1 /* 2 * OMAP2 McSPI controller driver 3 * 4 * Copyright (C) 2005, 2006 Nokia Corporation 5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and 6 * Juha Yrj�l� <juha.yrjola@nokia.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/delay.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dmaengine.h> 26 #include <linux/pinctrl/consumer.h> 27 #include <linux/platform_device.h> 28 #include <linux/err.h> 29 #include <linux/clk.h> 30 #include <linux/io.h> 31 #include <linux/slab.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/of.h> 34 #include <linux/of_device.h> 35 #include <linux/gcd.h> 36 37 #include <linux/spi/spi.h> 38 #include <linux/gpio.h> 39 40 #include <linux/platform_data/spi-omap2-mcspi.h> 41 42 #define OMAP2_MCSPI_MAX_FREQ 48000000 43 #define OMAP2_MCSPI_MAX_DIVIDER 4096 44 #define OMAP2_MCSPI_MAX_FIFODEPTH 64 45 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF 46 #define SPI_AUTOSUSPEND_TIMEOUT 2000 47 48 #define OMAP2_MCSPI_REVISION 0x00 49 #define OMAP2_MCSPI_SYSSTATUS 0x14 50 #define OMAP2_MCSPI_IRQSTATUS 0x18 51 #define OMAP2_MCSPI_IRQENABLE 0x1c 52 #define OMAP2_MCSPI_WAKEUPENABLE 0x20 53 #define OMAP2_MCSPI_SYST 0x24 54 #define OMAP2_MCSPI_MODULCTRL 0x28 55 #define OMAP2_MCSPI_XFERLEVEL 0x7c 56 57 /* per-channel banks, 0x14 bytes each, first is: */ 58 #define OMAP2_MCSPI_CHCONF0 0x2c 59 #define OMAP2_MCSPI_CHSTAT0 0x30 60 #define OMAP2_MCSPI_CHCTRL0 0x34 61 #define OMAP2_MCSPI_TX0 0x38 62 #define OMAP2_MCSPI_RX0 0x3c 63 64 /* per-register bitmasks: */ 65 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17) 66 67 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0) 68 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2) 69 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3) 70 71 #define OMAP2_MCSPI_CHCONF_PHA BIT(0) 72 #define OMAP2_MCSPI_CHCONF_POL BIT(1) 73 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) 74 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6) 75 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) 76 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12) 77 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13) 78 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) 79 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14) 80 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15) 81 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16) 82 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17) 83 #define OMAP2_MCSPI_CHCONF_IS BIT(18) 84 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19) 85 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20) 86 #define OMAP2_MCSPI_CHCONF_FFET BIT(27) 87 #define OMAP2_MCSPI_CHCONF_FFER BIT(28) 88 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29) 89 90 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0) 91 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1) 92 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2) 93 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3) 94 95 #define OMAP2_MCSPI_CHCTRL_EN BIT(0) 96 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8) 97 98 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0) 99 100 /* We have 2 DMA channels per CS, one for RX and one for TX */ 101 struct omap2_mcspi_dma { 102 struct dma_chan *dma_tx; 103 struct dma_chan *dma_rx; 104 105 struct completion dma_tx_completion; 106 struct completion dma_rx_completion; 107 108 char dma_rx_ch_name[14]; 109 char dma_tx_ch_name[14]; 110 }; 111 112 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 113 * cache operations; better heuristics consider wordsize and bitrate. 114 */ 115 #define DMA_MIN_BYTES 160 116 117 118 /* 119 * Used for context save and restore, structure members to be updated whenever 120 * corresponding registers are modified. 121 */ 122 struct omap2_mcspi_regs { 123 u32 modulctrl; 124 u32 wakeupenable; 125 struct list_head cs; 126 }; 127 128 struct omap2_mcspi { 129 struct spi_master *master; 130 /* Virtual base address of the controller */ 131 void __iomem *base; 132 unsigned long phys; 133 /* SPI1 has 4 channels, while SPI2 has 2 */ 134 struct omap2_mcspi_dma *dma_channels; 135 struct device *dev; 136 struct omap2_mcspi_regs ctx; 137 int fifo_depth; 138 unsigned int pin_dir:1; 139 }; 140 141 struct omap2_mcspi_cs { 142 void __iomem *base; 143 unsigned long phys; 144 int word_len; 145 u16 mode; 146 struct list_head node; 147 /* Context save and restore shadow register */ 148 u32 chconf0, chctrl0; 149 }; 150 151 static inline void mcspi_write_reg(struct spi_master *master, 152 int idx, u32 val) 153 { 154 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 155 156 writel_relaxed(val, mcspi->base + idx); 157 } 158 159 static inline u32 mcspi_read_reg(struct spi_master *master, int idx) 160 { 161 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 162 163 return readl_relaxed(mcspi->base + idx); 164 } 165 166 static inline void mcspi_write_cs_reg(const struct spi_device *spi, 167 int idx, u32 val) 168 { 169 struct omap2_mcspi_cs *cs = spi->controller_state; 170 171 writel_relaxed(val, cs->base + idx); 172 } 173 174 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) 175 { 176 struct omap2_mcspi_cs *cs = spi->controller_state; 177 178 return readl_relaxed(cs->base + idx); 179 } 180 181 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi) 182 { 183 struct omap2_mcspi_cs *cs = spi->controller_state; 184 185 return cs->chconf0; 186 } 187 188 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val) 189 { 190 struct omap2_mcspi_cs *cs = spi->controller_state; 191 192 cs->chconf0 = val; 193 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val); 194 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); 195 } 196 197 static inline int mcspi_bytes_per_word(int word_len) 198 { 199 if (word_len <= 8) 200 return 1; 201 else if (word_len <= 16) 202 return 2; 203 else /* word_len <= 32 */ 204 return 4; 205 } 206 207 static void omap2_mcspi_set_dma_req(const struct spi_device *spi, 208 int is_read, int enable) 209 { 210 u32 l, rw; 211 212 l = mcspi_cached_chconf0(spi); 213 214 if (is_read) /* 1 is read, 0 write */ 215 rw = OMAP2_MCSPI_CHCONF_DMAR; 216 else 217 rw = OMAP2_MCSPI_CHCONF_DMAW; 218 219 if (enable) 220 l |= rw; 221 else 222 l &= ~rw; 223 224 mcspi_write_chconf0(spi, l); 225 } 226 227 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) 228 { 229 struct omap2_mcspi_cs *cs = spi->controller_state; 230 u32 l; 231 232 l = cs->chctrl0; 233 if (enable) 234 l |= OMAP2_MCSPI_CHCTRL_EN; 235 else 236 l &= ~OMAP2_MCSPI_CHCTRL_EN; 237 cs->chctrl0 = l; 238 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 239 /* Flash post-writes */ 240 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0); 241 } 242 243 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable) 244 { 245 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 246 u32 l; 247 248 /* The controller handles the inverted chip selects 249 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert 250 * the inversion from the core spi_set_cs function. 251 */ 252 if (spi->mode & SPI_CS_HIGH) 253 enable = !enable; 254 255 if (spi->controller_state) { 256 int err = pm_runtime_get_sync(mcspi->dev); 257 if (err < 0) { 258 dev_err(mcspi->dev, "failed to get sync: %d\n", err); 259 return; 260 } 261 262 l = mcspi_cached_chconf0(spi); 263 264 if (enable) 265 l &= ~OMAP2_MCSPI_CHCONF_FORCE; 266 else 267 l |= OMAP2_MCSPI_CHCONF_FORCE; 268 269 mcspi_write_chconf0(spi, l); 270 271 pm_runtime_mark_last_busy(mcspi->dev); 272 pm_runtime_put_autosuspend(mcspi->dev); 273 } 274 } 275 276 static void omap2_mcspi_set_master_mode(struct spi_master *master) 277 { 278 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 279 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 280 u32 l; 281 282 /* 283 * Setup when switching from (reset default) slave mode 284 * to single-channel master mode 285 */ 286 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL); 287 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS); 288 l |= OMAP2_MCSPI_MODULCTRL_SINGLE; 289 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l); 290 291 ctx->modulctrl = l; 292 } 293 294 static void omap2_mcspi_set_fifo(const struct spi_device *spi, 295 struct spi_transfer *t, int enable) 296 { 297 struct spi_master *master = spi->master; 298 struct omap2_mcspi_cs *cs = spi->controller_state; 299 struct omap2_mcspi *mcspi; 300 unsigned int wcnt; 301 int max_fifo_depth, fifo_depth, bytes_per_word; 302 u32 chconf, xferlevel; 303 304 mcspi = spi_master_get_devdata(master); 305 306 chconf = mcspi_cached_chconf0(spi); 307 if (enable) { 308 bytes_per_word = mcspi_bytes_per_word(cs->word_len); 309 if (t->len % bytes_per_word != 0) 310 goto disable_fifo; 311 312 if (t->rx_buf != NULL && t->tx_buf != NULL) 313 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2; 314 else 315 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH; 316 317 fifo_depth = gcd(t->len, max_fifo_depth); 318 if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0) 319 goto disable_fifo; 320 321 wcnt = t->len / bytes_per_word; 322 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT) 323 goto disable_fifo; 324 325 xferlevel = wcnt << 16; 326 if (t->rx_buf != NULL) { 327 chconf |= OMAP2_MCSPI_CHCONF_FFER; 328 xferlevel |= (fifo_depth - 1) << 8; 329 } 330 if (t->tx_buf != NULL) { 331 chconf |= OMAP2_MCSPI_CHCONF_FFET; 332 xferlevel |= fifo_depth - 1; 333 } 334 335 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel); 336 mcspi_write_chconf0(spi, chconf); 337 mcspi->fifo_depth = fifo_depth; 338 339 return; 340 } 341 342 disable_fifo: 343 if (t->rx_buf != NULL) 344 chconf &= ~OMAP2_MCSPI_CHCONF_FFER; 345 346 if (t->tx_buf != NULL) 347 chconf &= ~OMAP2_MCSPI_CHCONF_FFET; 348 349 mcspi_write_chconf0(spi, chconf); 350 mcspi->fifo_depth = 0; 351 } 352 353 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi) 354 { 355 struct spi_master *spi_cntrl = mcspi->master; 356 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 357 struct omap2_mcspi_cs *cs; 358 359 /* McSPI: context restore */ 360 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl); 361 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable); 362 363 list_for_each_entry(cs, &ctx->cs, node) 364 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 365 } 366 367 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit) 368 { 369 unsigned long timeout; 370 371 timeout = jiffies + msecs_to_jiffies(1000); 372 while (!(readl_relaxed(reg) & bit)) { 373 if (time_after(jiffies, timeout)) { 374 if (!(readl_relaxed(reg) & bit)) 375 return -ETIMEDOUT; 376 else 377 return 0; 378 } 379 cpu_relax(); 380 } 381 return 0; 382 } 383 384 static void omap2_mcspi_rx_callback(void *data) 385 { 386 struct spi_device *spi = data; 387 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 388 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 389 390 /* We must disable the DMA RX request */ 391 omap2_mcspi_set_dma_req(spi, 1, 0); 392 393 complete(&mcspi_dma->dma_rx_completion); 394 } 395 396 static void omap2_mcspi_tx_callback(void *data) 397 { 398 struct spi_device *spi = data; 399 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 400 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 401 402 /* We must disable the DMA TX request */ 403 omap2_mcspi_set_dma_req(spi, 0, 0); 404 405 complete(&mcspi_dma->dma_tx_completion); 406 } 407 408 static void omap2_mcspi_tx_dma(struct spi_device *spi, 409 struct spi_transfer *xfer, 410 struct dma_slave_config cfg) 411 { 412 struct omap2_mcspi *mcspi; 413 struct omap2_mcspi_dma *mcspi_dma; 414 unsigned int count; 415 416 mcspi = spi_master_get_devdata(spi->master); 417 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 418 count = xfer->len; 419 420 if (mcspi_dma->dma_tx) { 421 struct dma_async_tx_descriptor *tx; 422 423 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg); 424 425 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl, 426 xfer->tx_sg.nents, 427 DMA_MEM_TO_DEV, 428 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 429 if (tx) { 430 tx->callback = omap2_mcspi_tx_callback; 431 tx->callback_param = spi; 432 dmaengine_submit(tx); 433 } else { 434 /* FIXME: fall back to PIO? */ 435 } 436 } 437 dma_async_issue_pending(mcspi_dma->dma_tx); 438 omap2_mcspi_set_dma_req(spi, 0, 1); 439 440 } 441 442 static unsigned 443 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer, 444 struct dma_slave_config cfg, 445 unsigned es) 446 { 447 struct omap2_mcspi *mcspi; 448 struct omap2_mcspi_dma *mcspi_dma; 449 unsigned int count, transfer_reduction = 0; 450 struct scatterlist *sg_out[2]; 451 int nb_sizes = 0, out_mapped_nents[2], ret, x; 452 size_t sizes[2]; 453 u32 l; 454 int elements = 0; 455 int word_len, element_count; 456 struct omap2_mcspi_cs *cs = spi->controller_state; 457 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; 458 459 mcspi = spi_master_get_devdata(spi->master); 460 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 461 count = xfer->len; 462 463 /* 464 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM 465 * it mentions reducing DMA transfer length by one element in master 466 * normal mode. 467 */ 468 if (mcspi->fifo_depth == 0) 469 transfer_reduction = es; 470 471 word_len = cs->word_len; 472 l = mcspi_cached_chconf0(spi); 473 474 if (word_len <= 8) 475 element_count = count; 476 else if (word_len <= 16) 477 element_count = count >> 1; 478 else /* word_len <= 32 */ 479 element_count = count >> 2; 480 481 if (mcspi_dma->dma_rx) { 482 struct dma_async_tx_descriptor *tx; 483 484 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg); 485 486 /* 487 * Reduce DMA transfer length by one more if McSPI is 488 * configured in turbo mode. 489 */ 490 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0) 491 transfer_reduction += es; 492 493 if (transfer_reduction) { 494 /* Split sgl into two. The second sgl won't be used. */ 495 sizes[0] = count - transfer_reduction; 496 sizes[1] = transfer_reduction; 497 nb_sizes = 2; 498 } else { 499 /* 500 * Don't bother splitting the sgl. This essentially 501 * clones the original sgl. 502 */ 503 sizes[0] = count; 504 nb_sizes = 1; 505 } 506 507 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 508 0, nb_sizes, 509 sizes, 510 sg_out, out_mapped_nents, 511 GFP_KERNEL); 512 513 if (ret < 0) { 514 dev_err(&spi->dev, "sg_split failed\n"); 515 return 0; 516 } 517 518 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, 519 sg_out[0], 520 out_mapped_nents[0], 521 DMA_DEV_TO_MEM, 522 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 523 if (tx) { 524 tx->callback = omap2_mcspi_rx_callback; 525 tx->callback_param = spi; 526 dmaengine_submit(tx); 527 } else { 528 /* FIXME: fall back to PIO? */ 529 } 530 } 531 532 dma_async_issue_pending(mcspi_dma->dma_rx); 533 omap2_mcspi_set_dma_req(spi, 1, 1); 534 535 wait_for_completion(&mcspi_dma->dma_rx_completion); 536 537 for (x = 0; x < nb_sizes; x++) 538 kfree(sg_out[x]); 539 540 if (mcspi->fifo_depth > 0) 541 return count; 542 543 /* 544 * Due to the DMA transfer length reduction the missing bytes must 545 * be read manually to receive all of the expected data. 546 */ 547 omap2_mcspi_set_enable(spi, 0); 548 549 elements = element_count - 1; 550 551 if (l & OMAP2_MCSPI_CHCONF_TURBO) { 552 elements--; 553 554 if (!mcspi_wait_for_reg_bit(chstat_reg, 555 OMAP2_MCSPI_CHSTAT_RXS)) { 556 u32 w; 557 558 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 559 if (word_len <= 8) 560 ((u8 *)xfer->rx_buf)[elements++] = w; 561 else if (word_len <= 16) 562 ((u16 *)xfer->rx_buf)[elements++] = w; 563 else /* word_len <= 32 */ 564 ((u32 *)xfer->rx_buf)[elements++] = w; 565 } else { 566 int bytes_per_word = mcspi_bytes_per_word(word_len); 567 dev_err(&spi->dev, "DMA RX penultimate word empty\n"); 568 count -= (bytes_per_word << 1); 569 omap2_mcspi_set_enable(spi, 1); 570 return count; 571 } 572 } 573 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) { 574 u32 w; 575 576 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 577 if (word_len <= 8) 578 ((u8 *)xfer->rx_buf)[elements] = w; 579 else if (word_len <= 16) 580 ((u16 *)xfer->rx_buf)[elements] = w; 581 else /* word_len <= 32 */ 582 ((u32 *)xfer->rx_buf)[elements] = w; 583 } else { 584 dev_err(&spi->dev, "DMA RX last word empty\n"); 585 count -= mcspi_bytes_per_word(word_len); 586 } 587 omap2_mcspi_set_enable(spi, 1); 588 return count; 589 } 590 591 static unsigned 592 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) 593 { 594 struct omap2_mcspi *mcspi; 595 struct omap2_mcspi_cs *cs = spi->controller_state; 596 struct omap2_mcspi_dma *mcspi_dma; 597 unsigned int count; 598 u32 l; 599 u8 *rx; 600 const u8 *tx; 601 struct dma_slave_config cfg; 602 enum dma_slave_buswidth width; 603 unsigned es; 604 u32 burst; 605 void __iomem *chstat_reg; 606 void __iomem *irqstat_reg; 607 int wait_res; 608 609 mcspi = spi_master_get_devdata(spi->master); 610 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 611 l = mcspi_cached_chconf0(spi); 612 613 614 if (cs->word_len <= 8) { 615 width = DMA_SLAVE_BUSWIDTH_1_BYTE; 616 es = 1; 617 } else if (cs->word_len <= 16) { 618 width = DMA_SLAVE_BUSWIDTH_2_BYTES; 619 es = 2; 620 } else { 621 width = DMA_SLAVE_BUSWIDTH_4_BYTES; 622 es = 4; 623 } 624 625 count = xfer->len; 626 burst = 1; 627 628 if (mcspi->fifo_depth > 0) { 629 if (count > mcspi->fifo_depth) 630 burst = mcspi->fifo_depth / es; 631 else 632 burst = count / es; 633 } 634 635 memset(&cfg, 0, sizeof(cfg)); 636 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0; 637 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0; 638 cfg.src_addr_width = width; 639 cfg.dst_addr_width = width; 640 cfg.src_maxburst = burst; 641 cfg.dst_maxburst = burst; 642 643 rx = xfer->rx_buf; 644 tx = xfer->tx_buf; 645 646 if (tx != NULL) 647 omap2_mcspi_tx_dma(spi, xfer, cfg); 648 649 if (rx != NULL) 650 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es); 651 652 if (tx != NULL) { 653 wait_for_completion(&mcspi_dma->dma_tx_completion); 654 655 if (mcspi->fifo_depth > 0) { 656 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS; 657 658 if (mcspi_wait_for_reg_bit(irqstat_reg, 659 OMAP2_MCSPI_IRQSTATUS_EOW) < 0) 660 dev_err(&spi->dev, "EOW timed out\n"); 661 662 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS, 663 OMAP2_MCSPI_IRQSTATUS_EOW); 664 } 665 666 /* for TX_ONLY mode, be sure all words have shifted out */ 667 if (rx == NULL) { 668 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; 669 if (mcspi->fifo_depth > 0) { 670 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 671 OMAP2_MCSPI_CHSTAT_TXFFE); 672 if (wait_res < 0) 673 dev_err(&spi->dev, "TXFFE timed out\n"); 674 } else { 675 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 676 OMAP2_MCSPI_CHSTAT_TXS); 677 if (wait_res < 0) 678 dev_err(&spi->dev, "TXS timed out\n"); 679 } 680 if (wait_res >= 0 && 681 (mcspi_wait_for_reg_bit(chstat_reg, 682 OMAP2_MCSPI_CHSTAT_EOT) < 0)) 683 dev_err(&spi->dev, "EOT timed out\n"); 684 } 685 } 686 return count; 687 } 688 689 static unsigned 690 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) 691 { 692 struct omap2_mcspi *mcspi; 693 struct omap2_mcspi_cs *cs = spi->controller_state; 694 unsigned int count, c; 695 u32 l; 696 void __iomem *base = cs->base; 697 void __iomem *tx_reg; 698 void __iomem *rx_reg; 699 void __iomem *chstat_reg; 700 int word_len; 701 702 mcspi = spi_master_get_devdata(spi->master); 703 count = xfer->len; 704 c = count; 705 word_len = cs->word_len; 706 707 l = mcspi_cached_chconf0(spi); 708 709 /* We store the pre-calculated register addresses on stack to speed 710 * up the transfer loop. */ 711 tx_reg = base + OMAP2_MCSPI_TX0; 712 rx_reg = base + OMAP2_MCSPI_RX0; 713 chstat_reg = base + OMAP2_MCSPI_CHSTAT0; 714 715 if (c < (word_len>>3)) 716 return 0; 717 718 if (word_len <= 8) { 719 u8 *rx; 720 const u8 *tx; 721 722 rx = xfer->rx_buf; 723 tx = xfer->tx_buf; 724 725 do { 726 c -= 1; 727 if (tx != NULL) { 728 if (mcspi_wait_for_reg_bit(chstat_reg, 729 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 730 dev_err(&spi->dev, "TXS timed out\n"); 731 goto out; 732 } 733 dev_vdbg(&spi->dev, "write-%d %02x\n", 734 word_len, *tx); 735 writel_relaxed(*tx++, tx_reg); 736 } 737 if (rx != NULL) { 738 if (mcspi_wait_for_reg_bit(chstat_reg, 739 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 740 dev_err(&spi->dev, "RXS timed out\n"); 741 goto out; 742 } 743 744 if (c == 1 && tx == NULL && 745 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 746 omap2_mcspi_set_enable(spi, 0); 747 *rx++ = readl_relaxed(rx_reg); 748 dev_vdbg(&spi->dev, "read-%d %02x\n", 749 word_len, *(rx - 1)); 750 if (mcspi_wait_for_reg_bit(chstat_reg, 751 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 752 dev_err(&spi->dev, 753 "RXS timed out\n"); 754 goto out; 755 } 756 c = 0; 757 } else if (c == 0 && tx == NULL) { 758 omap2_mcspi_set_enable(spi, 0); 759 } 760 761 *rx++ = readl_relaxed(rx_reg); 762 dev_vdbg(&spi->dev, "read-%d %02x\n", 763 word_len, *(rx - 1)); 764 } 765 } while (c); 766 } else if (word_len <= 16) { 767 u16 *rx; 768 const u16 *tx; 769 770 rx = xfer->rx_buf; 771 tx = xfer->tx_buf; 772 do { 773 c -= 2; 774 if (tx != NULL) { 775 if (mcspi_wait_for_reg_bit(chstat_reg, 776 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 777 dev_err(&spi->dev, "TXS timed out\n"); 778 goto out; 779 } 780 dev_vdbg(&spi->dev, "write-%d %04x\n", 781 word_len, *tx); 782 writel_relaxed(*tx++, tx_reg); 783 } 784 if (rx != NULL) { 785 if (mcspi_wait_for_reg_bit(chstat_reg, 786 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 787 dev_err(&spi->dev, "RXS timed out\n"); 788 goto out; 789 } 790 791 if (c == 2 && tx == NULL && 792 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 793 omap2_mcspi_set_enable(spi, 0); 794 *rx++ = readl_relaxed(rx_reg); 795 dev_vdbg(&spi->dev, "read-%d %04x\n", 796 word_len, *(rx - 1)); 797 if (mcspi_wait_for_reg_bit(chstat_reg, 798 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 799 dev_err(&spi->dev, 800 "RXS timed out\n"); 801 goto out; 802 } 803 c = 0; 804 } else if (c == 0 && tx == NULL) { 805 omap2_mcspi_set_enable(spi, 0); 806 } 807 808 *rx++ = readl_relaxed(rx_reg); 809 dev_vdbg(&spi->dev, "read-%d %04x\n", 810 word_len, *(rx - 1)); 811 } 812 } while (c >= 2); 813 } else if (word_len <= 32) { 814 u32 *rx; 815 const u32 *tx; 816 817 rx = xfer->rx_buf; 818 tx = xfer->tx_buf; 819 do { 820 c -= 4; 821 if (tx != NULL) { 822 if (mcspi_wait_for_reg_bit(chstat_reg, 823 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 824 dev_err(&spi->dev, "TXS timed out\n"); 825 goto out; 826 } 827 dev_vdbg(&spi->dev, "write-%d %08x\n", 828 word_len, *tx); 829 writel_relaxed(*tx++, tx_reg); 830 } 831 if (rx != NULL) { 832 if (mcspi_wait_for_reg_bit(chstat_reg, 833 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 834 dev_err(&spi->dev, "RXS timed out\n"); 835 goto out; 836 } 837 838 if (c == 4 && tx == NULL && 839 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 840 omap2_mcspi_set_enable(spi, 0); 841 *rx++ = readl_relaxed(rx_reg); 842 dev_vdbg(&spi->dev, "read-%d %08x\n", 843 word_len, *(rx - 1)); 844 if (mcspi_wait_for_reg_bit(chstat_reg, 845 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 846 dev_err(&spi->dev, 847 "RXS timed out\n"); 848 goto out; 849 } 850 c = 0; 851 } else if (c == 0 && tx == NULL) { 852 omap2_mcspi_set_enable(spi, 0); 853 } 854 855 *rx++ = readl_relaxed(rx_reg); 856 dev_vdbg(&spi->dev, "read-%d %08x\n", 857 word_len, *(rx - 1)); 858 } 859 } while (c >= 4); 860 } 861 862 /* for TX_ONLY mode, be sure all words have shifted out */ 863 if (xfer->rx_buf == NULL) { 864 if (mcspi_wait_for_reg_bit(chstat_reg, 865 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 866 dev_err(&spi->dev, "TXS timed out\n"); 867 } else if (mcspi_wait_for_reg_bit(chstat_reg, 868 OMAP2_MCSPI_CHSTAT_EOT) < 0) 869 dev_err(&spi->dev, "EOT timed out\n"); 870 871 /* disable chan to purge rx datas received in TX_ONLY transfer, 872 * otherwise these rx datas will affect the direct following 873 * RX_ONLY transfer. 874 */ 875 omap2_mcspi_set_enable(spi, 0); 876 } 877 out: 878 omap2_mcspi_set_enable(spi, 1); 879 return count - c; 880 } 881 882 static u32 omap2_mcspi_calc_divisor(u32 speed_hz) 883 { 884 u32 div; 885 886 for (div = 0; div < 15; div++) 887 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div)) 888 return div; 889 890 return 15; 891 } 892 893 /* called only when no transfer is active to this device */ 894 static int omap2_mcspi_setup_transfer(struct spi_device *spi, 895 struct spi_transfer *t) 896 { 897 struct omap2_mcspi_cs *cs = spi->controller_state; 898 struct omap2_mcspi *mcspi; 899 struct spi_master *spi_cntrl; 900 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0; 901 u8 word_len = spi->bits_per_word; 902 u32 speed_hz = spi->max_speed_hz; 903 904 mcspi = spi_master_get_devdata(spi->master); 905 spi_cntrl = mcspi->master; 906 907 if (t != NULL && t->bits_per_word) 908 word_len = t->bits_per_word; 909 910 cs->word_len = word_len; 911 912 if (t && t->speed_hz) 913 speed_hz = t->speed_hz; 914 915 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ); 916 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) { 917 clkd = omap2_mcspi_calc_divisor(speed_hz); 918 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd; 919 clkg = 0; 920 } else { 921 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz; 922 speed_hz = OMAP2_MCSPI_MAX_FREQ / div; 923 clkd = (div - 1) & 0xf; 924 extclk = (div - 1) >> 4; 925 clkg = OMAP2_MCSPI_CHCONF_CLKG; 926 } 927 928 l = mcspi_cached_chconf0(spi); 929 930 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS 931 * REVISIT: this controller could support SPI_3WIRE mode. 932 */ 933 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) { 934 l &= ~OMAP2_MCSPI_CHCONF_IS; 935 l &= ~OMAP2_MCSPI_CHCONF_DPE1; 936 l |= OMAP2_MCSPI_CHCONF_DPE0; 937 } else { 938 l |= OMAP2_MCSPI_CHCONF_IS; 939 l |= OMAP2_MCSPI_CHCONF_DPE1; 940 l &= ~OMAP2_MCSPI_CHCONF_DPE0; 941 } 942 943 /* wordlength */ 944 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; 945 l |= (word_len - 1) << 7; 946 947 /* set chipselect polarity; manage with FORCE */ 948 if (!(spi->mode & SPI_CS_HIGH)) 949 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */ 950 else 951 l &= ~OMAP2_MCSPI_CHCONF_EPOL; 952 953 /* set clock divisor */ 954 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; 955 l |= clkd << 2; 956 957 /* set clock granularity */ 958 l &= ~OMAP2_MCSPI_CHCONF_CLKG; 959 l |= clkg; 960 if (clkg) { 961 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK; 962 cs->chctrl0 |= extclk << 8; 963 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 964 } 965 966 /* set SPI mode 0..3 */ 967 if (spi->mode & SPI_CPOL) 968 l |= OMAP2_MCSPI_CHCONF_POL; 969 else 970 l &= ~OMAP2_MCSPI_CHCONF_POL; 971 if (spi->mode & SPI_CPHA) 972 l |= OMAP2_MCSPI_CHCONF_PHA; 973 else 974 l &= ~OMAP2_MCSPI_CHCONF_PHA; 975 976 mcspi_write_chconf0(spi, l); 977 978 cs->mode = spi->mode; 979 980 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n", 981 speed_hz, 982 (spi->mode & SPI_CPHA) ? "trailing" : "leading", 983 (spi->mode & SPI_CPOL) ? "inverted" : "normal"); 984 985 return 0; 986 } 987 988 /* 989 * Note that we currently allow DMA only if we get a channel 990 * for both rx and tx. Otherwise we'll do PIO for both rx and tx. 991 */ 992 static int omap2_mcspi_request_dma(struct spi_device *spi) 993 { 994 struct spi_master *master = spi->master; 995 struct omap2_mcspi *mcspi; 996 struct omap2_mcspi_dma *mcspi_dma; 997 int ret = 0; 998 999 mcspi = spi_master_get_devdata(master); 1000 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1001 1002 init_completion(&mcspi_dma->dma_rx_completion); 1003 init_completion(&mcspi_dma->dma_tx_completion); 1004 1005 mcspi_dma->dma_rx = dma_request_chan(&master->dev, 1006 mcspi_dma->dma_rx_ch_name); 1007 if (IS_ERR(mcspi_dma->dma_rx)) { 1008 ret = PTR_ERR(mcspi_dma->dma_rx); 1009 mcspi_dma->dma_rx = NULL; 1010 goto no_dma; 1011 } 1012 1013 mcspi_dma->dma_tx = dma_request_chan(&master->dev, 1014 mcspi_dma->dma_tx_ch_name); 1015 if (IS_ERR(mcspi_dma->dma_tx)) { 1016 ret = PTR_ERR(mcspi_dma->dma_tx); 1017 mcspi_dma->dma_tx = NULL; 1018 dma_release_channel(mcspi_dma->dma_rx); 1019 mcspi_dma->dma_rx = NULL; 1020 } 1021 1022 no_dma: 1023 return ret; 1024 } 1025 1026 static int omap2_mcspi_setup(struct spi_device *spi) 1027 { 1028 int ret; 1029 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 1030 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1031 struct omap2_mcspi_dma *mcspi_dma; 1032 struct omap2_mcspi_cs *cs = spi->controller_state; 1033 1034 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 1035 1036 if (!cs) { 1037 cs = kzalloc(sizeof *cs, GFP_KERNEL); 1038 if (!cs) 1039 return -ENOMEM; 1040 cs->base = mcspi->base + spi->chip_select * 0x14; 1041 cs->phys = mcspi->phys + spi->chip_select * 0x14; 1042 cs->mode = 0; 1043 cs->chconf0 = 0; 1044 cs->chctrl0 = 0; 1045 spi->controller_state = cs; 1046 /* Link this to context save list */ 1047 list_add_tail(&cs->node, &ctx->cs); 1048 1049 if (gpio_is_valid(spi->cs_gpio)) { 1050 ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev)); 1051 if (ret) { 1052 dev_err(&spi->dev, "failed to request gpio\n"); 1053 return ret; 1054 } 1055 gpio_direction_output(spi->cs_gpio, 1056 !(spi->mode & SPI_CS_HIGH)); 1057 } 1058 } 1059 1060 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) { 1061 ret = omap2_mcspi_request_dma(spi); 1062 if (ret) 1063 dev_warn(&spi->dev, "not using DMA for McSPI (%d)\n", 1064 ret); 1065 } 1066 1067 ret = pm_runtime_get_sync(mcspi->dev); 1068 if (ret < 0) 1069 return ret; 1070 1071 ret = omap2_mcspi_setup_transfer(spi, NULL); 1072 pm_runtime_mark_last_busy(mcspi->dev); 1073 pm_runtime_put_autosuspend(mcspi->dev); 1074 1075 return ret; 1076 } 1077 1078 static void omap2_mcspi_cleanup(struct spi_device *spi) 1079 { 1080 struct omap2_mcspi *mcspi; 1081 struct omap2_mcspi_dma *mcspi_dma; 1082 struct omap2_mcspi_cs *cs; 1083 1084 mcspi = spi_master_get_devdata(spi->master); 1085 1086 if (spi->controller_state) { 1087 /* Unlink controller state from context save list */ 1088 cs = spi->controller_state; 1089 list_del(&cs->node); 1090 1091 kfree(cs); 1092 } 1093 1094 if (spi->chip_select < spi->master->num_chipselect) { 1095 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 1096 1097 if (mcspi_dma->dma_rx) { 1098 dma_release_channel(mcspi_dma->dma_rx); 1099 mcspi_dma->dma_rx = NULL; 1100 } 1101 if (mcspi_dma->dma_tx) { 1102 dma_release_channel(mcspi_dma->dma_tx); 1103 mcspi_dma->dma_tx = NULL; 1104 } 1105 } 1106 1107 if (gpio_is_valid(spi->cs_gpio)) 1108 gpio_free(spi->cs_gpio); 1109 } 1110 1111 static int omap2_mcspi_transfer_one(struct spi_master *master, 1112 struct spi_device *spi, 1113 struct spi_transfer *t) 1114 { 1115 1116 /* We only enable one channel at a time -- the one whose message is 1117 * -- although this controller would gladly 1118 * arbitrate among multiple channels. This corresponds to "single 1119 * channel" master mode. As a side effect, we need to manage the 1120 * chipselect with the FORCE bit ... CS != channel enable. 1121 */ 1122 1123 struct omap2_mcspi *mcspi; 1124 struct omap2_mcspi_dma *mcspi_dma; 1125 struct omap2_mcspi_cs *cs; 1126 struct omap2_mcspi_device_config *cd; 1127 int par_override = 0; 1128 int status = 0; 1129 u32 chconf; 1130 1131 mcspi = spi_master_get_devdata(master); 1132 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1133 cs = spi->controller_state; 1134 cd = spi->controller_data; 1135 1136 /* 1137 * The slave driver could have changed spi->mode in which case 1138 * it will be different from cs->mode (the current hardware setup). 1139 * If so, set par_override (even though its not a parity issue) so 1140 * omap2_mcspi_setup_transfer will be called to configure the hardware 1141 * with the correct mode on the first iteration of the loop below. 1142 */ 1143 if (spi->mode != cs->mode) 1144 par_override = 1; 1145 1146 omap2_mcspi_set_enable(spi, 0); 1147 1148 if (gpio_is_valid(spi->cs_gpio)) 1149 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH); 1150 1151 if (par_override || 1152 (t->speed_hz != spi->max_speed_hz) || 1153 (t->bits_per_word != spi->bits_per_word)) { 1154 par_override = 1; 1155 status = omap2_mcspi_setup_transfer(spi, t); 1156 if (status < 0) 1157 goto out; 1158 if (t->speed_hz == spi->max_speed_hz && 1159 t->bits_per_word == spi->bits_per_word) 1160 par_override = 0; 1161 } 1162 if (cd && cd->cs_per_word) { 1163 chconf = mcspi->ctx.modulctrl; 1164 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE; 1165 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1166 mcspi->ctx.modulctrl = 1167 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1168 } 1169 1170 chconf = mcspi_cached_chconf0(spi); 1171 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; 1172 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO; 1173 1174 if (t->tx_buf == NULL) 1175 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; 1176 else if (t->rx_buf == NULL) 1177 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; 1178 1179 if (cd && cd->turbo_mode && t->tx_buf == NULL) { 1180 /* Turbo mode is for more than one word */ 1181 if (t->len > ((cs->word_len + 7) >> 3)) 1182 chconf |= OMAP2_MCSPI_CHCONF_TURBO; 1183 } 1184 1185 mcspi_write_chconf0(spi, chconf); 1186 1187 if (t->len) { 1188 unsigned count; 1189 1190 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1191 master->cur_msg_mapped && 1192 master->can_dma(master, spi, t)) 1193 omap2_mcspi_set_fifo(spi, t, 1); 1194 1195 omap2_mcspi_set_enable(spi, 1); 1196 1197 /* RX_ONLY mode needs dummy data in TX reg */ 1198 if (t->tx_buf == NULL) 1199 writel_relaxed(0, cs->base 1200 + OMAP2_MCSPI_TX0); 1201 1202 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1203 master->cur_msg_mapped && 1204 master->can_dma(master, spi, t)) 1205 count = omap2_mcspi_txrx_dma(spi, t); 1206 else 1207 count = omap2_mcspi_txrx_pio(spi, t); 1208 1209 if (count != t->len) { 1210 status = -EIO; 1211 goto out; 1212 } 1213 } 1214 1215 omap2_mcspi_set_enable(spi, 0); 1216 1217 if (mcspi->fifo_depth > 0) 1218 omap2_mcspi_set_fifo(spi, t, 0); 1219 1220 out: 1221 /* Restore defaults if they were overriden */ 1222 if (par_override) { 1223 par_override = 0; 1224 status = omap2_mcspi_setup_transfer(spi, NULL); 1225 } 1226 1227 if (cd && cd->cs_per_word) { 1228 chconf = mcspi->ctx.modulctrl; 1229 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE; 1230 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1231 mcspi->ctx.modulctrl = 1232 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1233 } 1234 1235 omap2_mcspi_set_enable(spi, 0); 1236 1237 if (gpio_is_valid(spi->cs_gpio)) 1238 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH)); 1239 1240 if (mcspi->fifo_depth > 0 && t) 1241 omap2_mcspi_set_fifo(spi, t, 0); 1242 1243 return status; 1244 } 1245 1246 static int omap2_mcspi_prepare_message(struct spi_master *master, 1247 struct spi_message *msg) 1248 { 1249 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1250 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1251 struct omap2_mcspi_cs *cs; 1252 1253 /* Only a single channel can have the FORCE bit enabled 1254 * in its chconf0 register. 1255 * Scan all channels and disable them except the current one. 1256 * A FORCE can remain from a last transfer having cs_change enabled 1257 */ 1258 list_for_each_entry(cs, &ctx->cs, node) { 1259 if (msg->spi->controller_state == cs) 1260 continue; 1261 1262 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) { 1263 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1264 writel_relaxed(cs->chconf0, 1265 cs->base + OMAP2_MCSPI_CHCONF0); 1266 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0); 1267 } 1268 } 1269 1270 return 0; 1271 } 1272 1273 static bool omap2_mcspi_can_dma(struct spi_master *master, 1274 struct spi_device *spi, 1275 struct spi_transfer *xfer) 1276 { 1277 return (xfer->len >= DMA_MIN_BYTES); 1278 } 1279 1280 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi) 1281 { 1282 struct spi_master *master = mcspi->master; 1283 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1284 int ret = 0; 1285 1286 ret = pm_runtime_get_sync(mcspi->dev); 1287 if (ret < 0) 1288 return ret; 1289 1290 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, 1291 OMAP2_MCSPI_WAKEUPENABLE_WKEN); 1292 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN; 1293 1294 omap2_mcspi_set_master_mode(master); 1295 pm_runtime_mark_last_busy(mcspi->dev); 1296 pm_runtime_put_autosuspend(mcspi->dev); 1297 return 0; 1298 } 1299 1300 static int omap_mcspi_runtime_resume(struct device *dev) 1301 { 1302 struct omap2_mcspi *mcspi; 1303 struct spi_master *master; 1304 1305 master = dev_get_drvdata(dev); 1306 mcspi = spi_master_get_devdata(master); 1307 omap2_mcspi_restore_ctx(mcspi); 1308 1309 return 0; 1310 } 1311 1312 static struct omap2_mcspi_platform_config omap2_pdata = { 1313 .regs_offset = 0, 1314 }; 1315 1316 static struct omap2_mcspi_platform_config omap4_pdata = { 1317 .regs_offset = OMAP4_MCSPI_REG_OFFSET, 1318 }; 1319 1320 static const struct of_device_id omap_mcspi_of_match[] = { 1321 { 1322 .compatible = "ti,omap2-mcspi", 1323 .data = &omap2_pdata, 1324 }, 1325 { 1326 .compatible = "ti,omap4-mcspi", 1327 .data = &omap4_pdata, 1328 }, 1329 { }, 1330 }; 1331 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match); 1332 1333 static int omap2_mcspi_probe(struct platform_device *pdev) 1334 { 1335 struct spi_master *master; 1336 const struct omap2_mcspi_platform_config *pdata; 1337 struct omap2_mcspi *mcspi; 1338 struct resource *r; 1339 int status = 0, i; 1340 u32 regs_offset = 0; 1341 struct device_node *node = pdev->dev.of_node; 1342 const struct of_device_id *match; 1343 1344 master = spi_alloc_master(&pdev->dev, sizeof *mcspi); 1345 if (master == NULL) { 1346 dev_dbg(&pdev->dev, "master allocation failed\n"); 1347 return -ENOMEM; 1348 } 1349 1350 /* the spi->mode bits understood by this driver: */ 1351 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1352 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1353 master->setup = omap2_mcspi_setup; 1354 master->auto_runtime_pm = true; 1355 master->prepare_message = omap2_mcspi_prepare_message; 1356 master->can_dma = omap2_mcspi_can_dma; 1357 master->transfer_one = omap2_mcspi_transfer_one; 1358 master->set_cs = omap2_mcspi_set_cs; 1359 master->cleanup = omap2_mcspi_cleanup; 1360 master->dev.of_node = node; 1361 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ; 1362 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15; 1363 1364 platform_set_drvdata(pdev, master); 1365 1366 mcspi = spi_master_get_devdata(master); 1367 mcspi->master = master; 1368 1369 match = of_match_device(omap_mcspi_of_match, &pdev->dev); 1370 if (match) { 1371 u32 num_cs = 1; /* default number of chipselect */ 1372 pdata = match->data; 1373 1374 of_property_read_u32(node, "ti,spi-num-cs", &num_cs); 1375 master->num_chipselect = num_cs; 1376 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL)) 1377 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN; 1378 } else { 1379 pdata = dev_get_platdata(&pdev->dev); 1380 master->num_chipselect = pdata->num_cs; 1381 mcspi->pin_dir = pdata->pin_dir; 1382 } 1383 regs_offset = pdata->regs_offset; 1384 1385 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1386 mcspi->base = devm_ioremap_resource(&pdev->dev, r); 1387 if (IS_ERR(mcspi->base)) { 1388 status = PTR_ERR(mcspi->base); 1389 goto free_master; 1390 } 1391 mcspi->phys = r->start + regs_offset; 1392 mcspi->base += regs_offset; 1393 1394 mcspi->dev = &pdev->dev; 1395 1396 INIT_LIST_HEAD(&mcspi->ctx.cs); 1397 1398 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect, 1399 sizeof(struct omap2_mcspi_dma), 1400 GFP_KERNEL); 1401 if (mcspi->dma_channels == NULL) { 1402 status = -ENOMEM; 1403 goto free_master; 1404 } 1405 1406 for (i = 0; i < master->num_chipselect; i++) { 1407 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i); 1408 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i); 1409 } 1410 1411 pm_runtime_use_autosuspend(&pdev->dev); 1412 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); 1413 pm_runtime_enable(&pdev->dev); 1414 1415 status = omap2_mcspi_master_setup(mcspi); 1416 if (status < 0) 1417 goto disable_pm; 1418 1419 status = devm_spi_register_master(&pdev->dev, master); 1420 if (status < 0) 1421 goto disable_pm; 1422 1423 return status; 1424 1425 disable_pm: 1426 pm_runtime_dont_use_autosuspend(&pdev->dev); 1427 pm_runtime_put_sync(&pdev->dev); 1428 pm_runtime_disable(&pdev->dev); 1429 free_master: 1430 spi_master_put(master); 1431 return status; 1432 } 1433 1434 static int omap2_mcspi_remove(struct platform_device *pdev) 1435 { 1436 struct spi_master *master = platform_get_drvdata(pdev); 1437 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1438 1439 pm_runtime_dont_use_autosuspend(mcspi->dev); 1440 pm_runtime_put_sync(mcspi->dev); 1441 pm_runtime_disable(&pdev->dev); 1442 1443 return 0; 1444 } 1445 1446 /* work with hotplug and coldplug */ 1447 MODULE_ALIAS("platform:omap2_mcspi"); 1448 1449 #ifdef CONFIG_SUSPEND 1450 /* 1451 * When SPI wake up from off-mode, CS is in activate state. If it was in 1452 * unactive state when driver was suspend, then force it to unactive state at 1453 * wake up. 1454 */ 1455 static int omap2_mcspi_resume(struct device *dev) 1456 { 1457 struct spi_master *master = dev_get_drvdata(dev); 1458 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1459 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1460 struct omap2_mcspi_cs *cs; 1461 1462 pm_runtime_get_sync(mcspi->dev); 1463 list_for_each_entry(cs, &ctx->cs, node) { 1464 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) { 1465 /* 1466 * We need to toggle CS state for OMAP take this 1467 * change in account. 1468 */ 1469 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE; 1470 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 1471 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1472 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 1473 } 1474 } 1475 pm_runtime_mark_last_busy(mcspi->dev); 1476 pm_runtime_put_autosuspend(mcspi->dev); 1477 1478 return pinctrl_pm_select_default_state(dev); 1479 } 1480 1481 static int omap2_mcspi_suspend(struct device *dev) 1482 { 1483 return pinctrl_pm_select_sleep_state(dev); 1484 } 1485 1486 #else 1487 #define omap2_mcspi_suspend NULL 1488 #define omap2_mcspi_resume NULL 1489 #endif 1490 1491 static const struct dev_pm_ops omap2_mcspi_pm_ops = { 1492 .resume = omap2_mcspi_resume, 1493 .suspend = omap2_mcspi_suspend, 1494 .runtime_resume = omap_mcspi_runtime_resume, 1495 }; 1496 1497 static struct platform_driver omap2_mcspi_driver = { 1498 .driver = { 1499 .name = "omap2_mcspi", 1500 .pm = &omap2_mcspi_pm_ops, 1501 .of_match_table = omap_mcspi_of_match, 1502 }, 1503 .probe = omap2_mcspi_probe, 1504 .remove = omap2_mcspi_remove, 1505 }; 1506 1507 module_platform_driver(omap2_mcspi_driver); 1508 MODULE_LICENSE("GPL"); 1509