1 /* 2 * OMAP2 McSPI controller driver 3 * 4 * Copyright (C) 2005, 2006 Nokia Corporation 5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and 6 * Juha Yrj�l� <juha.yrjola@nokia.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/delay.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dmaengine.h> 26 #include <linux/pinctrl/consumer.h> 27 #include <linux/platform_device.h> 28 #include <linux/err.h> 29 #include <linux/clk.h> 30 #include <linux/io.h> 31 #include <linux/slab.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/of.h> 34 #include <linux/of_device.h> 35 #include <linux/gcd.h> 36 #include <linux/iopoll.h> 37 38 #include <linux/spi/spi.h> 39 #include <linux/gpio.h> 40 41 #include <linux/platform_data/spi-omap2-mcspi.h> 42 43 #define OMAP2_MCSPI_MAX_FREQ 48000000 44 #define OMAP2_MCSPI_MAX_DIVIDER 4096 45 #define OMAP2_MCSPI_MAX_FIFODEPTH 64 46 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF 47 #define SPI_AUTOSUSPEND_TIMEOUT 2000 48 49 #define OMAP2_MCSPI_REVISION 0x00 50 #define OMAP2_MCSPI_SYSSTATUS 0x14 51 #define OMAP2_MCSPI_IRQSTATUS 0x18 52 #define OMAP2_MCSPI_IRQENABLE 0x1c 53 #define OMAP2_MCSPI_WAKEUPENABLE 0x20 54 #define OMAP2_MCSPI_SYST 0x24 55 #define OMAP2_MCSPI_MODULCTRL 0x28 56 #define OMAP2_MCSPI_XFERLEVEL 0x7c 57 58 /* per-channel banks, 0x14 bytes each, first is: */ 59 #define OMAP2_MCSPI_CHCONF0 0x2c 60 #define OMAP2_MCSPI_CHSTAT0 0x30 61 #define OMAP2_MCSPI_CHCTRL0 0x34 62 #define OMAP2_MCSPI_TX0 0x38 63 #define OMAP2_MCSPI_RX0 0x3c 64 65 /* per-register bitmasks: */ 66 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17) 67 68 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0) 69 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2) 70 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3) 71 72 #define OMAP2_MCSPI_CHCONF_PHA BIT(0) 73 #define OMAP2_MCSPI_CHCONF_POL BIT(1) 74 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) 75 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6) 76 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) 77 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12) 78 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13) 79 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) 80 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14) 81 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15) 82 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16) 83 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17) 84 #define OMAP2_MCSPI_CHCONF_IS BIT(18) 85 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19) 86 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20) 87 #define OMAP2_MCSPI_CHCONF_FFET BIT(27) 88 #define OMAP2_MCSPI_CHCONF_FFER BIT(28) 89 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29) 90 91 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0) 92 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1) 93 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2) 94 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3) 95 96 #define OMAP2_MCSPI_CHCTRL_EN BIT(0) 97 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8) 98 99 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0) 100 101 /* We have 2 DMA channels per CS, one for RX and one for TX */ 102 struct omap2_mcspi_dma { 103 struct dma_chan *dma_tx; 104 struct dma_chan *dma_rx; 105 106 struct completion dma_tx_completion; 107 struct completion dma_rx_completion; 108 109 char dma_rx_ch_name[14]; 110 char dma_tx_ch_name[14]; 111 }; 112 113 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 114 * cache operations; better heuristics consider wordsize and bitrate. 115 */ 116 #define DMA_MIN_BYTES 160 117 118 119 /* 120 * Used for context save and restore, structure members to be updated whenever 121 * corresponding registers are modified. 122 */ 123 struct omap2_mcspi_regs { 124 u32 modulctrl; 125 u32 wakeupenable; 126 struct list_head cs; 127 }; 128 129 struct omap2_mcspi { 130 struct completion txdone; 131 struct spi_master *master; 132 /* Virtual base address of the controller */ 133 void __iomem *base; 134 unsigned long phys; 135 /* SPI1 has 4 channels, while SPI2 has 2 */ 136 struct omap2_mcspi_dma *dma_channels; 137 struct device *dev; 138 struct omap2_mcspi_regs ctx; 139 int fifo_depth; 140 bool slave_aborted; 141 unsigned int pin_dir:1; 142 }; 143 144 struct omap2_mcspi_cs { 145 void __iomem *base; 146 unsigned long phys; 147 int word_len; 148 u16 mode; 149 struct list_head node; 150 /* Context save and restore shadow register */ 151 u32 chconf0, chctrl0; 152 }; 153 154 static inline void mcspi_write_reg(struct spi_master *master, 155 int idx, u32 val) 156 { 157 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 158 159 writel_relaxed(val, mcspi->base + idx); 160 } 161 162 static inline u32 mcspi_read_reg(struct spi_master *master, int idx) 163 { 164 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 165 166 return readl_relaxed(mcspi->base + idx); 167 } 168 169 static inline void mcspi_write_cs_reg(const struct spi_device *spi, 170 int idx, u32 val) 171 { 172 struct omap2_mcspi_cs *cs = spi->controller_state; 173 174 writel_relaxed(val, cs->base + idx); 175 } 176 177 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) 178 { 179 struct omap2_mcspi_cs *cs = spi->controller_state; 180 181 return readl_relaxed(cs->base + idx); 182 } 183 184 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi) 185 { 186 struct omap2_mcspi_cs *cs = spi->controller_state; 187 188 return cs->chconf0; 189 } 190 191 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val) 192 { 193 struct omap2_mcspi_cs *cs = spi->controller_state; 194 195 cs->chconf0 = val; 196 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val); 197 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); 198 } 199 200 static inline int mcspi_bytes_per_word(int word_len) 201 { 202 if (word_len <= 8) 203 return 1; 204 else if (word_len <= 16) 205 return 2; 206 else /* word_len <= 32 */ 207 return 4; 208 } 209 210 static void omap2_mcspi_set_dma_req(const struct spi_device *spi, 211 int is_read, int enable) 212 { 213 u32 l, rw; 214 215 l = mcspi_cached_chconf0(spi); 216 217 if (is_read) /* 1 is read, 0 write */ 218 rw = OMAP2_MCSPI_CHCONF_DMAR; 219 else 220 rw = OMAP2_MCSPI_CHCONF_DMAW; 221 222 if (enable) 223 l |= rw; 224 else 225 l &= ~rw; 226 227 mcspi_write_chconf0(spi, l); 228 } 229 230 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) 231 { 232 struct omap2_mcspi_cs *cs = spi->controller_state; 233 u32 l; 234 235 l = cs->chctrl0; 236 if (enable) 237 l |= OMAP2_MCSPI_CHCTRL_EN; 238 else 239 l &= ~OMAP2_MCSPI_CHCTRL_EN; 240 cs->chctrl0 = l; 241 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 242 /* Flash post-writes */ 243 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0); 244 } 245 246 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable) 247 { 248 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 249 u32 l; 250 251 /* The controller handles the inverted chip selects 252 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert 253 * the inversion from the core spi_set_cs function. 254 */ 255 if (spi->mode & SPI_CS_HIGH) 256 enable = !enable; 257 258 if (spi->controller_state) { 259 int err = pm_runtime_get_sync(mcspi->dev); 260 if (err < 0) { 261 pm_runtime_put_noidle(mcspi->dev); 262 dev_err(mcspi->dev, "failed to get sync: %d\n", err); 263 return; 264 } 265 266 l = mcspi_cached_chconf0(spi); 267 268 if (enable) 269 l &= ~OMAP2_MCSPI_CHCONF_FORCE; 270 else 271 l |= OMAP2_MCSPI_CHCONF_FORCE; 272 273 mcspi_write_chconf0(spi, l); 274 275 pm_runtime_mark_last_busy(mcspi->dev); 276 pm_runtime_put_autosuspend(mcspi->dev); 277 } 278 } 279 280 static void omap2_mcspi_set_mode(struct spi_master *master) 281 { 282 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 283 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 284 u32 l; 285 286 /* 287 * Choose master or slave mode 288 */ 289 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL); 290 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST); 291 if (spi_controller_is_slave(master)) { 292 l |= (OMAP2_MCSPI_MODULCTRL_MS); 293 } else { 294 l &= ~(OMAP2_MCSPI_MODULCTRL_MS); 295 l |= OMAP2_MCSPI_MODULCTRL_SINGLE; 296 } 297 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l); 298 299 ctx->modulctrl = l; 300 } 301 302 static void omap2_mcspi_set_fifo(const struct spi_device *spi, 303 struct spi_transfer *t, int enable) 304 { 305 struct spi_master *master = spi->master; 306 struct omap2_mcspi_cs *cs = spi->controller_state; 307 struct omap2_mcspi *mcspi; 308 unsigned int wcnt; 309 int max_fifo_depth, bytes_per_word; 310 u32 chconf, xferlevel; 311 312 mcspi = spi_master_get_devdata(master); 313 314 chconf = mcspi_cached_chconf0(spi); 315 if (enable) { 316 bytes_per_word = mcspi_bytes_per_word(cs->word_len); 317 if (t->len % bytes_per_word != 0) 318 goto disable_fifo; 319 320 if (t->rx_buf != NULL && t->tx_buf != NULL) 321 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2; 322 else 323 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH; 324 325 wcnt = t->len / bytes_per_word; 326 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT) 327 goto disable_fifo; 328 329 xferlevel = wcnt << 16; 330 if (t->rx_buf != NULL) { 331 chconf |= OMAP2_MCSPI_CHCONF_FFER; 332 xferlevel |= (bytes_per_word - 1) << 8; 333 } 334 335 if (t->tx_buf != NULL) { 336 chconf |= OMAP2_MCSPI_CHCONF_FFET; 337 xferlevel |= bytes_per_word - 1; 338 } 339 340 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel); 341 mcspi_write_chconf0(spi, chconf); 342 mcspi->fifo_depth = max_fifo_depth; 343 344 return; 345 } 346 347 disable_fifo: 348 if (t->rx_buf != NULL) 349 chconf &= ~OMAP2_MCSPI_CHCONF_FFER; 350 351 if (t->tx_buf != NULL) 352 chconf &= ~OMAP2_MCSPI_CHCONF_FFET; 353 354 mcspi_write_chconf0(spi, chconf); 355 mcspi->fifo_depth = 0; 356 } 357 358 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit) 359 { 360 u32 val; 361 362 return readl_poll_timeout(reg, val, val & bit, 1, MSEC_PER_SEC); 363 } 364 365 static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi, 366 struct completion *x) 367 { 368 if (spi_controller_is_slave(mcspi->master)) { 369 if (wait_for_completion_interruptible(x) || 370 mcspi->slave_aborted) 371 return -EINTR; 372 } else { 373 wait_for_completion(x); 374 } 375 376 return 0; 377 } 378 379 static void omap2_mcspi_rx_callback(void *data) 380 { 381 struct spi_device *spi = data; 382 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 383 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 384 385 /* We must disable the DMA RX request */ 386 omap2_mcspi_set_dma_req(spi, 1, 0); 387 388 complete(&mcspi_dma->dma_rx_completion); 389 } 390 391 static void omap2_mcspi_tx_callback(void *data) 392 { 393 struct spi_device *spi = data; 394 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 395 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 396 397 /* We must disable the DMA TX request */ 398 omap2_mcspi_set_dma_req(spi, 0, 0); 399 400 complete(&mcspi_dma->dma_tx_completion); 401 } 402 403 static void omap2_mcspi_tx_dma(struct spi_device *spi, 404 struct spi_transfer *xfer, 405 struct dma_slave_config cfg) 406 { 407 struct omap2_mcspi *mcspi; 408 struct omap2_mcspi_dma *mcspi_dma; 409 410 mcspi = spi_master_get_devdata(spi->master); 411 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 412 413 if (mcspi_dma->dma_tx) { 414 struct dma_async_tx_descriptor *tx; 415 416 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg); 417 418 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl, 419 xfer->tx_sg.nents, 420 DMA_MEM_TO_DEV, 421 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 422 if (tx) { 423 tx->callback = omap2_mcspi_tx_callback; 424 tx->callback_param = spi; 425 dmaengine_submit(tx); 426 } else { 427 /* FIXME: fall back to PIO? */ 428 } 429 } 430 dma_async_issue_pending(mcspi_dma->dma_tx); 431 omap2_mcspi_set_dma_req(spi, 0, 1); 432 433 } 434 435 static unsigned 436 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer, 437 struct dma_slave_config cfg, 438 unsigned es) 439 { 440 struct omap2_mcspi *mcspi; 441 struct omap2_mcspi_dma *mcspi_dma; 442 unsigned int count, transfer_reduction = 0; 443 struct scatterlist *sg_out[2]; 444 int nb_sizes = 0, out_mapped_nents[2], ret, x; 445 size_t sizes[2]; 446 u32 l; 447 int elements = 0; 448 int word_len, element_count; 449 struct omap2_mcspi_cs *cs = spi->controller_state; 450 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; 451 452 mcspi = spi_master_get_devdata(spi->master); 453 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 454 count = xfer->len; 455 456 /* 457 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM 458 * it mentions reducing DMA transfer length by one element in master 459 * normal mode. 460 */ 461 if (mcspi->fifo_depth == 0) 462 transfer_reduction = es; 463 464 word_len = cs->word_len; 465 l = mcspi_cached_chconf0(spi); 466 467 if (word_len <= 8) 468 element_count = count; 469 else if (word_len <= 16) 470 element_count = count >> 1; 471 else /* word_len <= 32 */ 472 element_count = count >> 2; 473 474 if (mcspi_dma->dma_rx) { 475 struct dma_async_tx_descriptor *tx; 476 477 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg); 478 479 /* 480 * Reduce DMA transfer length by one more if McSPI is 481 * configured in turbo mode. 482 */ 483 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0) 484 transfer_reduction += es; 485 486 if (transfer_reduction) { 487 /* Split sgl into two. The second sgl won't be used. */ 488 sizes[0] = count - transfer_reduction; 489 sizes[1] = transfer_reduction; 490 nb_sizes = 2; 491 } else { 492 /* 493 * Don't bother splitting the sgl. This essentially 494 * clones the original sgl. 495 */ 496 sizes[0] = count; 497 nb_sizes = 1; 498 } 499 500 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 501 0, nb_sizes, 502 sizes, 503 sg_out, out_mapped_nents, 504 GFP_KERNEL); 505 506 if (ret < 0) { 507 dev_err(&spi->dev, "sg_split failed\n"); 508 return 0; 509 } 510 511 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, 512 sg_out[0], 513 out_mapped_nents[0], 514 DMA_DEV_TO_MEM, 515 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 516 if (tx) { 517 tx->callback = omap2_mcspi_rx_callback; 518 tx->callback_param = spi; 519 dmaengine_submit(tx); 520 } else { 521 /* FIXME: fall back to PIO? */ 522 } 523 } 524 525 dma_async_issue_pending(mcspi_dma->dma_rx); 526 omap2_mcspi_set_dma_req(spi, 1, 1); 527 528 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion); 529 if (ret || mcspi->slave_aborted) { 530 dmaengine_terminate_sync(mcspi_dma->dma_rx); 531 omap2_mcspi_set_dma_req(spi, 1, 0); 532 return 0; 533 } 534 535 for (x = 0; x < nb_sizes; x++) 536 kfree(sg_out[x]); 537 538 if (mcspi->fifo_depth > 0) 539 return count; 540 541 /* 542 * Due to the DMA transfer length reduction the missing bytes must 543 * be read manually to receive all of the expected data. 544 */ 545 omap2_mcspi_set_enable(spi, 0); 546 547 elements = element_count - 1; 548 549 if (l & OMAP2_MCSPI_CHCONF_TURBO) { 550 elements--; 551 552 if (!mcspi_wait_for_reg_bit(chstat_reg, 553 OMAP2_MCSPI_CHSTAT_RXS)) { 554 u32 w; 555 556 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 557 if (word_len <= 8) 558 ((u8 *)xfer->rx_buf)[elements++] = w; 559 else if (word_len <= 16) 560 ((u16 *)xfer->rx_buf)[elements++] = w; 561 else /* word_len <= 32 */ 562 ((u32 *)xfer->rx_buf)[elements++] = w; 563 } else { 564 int bytes_per_word = mcspi_bytes_per_word(word_len); 565 dev_err(&spi->dev, "DMA RX penultimate word empty\n"); 566 count -= (bytes_per_word << 1); 567 omap2_mcspi_set_enable(spi, 1); 568 return count; 569 } 570 } 571 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) { 572 u32 w; 573 574 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 575 if (word_len <= 8) 576 ((u8 *)xfer->rx_buf)[elements] = w; 577 else if (word_len <= 16) 578 ((u16 *)xfer->rx_buf)[elements] = w; 579 else /* word_len <= 32 */ 580 ((u32 *)xfer->rx_buf)[elements] = w; 581 } else { 582 dev_err(&spi->dev, "DMA RX last word empty\n"); 583 count -= mcspi_bytes_per_word(word_len); 584 } 585 omap2_mcspi_set_enable(spi, 1); 586 return count; 587 } 588 589 static unsigned 590 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) 591 { 592 struct omap2_mcspi *mcspi; 593 struct omap2_mcspi_cs *cs = spi->controller_state; 594 struct omap2_mcspi_dma *mcspi_dma; 595 unsigned int count; 596 u8 *rx; 597 const u8 *tx; 598 struct dma_slave_config cfg; 599 enum dma_slave_buswidth width; 600 unsigned es; 601 void __iomem *chstat_reg; 602 void __iomem *irqstat_reg; 603 int wait_res; 604 605 mcspi = spi_master_get_devdata(spi->master); 606 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 607 608 if (cs->word_len <= 8) { 609 width = DMA_SLAVE_BUSWIDTH_1_BYTE; 610 es = 1; 611 } else if (cs->word_len <= 16) { 612 width = DMA_SLAVE_BUSWIDTH_2_BYTES; 613 es = 2; 614 } else { 615 width = DMA_SLAVE_BUSWIDTH_4_BYTES; 616 es = 4; 617 } 618 619 count = xfer->len; 620 621 memset(&cfg, 0, sizeof(cfg)); 622 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0; 623 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0; 624 cfg.src_addr_width = width; 625 cfg.dst_addr_width = width; 626 cfg.src_maxburst = es; 627 cfg.dst_maxburst = es; 628 629 rx = xfer->rx_buf; 630 tx = xfer->tx_buf; 631 632 mcspi->slave_aborted = false; 633 reinit_completion(&mcspi_dma->dma_tx_completion); 634 reinit_completion(&mcspi_dma->dma_rx_completion); 635 reinit_completion(&mcspi->txdone); 636 if (tx) { 637 /* Enable EOW IRQ to know end of tx in slave mode */ 638 if (spi_controller_is_slave(spi->master)) 639 mcspi_write_reg(spi->master, 640 OMAP2_MCSPI_IRQENABLE, 641 OMAP2_MCSPI_IRQSTATUS_EOW); 642 omap2_mcspi_tx_dma(spi, xfer, cfg); 643 } 644 645 if (rx != NULL) 646 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es); 647 648 if (tx != NULL) { 649 int ret; 650 651 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion); 652 if (ret || mcspi->slave_aborted) { 653 dmaengine_terminate_sync(mcspi_dma->dma_tx); 654 omap2_mcspi_set_dma_req(spi, 0, 0); 655 return 0; 656 } 657 658 if (spi_controller_is_slave(mcspi->master)) { 659 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone); 660 if (ret || mcspi->slave_aborted) 661 return 0; 662 } 663 664 if (mcspi->fifo_depth > 0) { 665 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS; 666 667 if (mcspi_wait_for_reg_bit(irqstat_reg, 668 OMAP2_MCSPI_IRQSTATUS_EOW) < 0) 669 dev_err(&spi->dev, "EOW timed out\n"); 670 671 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS, 672 OMAP2_MCSPI_IRQSTATUS_EOW); 673 } 674 675 /* for TX_ONLY mode, be sure all words have shifted out */ 676 if (rx == NULL) { 677 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; 678 if (mcspi->fifo_depth > 0) { 679 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 680 OMAP2_MCSPI_CHSTAT_TXFFE); 681 if (wait_res < 0) 682 dev_err(&spi->dev, "TXFFE timed out\n"); 683 } else { 684 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 685 OMAP2_MCSPI_CHSTAT_TXS); 686 if (wait_res < 0) 687 dev_err(&spi->dev, "TXS timed out\n"); 688 } 689 if (wait_res >= 0 && 690 (mcspi_wait_for_reg_bit(chstat_reg, 691 OMAP2_MCSPI_CHSTAT_EOT) < 0)) 692 dev_err(&spi->dev, "EOT timed out\n"); 693 } 694 } 695 return count; 696 } 697 698 static unsigned 699 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) 700 { 701 struct omap2_mcspi_cs *cs = spi->controller_state; 702 unsigned int count, c; 703 u32 l; 704 void __iomem *base = cs->base; 705 void __iomem *tx_reg; 706 void __iomem *rx_reg; 707 void __iomem *chstat_reg; 708 int word_len; 709 710 count = xfer->len; 711 c = count; 712 word_len = cs->word_len; 713 714 l = mcspi_cached_chconf0(spi); 715 716 /* We store the pre-calculated register addresses on stack to speed 717 * up the transfer loop. */ 718 tx_reg = base + OMAP2_MCSPI_TX0; 719 rx_reg = base + OMAP2_MCSPI_RX0; 720 chstat_reg = base + OMAP2_MCSPI_CHSTAT0; 721 722 if (c < (word_len>>3)) 723 return 0; 724 725 if (word_len <= 8) { 726 u8 *rx; 727 const u8 *tx; 728 729 rx = xfer->rx_buf; 730 tx = xfer->tx_buf; 731 732 do { 733 c -= 1; 734 if (tx != NULL) { 735 if (mcspi_wait_for_reg_bit(chstat_reg, 736 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 737 dev_err(&spi->dev, "TXS timed out\n"); 738 goto out; 739 } 740 dev_vdbg(&spi->dev, "write-%d %02x\n", 741 word_len, *tx); 742 writel_relaxed(*tx++, tx_reg); 743 } 744 if (rx != NULL) { 745 if (mcspi_wait_for_reg_bit(chstat_reg, 746 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 747 dev_err(&spi->dev, "RXS timed out\n"); 748 goto out; 749 } 750 751 if (c == 1 && tx == NULL && 752 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 753 omap2_mcspi_set_enable(spi, 0); 754 *rx++ = readl_relaxed(rx_reg); 755 dev_vdbg(&spi->dev, "read-%d %02x\n", 756 word_len, *(rx - 1)); 757 if (mcspi_wait_for_reg_bit(chstat_reg, 758 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 759 dev_err(&spi->dev, 760 "RXS timed out\n"); 761 goto out; 762 } 763 c = 0; 764 } else if (c == 0 && tx == NULL) { 765 omap2_mcspi_set_enable(spi, 0); 766 } 767 768 *rx++ = readl_relaxed(rx_reg); 769 dev_vdbg(&spi->dev, "read-%d %02x\n", 770 word_len, *(rx - 1)); 771 } 772 } while (c); 773 } else if (word_len <= 16) { 774 u16 *rx; 775 const u16 *tx; 776 777 rx = xfer->rx_buf; 778 tx = xfer->tx_buf; 779 do { 780 c -= 2; 781 if (tx != NULL) { 782 if (mcspi_wait_for_reg_bit(chstat_reg, 783 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 784 dev_err(&spi->dev, "TXS timed out\n"); 785 goto out; 786 } 787 dev_vdbg(&spi->dev, "write-%d %04x\n", 788 word_len, *tx); 789 writel_relaxed(*tx++, tx_reg); 790 } 791 if (rx != NULL) { 792 if (mcspi_wait_for_reg_bit(chstat_reg, 793 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 794 dev_err(&spi->dev, "RXS timed out\n"); 795 goto out; 796 } 797 798 if (c == 2 && tx == NULL && 799 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 800 omap2_mcspi_set_enable(spi, 0); 801 *rx++ = readl_relaxed(rx_reg); 802 dev_vdbg(&spi->dev, "read-%d %04x\n", 803 word_len, *(rx - 1)); 804 if (mcspi_wait_for_reg_bit(chstat_reg, 805 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 806 dev_err(&spi->dev, 807 "RXS timed out\n"); 808 goto out; 809 } 810 c = 0; 811 } else if (c == 0 && tx == NULL) { 812 omap2_mcspi_set_enable(spi, 0); 813 } 814 815 *rx++ = readl_relaxed(rx_reg); 816 dev_vdbg(&spi->dev, "read-%d %04x\n", 817 word_len, *(rx - 1)); 818 } 819 } while (c >= 2); 820 } else if (word_len <= 32) { 821 u32 *rx; 822 const u32 *tx; 823 824 rx = xfer->rx_buf; 825 tx = xfer->tx_buf; 826 do { 827 c -= 4; 828 if (tx != NULL) { 829 if (mcspi_wait_for_reg_bit(chstat_reg, 830 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 831 dev_err(&spi->dev, "TXS timed out\n"); 832 goto out; 833 } 834 dev_vdbg(&spi->dev, "write-%d %08x\n", 835 word_len, *tx); 836 writel_relaxed(*tx++, tx_reg); 837 } 838 if (rx != NULL) { 839 if (mcspi_wait_for_reg_bit(chstat_reg, 840 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 841 dev_err(&spi->dev, "RXS timed out\n"); 842 goto out; 843 } 844 845 if (c == 4 && tx == NULL && 846 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 847 omap2_mcspi_set_enable(spi, 0); 848 *rx++ = readl_relaxed(rx_reg); 849 dev_vdbg(&spi->dev, "read-%d %08x\n", 850 word_len, *(rx - 1)); 851 if (mcspi_wait_for_reg_bit(chstat_reg, 852 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 853 dev_err(&spi->dev, 854 "RXS timed out\n"); 855 goto out; 856 } 857 c = 0; 858 } else if (c == 0 && tx == NULL) { 859 omap2_mcspi_set_enable(spi, 0); 860 } 861 862 *rx++ = readl_relaxed(rx_reg); 863 dev_vdbg(&spi->dev, "read-%d %08x\n", 864 word_len, *(rx - 1)); 865 } 866 } while (c >= 4); 867 } 868 869 /* for TX_ONLY mode, be sure all words have shifted out */ 870 if (xfer->rx_buf == NULL) { 871 if (mcspi_wait_for_reg_bit(chstat_reg, 872 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 873 dev_err(&spi->dev, "TXS timed out\n"); 874 } else if (mcspi_wait_for_reg_bit(chstat_reg, 875 OMAP2_MCSPI_CHSTAT_EOT) < 0) 876 dev_err(&spi->dev, "EOT timed out\n"); 877 878 /* disable chan to purge rx datas received in TX_ONLY transfer, 879 * otherwise these rx datas will affect the direct following 880 * RX_ONLY transfer. 881 */ 882 omap2_mcspi_set_enable(spi, 0); 883 } 884 out: 885 omap2_mcspi_set_enable(spi, 1); 886 return count - c; 887 } 888 889 static u32 omap2_mcspi_calc_divisor(u32 speed_hz) 890 { 891 u32 div; 892 893 for (div = 0; div < 15; div++) 894 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div)) 895 return div; 896 897 return 15; 898 } 899 900 /* called only when no transfer is active to this device */ 901 static int omap2_mcspi_setup_transfer(struct spi_device *spi, 902 struct spi_transfer *t) 903 { 904 struct omap2_mcspi_cs *cs = spi->controller_state; 905 struct omap2_mcspi *mcspi; 906 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0; 907 u8 word_len = spi->bits_per_word; 908 u32 speed_hz = spi->max_speed_hz; 909 910 mcspi = spi_master_get_devdata(spi->master); 911 912 if (t != NULL && t->bits_per_word) 913 word_len = t->bits_per_word; 914 915 cs->word_len = word_len; 916 917 if (t && t->speed_hz) 918 speed_hz = t->speed_hz; 919 920 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ); 921 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) { 922 clkd = omap2_mcspi_calc_divisor(speed_hz); 923 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd; 924 clkg = 0; 925 } else { 926 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz; 927 speed_hz = OMAP2_MCSPI_MAX_FREQ / div; 928 clkd = (div - 1) & 0xf; 929 extclk = (div - 1) >> 4; 930 clkg = OMAP2_MCSPI_CHCONF_CLKG; 931 } 932 933 l = mcspi_cached_chconf0(spi); 934 935 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS 936 * REVISIT: this controller could support SPI_3WIRE mode. 937 */ 938 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) { 939 l &= ~OMAP2_MCSPI_CHCONF_IS; 940 l &= ~OMAP2_MCSPI_CHCONF_DPE1; 941 l |= OMAP2_MCSPI_CHCONF_DPE0; 942 } else { 943 l |= OMAP2_MCSPI_CHCONF_IS; 944 l |= OMAP2_MCSPI_CHCONF_DPE1; 945 l &= ~OMAP2_MCSPI_CHCONF_DPE0; 946 } 947 948 /* wordlength */ 949 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; 950 l |= (word_len - 1) << 7; 951 952 /* set chipselect polarity; manage with FORCE */ 953 if (!(spi->mode & SPI_CS_HIGH)) 954 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */ 955 else 956 l &= ~OMAP2_MCSPI_CHCONF_EPOL; 957 958 /* set clock divisor */ 959 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; 960 l |= clkd << 2; 961 962 /* set clock granularity */ 963 l &= ~OMAP2_MCSPI_CHCONF_CLKG; 964 l |= clkg; 965 if (clkg) { 966 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK; 967 cs->chctrl0 |= extclk << 8; 968 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 969 } 970 971 /* set SPI mode 0..3 */ 972 if (spi->mode & SPI_CPOL) 973 l |= OMAP2_MCSPI_CHCONF_POL; 974 else 975 l &= ~OMAP2_MCSPI_CHCONF_POL; 976 if (spi->mode & SPI_CPHA) 977 l |= OMAP2_MCSPI_CHCONF_PHA; 978 else 979 l &= ~OMAP2_MCSPI_CHCONF_PHA; 980 981 mcspi_write_chconf0(spi, l); 982 983 cs->mode = spi->mode; 984 985 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n", 986 speed_hz, 987 (spi->mode & SPI_CPHA) ? "trailing" : "leading", 988 (spi->mode & SPI_CPOL) ? "inverted" : "normal"); 989 990 return 0; 991 } 992 993 /* 994 * Note that we currently allow DMA only if we get a channel 995 * for both rx and tx. Otherwise we'll do PIO for both rx and tx. 996 */ 997 static int omap2_mcspi_request_dma(struct spi_device *spi) 998 { 999 struct spi_master *master = spi->master; 1000 struct omap2_mcspi *mcspi; 1001 struct omap2_mcspi_dma *mcspi_dma; 1002 int ret = 0; 1003 1004 mcspi = spi_master_get_devdata(master); 1005 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1006 1007 init_completion(&mcspi_dma->dma_rx_completion); 1008 init_completion(&mcspi_dma->dma_tx_completion); 1009 1010 mcspi_dma->dma_rx = dma_request_chan(&master->dev, 1011 mcspi_dma->dma_rx_ch_name); 1012 if (IS_ERR(mcspi_dma->dma_rx)) { 1013 ret = PTR_ERR(mcspi_dma->dma_rx); 1014 mcspi_dma->dma_rx = NULL; 1015 goto no_dma; 1016 } 1017 1018 mcspi_dma->dma_tx = dma_request_chan(&master->dev, 1019 mcspi_dma->dma_tx_ch_name); 1020 if (IS_ERR(mcspi_dma->dma_tx)) { 1021 ret = PTR_ERR(mcspi_dma->dma_tx); 1022 mcspi_dma->dma_tx = NULL; 1023 dma_release_channel(mcspi_dma->dma_rx); 1024 mcspi_dma->dma_rx = NULL; 1025 } 1026 1027 no_dma: 1028 return ret; 1029 } 1030 1031 static int omap2_mcspi_setup(struct spi_device *spi) 1032 { 1033 int ret; 1034 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 1035 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1036 struct omap2_mcspi_dma *mcspi_dma; 1037 struct omap2_mcspi_cs *cs = spi->controller_state; 1038 1039 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 1040 1041 if (!cs) { 1042 cs = kzalloc(sizeof *cs, GFP_KERNEL); 1043 if (!cs) 1044 return -ENOMEM; 1045 cs->base = mcspi->base + spi->chip_select * 0x14; 1046 cs->phys = mcspi->phys + spi->chip_select * 0x14; 1047 cs->mode = 0; 1048 cs->chconf0 = 0; 1049 cs->chctrl0 = 0; 1050 spi->controller_state = cs; 1051 /* Link this to context save list */ 1052 list_add_tail(&cs->node, &ctx->cs); 1053 1054 if (gpio_is_valid(spi->cs_gpio)) { 1055 ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev)); 1056 if (ret) { 1057 dev_err(&spi->dev, "failed to request gpio\n"); 1058 return ret; 1059 } 1060 gpio_direction_output(spi->cs_gpio, 1061 !(spi->mode & SPI_CS_HIGH)); 1062 } 1063 } 1064 1065 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) { 1066 ret = omap2_mcspi_request_dma(spi); 1067 if (ret) 1068 dev_warn(&spi->dev, "not using DMA for McSPI (%d)\n", 1069 ret); 1070 } 1071 1072 ret = pm_runtime_get_sync(mcspi->dev); 1073 if (ret < 0) { 1074 pm_runtime_put_noidle(mcspi->dev); 1075 1076 return ret; 1077 } 1078 1079 ret = omap2_mcspi_setup_transfer(spi, NULL); 1080 pm_runtime_mark_last_busy(mcspi->dev); 1081 pm_runtime_put_autosuspend(mcspi->dev); 1082 1083 return ret; 1084 } 1085 1086 static void omap2_mcspi_cleanup(struct spi_device *spi) 1087 { 1088 struct omap2_mcspi *mcspi; 1089 struct omap2_mcspi_dma *mcspi_dma; 1090 struct omap2_mcspi_cs *cs; 1091 1092 mcspi = spi_master_get_devdata(spi->master); 1093 1094 if (spi->controller_state) { 1095 /* Unlink controller state from context save list */ 1096 cs = spi->controller_state; 1097 list_del(&cs->node); 1098 1099 kfree(cs); 1100 } 1101 1102 if (spi->chip_select < spi->master->num_chipselect) { 1103 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 1104 1105 if (mcspi_dma->dma_rx) { 1106 dma_release_channel(mcspi_dma->dma_rx); 1107 mcspi_dma->dma_rx = NULL; 1108 } 1109 if (mcspi_dma->dma_tx) { 1110 dma_release_channel(mcspi_dma->dma_tx); 1111 mcspi_dma->dma_tx = NULL; 1112 } 1113 } 1114 1115 if (gpio_is_valid(spi->cs_gpio)) 1116 gpio_free(spi->cs_gpio); 1117 } 1118 1119 static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data) 1120 { 1121 struct omap2_mcspi *mcspi = data; 1122 u32 irqstat; 1123 1124 irqstat = mcspi_read_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS); 1125 if (!irqstat) 1126 return IRQ_NONE; 1127 1128 /* Disable IRQ and wakeup slave xfer task */ 1129 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQENABLE, 0); 1130 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW) 1131 complete(&mcspi->txdone); 1132 1133 return IRQ_HANDLED; 1134 } 1135 1136 static int omap2_mcspi_slave_abort(struct spi_master *master) 1137 { 1138 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1139 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels; 1140 1141 mcspi->slave_aborted = true; 1142 complete(&mcspi_dma->dma_rx_completion); 1143 complete(&mcspi_dma->dma_tx_completion); 1144 complete(&mcspi->txdone); 1145 1146 return 0; 1147 } 1148 1149 static int omap2_mcspi_transfer_one(struct spi_master *master, 1150 struct spi_device *spi, 1151 struct spi_transfer *t) 1152 { 1153 1154 /* We only enable one channel at a time -- the one whose message is 1155 * -- although this controller would gladly 1156 * arbitrate among multiple channels. This corresponds to "single 1157 * channel" master mode. As a side effect, we need to manage the 1158 * chipselect with the FORCE bit ... CS != channel enable. 1159 */ 1160 1161 struct omap2_mcspi *mcspi; 1162 struct omap2_mcspi_dma *mcspi_dma; 1163 struct omap2_mcspi_cs *cs; 1164 struct omap2_mcspi_device_config *cd; 1165 int par_override = 0; 1166 int status = 0; 1167 u32 chconf; 1168 1169 mcspi = spi_master_get_devdata(master); 1170 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1171 cs = spi->controller_state; 1172 cd = spi->controller_data; 1173 1174 /* 1175 * The slave driver could have changed spi->mode in which case 1176 * it will be different from cs->mode (the current hardware setup). 1177 * If so, set par_override (even though its not a parity issue) so 1178 * omap2_mcspi_setup_transfer will be called to configure the hardware 1179 * with the correct mode on the first iteration of the loop below. 1180 */ 1181 if (spi->mode != cs->mode) 1182 par_override = 1; 1183 1184 omap2_mcspi_set_enable(spi, 0); 1185 1186 if (gpio_is_valid(spi->cs_gpio)) 1187 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH); 1188 1189 if (par_override || 1190 (t->speed_hz != spi->max_speed_hz) || 1191 (t->bits_per_word != spi->bits_per_word)) { 1192 par_override = 1; 1193 status = omap2_mcspi_setup_transfer(spi, t); 1194 if (status < 0) 1195 goto out; 1196 if (t->speed_hz == spi->max_speed_hz && 1197 t->bits_per_word == spi->bits_per_word) 1198 par_override = 0; 1199 } 1200 if (cd && cd->cs_per_word) { 1201 chconf = mcspi->ctx.modulctrl; 1202 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE; 1203 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1204 mcspi->ctx.modulctrl = 1205 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1206 } 1207 1208 chconf = mcspi_cached_chconf0(spi); 1209 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; 1210 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO; 1211 1212 if (t->tx_buf == NULL) 1213 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; 1214 else if (t->rx_buf == NULL) 1215 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; 1216 1217 if (cd && cd->turbo_mode && t->tx_buf == NULL) { 1218 /* Turbo mode is for more than one word */ 1219 if (t->len > ((cs->word_len + 7) >> 3)) 1220 chconf |= OMAP2_MCSPI_CHCONF_TURBO; 1221 } 1222 1223 mcspi_write_chconf0(spi, chconf); 1224 1225 if (t->len) { 1226 unsigned count; 1227 1228 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1229 master->cur_msg_mapped && 1230 master->can_dma(master, spi, t)) 1231 omap2_mcspi_set_fifo(spi, t, 1); 1232 1233 omap2_mcspi_set_enable(spi, 1); 1234 1235 /* RX_ONLY mode needs dummy data in TX reg */ 1236 if (t->tx_buf == NULL) 1237 writel_relaxed(0, cs->base 1238 + OMAP2_MCSPI_TX0); 1239 1240 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1241 master->cur_msg_mapped && 1242 master->can_dma(master, spi, t)) 1243 count = omap2_mcspi_txrx_dma(spi, t); 1244 else 1245 count = omap2_mcspi_txrx_pio(spi, t); 1246 1247 if (count != t->len) { 1248 status = -EIO; 1249 goto out; 1250 } 1251 } 1252 1253 omap2_mcspi_set_enable(spi, 0); 1254 1255 if (mcspi->fifo_depth > 0) 1256 omap2_mcspi_set_fifo(spi, t, 0); 1257 1258 out: 1259 /* Restore defaults if they were overriden */ 1260 if (par_override) { 1261 par_override = 0; 1262 status = omap2_mcspi_setup_transfer(spi, NULL); 1263 } 1264 1265 if (cd && cd->cs_per_word) { 1266 chconf = mcspi->ctx.modulctrl; 1267 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE; 1268 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1269 mcspi->ctx.modulctrl = 1270 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1271 } 1272 1273 omap2_mcspi_set_enable(spi, 0); 1274 1275 if (gpio_is_valid(spi->cs_gpio)) 1276 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH)); 1277 1278 if (mcspi->fifo_depth > 0 && t) 1279 omap2_mcspi_set_fifo(spi, t, 0); 1280 1281 return status; 1282 } 1283 1284 static int omap2_mcspi_prepare_message(struct spi_master *master, 1285 struct spi_message *msg) 1286 { 1287 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1288 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1289 struct omap2_mcspi_cs *cs; 1290 1291 /* Only a single channel can have the FORCE bit enabled 1292 * in its chconf0 register. 1293 * Scan all channels and disable them except the current one. 1294 * A FORCE can remain from a last transfer having cs_change enabled 1295 */ 1296 list_for_each_entry(cs, &ctx->cs, node) { 1297 if (msg->spi->controller_state == cs) 1298 continue; 1299 1300 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) { 1301 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1302 writel_relaxed(cs->chconf0, 1303 cs->base + OMAP2_MCSPI_CHCONF0); 1304 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0); 1305 } 1306 } 1307 1308 return 0; 1309 } 1310 1311 static bool omap2_mcspi_can_dma(struct spi_master *master, 1312 struct spi_device *spi, 1313 struct spi_transfer *xfer) 1314 { 1315 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 1316 struct omap2_mcspi_dma *mcspi_dma = 1317 &mcspi->dma_channels[spi->chip_select]; 1318 1319 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) 1320 return false; 1321 1322 if (spi_controller_is_slave(master)) 1323 return true; 1324 1325 return (xfer->len >= DMA_MIN_BYTES); 1326 } 1327 1328 static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi) 1329 { 1330 struct spi_master *master = mcspi->master; 1331 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1332 int ret = 0; 1333 1334 ret = pm_runtime_get_sync(mcspi->dev); 1335 if (ret < 0) { 1336 pm_runtime_put_noidle(mcspi->dev); 1337 1338 return ret; 1339 } 1340 1341 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, 1342 OMAP2_MCSPI_WAKEUPENABLE_WKEN); 1343 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN; 1344 1345 omap2_mcspi_set_mode(master); 1346 pm_runtime_mark_last_busy(mcspi->dev); 1347 pm_runtime_put_autosuspend(mcspi->dev); 1348 return 0; 1349 } 1350 1351 /* 1352 * When SPI wake up from off-mode, CS is in activate state. If it was in 1353 * inactive state when driver was suspend, then force it to inactive state at 1354 * wake up. 1355 */ 1356 static int omap_mcspi_runtime_resume(struct device *dev) 1357 { 1358 struct spi_master *master = dev_get_drvdata(dev); 1359 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1360 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1361 struct omap2_mcspi_cs *cs; 1362 1363 /* McSPI: context restore */ 1364 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl); 1365 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable); 1366 1367 list_for_each_entry(cs, &ctx->cs, node) { 1368 /* 1369 * We need to toggle CS state for OMAP take this 1370 * change in account. 1371 */ 1372 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) { 1373 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE; 1374 writel_relaxed(cs->chconf0, 1375 cs->base + OMAP2_MCSPI_CHCONF0); 1376 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1377 writel_relaxed(cs->chconf0, 1378 cs->base + OMAP2_MCSPI_CHCONF0); 1379 } else { 1380 writel_relaxed(cs->chconf0, 1381 cs->base + OMAP2_MCSPI_CHCONF0); 1382 } 1383 } 1384 1385 return 0; 1386 } 1387 1388 static struct omap2_mcspi_platform_config omap2_pdata = { 1389 .regs_offset = 0, 1390 }; 1391 1392 static struct omap2_mcspi_platform_config omap4_pdata = { 1393 .regs_offset = OMAP4_MCSPI_REG_OFFSET, 1394 }; 1395 1396 static const struct of_device_id omap_mcspi_of_match[] = { 1397 { 1398 .compatible = "ti,omap2-mcspi", 1399 .data = &omap2_pdata, 1400 }, 1401 { 1402 .compatible = "ti,omap4-mcspi", 1403 .data = &omap4_pdata, 1404 }, 1405 { }, 1406 }; 1407 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match); 1408 1409 static int omap2_mcspi_probe(struct platform_device *pdev) 1410 { 1411 struct spi_master *master; 1412 const struct omap2_mcspi_platform_config *pdata; 1413 struct omap2_mcspi *mcspi; 1414 struct resource *r; 1415 int status = 0, i; 1416 u32 regs_offset = 0; 1417 struct device_node *node = pdev->dev.of_node; 1418 const struct of_device_id *match; 1419 1420 if (of_property_read_bool(node, "spi-slave")) 1421 master = spi_alloc_slave(&pdev->dev, sizeof(*mcspi)); 1422 else 1423 master = spi_alloc_master(&pdev->dev, sizeof(*mcspi)); 1424 if (!master) 1425 return -ENOMEM; 1426 1427 /* the spi->mode bits understood by this driver: */ 1428 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1429 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1430 master->setup = omap2_mcspi_setup; 1431 master->auto_runtime_pm = true; 1432 master->prepare_message = omap2_mcspi_prepare_message; 1433 master->can_dma = omap2_mcspi_can_dma; 1434 master->transfer_one = omap2_mcspi_transfer_one; 1435 master->set_cs = omap2_mcspi_set_cs; 1436 master->cleanup = omap2_mcspi_cleanup; 1437 master->slave_abort = omap2_mcspi_slave_abort; 1438 master->dev.of_node = node; 1439 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ; 1440 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15; 1441 1442 platform_set_drvdata(pdev, master); 1443 1444 mcspi = spi_master_get_devdata(master); 1445 mcspi->master = master; 1446 1447 match = of_match_device(omap_mcspi_of_match, &pdev->dev); 1448 if (match) { 1449 u32 num_cs = 1; /* default number of chipselect */ 1450 pdata = match->data; 1451 1452 of_property_read_u32(node, "ti,spi-num-cs", &num_cs); 1453 master->num_chipselect = num_cs; 1454 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL)) 1455 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN; 1456 } else { 1457 pdata = dev_get_platdata(&pdev->dev); 1458 master->num_chipselect = pdata->num_cs; 1459 mcspi->pin_dir = pdata->pin_dir; 1460 } 1461 regs_offset = pdata->regs_offset; 1462 1463 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1464 mcspi->base = devm_ioremap_resource(&pdev->dev, r); 1465 if (IS_ERR(mcspi->base)) { 1466 status = PTR_ERR(mcspi->base); 1467 goto free_master; 1468 } 1469 mcspi->phys = r->start + regs_offset; 1470 mcspi->base += regs_offset; 1471 1472 mcspi->dev = &pdev->dev; 1473 1474 INIT_LIST_HEAD(&mcspi->ctx.cs); 1475 1476 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect, 1477 sizeof(struct omap2_mcspi_dma), 1478 GFP_KERNEL); 1479 if (mcspi->dma_channels == NULL) { 1480 status = -ENOMEM; 1481 goto free_master; 1482 } 1483 1484 for (i = 0; i < master->num_chipselect; i++) { 1485 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i); 1486 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i); 1487 } 1488 1489 status = platform_get_irq(pdev, 0); 1490 if (status == -EPROBE_DEFER) 1491 goto free_master; 1492 if (status < 0) { 1493 dev_err(&pdev->dev, "no irq resource found\n"); 1494 goto free_master; 1495 } 1496 init_completion(&mcspi->txdone); 1497 status = devm_request_irq(&pdev->dev, status, 1498 omap2_mcspi_irq_handler, 0, pdev->name, 1499 mcspi); 1500 if (status) { 1501 dev_err(&pdev->dev, "Cannot request IRQ"); 1502 goto free_master; 1503 } 1504 1505 pm_runtime_use_autosuspend(&pdev->dev); 1506 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); 1507 pm_runtime_enable(&pdev->dev); 1508 1509 status = omap2_mcspi_controller_setup(mcspi); 1510 if (status < 0) 1511 goto disable_pm; 1512 1513 status = devm_spi_register_controller(&pdev->dev, master); 1514 if (status < 0) 1515 goto disable_pm; 1516 1517 return status; 1518 1519 disable_pm: 1520 pm_runtime_dont_use_autosuspend(&pdev->dev); 1521 pm_runtime_put_sync(&pdev->dev); 1522 pm_runtime_disable(&pdev->dev); 1523 free_master: 1524 spi_master_put(master); 1525 return status; 1526 } 1527 1528 static int omap2_mcspi_remove(struct platform_device *pdev) 1529 { 1530 struct spi_master *master = platform_get_drvdata(pdev); 1531 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1532 1533 pm_runtime_dont_use_autosuspend(mcspi->dev); 1534 pm_runtime_put_sync(mcspi->dev); 1535 pm_runtime_disable(&pdev->dev); 1536 1537 return 0; 1538 } 1539 1540 /* work with hotplug and coldplug */ 1541 MODULE_ALIAS("platform:omap2_mcspi"); 1542 1543 #ifdef CONFIG_SUSPEND 1544 static int omap2_mcspi_suspend_noirq(struct device *dev) 1545 { 1546 return pinctrl_pm_select_sleep_state(dev); 1547 } 1548 1549 static int omap2_mcspi_resume_noirq(struct device *dev) 1550 { 1551 struct spi_master *master = dev_get_drvdata(dev); 1552 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1553 int error; 1554 1555 error = pinctrl_pm_select_default_state(dev); 1556 if (error) 1557 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n", 1558 __func__, error); 1559 1560 return 0; 1561 } 1562 1563 #else 1564 #define omap2_mcspi_suspend_noirq NULL 1565 #define omap2_mcspi_resume_noirq NULL 1566 #endif 1567 1568 static const struct dev_pm_ops omap2_mcspi_pm_ops = { 1569 .suspend_noirq = omap2_mcspi_suspend_noirq, 1570 .resume_noirq = omap2_mcspi_resume_noirq, 1571 .runtime_resume = omap_mcspi_runtime_resume, 1572 }; 1573 1574 static struct platform_driver omap2_mcspi_driver = { 1575 .driver = { 1576 .name = "omap2_mcspi", 1577 .pm = &omap2_mcspi_pm_ops, 1578 .of_match_table = omap_mcspi_of_match, 1579 }, 1580 .probe = omap2_mcspi_probe, 1581 .remove = omap2_mcspi_remove, 1582 }; 1583 1584 module_platform_driver(omap2_mcspi_driver); 1585 MODULE_LICENSE("GPL"); 1586