE_RUNNING			((void *) 1)
254 #define STATE_DONE			((void *) 2)
255 #define STATE_ERROR			((void *) -1)
256 
257 /*
258  * SSP State - Whether Enabled or Disabled
259  */
260 #define SSP_DISABLED			(0)
261 #define SSP_ENABLED			(1)
262 
263 /*
264  * SSP DMA State - Whether DMA Enabled or Disabled
265  */
266 #define SSP_DMA_DISABLED		(0)
267 #define SSP_DMA_ENABLED			(1)
268 
269 /*
270  * SSP Clock Defaults
271  */
272 #define SSP_DEFAULT_CLKRATE 0x2
273 #define SSP_DEFAULT_PRESCALE 0x40
274 
275 /*
276  * SSP Clock Parameter ranges
277  */
278 #define CPSDVR_MIN 0x02
279 #define CPSDVR_MAX 0xFE
280 #define SCR_MIN 0x00
281 #define SCR_MAX 0xFF
282 
283 /*
284  * SSP Interrupt related Macros
285  */
286 #define DEFAULT_SSP_REG_IMSC  0x0UL
287 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
288 #define ENABLE_ALL_INTERRUPTS ( \
289 	SSP_IMSC_MASK_RORIM | \
290 	SSP_IMSC_MASK_RTIM | \
291 	SSP_IMSC_MASK_RXIM | \
292 	SSP_IMSC_MASK_TXIM \
293 )
294 
295 #define CLEAR_ALL_INTERRUPTS  0x3
296 
297 #define SPI_POLLING_TIMEOUT 1000
298 
299 /*
300  * The type of reading going on on this chip
301  */
302 enum ssp_reading {
303 	READING_NULL,
304 	READING_U8,
305 	READING_U16,
306 	READING_U32
307 };
308 
309 /**
310  * The type of writing going on on this chip
311  */
312 enum ssp_writing {
313 	WRITING_NULL,
314 	WRITING_U8,
315 	WRITING_U16,
316 	WRITING_U32
317 };
318 
319 /**
320  * struct vendor_data - vendor-specific config parameters
321  * for PL022 derivates
322  * @fifodepth: depth of FIFOs (both)
323  * @max_bpw: maximum number of bits per word
324  * @unidir: supports unidirection transfers
325  * @extended_cr: 32 bit wide control register 0 with extra
326  * features and extra features in CR1 as found in the ST variants
327  * @pl023: supports a subset of the ST extensions called "PL023"
328  * @internal_cs_ctrl: supports chip select control register
329  */
330 struct vendor_data {
331 	int fifodepth;
332 	int max_bpw;
333 	bool unidir;
334 	bool extended_cr;
335 	bool pl023;
336 	bool loopback;
337 	bool internal_cs_ctrl;
338 };
339 
340 /**
341  * struct pl022 - This is the private SSP driver data structure
342  * @adev: AMBA device model hookup
343  * @vendor: vendor data for the IP block
344  * @phybase: the physical memory where the SSP device resides
345  * @virtbase: the virtual memory where the SSP is mapped
346  * @clk: outgoing clock "SPICLK" for the SPI bus
347  * @master: SPI framework hookup
348  * @master_info: controller-specific data from machine setup
349  * @pump_transfers: Tasklet used in Interrupt Transfer mode
350  * @cur_msg: Pointer to current spi_message being processed
351  * @cur_transfer: Pointer to current spi_transfer
352  * @cur_chip: pointer to current clients chip(assigned from controller_state)
353  * @next_msg_cs_active: the next message in the queue has been examined
354  *  and it was found that it uses the same chip select as the previous
355  *  message, so we left it active after the previous transfer, and it's
356  *  active already.
357  * @tx: current position in TX buffer to be read
358  * @tx_end: end position in TX buffer to be read
359  * @rx: current position in RX buffer to be written
360  * @rx_end: end position in RX buffer to be written
361  * @read: the type of read currently going on
362  * @write: the type of write currently going on
363  * @exp_fifo_level: expected FIFO level
364  * @dma_rx_channel: optional channel for RX DMA
365  * @dma_tx_channel: optional channel for TX DMA
366  * @sgt_rx: scattertable for the RX transfer
367  * @sgt_tx: scattertable for the TX transfer
368  * @dummypage: a dummy page used for driving data on the bus with DMA
369  * @cur_cs: current chip select (gpio)
370  * @chipselects: list of chipselects (gpios)
371  */
372 struct pl022 {
373 	struct amba_device		*adev;
374 	struct vendor_data		*vendor;
375 	resource_size_t			phybase;
376 	void __iomem			*virtbase;
377 	struct clk			*clk;
378 	struct spi_master		*master;
379 	struct pl022_ssp_controller	*master_info;
380 	/* Message per-transfer pump */
381 	struct tasklet_struct		pump_transfers;
382 	struct spi_message		*cur_msg;
383 	struct spi_transfer		*cur_transfer;
384 	struct chip_data		*cur_chip;
385 	bool				next_msg_cs_active;
386 	void				*tx;
387 	void				*tx_end;
388 	void				*rx;
389 	void				*rx_end;
390 	enum ssp_reading		read;
391 	enum ssp_writing		write;
392 	u32				exp_fifo_level;
393 	enum ssp_rx_level_trig		rx_lev_trig;
394 	enum ssp_tx_level_trig		tx_lev_trig;
395 	/* DMA settings */
396 #ifdef CONFIG_DMA_ENGINE
397 	struct dma_chan			*dma_rx_channel;
398 	struct dma_chan			*dma_tx_channel;
399 	struct sg_table			sgt_rx;
400 	struct sg_table			sgt_tx;
401 	char				*dummypage;
402 	bool				dma_running;
403 #endif
404 	int cur_cs;
405 	int *chipselects;
406 };
407 
408 /**
409  * struct chip_data - To maintain runtime state of SSP for each client chip
410  * @cr0: Value of control register CR0 of SSP - on later ST variants this
411  *       register is 32 bits wide rather than just 16
412  * @cr1: Value of control register CR1 of SSP
413  * @dmacr: Value of DMA control Register of SSP
414  * @cpsr: Value of Clock prescale register
415  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
416  * @enable_dma: Whether to enable DMA or not
417  * @read: function ptr to be used to read when doing xfer for this chip
418  * @write: function ptr to be used to write when doing xfer for this chip
419  * @cs_control: chip select callback provided by chip
420  * @xfer_type: polling/interrupt/DMA
421  *
422  * Runtime state of the SSP controller, maintained per chip,
423  * This would be set according to the current message that would be served
424  */
425 struct chip_data {
426 	u32 cr0;
427 	u16 cr1;
428 	u16 dmacr;
429 	u16 cpsr;
430 	u8 n_bytes;
431 	bool enable_dma;
432 	enum ssp_reading read;
433 	enum ssp_writing write;
434 	void (*cs_control) (u32 command);
435 	int xfer_type;
436 };
437 
438 /**
439  * null_cs_control - Dummy chip select function
440  * @command: select/delect the chip
441  *
442  * If no chip select function is provided by client this is used as dummy
443  * chip select
444  */
445 static void null_cs_control(u32 command)
446 {
447 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
448 }
449 
450 /**
451  * internal_cs_control - Control chip select signals via SSP_CSR.
452  * @pl022: SSP driver private data structure
453  * @command: select/delect the chip
454  *
455  * Used on controller with internal chip select control via SSP_CSR register
456  * (vendor extension). Each of the 5 LSB in the register controls one chip
457  * select signal.
458  */
459 static void internal_cs_control(struct pl022 *pl022, u32 command)
460 {
461 	u32 tmp;
462 
463 	tmp = readw(SSP_CSR(pl022->virtbase));
464 	if (command == SSP_CHIP_SELECT)
465 		tmp &= ~BIT(pl022->cur_cs);
466 	else
467 		tmp |= BIT(pl022->cur_cs);
468 	writew(tmp, SSP_CSR(pl022->virtbase));
469 }
470 
471 static void pl022_cs_control(struct pl022 *pl022, u32 command)
472 {
473 	if (pl022->vendor->internal_cs_ctrl)
474 		internal_cs_control(pl022, command);
475 	else if (gpio_is_valid(pl022->cur_cs))
476 		gpio_set_value(pl022->cur_cs, command);
477 	else
478 		pl022->cur_chip->cs_control(command);
479 }
480 
481 /**
482  * giveback - current spi_message is over, schedule next message and call
483  * callback of this message. Assumes that caller already
484  * set message->status; dma and pio irqs are blocked
485  * @pl022: SSP driver private data structure
486  */
487 static void giveback(struct pl022 *pl022)
488 {
489 	struct spi_transfer *last_transfer;
490 	pl022->next_msg_cs_active = false;
491 
492 	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
493 					struct spi_transfer, transfer_list);
494 
495 	/* Delay if requested before any change in chip select */
496 	if (last_transfer->delay_usecs)
497 		/*
498 		 * FIXME: This runs in interrupt context.
499 		 * Is this really smart?
500 		 */
501 		udelay(last_transfer->delay_usecs);
502 
503 	if (!last_transfer->cs_change) {
504 		struct spi_message *next_msg;
505 
506 		/*
507 		 * cs_change was not set. We can keep the chip select
508 		 * enabled if there is message in the queue and it is
509 		 * for the same spi device.
510 		 *
511 		 * We cannot postpone this until pump_messages, because
512 		 * after calling msg->complete (below) the driver that
513 		 * sent the current message could be unloaded, which
514 		 * could invalidate the cs_control() callback...
515 		 */
516 		/* get a pointer to the next message, if any */
517 		next_msg = spi_get_next_queued_message(pl022->master);
518 
519 		/*
520 		 * see if the next and current messages point
521 		 * to the same spi device.
522 		 */
523 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
524 			next_msg = NULL;
525 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
526 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
527 		else
528 			pl022->next_msg_cs_active = true;
529 
530 	}
531 
532 	pl022->cur_msg = NULL;
533 	pl022->cur_transfer = NULL;
534 	pl022->cur_chip = NULL;
535 
536 	/* disable the SPI/SSP operation */
537 	writew((readw(SSP_CR1(pl022->virtbase)) &
538 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
539 
540 	spi_finalize_current_message(pl022->master);
541 }
542 
543 /**
544  * flush - flush the FIFO to reach a clean state
545  * @pl022: SSP driver private data structure
546  */
547 static int flush(struct pl022 *pl022)
548 {
549 	unsigned long limit = loops_per_jiffy << 1;
550 
551 	dev_dbg(&pl022->adev->dev, "flush\n");
552 	do {
553 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
554 			readw(SSP_DR(pl022->virtbase));
555 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
556 
557 	pl022->exp_fifo_level = 0;
558 
559 	return limit;
560 }
561 
562 /**
563  * restore_state - Load configuration of current chip
564  * @pl022: SSP driver private data structure
565  */
566 static void restore_state(struct pl022 *pl022)
567 {
568 	struct chip_data *chip = pl022->cur_chip;
569 
570 	if (pl022->vendor->extended_cr)
571 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
572 	else
573 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
574 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
575 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
576 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
577 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
578 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
579 }
580 
581 /*
582  * Default SSP Register Values
583  */
584 #define DEFAULT_SSP_REG_CR0 ( \
585 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
586 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
587 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
590 )
591 
592 /* ST versions have slightly different bit layout */
593 #define DEFAULT_SSP_REG_CR0_ST ( \
594 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
595 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
596 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
597 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
598 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
599 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
600 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
601 )
602 
603 /* The PL023 version is slightly different again */
604 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
605 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
606 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
607 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
608 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
609 )
610 
611 #define DEFAULT_SSP_REG_CR1 ( \
612 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
613 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
614 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
615 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
616 )
617 
618 /* ST versions extend this register to use all 16 bits */
619 #define DEFAULT_SSP_REG_CR1_ST ( \
620 	DEFAULT_SSP_REG_CR1 | \
621 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
622 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
623 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
624 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
625 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
626 )
627 
628 /*
629  * The PL023 variant has further differences: no loopback mode, no microwire
630  * support, and a new clock feedback delay setting.
631  */
632 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
633 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
634 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
635 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
636 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
637 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
638 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
639 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
640 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
641 )
642 
643 #define DEFAULT_SSP_REG_CPSR ( \
644 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
645 )
646 
647 #define DEFAULT_SSP_REG_DMACR (\
648 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
649 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
650 )
651 
652 /**
653  * load_ssp_default_config - Load default configuration for SSP
654  * @pl022: SSP driver private data structure
655  */
656 static void load_ssp_default_config(struct pl022 *pl022)
657 {
658 	if (pl022->vendor->pl023) {
659 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
660 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
661 	} else if (pl022->vendor->extended_cr) {
662 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
663 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
664 	} else {
665 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
666 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
667 	}
668 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
669 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
670 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
671 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
672 }
673 
674 /**
675  * This will write to TX and read from RX according to the parameters
676  * set in pl022.
677  */
678 static void readwriter(struct pl022 *pl022)
679 {
680 
681 	/*
682 	 * The FIFO depth is different between primecell variants.
683 	 * I believe filling in too much in the FIFO might cause
684 	 * errons in 8bit wide transfers on ARM variants (just 8 words
685 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
686 	 *
687 	 * To prevent this issue, the TX FIFO is only filled to the
688 	 * unused RX FIFO fill length, regardless of what the TX
689 	 * FIFO status flag indicates.
690 	 */
691 	dev_dbg(&pl022->adev->dev,
692 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
693 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
694 
695 	/* Read as much as you can */
696 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
697 	       && (pl022->rx < pl022->rx_end)) {
698 		switch (pl022->read) {
699 		case READING_NULL:
700 			readw(SSP_DR(pl022->virtbase));
701 			break;
702 		case READING_U8:
703 			*(u8 *) (pl022->rx) =
704 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
705 			break;
706 		case READING_U16:
707 			*(u16 *) (pl022->rx) =
708 				(u16) readw(SSP_DR(pl022->virtbase));
709 			break;
710 		case READING_U32:
711 			*(u32 *) (pl022->rx) =
712 				readl(SSP_DR(pl022->virtbase));
713 			break;
714 		}
715 		pl022->rx += (pl022->cur_chip->n_bytes);
716 		pl022->exp_fifo_level--;
717 	}
718 	/*
719 	 * Write as much as possible up to the RX FIFO size
720 	 */
721 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
722 	       && (pl022->tx < pl022->tx_end)) {
723 		switch (pl022->write) {
724 		case WRITING_NULL:
725 			writew(0x0, SSP_DR(pl022->virtbase));
726 			break;
727 		case WRITING_U8:
728 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
729 			break;
730 		case WRITING_U16:
731 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
732 			break;
733 		case WRITING_U32:
734 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
735 			break;
736 		}
737 		pl022->tx += (pl022->cur_chip->n_bytes);
738 		pl022->exp_fifo_level++;
739 		/*
740 		 * This inner reader takes care of things appearing in the RX
741 		 * FIFO as we're transmitting. This will happen a lot since the
742 		 * clock starts running when you put things into the TX FIFO,
743 		 * and then things are continuously clocked into the RX FIFO.
744 		 */
745 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
746 		       && (pl022->rx < pl022->rx_end)) {
747 			switch (pl022->read) {
748 			case READING_NULL:
749 				readw(SSP_DR(pl022->virtbase));
750 				break;
751 			case READING_U8:
752 				*(u8 *) (pl022->rx) =
753 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
754 				break;
755 			case READING_U16:
756 				*(u16 *) (pl022->rx) =
757 					(u16) readw(SSP_DR(pl022->virtbase));
758 				break;
759 			case READING_U32:
760 				*(u32 *) (pl022->rx) =
761 					readl(SSP_DR(pl022->virtbase));
762 				break;
763 			}
764 			pl022->rx += (pl022->cur_chip->n_bytes);
765 			pl022->exp_fifo_level--;
766 		}
767 	}
768 	/*
769 	 * When we exit here the TX FIFO should be full and the RX FIFO
770 	 * should be empty
771 	 */
772 }
773 
774 /**
775  * next_transfer - Move to the Next transfer in the current spi message
776  * @pl022: SSP driver private data structure
777  *
778  * This function moves though the linked list of spi transfers in the
779  * current spi message and returns with the state of current spi
780  * message i.e whether its last transfer is done(STATE_DONE) or
781  * Next transfer is ready(STATE_RUNNING)
782  */
783 static void *next_transfer(struct pl022 *pl022)
784 {
785 	struct spi_message *msg = pl022->cur_msg;
786 	struct spi_transfer *trans = pl022->cur_transfer;
787 
788 	/* Move to next transfer */
789 	if (trans->transfer_list.next != &msg->transfers) {
790 		pl022->cur_transfer =
791 		    list_entry(trans->transfer_list.next,
792 			       struct spi_transfer, transfer_list);
793 		return STATE_RUNNING;
794 	}
795 	return STATE_DONE;
796 }
797 
798 /*
799  * This DMA functionality is only compiled in if we have
800  * access to the generic DMA devices/DMA engine.
801  */
802 #ifdef CONFIG_DMA_ENGINE
803 static void unmap_free_dma_scatter(struct pl022 *pl022)
804 {
805 	/* Unmap and free the SG tables */
806 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
807 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
808 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
809 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
810 	sg_free_table(&pl022->sgt_rx);
811 	sg_free_table(&pl022->sgt_tx);
812 }
813 
814 static void dma_callback(void *data)
815 {
816 	struct pl022 *pl022 = data;
817 	struct spi_message *msg = pl022->cur_msg;
818 
819 	BUG_ON(!pl022->sgt_rx.sgl);
820 
821 #ifdef VERBOSE_DEBUG
822 	/*
823 	 * Optionally dump out buffers to inspect contents, this is
824 	 * good if you want to convince yourself that the loopback
825 	 * read/write contents are the same, when adopting to a new
826 	 * DMA engine.
827 	 */
828 	{
829 		struct scatterlist *sg;
830 		unsigned int i;
831 
832 		dma_sync_sg_for_cpu(&pl022->adev->dev,
833 				    pl022->sgt_rx.sgl,
834 				    pl022->sgt_rx.nents,
835 				    DMA_FROM_DEVICE);
836 
837 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
838 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
839 			print_hex_dump(KERN_ERR, "SPI RX: ",
840 				       DUMP_PREFIX_OFFSET,
841 				       16,
842 				       1,
843 				       sg_virt(sg),
844 				       sg_dma_len(sg),
845 				       1);
846 		}
847 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
848 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
849 			print_hex_dump(KERN_ERR, "SPI TX: ",
850 				       DUMP_PREFIX_OFFSET,
851 				       16,
852 				       1,
853 				       sg_virt(sg),
854 				       sg_dma_len(sg),
855 				       1);
856 		}
857 	}
858 #endif
859 
860 	unmap_free_dma_scatter(pl022);
861 
862 	/* Update total bytes transferred */
863 	msg->actual_length += pl022->cur_transfer->len;
864 	if (pl022->cur_transfer->cs_change)
865 		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
866 
867 	/* Move to next transfer */
868 	msg->state = next_transfer(pl022);
869 	tasklet_schedule(&pl022->pump_transfers);
870 }
871 
872 static void setup_dma_scatter(struct pl022 *pl022,
873 			      void *buffer,
874 			      unsigned int length,
875 			      struct sg_table *sgtab)
876 {
877 	struct scatterlist *sg;
878 	int bytesleft = length;
879 	void *bufp = buffer;
880 	int mapbytes;
881 	int i;
882 
883 	if (buffer) {
884 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
885 			/*
886 			 * If there are less bytes left than what fits
887 			 * in the current page (plus page alignment offset)
888 			 * we just feed in this, else we stuff in as much
889 			 * as we can.
890 			 */
891 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
892 				mapbytes = bytesleft;
893 			else
894 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
895 			sg_set_page(sg, virt_to_page(bufp),
896 				    mapbytes, offset_in_page(bufp));
897 			bufp += mapbytes;
898 			bytesleft -= mapbytes;
899 			dev_dbg(&pl022->adev->dev,
900 				"set RX/TX target page @ %p, %d bytes, %d left\n",
901 				bufp, mapbytes, bytesleft);
902 		}
903 	} else {
904 		/* Map the dummy buffer on every page */
905 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
906 			if (bytesleft < PAGE_SIZE)
907 				mapbytes = bytesleft;
908 			else
909 				mapbytes = PAGE_SIZE;
910 			sg_set_page(sg, virt_to_page(pl022->dummypage),
911 				    mapbytes, 0);
912 			bytesleft -= mapbytes;
913 			dev_dbg(&pl022->adev->dev,
914 				"set RX/TX to dummy page %d bytes, %d left\n",
915 				mapbytes, bytesleft);
916 
917 		}
918 	}
919 	BUG_ON(bytesleft);
920 }
921 
922 /**
923  * configure_dma - configures the channels for the next transfer
924  * @pl022: SSP driver's private data structure
925  */
926 static int configure_dma(struct pl022 *pl022)
927 {
928 	struct dma_slave_config rx_conf = {
929 		.src_addr = SSP_DR(pl022->phybase),
930 		.direction = DMA_DEV_TO_MEM,
931 		.device_fc = false,
932 	};
933 	struct dma_slave_config tx_conf = {
934 		.dst_addr = SSP_DR(pl022->phybase),
935 		.direction = DMA_MEM_TO_DEV,
936 		.device_fc = false,
937 	};
938 	unsigned int pages;
939 	int ret;
940 	int rx_sglen, tx_sglen;
941 	struct dma_chan *rxchan = pl022->dma_rx_channel;
942 	struct dma_chan *txchan = pl022->dma_tx_channel;
943 	struct dma_async_tx_descriptor *rxdesc;
944 	struct dma_async_tx_descriptor *txdesc;
945 
946 	/* Check that the channels are available */
947 	if (!rxchan || !txchan)
948 		return -ENODEV;
949 
950 	/*
951 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
952 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
953 	 * not trigger on 2 elements this needs explicit mapping rather than
954 	 * calculation.
955 	 */
956 	switch (pl022->rx_lev_trig) {
957 	case SSP_RX_1_OR_MORE_ELEM:
958 		rx_conf.src_maxburst = 1;
959 		break;
960 	case SSP_RX_4_OR_MORE_ELEM:
961 		rx_conf.src_maxburst = 4;
962 		break;
963 	case SSP_RX_8_OR_MORE_ELEM:
964 		rx_conf.src_maxburst = 8;
965 		break;
966 	case SSP_RX_16_OR_MORE_ELEM:
967 		rx_conf.src_maxburst = 16;
968 		break;
969 	case SSP_RX_32_OR_MORE_ELEM:
970 		rx_conf.src_maxburst = 32;
971 		break;
972 	default:
973 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
974 		break;
975 	}
976 
977 	switch (pl022->tx_lev_trig) {
978 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
979 		tx_conf.dst_maxburst = 1;
980 		break;
981 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
982 		tx_conf.dst_maxburst = 4;
983 		break;
984 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
985 		tx_conf.dst_maxburst = 8;
986 		break;
987 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
988 		tx_conf.dst_maxburst = 16;
989 		break;
990 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
991 		tx_conf.dst_maxburst = 32;
992 		break;
993 	default:
994 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
995 		break;
996 	}
997 
998 	switch (pl022->read) {
999 	case READING_NULL:
1000 		/* Use the same as for writing */
1001 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1002 		break;
1003 	case READING_U8:
1004 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1005 		break;
1006 	case READING_U16:
1007 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1008 		break;
1009 	case READING_U32:
1010 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1011 		break;
1012 	}
1013 
1014 	switch (pl022->write) {
1015 	case WRITING_NULL:
1016 		/* Use the same as for reading */
1017 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1018 		break;
1019 	case WRITING_U8:
1020 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1021 		break;
1022 	case WRITING_U16:
1023 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1024 		break;
1025 	case WRITING_U32:
1026 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1027 		break;
1028 	}
1029 
1030 	/* SPI pecularity: we need to read and write the same width */
1031 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1032 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1033 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1034 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1035 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1036 
1037 	dmaengine_slave_config(rxchan, &rx_conf);
1038 	dmaengine_slave_config(txchan, &tx_conf);
1039 
1040 	/* Create sglists for the transfers */
1041 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1042 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1043 
1044 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1045 	if (ret)
1046 		goto err_alloc_rx_sg;
1047 
1048 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1049 	if (ret)
1050 		goto err_alloc_tx_sg;
1051 
1052 	/* Fill in the scatterlists for the RX+TX buffers */
1053 	setup_dma_scatter(pl022, pl022->rx,
1054 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1055 	setup_dma_scatter(pl022, pl022->tx,
1056 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1057 
1058 	/* Map DMA buffers */
1059 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1060 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1061 	if (!rx_sglen)
1062 		goto err_rx_sgmap;
1063 
1064 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1065 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1066 	if (!tx_sglen)
1067 		goto err_tx_sgmap;
1068 
1069 	/* Send both scatterlists */
1070 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1071 				      pl022->sgt_rx.sgl,
1072 				      rx_sglen,
1073 				      DMA_DEV_TO_MEM,
1074 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1075 	if (!rxdesc)
1076 		goto err_rxdesc;
1077 
1078 	txdesc = dmaengine_prep_slave_sg(txchan,
1079 				      pl022->sgt_tx.sgl,
1080 				      tx_sglen,
1081 				      DMA_MEM_TO_DEV,
1082 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1083 	if (!txdesc)
1084 		goto err_txdesc;
1085 
1086 	/* Put the callback on the RX transfer only, that should finish last */
1087 	rxdesc->callback = dma_callback;
1088 	rxdesc->callback_param = pl022;
1089 
1090 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1091 	dmaengine_submit(rxdesc);
1092 	dmaengine_submit(txdesc);
1093 	dma_async_issue_pending(rxchan);
1094 	dma_async_issue_pending(txchan);
1095 	pl022->dma_running = true;
1096 
1097 	return 0;
1098 
1099 err_txdesc:
1100 	dmaengine_terminate_all(txchan);
1101 err_rxdesc:
1102 	dmaengine_terminate_all(rxchan);
1103 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1104 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1105 err_tx_sgmap:
1106 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1107 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1108 err_rx_sgmap:
1109 	sg_free_table(&pl022->sgt_tx);
1110 err_alloc_tx_sg:
1111 	sg_free_table(&pl022->sgt_rx);
1112 err_alloc_rx_sg:
1113 	return -ENOMEM;
1114 }
1115 
1116 static int pl022_dma_probe(struct pl022 *pl022)
1117 {
1118 	dma_cap_mask_t mask;
1119 
1120 	/* Try to acquire a generic DMA engine slave channel */
1121 	dma_cap_zero(mask);
1122 	dma_cap_set(DMA_SLAVE, mask);
1123 	/*
1124 	 * We need both RX and TX channels to do DMA, else do none
1125 	 * of them.
1126 	 */
1127 	pl022->dma_rx_channel = dma_request_channel(mask,
1128 					    pl022->master_info->dma_filter,
1129 					    pl022->master_info->dma_rx_param);
1130 	if (!pl022->dma_rx_channel) {
1131 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1132 		goto err_no_rxchan;
1133 	}
1134 
1135 	pl022->dma_tx_channel = dma_request_channel(mask,
1136 					    pl022->master_info->dma_filter,
1137 					    pl022->master_info->dma_tx_param);
1138 	if (!pl022->dma_tx_channel) {
1139 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1140 		goto err_no_txchan;
1141 	}
1142 
1143 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1144 	if (!pl022->dummypage)
1145 		goto err_no_dummypage;
1146 
1147 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1148 		 dma_chan_name(pl022->dma_rx_channel),
1149 		 dma_chan_name(pl022->dma_tx_channel));
1150 
1151 	return 0;
1152 
1153 err_no_dummypage:
1154 	dma_release_channel(pl022->dma_tx_channel);
1155 err_no_txchan:
1156 	dma_release_channel(pl022->dma_rx_channel);
1157 	pl022->dma_rx_channel = NULL;
1158 err_no_rxchan:
1159 	dev_err(&pl022->adev->dev,
1160 			"Failed to work in dma mode, work without dma!\n");
1161 	return -ENODEV;
1162 }
1163 
1164 static int pl022_dma_autoprobe(struct pl022 *pl022)
1165 {
1166 	struct device *dev = &pl022->adev->dev;
1167 	struct dma_chan *chan;
1168 	int err;
1169 
1170 	/* automatically configure DMA channels from platform, normally using DT */
1171 	chan = dma_request_slave_channel_reason(dev, "rx");
1172 	if (IS_ERR(chan)) {
1173 		err = PTR_ERR(chan);
1174 		goto err_no_rxchan;
1175 	}
1176 
1177 	pl022->dma_rx_channel = chan;
1178 
1179 	chan = dma_request_slave_channel_reason(dev, "tx");
1180 	if (IS_ERR(chan)) {
1181 		err = PTR_ERR(chan);
1182 		goto err_no_txchan;
1183 	}
1184 
1185 	pl022->dma_tx_channel = chan;
1186 
1187 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1188 	if (!pl022->dummypage) {
1189 		err = -ENOMEM;
1190 		goto err_no_dummypage;
1191 	}
1192 
1193 	return 0;
1194 
1195 err_no_dummypage:
1196 	dma_release_channel(pl022->dma_tx_channel);
1197 	pl022->dma_tx_channel = NULL;
1198 err_no_txchan:
1199 	dma_release_channel(pl022->dma_rx_channel);
1200 	pl022->dma_rx_channel = NULL;
1201 err_no_rxchan:
1202 	return err;
1203 }
1204 
1205 static void terminate_dma(struct pl022 *pl022)
1206 {
1207 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1208 	struct dma_chan *txchan = pl022->dma_tx_channel;
1209 
1210 	dmaengine_terminate_all(rxchan);
1211 	dmaengine_terminate_all(txchan);
1212 	unmap_free_dma_scatter(pl022);
1213 	pl022->dma_running = false;
1214 }
1215 
1216 static void pl022_dma_remove(struct pl022 *pl022)
1217 {
1218 	if (pl022->dma_running)
1219 		terminate_dma(pl022);
1220 	if (pl022->dma_tx_channel)
1221 		dma_release_channel(pl022->dma_tx_channel);
1222 	if (pl022->dma_rx_channel)
1223 		dma_release_channel(pl022->dma_rx_channel);
1224 	kfree(pl022->dummypage);
1225 }
1226 
1227 #else
1228 static inline int configure_dma(struct pl022 *pl022)
1229 {
1230 	return -ENODEV;
1231 }
1232 
1233 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1234 {
1235 	return 0;
1236 }
1237 
1238 static inline int pl022_dma_probe(struct pl022 *pl022)
1239 {
1240 	return 0;
1241 }
1242 
1243 static inline void pl022_dma_remove(struct pl022 *pl022)
1244 {
1245 }
1246 #endif
1247 
1248 /**
1249  * pl022_interrupt_handler - Interrupt handler for SSP controller
1250  *
1251  * This function handles interrupts generated for an interrupt based transfer.
1252  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1253  * current message's state as STATE_ERROR and schedule the tasklet
1254  * pump_transfers which will do the postprocessing of the current message by
1255  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1256  * more data, and writes data in TX FIFO till it is not full. If we complete
1257  * the transfer we move to the next transfer and schedule the tasklet.
1258  */
1259 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1260 {
1261 	struct pl022 *pl022 = dev_id;
1262 	struct spi_message *msg = pl022->cur_msg;
1263 	u16 irq_status = 0;
1264 
1265 	if (unlikely(!msg)) {
1266 		dev_err(&pl022->adev->dev,
1267 			"bad message state in interrupt handler");
1268 		/* Never fail */
1269 		return IRQ_HANDLED;
1270 	}
1271 
1272 	/* Read the Interrupt Status Register */
1273 	irq_status = readw(SSP_MIS(pl022->virtbase));
1274 
1275 	if (unlikely(!irq_status))
1276 		return IRQ_NONE;
1277 
1278 	/*
1279 	 * This handles the FIFO interrupts, the timeout
1280 	 * interrupts are flatly ignored, they cannot be
1281 	 * trusted.
1282 	 */
1283 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1284 		/*
1285 		 * Overrun interrupt - bail out since our Data has been
1286 		 * corrupted
1287 		 */
1288 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1289 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1290 			dev_err(&pl022->adev->dev,
1291 				"RXFIFO is full\n");
1292 
1293 		/*
1294 		 * Disable and clear interrupts, disable SSP,
1295 		 * mark message with bad status so it can be
1296 		 * retried.
1297 		 */
1298 		writew(DISABLE_ALL_INTERRUPTS,
1299 		       SSP_IMSC(pl022->virtbase));
1300 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1301 		writew((readw(SSP_CR1(pl022->virtbase)) &
1302 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1303 		msg->state = STATE_ERROR;
1304 
1305 		/* Schedule message queue handler */
1306 		tasklet_schedule(&pl022->pump_transfers);
1307 		return IRQ_HANDLED;
1308 	}
1309 
1310 	readwriter(pl022);
1311 
1312 	if (pl022->tx == pl022->tx_end) {
1313 		/* Disable Transmit interrupt, enable receive interrupt */
1314 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1315 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1316 		       SSP_IMSC(pl022->virtbase));
1317 	}
1318 
1319 	/*
1320 	 * Since all transactions must write as much as shall be read,
1321 	 * we can conclude the entire transaction once RX is complete.
1322 	 * At this point, all TX will always be finished.
1323 	 */
1324 	if (pl022->rx >= pl022->rx_end) {
1325 		writew(DISABLE_ALL_INTERRUPTS,
1326 		       SSP_IMSC(pl022->virtbase));
1327 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1328 		if (unlikely(pl022->rx > pl022->rx_end)) {
1329 			dev_warn(&pl022->adev->dev, "read %u surplus "
1330 				 "bytes (did you request an odd "
1331 				 "number of bytes on a 16bit bus?)\n",
1332 				 (u32) (pl022->rx - pl022->rx_end));
1333 		}
1334 		/* Update total bytes transferred */
1335 		msg->actual_length += pl022->cur_transfer->len;
1336 		if (pl022->cur_transfer->cs_change)
1337 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1338 		/* Move to next transfer */
1339 		msg->state = next_transfer(pl022);
1340 		tasklet_schedule(&pl022->pump_transfers);
1341 		return IRQ_HANDLED;
1342 	}
1343 
1344 	return IRQ_HANDLED;
1345 }
1346 
1347 /**
1348  * This sets up the pointers to memory for the next message to
1349  * send out on the SPI bus.
1350  */
1351 static int set_up_next_transfer(struct pl022 *pl022,
1352 				struct spi_transfer *transfer)
1353 {
1354 	int residue;
1355 
1356 	/* Sanity check the message for this bus width */
1357 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1358 	if (unlikely(residue != 0)) {
1359 		dev_err(&pl022->adev->dev,
1360 			"message of %u bytes to transmit but the current "
1361 			"chip bus has a data width of %u bytes!\n",
1362 			pl022->cur_transfer->len,
1363 			pl022->cur_chip->n_bytes);
1364 		dev_err(&pl022->adev->dev, "skipping this message\n");
1365 		return -EIO;
1366 	}
1367 	pl022->tx = (void *)transfer->tx_buf;
1368 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1369 	pl022->rx = (void *)transfer->rx_buf;
1370 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1371 	pl022->write =
1372 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1373 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1374 	return 0;
1375 }
1376 
1377 /**
1378  * pump_transfers - Tasklet function which schedules next transfer
1379  * when running in interrupt or DMA transfer mode.
1380  * @data: SSP driver private data structure
1381  *
1382  */
1383 static void pump_transfers(unsigned long data)
1384 {
1385 	struct pl022 *pl022 = (struct pl022 *) data;
1386 	struct spi_message *message = NULL;
1387 	struct spi_transfer *transfer = NULL;
1388 	struct spi_transfer *previous = NULL;
1389 
1390 	/* Get current state information */
1391 	message = pl022->cur_msg;
1392 	transfer = pl022->cur_transfer;
1393 
1394 	/* Handle for abort */
1395 	if (message->state == STATE_ERROR) {
1396 		message->status = -EIO;
1397 		giveback(pl022);
1398 		return;
1399 	}
1400 
1401 	/* Handle end of message */
1402 	if (message->state == STATE_DONE) {
1403 		message->status = 0;
1404 		giveback(pl022);
1405 		return;
1406 	}
1407 
1408 	/* Delay if requested at end of transfer before CS change */
1409 	if (message->state == STATE_RUNNING) {
1410 		previous = list_entry(transfer->transfer_list.prev,
1411 					struct spi_transfer,
1412 					transfer_list);
1413 		if (previous->delay_usecs)
1414 			/*
1415 			 * FIXME: This runs in interrupt context.
1416 			 * Is this really smart?
1417 			 */
1418 			udelay(previous->delay_usecs);
1419 
1420 		/* Reselect chip select only if cs_change was requested */
1421 		if (previous->cs_change)
1422 			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1423 	} else {
1424 		/* STATE_START */
1425 		message->state = STATE_RUNNING;
1426 	}
1427 
1428 	if (set_up_next_transfer(pl022, transfer)) {
1429 		message->state = STATE_ERROR;
1430 		message->status = -EIO;
1431 		giveback(pl022);
1432 		return;
1433 	}
1434 	/* Flush the FIFOs and let's go! */
1435 	flush(pl022);
1436 
1437 	if (pl022->cur_chip->enable_dma) {
1438 		if (configure_dma(pl022)) {
1439 			dev_dbg(&pl022->adev->dev,
1440 				"configuration of DMA failed, fall back to interrupt mode\n");
1441 			goto err_config_dma;
1442 		}
1443 		return;
1444 	}
1445 
1446 err_config_dma:
1447 	/* enable all interrupts except RX */
1448 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1449 }
1450 
1451 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1452 {
1453 	/*
1454 	 * Default is to enable all interrupts except RX -
1455 	 * this will be enabled once TX is complete
1456 	 */
1457 	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1458 
1459 	/* Enable target chip, if not already active */
1460 	if (!pl022->next_msg_cs_active)
1461 		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1462 
1463 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1464 		/* Error path */
1465 		pl022->cur_msg->state = STATE_ERROR;
1466 		pl022->cur_msg->status = -EIO;
1467 		giveback(pl022);
1468 		return;
1469 	}
1470 	/* If we're using DMA, set up DMA here */
1471 	if (pl022->cur_chip->enable_dma) {
1472 		/* Configure DMA transfer */
1473 		if (configure_dma(pl022)) {
1474 			dev_dbg(&pl022->adev->dev,
1475 				"configuration of DMA failed, fall back to interrupt mode\n");
1476 			goto err_config_dma;
1477 		}
1478 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1479 		irqflags = DISABLE_ALL_INTERRUPTS;
1480 	}
1481 err_config_dma:
1482 	/* Enable SSP, turn on interrupts */
1483 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1484 	       SSP_CR1(pl022->virtbase));
1485 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1486 }
1487 
1488 static void do_polling_transfer(struct pl022 *pl022)
1489 {
1490 	struct spi_message *message = NULL;
1491 	struct spi_transfer *transfer = NULL;
1492 	struct spi_transfer *previous = NULL;
1493 	struct chip_data *chip;
1494 	unsigned long time, timeout;
1495 
1496 	chip = pl022->cur_chip;
1497 	message = pl022->cur_msg;
1498 
1499 	while (message->state != STATE_DONE) {
1500 		/* Handle for abort */
1501 		if (message->state == STATE_ERROR)
1502 			break;
1503 		transfer = pl022->cur_transfer;
1504 
1505 		/* Delay if requested at end of transfer */
1506 		if (message->state == STATE_RUNNING) {
1507 			previous =
1508 			    list_entry(transfer->transfer_list.prev,
1509 				       struct spi_transfer, transfer_list);
1510 			if (previous->delay_usecs)
1511 				udelay(previous->delay_usecs);
1512 			if (previous->cs_change)
1513 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1514 		} else {
1515 			/* STATE_START */
1516 			message->state = STATE_RUNNING;
1517 			if (!pl022->next_msg_cs_active)
1518 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1519 		}
1520 
1521 		/* Configuration Changing Per Transfer */
1522 		if (set_up_next_transfer(pl022, transfer)) {
1523 			/* Error path */
1524 			message->state = STATE_ERROR;
1525 			break;
1526 		}
1527 		/* Flush FIFOs and enable SSP */
1528 		flush(pl022);
1529 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1530 		       SSP_CR1(pl022->virtbase));
1531 
1532 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1533 
1534 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1535 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1536 			time = jiffies;
1537 			readwriter(pl022);
1538 			if (time_after(time, timeout)) {
1539 				dev_warn(&pl022->adev->dev,
1540 				"%s: timeout!\n", __func__);
1541 				message->state = STATE_ERROR;
1542 				goto out;
1543 			}
1544 			cpu_relax();
1545 		}
1546 
1547 		/* Update total byte transferred */
1548 		message->actual_length += pl022->cur_transfer->len;
1549 		if (pl022->cur_transfer->cs_change)
1550 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1551 		/* Move to next transfer */
1552 		message->state = next_transfer(pl022);
1553 	}
1554 out:
1555 	/* Handle end of message */
1556 	if (message->state == STATE_DONE)
1557 		message->status = 0;
1558 	else
1559 		message->status = -EIO;
1560 
1561 	giveback(pl022);
1562 	return;
1563 }
1564 
1565 static int pl022_transfer_one_message(struct spi_master *master,
1566 				      struct spi_message *msg)
1567 {
1568 	struct pl022 *pl022 = spi_master_get_devdata(master);
1569 
1570 	/* Initial message state */
1571 	pl022->cur_msg = msg;
1572 	msg->state = STATE_START;
1573 
1574 	pl022->cur_transfer = list_entry(msg->transfers.next,
1575 					 struct spi_transfer, transfer_list);
1576 
1577 	/* Setup the SPI using the per chip configuration */
1578 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1579 	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1580 
1581 	restore_state(pl022);
1582 	flush(pl022);
1583 
1584 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1585 		do_polling_transfer(pl022);
1586 	else
1587 		do_interrupt_dma_transfer(pl022);
1588 
1589 	return 0;
1590 }
1591 
1592 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1593 {
1594 	struct pl022 *pl022 = spi_master_get_devdata(master);
1595 
1596 	/* nothing more to do - disable spi/ssp and power off */
1597 	writew((readw(SSP_CR1(pl022->virtbase)) &
1598 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1599 
1600 	return 0;
1601 }
1602 
1603 static int verify_controller_parameters(struct pl022 *pl022,
1604 				struct pl022_config_chip const *chip_info)
1605 {
1606 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1607 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1608 		dev_err(&pl022->adev->dev,
1609 			"interface is configured incorrectly\n");
1610 		return -EINVAL;
1611 	}
1612 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1613 	    (!pl022->vendor->unidir)) {
1614 		dev_err(&pl022->adev->dev,
1615 			"unidirectional mode not supported in this "
1616 			"hardware version\n");
1617 		return -EINVAL;
1618 	}
1619 	if ((chip_info->hierarchy != SSP_MASTER)
1620 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1621 		dev_err(&pl022->adev->dev,
1622 			"hierarchy is configured incorrectly\n");
1623 		return -EINVAL;
1624 	}
1625 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1626 	    && (chip_info->com_mode != DMA_TRANSFER)
1627 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1628 		dev_err(&pl022->adev->dev,
1629 			"Communication mode is configured incorrectly\n");
1630 		return -EINVAL;
1631 	}
1632 	switch (chip_info->rx_lev_trig) {
1633 	case SSP_RX_1_OR_MORE_ELEM:
1634 	case SSP_RX_4_OR_MORE_ELEM:
1635 	case SSP_RX_8_OR_MORE_ELEM:
1636 		/* These are always OK, all variants can handle this */
1637 		break;
1638 	case SSP_RX_16_OR_MORE_ELEM:
1639 		if (pl022->vendor->fifodepth < 16) {
1640 			dev_err(&pl022->adev->dev,
1641 			"RX FIFO Trigger Level is configured incorrectly\n");
1642 			return -EINVAL;
1643 		}
1644 		break;
1645 	case SSP_RX_32_OR_MORE_ELEM:
1646 		if (pl022->vendor->fifodepth < 32) {
1647 			dev_err(&pl022->adev->dev,
1648 			"RX FIFO Trigger Level is configured incorrectly\n");
1649 			return -EINVAL;
1650 		}
1651 		break;
1652 	default:
1653 		dev_err(&pl022->adev->dev,
1654 			"RX FIFO Trigger Level is configured incorrectly\n");
1655 		return -EINVAL;
1656 	}
1657 	switch (chip_info->tx_lev_trig) {
1658 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1659 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1660 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1661 		/* These are always OK, all variants can handle this */
1662 		break;
1663 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1664 		if (pl022->vendor->fifodepth < 16) {
1665 			dev_err(&pl022->adev->dev,
1666 			"TX FIFO Trigger Level is configured incorrectly\n");
1667 			return -EINVAL;
1668 		}
1669 		break;
1670 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1671 		if (pl022->vendor->fifodepth < 32) {
1672 			dev_err(&pl022->adev->dev,
1673 			"TX FIFO Trigger Level is configured incorrectly\n");
1674 			return -EINVAL;
1675 		}
1676 		break;
1677 	default:
1678 		dev_err(&pl022->adev->dev,
1679 			"TX FIFO Trigger Level is configured incorrectly\n");
1680 		return -EINVAL;
1681 	}
1682 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1683 		if ((chip_info->ctrl_len < SSP_BITS_4)
1684 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1685 			dev_err(&pl022->adev->dev,
1686 				"CTRL LEN is configured incorrectly\n");
1687 			return -EINVAL;
1688 		}
1689 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1690 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1691 			dev_err(&pl022->adev->dev,
1692 				"Wait State is configured incorrectly\n");
1693 			return -EINVAL;
1694 		}
1695 		/* Half duplex is only available in the ST Micro version */
1696 		if (pl022->vendor->extended_cr) {
1697 			if ((chip_info->duplex !=
1698 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1699 			    && (chip_info->duplex !=
1700 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1701 				dev_err(&pl022->adev->dev,
1702 					"Microwire duplex mode is configured incorrectly\n");
1703 				return -EINVAL;
1704 			}
1705 		} else {
1706 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1707 				dev_err(&pl022->adev->dev,
1708 					"Microwire half duplex mode requested,"
1709 					" but this is only available in the"
1710 					" ST version of PL022\n");
1711 			return -EINVAL;
1712 		}
1713 	}
1714 	return 0;
1715 }
1716 
1717 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1718 {
1719 	return rate / (cpsdvsr * (1 + scr));
1720 }
1721 
1722 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1723 				    ssp_clock_params * clk_freq)
1724 {
1725 	/* Lets calculate the frequency parameters */
1726 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1727 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1728 		best_scr = 0, tmp, found = 0;
1729 
1730 	rate = clk_get_rate(pl022->clk);
1731 	/* cpsdvscr = 2 & scr 0 */
1732 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1733 	/* cpsdvsr = 254 & scr = 255 */
1734 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1735 
1736 	if (freq > max_tclk)
1737 		dev_warn(&pl022->adev->dev,
1738 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1739 			max_tclk, freq);
1740 
1741 	if (freq < min_tclk) {
1742 		dev_err(&pl022->adev->dev,
1743 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1744 			freq, min_tclk);
1745 		return -EINVAL;
1746 	}
1747 
1748 	/*
1749 	 * best_freq will give closest possible available rate (<= requested
1750 	 * freq) for all values of scr & cpsdvsr.
1751 	 */
1752 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1753 		while (scr <= SCR_MAX) {
1754 			tmp = spi_rate(rate, cpsdvsr, scr);
1755 
1756 			if (tmp > freq) {
1757 				/* we need lower freq */
1758 				scr++;
1759 				continue;
1760 			}
1761 
1762 			/*
1763 			 * If found exact value, mark found and break.
1764 			 * If found more closer value, update and break.
1765 			 */
1766 			if (tmp > best_freq) {
1767 				best_freq = tmp;
1768 				best_cpsdvsr = cpsdvsr;
1769 				best_scr = scr;
1770 
1771 				if (tmp == freq)
1772 					found = 1;
1773 			}
1774 			/*
1775 			 * increased scr will give lower rates, which are not
1776 			 * required
1777 			 */
1778 			break;
1779 		}
1780 		cpsdvsr += 2;
1781 		scr = SCR_MIN;
1782 	}
1783 
1784 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1785 			freq);
1786 
1787 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1788 	clk_freq->scr = (u8) (best_scr & 0xFF);
1789 	dev_dbg(&pl022->adev->dev,
1790 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1791 		freq, best_freq);
1792 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1793 		clk_freq->cpsdvsr, clk_freq->scr);
1794 
1795 	return 0;
1796 }
1797 
1798 /*
1799  * A piece of default chip info unless the platform
1800  * supplies it.
1801  */
1802 static const struct pl022_config_chip pl022_default_chip_info = {
1803 	.com_mode = POLLING_TRANSFER,
1804 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1805 	.hierarchy = SSP_SLAVE,
1806 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1807 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1808 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1809 	.ctrl_len = SSP_BITS_8,
1810 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1811 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1812 	.cs_control = null_cs_control,
1813 };
1814 
1815 /**
1816  * pl022_setup - setup function registered to SPI master framework
1817  * @spi: spi device which is requesting setup
1818  *
1819  * This function is registered to the SPI framework for this SPI master
1820  * controller. If it is the first time when setup is called by this device,
1821  * this function will initialize the runtime state for this chip and save
1822  * the same in the device structure. Else it will update the runtime info
1823  * with the updated chip info. Nothing is really being written to the
1824  * controller hardware here, that is not done until the actual transfer
1825  * commence.
1826  */
1827 static int pl022_setup(struct spi_device *spi)
1828 {
1829 	struct pl022_config_chip const *chip_info;
1830 	struct pl022_config_chip chip_info_dt;
1831 	struct chip_data *chip;
1832 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1833 	int status = 0;
1834 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1835 	unsigned int bits = spi->bits_per_word;
1836 	u32 tmp;
1837 	struct device_node *np = spi->dev.of_node;
1838 
1839 	if (!spi->max_speed_hz)
1840 		return -EINVAL;
1841 
1842 	/* Get controller_state if one is supplied */
1843 	chip = spi_get_ctldata(spi);
1844 
1845 	if (chip == NULL) {
1846 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1847 		if (!chip)
1848 			return -ENOMEM;
1849 		dev_dbg(&spi->dev,
1850 			"allocated memory for controller's runtime state\n");
1851 	}
1852 
1853 	/* Get controller data if one is supplied */
1854 	chip_info = spi->controller_data;
1855 
1856 	if (chip_info == NULL) {
1857 		if (np) {
1858 			chip_info_dt = pl022_default_chip_info;
1859 
1860 			chip_info_dt.hierarchy = SSP_MASTER;
1861 			of_property_read_u32(np, "pl022,interface",
1862 				&chip_info_dt.iface);
1863 			of_property_read_u32(np, "pl022,com-mode",
1864 				&chip_info_dt.com_mode);
1865 			of_property_read_u32(np, "pl022,rx-level-trig",
1866 				&chip_info_dt.rx_lev_trig);
1867 			of_property_read_u32(np, "pl022,tx-level-trig",
1868 				&chip_info_dt.tx_lev_trig);
1869 			of_property_read_u32(np, "pl022,ctrl-len",
1870 				&chip_info_dt.ctrl_len);
1871 			of_property_read_u32(np, "pl022,wait-state",
1872 				&chip_info_dt.wait_state);
1873 			of_property_read_u32(np, "pl022,duplex",
1874 				&chip_info_dt.duplex);
1875 
1876 			chip_info = &chip_info_dt;
1877 		} else {
1878 			chip_info = &pl022_default_chip_info;
1879 			/* spi_board_info.controller_data not is supplied */
1880 			dev_dbg(&spi->dev,
1881 				"using default controller_data settings\n");
1882 		}
1883 	} else
1884 		dev_dbg(&spi->dev,
1885 			"using user supplied controller_data settings\n");
1886 
1887 	/*
1888 	 * We can override with custom divisors, else we use the board
1889 	 * frequency setting
1890 	 */
1891 	if ((0 == chip_info->clk_freq.cpsdvsr)
1892 	    && (0 == chip_info->clk_freq.scr)) {
1893 		status = calculate_effective_freq(pl022,
1894 						  spi->max_speed_hz,
1895 						  &clk_freq);
1896 		if (status < 0)
1897 			goto err_config_params;
1898 	} else {
1899 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1900 		if ((clk_freq.cpsdvsr % 2) != 0)
1901 			clk_freq.cpsdvsr =
1902 				clk_freq.cpsdvsr - 1;
1903 	}
1904 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1905 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1906 		status = -EINVAL;
1907 		dev_err(&spi->dev,
1908 			"cpsdvsr is configured incorrectly\n");
1909 		goto err_config_params;
1910 	}
1911 
1912 	status = verify_controller_parameters(pl022, chip_info);
1913 	if (status) {
1914 		dev_err(&spi->dev, "controller data is incorrect");
1915 		goto err_config_params;
1916 	}
1917 
1918 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1919 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1920 
1921 	/* Now set controller state based on controller data */
1922 	chip->xfer_type = chip_info->com_mode;
1923 	if (!chip_info->cs_control) {
1924 		chip->cs_control = null_cs_control;
1925 		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1926 			dev_warn(&spi->dev,
1927 				 "invalid chip select\n");
1928 	} else
1929 		chip->cs_control = chip_info->cs_control;
1930 
1931 	/* Check bits per word with vendor specific range */
1932 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1933 		status = -ENOTSUPP;
1934 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1935 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1936 				pl022->vendor->max_bpw);
1937 		goto err_config_params;
1938 	} else if (bits <= 8) {
1939 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1940 		chip->n_bytes = 1;
1941 		chip->read = READING_U8;
1942 		chip->write = WRITING_U8;
1943 	} else if (bits <= 16) {
1944 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1945 		chip->n_bytes = 2;
1946 		chip->read = READING_U16;
1947 		chip->write = WRITING_U16;
1948 	} else {
1949 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1950 		chip->n_bytes = 4;
1951 		chip->read = READING_U32;
1952 		chip->write = WRITING_U32;
1953 	}
1954 
1955 	/* Now Initialize all register settings required for this chip */
1956 	chip->cr0 = 0;
1957 	chip->cr1 = 0;
1958 	chip->dmacr = 0;
1959 	chip->cpsr = 0;
1960 	if ((chip_info->com_mode == DMA_TRANSFER)
1961 	    && ((pl022->master_info)->enable_dma)) {
1962 		chip->enable_dma = true;
1963 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1964 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1965 			       SSP_DMACR_MASK_RXDMAE, 0);
1966 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1967 			       SSP_DMACR_MASK_TXDMAE, 1);
1968 	} else {
1969 		chip->enable_dma = false;
1970 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1971 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1972 			       SSP_DMACR_MASK_RXDMAE, 0);
1973 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1974 			       SSP_DMACR_MASK_TXDMAE, 1);
1975 	}
1976 
1977 	chip->cpsr = clk_freq.cpsdvsr;
1978 
1979 	/* Special setup for the ST micro extended control registers */
1980 	if (pl022->vendor->extended_cr) {
1981 		u32 etx;
1982 
1983 		if (pl022->vendor->pl023) {
1984 			/* These bits are only in the PL023 */
1985 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1986 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1987 		} else {
1988 			/* These bits are in the PL022 but not PL023 */
1989 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1990 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1991 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1992 				       SSP_CR0_MASK_CSS_ST, 16);
1993 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1994 				       SSP_CR0_MASK_FRF_ST, 21);
1995 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1996 				       SSP_CR1_MASK_MWAIT_ST, 6);
1997 		}
1998 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1999 			       SSP_CR0_MASK_DSS_ST, 0);
2000 
2001 		if (spi->mode & SPI_LSB_FIRST) {
2002 			tmp = SSP_RX_LSB;
2003 			etx = SSP_TX_LSB;
2004 		} else {
2005 			tmp = SSP_RX_MSB;
2006 			etx = SSP_TX_MSB;
2007 		}
2008 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2009 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2010 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2011 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2012 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2013 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2014 	} else {
2015 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2016 			       SSP_CR0_MASK_DSS, 0);
2017 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2018 			       SSP_CR0_MASK_FRF, 4);
2019 	}
2020 
2021 	/* Stuff that is common for all versions */
2022 	if (spi->mode & SPI_CPOL)
2023 		tmp = SSP_CLK_POL_IDLE_HIGH;
2024 	else
2025 		tmp = SSP_CLK_POL_IDLE_LOW;
2026 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2027 
2028 	if (spi->mode & SPI_CPHA)
2029 		tmp = SSP_CLK_SECOND_EDGE;
2030 	else
2031 		tmp = SSP_CLK_FIRST_EDGE;
2032 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2033 
2034 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2035 	/* Loopback is available on all versions except PL023 */
2036 	if (pl022->vendor->loopback) {
2037 		if (spi->mode & SPI_LOOP)
2038 			tmp = LOOPBACK_ENABLED;
2039 		else
2040 			tmp = LOOPBACK_DISABLED;
2041 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2042 	}
2043 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2044 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2045 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2046 		3);
2047 
2048 	/* Save controller_state */
2049 	spi_set_ctldata(spi, chip);
2050 	return status;
2051  err_config_params:
2052 	spi_set_ctldata(spi, NULL);
2053 	kfree(chip);
2054 	return status;
2055 }
2056 
2057 /**
2058  * pl022_cleanup - cleanup function registered to SPI master framework
2059  * @spi: spi device which is requesting cleanup
2060  *
2061  * This function is registered to the SPI framework for this SPI master
2062  * controller. It will free the runtime state of chip.
2063  */
2064 static void pl022_cleanup(struct spi_device *spi)
2065 {
2066 	struct chip_data *chip = spi_get_ctldata(spi);
2067 
2068 	spi_set_ctldata(spi, NULL);
2069 	kfree(chip);
2070 }
2071 
2072 static struct pl022_ssp_controller *
2073 pl022_platform_data_dt_get(struct device *dev)
2074 {
2075 	struct device_node *np = dev->of_node;
2076 	struct pl022_ssp_controller *pd;
2077 	u32 tmp;
2078 
2079 	if (!np) {
2080 		dev_err(dev, "no dt node defined\n");
2081 		return NULL;
2082 	}
2083 
2084 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2085 	if (!pd)
2086 		return NULL;
2087 
2088 	pd->bus_id = -1;
2089 	pd->enable_dma = 1;
2090 	of_property_read_u32(np, "num-cs", &tmp);
2091 	pd->num_chipselect = tmp;
2092 	of_property_read_u32(np, "pl022,autosuspend-delay",
2093 			     &pd->autosuspend_delay);
2094 	pd->rt = of_property_read_bool(np, "pl022,rt");
2095 
2096 	return pd;
2097 }
2098 
2099 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2100 {
2101 	struct device *dev = &adev->dev;
2102 	struct pl022_ssp_controller *platform_info =
2103 			dev_get_platdata(&adev->dev);
2104 	struct spi_master *master;
2105 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2106 	struct device_node *np = adev->dev.of_node;
2107 	int status = 0, i, num_cs;
2108 
2109 	dev_info(&adev->dev,
2110 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2111 	if (!platform_info && IS_ENABLED(CONFIG_OF))
2112 		platform_info = pl022_platform_data_dt_get(dev);
2113 
2114 	if (!platform_info) {
2115 		dev_err(dev, "probe: no platform data defined\n");
2116 		return -ENODEV;
2117 	}
2118 
2119 	if (platform_info->num_chipselect) {
2120 		num_cs = platform_info->num_chipselect;
2121 	} else {
2122 		dev_err(dev, "probe: no chip select defined\n");
2123 		return -ENODEV;
2124 	}
2125 
2126 	/* Allocate master with space for data */
2127 	master = spi_alloc_master(dev, sizeof(struct pl022));
2128 	if (master == NULL) {
2129 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2130 		return -ENOMEM;
2131 	}
2132 
2133 	pl022 = spi_master_get_devdata(master);
2134 	pl022->master = master;
2135 	pl022->master_info = platform_info;
2136 	pl022->adev = adev;
2137 	pl022->vendor = id->data;
2138 	pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2139 					  GFP_KERNEL);
2140 	if (!pl022->chipselects) {
2141 		status = -ENOMEM;
2142 		goto err_no_mem;
2143 	}
2144 
2145 	/*
2146 	 * Bus Number Which has been Assigned to this SSP controller
2147 	 * on this board
2148 	 */
2149 	master->bus_num = platform_info->bus_id;
2150 	master->num_chipselect = num_cs;
2151 	master->cleanup = pl022_cleanup;
2152 	master->setup = pl022_setup;
2153 	master->auto_runtime_pm = true;
2154 	master->transfer_one_message = pl022_transfer_one_message;
2155 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2156 	master->rt = platform_info->rt;
2157 	master->dev.of_node = dev->of_node;
2158 
2159 	if (platform_info->num_chipselect && platform_info->chipselects) {
2160 		for (i = 0; i < num_cs; i++)
2161 			pl022->chipselects[i] = platform_info->chipselects[i];
2162 	} else if (pl022->vendor->internal_cs_ctrl) {
2163 		for (i = 0; i < num_cs; i++)
2164 			pl022->chipselects[i] = i;
2165 	} else if (IS_ENABLED(CONFIG_OF)) {
2166 		for (i = 0; i < num_cs; i++) {
2167 			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2168 
2169 			if (cs_gpio == -EPROBE_DEFER) {
2170 				status = -EPROBE_DEFER;
2171 				goto err_no_gpio;
2172 			}
2173 
2174 			pl022->chipselects[i] = cs_gpio;
2175 
2176 			if (gpio_is_valid(cs_gpio)) {
2177 				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2178 					dev_err(&adev->dev,
2179 						"could not request %d gpio\n",
2180 						cs_gpio);
2181 				else if (gpio_direction_output(cs_gpio, 1))
2182 					dev_err(&adev->dev,
2183 						"could not set gpio %d as output\n",
2184 						cs_gpio);
2185 			}
2186 		}
2187 	}
2188 
2189 	/*
2190 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2191 	 * always MS bit first on the original pl022.
2192 	 */
2193 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2194 	if (pl022->vendor->extended_cr)
2195 		master->mode_bits |= SPI_LSB_FIRST;
2196 
2197 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2198 
2199 	status = amba_request_regions(adev, NULL);
2200 	if (status)
2201 		goto err_no_ioregion;
2202 
2203 	pl022->phybase = adev->res.start;
2204 	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2205 				       resource_size(&adev->res));
2206 	if (pl022->virtbase == NULL) {
2207 		status = -ENOMEM;
2208 		goto err_no_ioremap;
2209 	}
2210 	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2211 		&adev->res.start, pl022->virtbase);
2212 
2213 	pl022->clk = devm_clk_get(&adev->dev, NULL);
2214 	if (IS_ERR(pl022->clk)) {
2215 		status = PTR_ERR(pl022->clk);
2216 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2217 		goto err_no_clk;
2218 	}
2219 
2220 	status = clk_prepare_enable(pl022->clk);
2221 	if (status) {
2222 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2223 		goto err_no_clk_en;
2224 	}
2225 
2226 	/* Initialize transfer pump */
2227 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2228 		     (unsigned long)pl022);
2229 
2230 	/* Disable SSP */
2231 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2232 	       SSP_CR1(pl022->virtbase));
2233 	load_ssp_default_config(pl022);
2234 
2235 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2236 				  0, "pl022", pl022);
2237 	if (status < 0) {
2238 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2239 		goto err_no_irq;
2240 	}
2241 
2242 	/* Get DMA channels, try autoconfiguration first */
2243 	status = pl022_dma_autoprobe(pl022);
2244 	if (status == -EPROBE_DEFER) {
2245 		dev_dbg(dev, "deferring probe to get DMA channel\n");
2246 		goto err_no_irq;
2247 	}
2248 
2249 	/* If that failed, use channels from platform_info */
2250 	if (status == 0)
2251 		platform_info->enable_dma = 1;
2252 	else if (platform_info->enable_dma) {
2253 		status = pl022_dma_probe(pl022);
2254 		if (status != 0)
2255 			platform_info->enable_dma = 0;
2256 	}
2257 
2258 	/* Register with the SPI framework */
2259 	amba_set_drvdata(adev, pl022);
2260 	status = devm_spi_register_master(&adev->dev, master);
2261 	if (status != 0) {
2262 		dev_err(&adev->dev,
2263 			"probe - problem registering spi master\n");
2264 		goto err_spi_register;
2265 	}
2266 	dev_dbg(dev, "probe succeeded\n");
2267 
2268 	/* let runtime pm put suspend */
2269 	if (platform_info->autosuspend_delay > 0) {
2270 		dev_info(&adev->dev,
2271 			"will use autosuspend for runtime pm, delay %dms\n",
2272 			platform_info->autosuspend_delay);
2273 		pm_runtime_set_autosuspend_delay(dev,
2274 			platform_info->autosuspend_delay);
2275 		pm_runtime_use_autosuspend(dev);
2276 	}
2277 	pm_runtime_put(dev);
2278 
2279 	return 0;
2280 
2281  err_spi_register:
2282 	if (platform_info->enable_dma)
2283 		pl022_dma_remove(pl022);
2284  err_no_irq:
2285 	clk_disable_unprepare(pl022->clk);
2286  err_no_clk_en:
2287  err_no_clk:
2288  err_no_ioremap:
2289 	amba_release_regions(adev);
2290  err_no_ioregion:
2291  err_no_gpio:
2292  err_no_mem:
2293 	spi_master_put(master);
2294 	return status;
2295 }
2296 
2297 static int
2298 pl022_remove(struct amba_device *adev)
2299 {
2300 	struct pl022 *pl022 = amba_get_drvdata(adev);
2301 
2302 	if (!pl022)
2303 		return 0;
2304 
2305 	/*
2306 	 * undo pm_runtime_put() in probe.  I assume that we're not
2307 	 * accessing the primecell here.
2308 	 */
2309 	pm_runtime_get_noresume(&adev->dev);
2310 
2311 	load_ssp_default_config(pl022);
2312 	if (pl022->master_info->enable_dma)
2313 		pl022_dma_remove(pl022);
2314 
2315 	clk_disable_unprepare(pl022->clk);
2316 	amba_release_regions(adev);
2317 	tasklet_disable(&pl022->pump_transfers);
2318 	return 0;
2319 }
2320 
2321 #ifdef CONFIG_PM_SLEEP
2322 static int pl022_suspend(struct device *dev)
2323 {
2324 	struct pl022 *pl022 = dev_get_drvdata(dev);
2325 	int ret;
2326 
2327 	ret = spi_master_suspend(pl022->master);
2328 	if (ret) {
2329 		dev_warn(dev, "cannot suspend master\n");
2330 		return ret;
2331 	}
2332 
2333 	ret = pm_runtime_force_suspend(dev);
2334 	if (ret) {
2335 		spi_master_resume(pl022->master);
2336 		return ret;
2337 	}
2338 
2339 	pinctrl_pm_select_sleep_state(dev);
2340 
2341 	dev_dbg(dev, "suspended\n");
2342 	return 0;
2343 }
2344 
2345 static int pl022_resume(struct device *dev)
2346 {
2347 	struct pl022 *pl022 = dev_get_drvdata(dev);
2348 	int ret;
2349 
2350 	ret = pm_runtime_force_resume(dev);
2351 	if (ret)
2352 		dev_err(dev, "problem resuming\n");
2353 
2354 	/* Start the queue running */
2355 	ret = spi_master_resume(pl022->master);
2356 	if (ret)
2357 		dev_err(dev, "problem starting queue (%d)\n", ret);
2358 	else
2359 		dev_dbg(dev, "resumed\n");
2360 
2361 	return ret;
2362 }
2363 #endif
2364 
2365 #ifdef CONFIG_PM
2366 static int pl022_runtime_suspend(struct device *dev)
2367 {
2368 	struct pl022 *pl022 = dev_get_drvdata(dev);
2369 
2370 	clk_disable_unprepare(pl022->clk);
2371 	pinctrl_pm_select_idle_state(dev);
2372 
2373 	return 0;
2374 }
2375 
2376 static int pl022_runtime_resume(struct device *dev)
2377 {
2378 	struct pl022 *pl022 = dev_get_drvdata(dev);
2379 
2380 	pinctrl_pm_select_default_state(dev);
2381 	clk_prepare_enable(pl022->clk);
2382 
2383 	return 0;
2384 }
2385 #endif
2386 
2387 static const struct dev_pm_ops pl022_dev_pm_ops = {
2388 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2389 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2390 };
2391 
2392 static struct vendor_data vendor_arm = {
2393 	.fifodepth = 8,
2394 	.max_bpw = 16,
2395 	.unidir = false,
2396 	.extended_cr = false,
2397 	.pl023 = false,
2398 	.loopback = true,
2399 	.internal_cs_ctrl = false,
2400 };
2401 
2402 static struct vendor_data vendor_st = {
2403 	.fifodepth = 32,
2404 	.max_bpw = 32,
2405 	.unidir = false,
2406 	.extended_cr = true,
2407 	.pl023 = false,
2408 	.loopback = true,
2409 	.internal_cs_ctrl = false,
2410 };
2411 
2412 static struct vendor_data vendor_st_pl023 = {
2413 	.fifodepth = 32,
2414 	.max_bpw = 32,
2415 	.unidir = false,
2416 	.extended_cr = true,
2417 	.pl023 = true,
2418 	.loopback = false,
2419 	.internal_cs_ctrl = false,
2420 };
2421 
2422 static struct vendor_data vendor_lsi = {
2423 	.fifodepth = 8,
2424 	.max_bpw = 16,
2425 	.unidir = false,
2426 	.extended_cr = false,
2427 	.pl023 = false,
2428 	.loopback = true,
2429 	.internal_cs_ctrl = true,
2430 };
2431 
2432 static struct amba_id pl022_ids[] = {
2433 	{
2434 		/*
2435 		 * ARM PL022 variant, this has a 16bit wide
2436 		 * and 8 locations deep TX/RX FIFO
2437 		 */
2438 		.id	= 0x00041022,
2439 		.mask	= 0x000fffff,
2440 		.data	= &vendor_arm,
2441 	},
2442 	{
2443 		/*
2444 		 * ST Micro derivative, this has 32bit wide
2445 		 * and 32 locations deep TX/RX FIFO
2446 		 */
2447 		.id	= 0x01080022,
2448 		.mask	= 0xffffffff,
2449 		.data	= &vendor_st,
2450 	},
2451 	{
2452 		/*
2453 		 * ST-Ericsson derivative "PL023" (this is not
2454 		 * an official ARM number), this is a PL022 SSP block
2455 		 * stripped to SPI mode only, it has 32bit wide
2456 		 * and 32 locations deep TX/RX FIFO but no extended
2457 		 * CR0/CR1 register
2458 		 */
2459 		.id	= 0x00080023,
2460 		.mask	= 0xffffffff,
2461 		.data	= &vendor_st_pl023,
2462 	},
2463 	{
2464 		/*
2465 		 * PL022 variant that has a chip select control register whih
2466 		 * allows control of 5 output signals nCS[0:4].
2467 		 */
2468 		.id	= 0x000b6022,
2469 		.mask	= 0x000fffff,
2470 		.data	= &vendor_lsi,
2471 	},
2472 	{ 0, 0 },
2473 };
2474 
2475 MODULE_DEVICE_TABLE(amba, pl022_ids);
2476 
2477 static struct amba_driver pl022_driver = {
2478 	.drv = {
2479 		.name	= "ssp-pl022",
2480 		.pm	= &pl022_dev_pm_ops,
2481 	},
2482 	.id_table	= pl022_ids,
2483 	.probe		= pl022_probe,
2484 	.remove		= pl022_remove,
2485 };
2486 
2487 static int __init pl022_init(void)
2488 {
2489 	return amba_driver_register(&pl022_driver);
2490 }
2491 subsys_initcall(pl022_init);
2492 
2493 static void __exit pl022_exit(void)
2494 {
2495 	amba_driver_unregister(&pl022_driver);
2496 }
2497 module_exit(pl022_exit);
2498 
2499 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2500 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2501 MODULE_LICENSE("GPL");
2502