xref: /openbmc/linux/drivers/spi/spi-omap2-mcspi.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * OMAP2 McSPI controller driver
4  *
5  * Copyright (C) 2005, 2006 Nokia Corporation
6  * Author:	Samuel Ortiz <samuel.ortiz@nokia.com> and
7  *		Juha Yrjola <juha.yrjola@nokia.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/platform_device.h>
19 #include <linux/err.h>
20 #include <linux/clk.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/gcd.h>
27 
28 #include <linux/spi/spi.h>
29 
30 #include <linux/platform_data/spi-omap2-mcspi.h>
31 
32 #define OMAP2_MCSPI_MAX_FREQ		48000000
33 #define OMAP2_MCSPI_MAX_DIVIDER		4096
34 #define OMAP2_MCSPI_MAX_FIFODEPTH	64
35 #define OMAP2_MCSPI_MAX_FIFOWCNT	0xFFFF
36 #define SPI_AUTOSUSPEND_TIMEOUT		2000
37 
38 #define OMAP2_MCSPI_REVISION		0x00
39 #define OMAP2_MCSPI_SYSSTATUS		0x14
40 #define OMAP2_MCSPI_IRQSTATUS		0x18
41 #define OMAP2_MCSPI_IRQENABLE		0x1c
42 #define OMAP2_MCSPI_WAKEUPENABLE	0x20
43 #define OMAP2_MCSPI_SYST		0x24
44 #define OMAP2_MCSPI_MODULCTRL		0x28
45 #define OMAP2_MCSPI_XFERLEVEL		0x7c
46 
47 /* per-channel banks, 0x14 bytes each, first is: */
48 #define OMAP2_MCSPI_CHCONF0		0x2c
49 #define OMAP2_MCSPI_CHSTAT0		0x30
50 #define OMAP2_MCSPI_CHCTRL0		0x34
51 #define OMAP2_MCSPI_TX0			0x38
52 #define OMAP2_MCSPI_RX0			0x3c
53 
54 /* per-register bitmasks: */
55 #define OMAP2_MCSPI_IRQSTATUS_EOW	BIT(17)
56 
57 #define OMAP2_MCSPI_MODULCTRL_SINGLE	BIT(0)
58 #define OMAP2_MCSPI_MODULCTRL_MS	BIT(2)
59 #define OMAP2_MCSPI_MODULCTRL_STEST	BIT(3)
60 
61 #define OMAP2_MCSPI_CHCONF_PHA		BIT(0)
62 #define OMAP2_MCSPI_CHCONF_POL		BIT(1)
63 #define OMAP2_MCSPI_CHCONF_CLKD_MASK	(0x0f << 2)
64 #define OMAP2_MCSPI_CHCONF_EPOL		BIT(6)
65 #define OMAP2_MCSPI_CHCONF_WL_MASK	(0x1f << 7)
66 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY	BIT(12)
67 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY	BIT(13)
68 #define OMAP2_MCSPI_CHCONF_TRM_MASK	(0x03 << 12)
69 #define OMAP2_MCSPI_CHCONF_DMAW		BIT(14)
70 #define OMAP2_MCSPI_CHCONF_DMAR		BIT(15)
71 #define OMAP2_MCSPI_CHCONF_DPE0		BIT(16)
72 #define OMAP2_MCSPI_CHCONF_DPE1		BIT(17)
73 #define OMAP2_MCSPI_CHCONF_IS		BIT(18)
74 #define OMAP2_MCSPI_CHCONF_TURBO	BIT(19)
75 #define OMAP2_MCSPI_CHCONF_FORCE	BIT(20)
76 #define OMAP2_MCSPI_CHCONF_FFET		BIT(27)
77 #define OMAP2_MCSPI_CHCONF_FFER		BIT(28)
78 #define OMAP2_MCSPI_CHCONF_CLKG		BIT(29)
79 
80 #define OMAP2_MCSPI_CHSTAT_RXS		BIT(0)
81 #define OMAP2_MCSPI_CHSTAT_TXS		BIT(1)
82 #define OMAP2_MCSPI_CHSTAT_EOT		BIT(2)
83 #define OMAP2_MCSPI_CHSTAT_TXFFE	BIT(3)
84 
85 #define OMAP2_MCSPI_CHCTRL_EN		BIT(0)
86 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK	(0xff << 8)
87 
88 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN	BIT(0)
89 
90 /* We have 2 DMA channels per CS, one for RX and one for TX */
91 struct omap2_mcspi_dma {
92 	struct dma_chan *dma_tx;
93 	struct dma_chan *dma_rx;
94 
95 	struct completion dma_tx_completion;
96 	struct completion dma_rx_completion;
97 
98 	char dma_rx_ch_name[14];
99 	char dma_tx_ch_name[14];
100 };
101 
102 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
103  * cache operations; better heuristics consider wordsize and bitrate.
104  */
105 #define DMA_MIN_BYTES			160
106 
107 
108 /*
109  * Used for context save and restore, structure members to be updated whenever
110  * corresponding registers are modified.
111  */
112 struct omap2_mcspi_regs {
113 	u32 modulctrl;
114 	u32 wakeupenable;
115 	struct list_head cs;
116 };
117 
118 struct omap2_mcspi {
119 	struct completion	txdone;
120 	struct spi_master	*master;
121 	/* Virtual base address of the controller */
122 	void __iomem		*base;
123 	unsigned long		phys;
124 	/* SPI1 has 4 channels, while SPI2 has 2 */
125 	struct omap2_mcspi_dma	*dma_channels;
126 	struct device		*dev;
127 	struct omap2_mcspi_regs ctx;
128 	int			fifo_depth;
129 	bool			slave_aborted;
130 	unsigned int		pin_dir:1;
131 	size_t			max_xfer_len;
132 };
133 
134 struct omap2_mcspi_cs {
135 	void __iomem		*base;
136 	unsigned long		phys;
137 	int			word_len;
138 	u16			mode;
139 	struct list_head	node;
140 	/* Context save and restore shadow register */
141 	u32			chconf0, chctrl0;
142 };
143 
144 static inline void mcspi_write_reg(struct spi_master *master,
145 		int idx, u32 val)
146 {
147 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
148 
149 	writel_relaxed(val, mcspi->base + idx);
150 }
151 
152 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
153 {
154 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
155 
156 	return readl_relaxed(mcspi->base + idx);
157 }
158 
159 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
160 		int idx, u32 val)
161 {
162 	struct omap2_mcspi_cs	*cs = spi->controller_state;
163 
164 	writel_relaxed(val, cs->base +  idx);
165 }
166 
167 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
168 {
169 	struct omap2_mcspi_cs	*cs = spi->controller_state;
170 
171 	return readl_relaxed(cs->base + idx);
172 }
173 
174 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
175 {
176 	struct omap2_mcspi_cs *cs = spi->controller_state;
177 
178 	return cs->chconf0;
179 }
180 
181 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
182 {
183 	struct omap2_mcspi_cs *cs = spi->controller_state;
184 
185 	cs->chconf0 = val;
186 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
187 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
188 }
189 
190 static inline int mcspi_bytes_per_word(int word_len)
191 {
192 	if (word_len <= 8)
193 		return 1;
194 	else if (word_len <= 16)
195 		return 2;
196 	else /* word_len <= 32 */
197 		return 4;
198 }
199 
200 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
201 		int is_read, int enable)
202 {
203 	u32 l, rw;
204 
205 	l = mcspi_cached_chconf0(spi);
206 
207 	if (is_read) /* 1 is read, 0 write */
208 		rw = OMAP2_MCSPI_CHCONF_DMAR;
209 	else
210 		rw = OMAP2_MCSPI_CHCONF_DMAW;
211 
212 	if (enable)
213 		l |= rw;
214 	else
215 		l &= ~rw;
216 
217 	mcspi_write_chconf0(spi, l);
218 }
219 
220 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
221 {
222 	struct omap2_mcspi_cs *cs = spi->controller_state;
223 	u32 l;
224 
225 	l = cs->chctrl0;
226 	if (enable)
227 		l |= OMAP2_MCSPI_CHCTRL_EN;
228 	else
229 		l &= ~OMAP2_MCSPI_CHCTRL_EN;
230 	cs->chctrl0 = l;
231 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
232 	/* Flash post-writes */
233 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
234 }
235 
236 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
237 {
238 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
239 	u32 l;
240 
241 	/* The controller handles the inverted chip selects
242 	 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
243 	 * the inversion from the core spi_set_cs function.
244 	 */
245 	if (spi->mode & SPI_CS_HIGH)
246 		enable = !enable;
247 
248 	if (spi->controller_state) {
249 		int err = pm_runtime_resume_and_get(mcspi->dev);
250 		if (err < 0) {
251 			dev_err(mcspi->dev, "failed to get sync: %d\n", err);
252 			return;
253 		}
254 
255 		l = mcspi_cached_chconf0(spi);
256 
257 		if (enable)
258 			l &= ~OMAP2_MCSPI_CHCONF_FORCE;
259 		else
260 			l |= OMAP2_MCSPI_CHCONF_FORCE;
261 
262 		mcspi_write_chconf0(spi, l);
263 
264 		pm_runtime_mark_last_busy(mcspi->dev);
265 		pm_runtime_put_autosuspend(mcspi->dev);
266 	}
267 }
268 
269 static void omap2_mcspi_set_mode(struct spi_master *master)
270 {
271 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
272 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
273 	u32 l;
274 
275 	/*
276 	 * Choose master or slave mode
277 	 */
278 	l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
279 	l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
280 	if (spi_controller_is_slave(master)) {
281 		l |= (OMAP2_MCSPI_MODULCTRL_MS);
282 	} else {
283 		l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
284 		l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
285 	}
286 	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
287 
288 	ctx->modulctrl = l;
289 }
290 
291 static void omap2_mcspi_set_fifo(const struct spi_device *spi,
292 				struct spi_transfer *t, int enable)
293 {
294 	struct spi_master *master = spi->master;
295 	struct omap2_mcspi_cs *cs = spi->controller_state;
296 	struct omap2_mcspi *mcspi;
297 	unsigned int wcnt;
298 	int max_fifo_depth, bytes_per_word;
299 	u32 chconf, xferlevel;
300 
301 	mcspi = spi_master_get_devdata(master);
302 
303 	chconf = mcspi_cached_chconf0(spi);
304 	if (enable) {
305 		bytes_per_word = mcspi_bytes_per_word(cs->word_len);
306 		if (t->len % bytes_per_word != 0)
307 			goto disable_fifo;
308 
309 		if (t->rx_buf != NULL && t->tx_buf != NULL)
310 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
311 		else
312 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
313 
314 		wcnt = t->len / bytes_per_word;
315 		if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
316 			goto disable_fifo;
317 
318 		xferlevel = wcnt << 16;
319 		if (t->rx_buf != NULL) {
320 			chconf |= OMAP2_MCSPI_CHCONF_FFER;
321 			xferlevel |= (bytes_per_word - 1) << 8;
322 		}
323 
324 		if (t->tx_buf != NULL) {
325 			chconf |= OMAP2_MCSPI_CHCONF_FFET;
326 			xferlevel |= bytes_per_word - 1;
327 		}
328 
329 		mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
330 		mcspi_write_chconf0(spi, chconf);
331 		mcspi->fifo_depth = max_fifo_depth;
332 
333 		return;
334 	}
335 
336 disable_fifo:
337 	if (t->rx_buf != NULL)
338 		chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
339 
340 	if (t->tx_buf != NULL)
341 		chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
342 
343 	mcspi_write_chconf0(spi, chconf);
344 	mcspi->fifo_depth = 0;
345 }
346 
347 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
348 {
349 	unsigned long timeout;
350 
351 	timeout = jiffies + msecs_to_jiffies(1000);
352 	while (!(readl_relaxed(reg) & bit)) {
353 		if (time_after(jiffies, timeout)) {
354 			if (!(readl_relaxed(reg) & bit))
355 				return -ETIMEDOUT;
356 			else
357 				return 0;
358 		}
359 		cpu_relax();
360 	}
361 	return 0;
362 }
363 
364 static int mcspi_wait_for_completion(struct  omap2_mcspi *mcspi,
365 				     struct completion *x)
366 {
367 	if (spi_controller_is_slave(mcspi->master)) {
368 		if (wait_for_completion_interruptible(x) ||
369 		    mcspi->slave_aborted)
370 			return -EINTR;
371 	} else {
372 		wait_for_completion(x);
373 	}
374 
375 	return 0;
376 }
377 
378 static void omap2_mcspi_rx_callback(void *data)
379 {
380 	struct spi_device *spi = data;
381 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
382 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
383 
384 	/* We must disable the DMA RX request */
385 	omap2_mcspi_set_dma_req(spi, 1, 0);
386 
387 	complete(&mcspi_dma->dma_rx_completion);
388 }
389 
390 static void omap2_mcspi_tx_callback(void *data)
391 {
392 	struct spi_device *spi = data;
393 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
394 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
395 
396 	/* We must disable the DMA TX request */
397 	omap2_mcspi_set_dma_req(spi, 0, 0);
398 
399 	complete(&mcspi_dma->dma_tx_completion);
400 }
401 
402 static void omap2_mcspi_tx_dma(struct spi_device *spi,
403 				struct spi_transfer *xfer,
404 				struct dma_slave_config cfg)
405 {
406 	struct omap2_mcspi	*mcspi;
407 	struct omap2_mcspi_dma  *mcspi_dma;
408 	struct dma_async_tx_descriptor *tx;
409 
410 	mcspi = spi_master_get_devdata(spi->master);
411 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
412 
413 	dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
414 
415 	tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
416 				     xfer->tx_sg.nents,
417 				     DMA_MEM_TO_DEV,
418 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
419 	if (tx) {
420 		tx->callback = omap2_mcspi_tx_callback;
421 		tx->callback_param = spi;
422 		dmaengine_submit(tx);
423 	} else {
424 		/* FIXME: fall back to PIO? */
425 	}
426 	dma_async_issue_pending(mcspi_dma->dma_tx);
427 	omap2_mcspi_set_dma_req(spi, 0, 1);
428 }
429 
430 static unsigned
431 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
432 				struct dma_slave_config cfg,
433 				unsigned es)
434 {
435 	struct omap2_mcspi	*mcspi;
436 	struct omap2_mcspi_dma  *mcspi_dma;
437 	unsigned int		count, transfer_reduction = 0;
438 	struct scatterlist	*sg_out[2];
439 	int			nb_sizes = 0, out_mapped_nents[2], ret, x;
440 	size_t			sizes[2];
441 	u32			l;
442 	int			elements = 0;
443 	int			word_len, element_count;
444 	struct omap2_mcspi_cs	*cs = spi->controller_state;
445 	void __iomem		*chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
446 	struct dma_async_tx_descriptor *tx;
447 
448 	mcspi = spi_master_get_devdata(spi->master);
449 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
450 	count = xfer->len;
451 
452 	/*
453 	 *  In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
454 	 *  it mentions reducing DMA transfer length by one element in master
455 	 *  normal mode.
456 	 */
457 	if (mcspi->fifo_depth == 0)
458 		transfer_reduction = es;
459 
460 	word_len = cs->word_len;
461 	l = mcspi_cached_chconf0(spi);
462 
463 	if (word_len <= 8)
464 		element_count = count;
465 	else if (word_len <= 16)
466 		element_count = count >> 1;
467 	else /* word_len <= 32 */
468 		element_count = count >> 2;
469 
470 
471 	dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
472 
473 	/*
474 	 *  Reduce DMA transfer length by one more if McSPI is
475 	 *  configured in turbo mode.
476 	 */
477 	if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
478 		transfer_reduction += es;
479 
480 	if (transfer_reduction) {
481 		/* Split sgl into two. The second sgl won't be used. */
482 		sizes[0] = count - transfer_reduction;
483 		sizes[1] = transfer_reduction;
484 		nb_sizes = 2;
485 	} else {
486 		/*
487 		 * Don't bother splitting the sgl. This essentially
488 		 * clones the original sgl.
489 		 */
490 		sizes[0] = count;
491 		nb_sizes = 1;
492 	}
493 
494 	ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
495 		       sizes, sg_out, out_mapped_nents, GFP_KERNEL);
496 
497 	if (ret < 0) {
498 		dev_err(&spi->dev, "sg_split failed\n");
499 		return 0;
500 	}
501 
502 	tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
503 				     out_mapped_nents[0], DMA_DEV_TO_MEM,
504 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
505 	if (tx) {
506 		tx->callback = omap2_mcspi_rx_callback;
507 		tx->callback_param = spi;
508 		dmaengine_submit(tx);
509 	} else {
510 		/* FIXME: fall back to PIO? */
511 	}
512 
513 	dma_async_issue_pending(mcspi_dma->dma_rx);
514 	omap2_mcspi_set_dma_req(spi, 1, 1);
515 
516 	ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
517 	if (ret || mcspi->slave_aborted) {
518 		dmaengine_terminate_sync(mcspi_dma->dma_rx);
519 		omap2_mcspi_set_dma_req(spi, 1, 0);
520 		return 0;
521 	}
522 
523 	for (x = 0; x < nb_sizes; x++)
524 		kfree(sg_out[x]);
525 
526 	if (mcspi->fifo_depth > 0)
527 		return count;
528 
529 	/*
530 	 *  Due to the DMA transfer length reduction the missing bytes must
531 	 *  be read manually to receive all of the expected data.
532 	 */
533 	omap2_mcspi_set_enable(spi, 0);
534 
535 	elements = element_count - 1;
536 
537 	if (l & OMAP2_MCSPI_CHCONF_TURBO) {
538 		elements--;
539 
540 		if (!mcspi_wait_for_reg_bit(chstat_reg,
541 					    OMAP2_MCSPI_CHSTAT_RXS)) {
542 			u32 w;
543 
544 			w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
545 			if (word_len <= 8)
546 				((u8 *)xfer->rx_buf)[elements++] = w;
547 			else if (word_len <= 16)
548 				((u16 *)xfer->rx_buf)[elements++] = w;
549 			else /* word_len <= 32 */
550 				((u32 *)xfer->rx_buf)[elements++] = w;
551 		} else {
552 			int bytes_per_word = mcspi_bytes_per_word(word_len);
553 			dev_err(&spi->dev, "DMA RX penultimate word empty\n");
554 			count -= (bytes_per_word << 1);
555 			omap2_mcspi_set_enable(spi, 1);
556 			return count;
557 		}
558 	}
559 	if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
560 		u32 w;
561 
562 		w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
563 		if (word_len <= 8)
564 			((u8 *)xfer->rx_buf)[elements] = w;
565 		else if (word_len <= 16)
566 			((u16 *)xfer->rx_buf)[elements] = w;
567 		else /* word_len <= 32 */
568 			((u32 *)xfer->rx_buf)[elements] = w;
569 	} else {
570 		dev_err(&spi->dev, "DMA RX last word empty\n");
571 		count -= mcspi_bytes_per_word(word_len);
572 	}
573 	omap2_mcspi_set_enable(spi, 1);
574 	return count;
575 }
576 
577 static unsigned
578 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
579 {
580 	struct omap2_mcspi	*mcspi;
581 	struct omap2_mcspi_cs	*cs = spi->controller_state;
582 	struct omap2_mcspi_dma  *mcspi_dma;
583 	unsigned int		count;
584 	u8			*rx;
585 	const u8		*tx;
586 	struct dma_slave_config	cfg;
587 	enum dma_slave_buswidth width;
588 	unsigned es;
589 	void __iomem		*chstat_reg;
590 	void __iomem            *irqstat_reg;
591 	int			wait_res;
592 
593 	mcspi = spi_master_get_devdata(spi->master);
594 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
595 
596 	if (cs->word_len <= 8) {
597 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
598 		es = 1;
599 	} else if (cs->word_len <= 16) {
600 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
601 		es = 2;
602 	} else {
603 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
604 		es = 4;
605 	}
606 
607 	count = xfer->len;
608 
609 	memset(&cfg, 0, sizeof(cfg));
610 	cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
611 	cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
612 	cfg.src_addr_width = width;
613 	cfg.dst_addr_width = width;
614 	cfg.src_maxburst = 1;
615 	cfg.dst_maxburst = 1;
616 
617 	rx = xfer->rx_buf;
618 	tx = xfer->tx_buf;
619 
620 	mcspi->slave_aborted = false;
621 	reinit_completion(&mcspi_dma->dma_tx_completion);
622 	reinit_completion(&mcspi_dma->dma_rx_completion);
623 	reinit_completion(&mcspi->txdone);
624 	if (tx) {
625 		/* Enable EOW IRQ to know end of tx in slave mode */
626 		if (spi_controller_is_slave(spi->master))
627 			mcspi_write_reg(spi->master,
628 					OMAP2_MCSPI_IRQENABLE,
629 					OMAP2_MCSPI_IRQSTATUS_EOW);
630 		omap2_mcspi_tx_dma(spi, xfer, cfg);
631 	}
632 
633 	if (rx != NULL)
634 		count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
635 
636 	if (tx != NULL) {
637 		int ret;
638 
639 		ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
640 		if (ret || mcspi->slave_aborted) {
641 			dmaengine_terminate_sync(mcspi_dma->dma_tx);
642 			omap2_mcspi_set_dma_req(spi, 0, 0);
643 			return 0;
644 		}
645 
646 		if (spi_controller_is_slave(mcspi->master)) {
647 			ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
648 			if (ret || mcspi->slave_aborted)
649 				return 0;
650 		}
651 
652 		if (mcspi->fifo_depth > 0) {
653 			irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
654 
655 			if (mcspi_wait_for_reg_bit(irqstat_reg,
656 						OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
657 				dev_err(&spi->dev, "EOW timed out\n");
658 
659 			mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
660 					OMAP2_MCSPI_IRQSTATUS_EOW);
661 		}
662 
663 		/* for TX_ONLY mode, be sure all words have shifted out */
664 		if (rx == NULL) {
665 			chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
666 			if (mcspi->fifo_depth > 0) {
667 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
668 						OMAP2_MCSPI_CHSTAT_TXFFE);
669 				if (wait_res < 0)
670 					dev_err(&spi->dev, "TXFFE timed out\n");
671 			} else {
672 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
673 						OMAP2_MCSPI_CHSTAT_TXS);
674 				if (wait_res < 0)
675 					dev_err(&spi->dev, "TXS timed out\n");
676 			}
677 			if (wait_res >= 0 &&
678 				(mcspi_wait_for_reg_bit(chstat_reg,
679 					OMAP2_MCSPI_CHSTAT_EOT) < 0))
680 				dev_err(&spi->dev, "EOT timed out\n");
681 		}
682 	}
683 	return count;
684 }
685 
686 static unsigned
687 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
688 {
689 	struct omap2_mcspi_cs	*cs = spi->controller_state;
690 	unsigned int		count, c;
691 	u32			l;
692 	void __iomem		*base = cs->base;
693 	void __iomem		*tx_reg;
694 	void __iomem		*rx_reg;
695 	void __iomem		*chstat_reg;
696 	int			word_len;
697 
698 	count = xfer->len;
699 	c = count;
700 	word_len = cs->word_len;
701 
702 	l = mcspi_cached_chconf0(spi);
703 
704 	/* We store the pre-calculated register addresses on stack to speed
705 	 * up the transfer loop. */
706 	tx_reg		= base + OMAP2_MCSPI_TX0;
707 	rx_reg		= base + OMAP2_MCSPI_RX0;
708 	chstat_reg	= base + OMAP2_MCSPI_CHSTAT0;
709 
710 	if (c < (word_len>>3))
711 		return 0;
712 
713 	if (word_len <= 8) {
714 		u8		*rx;
715 		const u8	*tx;
716 
717 		rx = xfer->rx_buf;
718 		tx = xfer->tx_buf;
719 
720 		do {
721 			c -= 1;
722 			if (tx != NULL) {
723 				if (mcspi_wait_for_reg_bit(chstat_reg,
724 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
725 					dev_err(&spi->dev, "TXS timed out\n");
726 					goto out;
727 				}
728 				dev_vdbg(&spi->dev, "write-%d %02x\n",
729 						word_len, *tx);
730 				writel_relaxed(*tx++, tx_reg);
731 			}
732 			if (rx != NULL) {
733 				if (mcspi_wait_for_reg_bit(chstat_reg,
734 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
735 					dev_err(&spi->dev, "RXS timed out\n");
736 					goto out;
737 				}
738 
739 				if (c == 1 && tx == NULL &&
740 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
741 					omap2_mcspi_set_enable(spi, 0);
742 					*rx++ = readl_relaxed(rx_reg);
743 					dev_vdbg(&spi->dev, "read-%d %02x\n",
744 						    word_len, *(rx - 1));
745 					if (mcspi_wait_for_reg_bit(chstat_reg,
746 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
747 						dev_err(&spi->dev,
748 							"RXS timed out\n");
749 						goto out;
750 					}
751 					c = 0;
752 				} else if (c == 0 && tx == NULL) {
753 					omap2_mcspi_set_enable(spi, 0);
754 				}
755 
756 				*rx++ = readl_relaxed(rx_reg);
757 				dev_vdbg(&spi->dev, "read-%d %02x\n",
758 						word_len, *(rx - 1));
759 			}
760 			/* Add word delay between each word */
761 			spi_delay_exec(&xfer->word_delay, xfer);
762 		} while (c);
763 	} else if (word_len <= 16) {
764 		u16		*rx;
765 		const u16	*tx;
766 
767 		rx = xfer->rx_buf;
768 		tx = xfer->tx_buf;
769 		do {
770 			c -= 2;
771 			if (tx != NULL) {
772 				if (mcspi_wait_for_reg_bit(chstat_reg,
773 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
774 					dev_err(&spi->dev, "TXS timed out\n");
775 					goto out;
776 				}
777 				dev_vdbg(&spi->dev, "write-%d %04x\n",
778 						word_len, *tx);
779 				writel_relaxed(*tx++, tx_reg);
780 			}
781 			if (rx != NULL) {
782 				if (mcspi_wait_for_reg_bit(chstat_reg,
783 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
784 					dev_err(&spi->dev, "RXS timed out\n");
785 					goto out;
786 				}
787 
788 				if (c == 2 && tx == NULL &&
789 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
790 					omap2_mcspi_set_enable(spi, 0);
791 					*rx++ = readl_relaxed(rx_reg);
792 					dev_vdbg(&spi->dev, "read-%d %04x\n",
793 						    word_len, *(rx - 1));
794 					if (mcspi_wait_for_reg_bit(chstat_reg,
795 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
796 						dev_err(&spi->dev,
797 							"RXS timed out\n");
798 						goto out;
799 					}
800 					c = 0;
801 				} else if (c == 0 && tx == NULL) {
802 					omap2_mcspi_set_enable(spi, 0);
803 				}
804 
805 				*rx++ = readl_relaxed(rx_reg);
806 				dev_vdbg(&spi->dev, "read-%d %04x\n",
807 						word_len, *(rx - 1));
808 			}
809 			/* Add word delay between each word */
810 			spi_delay_exec(&xfer->word_delay, xfer);
811 		} while (c >= 2);
812 	} else if (word_len <= 32) {
813 		u32		*rx;
814 		const u32	*tx;
815 
816 		rx = xfer->rx_buf;
817 		tx = xfer->tx_buf;
818 		do {
819 			c -= 4;
820 			if (tx != NULL) {
821 				if (mcspi_wait_for_reg_bit(chstat_reg,
822 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
823 					dev_err(&spi->dev, "TXS timed out\n");
824 					goto out;
825 				}
826 				dev_vdbg(&spi->dev, "write-%d %08x\n",
827 						word_len, *tx);
828 				writel_relaxed(*tx++, tx_reg);
829 			}
830 			if (rx != NULL) {
831 				if (mcspi_wait_for_reg_bit(chstat_reg,
832 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
833 					dev_err(&spi->dev, "RXS timed out\n");
834 					goto out;
835 				}
836 
837 				if (c == 4 && tx == NULL &&
838 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
839 					omap2_mcspi_set_enable(spi, 0);
840 					*rx++ = readl_relaxed(rx_reg);
841 					dev_vdbg(&spi->dev, "read-%d %08x\n",
842 						    word_len, *(rx - 1));
843 					if (mcspi_wait_for_reg_bit(chstat_reg,
844 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
845 						dev_err(&spi->dev,
846 							"RXS timed out\n");
847 						goto out;
848 					}
849 					c = 0;
850 				} else if (c == 0 && tx == NULL) {
851 					omap2_mcspi_set_enable(spi, 0);
852 				}
853 
854 				*rx++ = readl_relaxed(rx_reg);
855 				dev_vdbg(&spi->dev, "read-%d %08x\n",
856 						word_len, *(rx - 1));
857 			}
858 			/* Add word delay between each word */
859 			spi_delay_exec(&xfer->word_delay, xfer);
860 		} while (c >= 4);
861 	}
862 
863 	/* for TX_ONLY mode, be sure all words have shifted out */
864 	if (xfer->rx_buf == NULL) {
865 		if (mcspi_wait_for_reg_bit(chstat_reg,
866 				OMAP2_MCSPI_CHSTAT_TXS) < 0) {
867 			dev_err(&spi->dev, "TXS timed out\n");
868 		} else if (mcspi_wait_for_reg_bit(chstat_reg,
869 				OMAP2_MCSPI_CHSTAT_EOT) < 0)
870 			dev_err(&spi->dev, "EOT timed out\n");
871 
872 		/* disable chan to purge rx datas received in TX_ONLY transfer,
873 		 * otherwise these rx datas will affect the direct following
874 		 * RX_ONLY transfer.
875 		 */
876 		omap2_mcspi_set_enable(spi, 0);
877 	}
878 out:
879 	omap2_mcspi_set_enable(spi, 1);
880 	return count - c;
881 }
882 
883 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
884 {
885 	u32 div;
886 
887 	for (div = 0; div < 15; div++)
888 		if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
889 			return div;
890 
891 	return 15;
892 }
893 
894 /* called only when no transfer is active to this device */
895 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
896 		struct spi_transfer *t)
897 {
898 	struct omap2_mcspi_cs *cs = spi->controller_state;
899 	struct omap2_mcspi *mcspi;
900 	u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
901 	u8 word_len = spi->bits_per_word;
902 	u32 speed_hz = spi->max_speed_hz;
903 
904 	mcspi = spi_master_get_devdata(spi->master);
905 
906 	if (t != NULL && t->bits_per_word)
907 		word_len = t->bits_per_word;
908 
909 	cs->word_len = word_len;
910 
911 	if (t && t->speed_hz)
912 		speed_hz = t->speed_hz;
913 
914 	speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
915 	if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
916 		clkd = omap2_mcspi_calc_divisor(speed_hz);
917 		speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
918 		clkg = 0;
919 	} else {
920 		div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
921 		speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
922 		clkd = (div - 1) & 0xf;
923 		extclk = (div - 1) >> 4;
924 		clkg = OMAP2_MCSPI_CHCONF_CLKG;
925 	}
926 
927 	l = mcspi_cached_chconf0(spi);
928 
929 	/* standard 4-wire master mode:  SCK, MOSI/out, MISO/in, nCS
930 	 * REVISIT: this controller could support SPI_3WIRE mode.
931 	 */
932 	if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
933 		l &= ~OMAP2_MCSPI_CHCONF_IS;
934 		l &= ~OMAP2_MCSPI_CHCONF_DPE1;
935 		l |= OMAP2_MCSPI_CHCONF_DPE0;
936 	} else {
937 		l |= OMAP2_MCSPI_CHCONF_IS;
938 		l |= OMAP2_MCSPI_CHCONF_DPE1;
939 		l &= ~OMAP2_MCSPI_CHCONF_DPE0;
940 	}
941 
942 	/* wordlength */
943 	l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
944 	l |= (word_len - 1) << 7;
945 
946 	/* set chipselect polarity; manage with FORCE */
947 	if (!(spi->mode & SPI_CS_HIGH))
948 		l |= OMAP2_MCSPI_CHCONF_EPOL;	/* active-low; normal */
949 	else
950 		l &= ~OMAP2_MCSPI_CHCONF_EPOL;
951 
952 	/* set clock divisor */
953 	l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
954 	l |= clkd << 2;
955 
956 	/* set clock granularity */
957 	l &= ~OMAP2_MCSPI_CHCONF_CLKG;
958 	l |= clkg;
959 	if (clkg) {
960 		cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
961 		cs->chctrl0 |= extclk << 8;
962 		mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
963 	}
964 
965 	/* set SPI mode 0..3 */
966 	if (spi->mode & SPI_CPOL)
967 		l |= OMAP2_MCSPI_CHCONF_POL;
968 	else
969 		l &= ~OMAP2_MCSPI_CHCONF_POL;
970 	if (spi->mode & SPI_CPHA)
971 		l |= OMAP2_MCSPI_CHCONF_PHA;
972 	else
973 		l &= ~OMAP2_MCSPI_CHCONF_PHA;
974 
975 	mcspi_write_chconf0(spi, l);
976 
977 	cs->mode = spi->mode;
978 
979 	dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
980 			speed_hz,
981 			(spi->mode & SPI_CPHA) ? "trailing" : "leading",
982 			(spi->mode & SPI_CPOL) ? "inverted" : "normal");
983 
984 	return 0;
985 }
986 
987 /*
988  * Note that we currently allow DMA only if we get a channel
989  * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
990  */
991 static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
992 				   struct omap2_mcspi_dma *mcspi_dma)
993 {
994 	int ret = 0;
995 
996 	mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
997 					     mcspi_dma->dma_rx_ch_name);
998 	if (IS_ERR(mcspi_dma->dma_rx)) {
999 		ret = PTR_ERR(mcspi_dma->dma_rx);
1000 		mcspi_dma->dma_rx = NULL;
1001 		goto no_dma;
1002 	}
1003 
1004 	mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1005 					     mcspi_dma->dma_tx_ch_name);
1006 	if (IS_ERR(mcspi_dma->dma_tx)) {
1007 		ret = PTR_ERR(mcspi_dma->dma_tx);
1008 		mcspi_dma->dma_tx = NULL;
1009 		dma_release_channel(mcspi_dma->dma_rx);
1010 		mcspi_dma->dma_rx = NULL;
1011 	}
1012 
1013 	init_completion(&mcspi_dma->dma_rx_completion);
1014 	init_completion(&mcspi_dma->dma_tx_completion);
1015 
1016 no_dma:
1017 	return ret;
1018 }
1019 
1020 static void omap2_mcspi_release_dma(struct spi_master *master)
1021 {
1022 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1023 	struct omap2_mcspi_dma	*mcspi_dma;
1024 	int i;
1025 
1026 	for (i = 0; i < master->num_chipselect; i++) {
1027 		mcspi_dma = &mcspi->dma_channels[i];
1028 
1029 		if (mcspi_dma->dma_rx) {
1030 			dma_release_channel(mcspi_dma->dma_rx);
1031 			mcspi_dma->dma_rx = NULL;
1032 		}
1033 		if (mcspi_dma->dma_tx) {
1034 			dma_release_channel(mcspi_dma->dma_tx);
1035 			mcspi_dma->dma_tx = NULL;
1036 		}
1037 	}
1038 }
1039 
1040 static void omap2_mcspi_cleanup(struct spi_device *spi)
1041 {
1042 	struct omap2_mcspi_cs	*cs;
1043 
1044 	if (spi->controller_state) {
1045 		/* Unlink controller state from context save list */
1046 		cs = spi->controller_state;
1047 		list_del(&cs->node);
1048 
1049 		kfree(cs);
1050 	}
1051 }
1052 
1053 static int omap2_mcspi_setup(struct spi_device *spi)
1054 {
1055 	bool			initial_setup = false;
1056 	int			ret;
1057 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(spi->master);
1058 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1059 	struct omap2_mcspi_cs	*cs = spi->controller_state;
1060 
1061 	if (!cs) {
1062 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1063 		if (!cs)
1064 			return -ENOMEM;
1065 		cs->base = mcspi->base + spi->chip_select * 0x14;
1066 		cs->phys = mcspi->phys + spi->chip_select * 0x14;
1067 		cs->mode = 0;
1068 		cs->chconf0 = 0;
1069 		cs->chctrl0 = 0;
1070 		spi->controller_state = cs;
1071 		/* Link this to context save list */
1072 		list_add_tail(&cs->node, &ctx->cs);
1073 		initial_setup = true;
1074 	}
1075 
1076 	ret = pm_runtime_resume_and_get(mcspi->dev);
1077 	if (ret < 0) {
1078 		if (initial_setup)
1079 			omap2_mcspi_cleanup(spi);
1080 
1081 		return ret;
1082 	}
1083 
1084 	ret = omap2_mcspi_setup_transfer(spi, NULL);
1085 	if (ret && initial_setup)
1086 		omap2_mcspi_cleanup(spi);
1087 
1088 	pm_runtime_mark_last_busy(mcspi->dev);
1089 	pm_runtime_put_autosuspend(mcspi->dev);
1090 
1091 	return ret;
1092 }
1093 
1094 static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1095 {
1096 	struct omap2_mcspi *mcspi = data;
1097 	u32 irqstat;
1098 
1099 	irqstat	= mcspi_read_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS);
1100 	if (!irqstat)
1101 		return IRQ_NONE;
1102 
1103 	/* Disable IRQ and wakeup slave xfer task */
1104 	mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQENABLE, 0);
1105 	if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1106 		complete(&mcspi->txdone);
1107 
1108 	return IRQ_HANDLED;
1109 }
1110 
1111 static int omap2_mcspi_slave_abort(struct spi_master *master)
1112 {
1113 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1114 	struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1115 
1116 	mcspi->slave_aborted = true;
1117 	complete(&mcspi_dma->dma_rx_completion);
1118 	complete(&mcspi_dma->dma_tx_completion);
1119 	complete(&mcspi->txdone);
1120 
1121 	return 0;
1122 }
1123 
1124 static int omap2_mcspi_transfer_one(struct spi_master *master,
1125 				    struct spi_device *spi,
1126 				    struct spi_transfer *t)
1127 {
1128 
1129 	/* We only enable one channel at a time -- the one whose message is
1130 	 * -- although this controller would gladly
1131 	 * arbitrate among multiple channels.  This corresponds to "single
1132 	 * channel" master mode.  As a side effect, we need to manage the
1133 	 * chipselect with the FORCE bit ... CS != channel enable.
1134 	 */
1135 
1136 	struct omap2_mcspi		*mcspi;
1137 	struct omap2_mcspi_dma		*mcspi_dma;
1138 	struct omap2_mcspi_cs		*cs;
1139 	struct omap2_mcspi_device_config *cd;
1140 	int				par_override = 0;
1141 	int				status = 0;
1142 	u32				chconf;
1143 
1144 	mcspi = spi_master_get_devdata(master);
1145 	mcspi_dma = mcspi->dma_channels + spi->chip_select;
1146 	cs = spi->controller_state;
1147 	cd = spi->controller_data;
1148 
1149 	/*
1150 	 * The slave driver could have changed spi->mode in which case
1151 	 * it will be different from cs->mode (the current hardware setup).
1152 	 * If so, set par_override (even though its not a parity issue) so
1153 	 * omap2_mcspi_setup_transfer will be called to configure the hardware
1154 	 * with the correct mode on the first iteration of the loop below.
1155 	 */
1156 	if (spi->mode != cs->mode)
1157 		par_override = 1;
1158 
1159 	omap2_mcspi_set_enable(spi, 0);
1160 
1161 	if (spi->cs_gpiod)
1162 		omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1163 
1164 	if (par_override ||
1165 	    (t->speed_hz != spi->max_speed_hz) ||
1166 	    (t->bits_per_word != spi->bits_per_word)) {
1167 		par_override = 1;
1168 		status = omap2_mcspi_setup_transfer(spi, t);
1169 		if (status < 0)
1170 			goto out;
1171 		if (t->speed_hz == spi->max_speed_hz &&
1172 		    t->bits_per_word == spi->bits_per_word)
1173 			par_override = 0;
1174 	}
1175 	if (cd && cd->cs_per_word) {
1176 		chconf = mcspi->ctx.modulctrl;
1177 		chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1178 		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1179 		mcspi->ctx.modulctrl =
1180 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1181 	}
1182 
1183 	chconf = mcspi_cached_chconf0(spi);
1184 	chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1185 	chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1186 
1187 	if (t->tx_buf == NULL)
1188 		chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1189 	else if (t->rx_buf == NULL)
1190 		chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1191 
1192 	if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1193 		/* Turbo mode is for more than one word */
1194 		if (t->len > ((cs->word_len + 7) >> 3))
1195 			chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1196 	}
1197 
1198 	mcspi_write_chconf0(spi, chconf);
1199 
1200 	if (t->len) {
1201 		unsigned	count;
1202 
1203 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1204 		    master->cur_msg_mapped &&
1205 		    master->can_dma(master, spi, t))
1206 			omap2_mcspi_set_fifo(spi, t, 1);
1207 
1208 		omap2_mcspi_set_enable(spi, 1);
1209 
1210 		/* RX_ONLY mode needs dummy data in TX reg */
1211 		if (t->tx_buf == NULL)
1212 			writel_relaxed(0, cs->base
1213 					+ OMAP2_MCSPI_TX0);
1214 
1215 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1216 		    master->cur_msg_mapped &&
1217 		    master->can_dma(master, spi, t))
1218 			count = omap2_mcspi_txrx_dma(spi, t);
1219 		else
1220 			count = omap2_mcspi_txrx_pio(spi, t);
1221 
1222 		if (count != t->len) {
1223 			status = -EIO;
1224 			goto out;
1225 		}
1226 	}
1227 
1228 	omap2_mcspi_set_enable(spi, 0);
1229 
1230 	if (mcspi->fifo_depth > 0)
1231 		omap2_mcspi_set_fifo(spi, t, 0);
1232 
1233 out:
1234 	/* Restore defaults if they were overriden */
1235 	if (par_override) {
1236 		par_override = 0;
1237 		status = omap2_mcspi_setup_transfer(spi, NULL);
1238 	}
1239 
1240 	if (cd && cd->cs_per_word) {
1241 		chconf = mcspi->ctx.modulctrl;
1242 		chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1243 		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1244 		mcspi->ctx.modulctrl =
1245 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1246 	}
1247 
1248 	omap2_mcspi_set_enable(spi, 0);
1249 
1250 	if (spi->cs_gpiod)
1251 		omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1252 
1253 	if (mcspi->fifo_depth > 0 && t)
1254 		omap2_mcspi_set_fifo(spi, t, 0);
1255 
1256 	return status;
1257 }
1258 
1259 static int omap2_mcspi_prepare_message(struct spi_master *master,
1260 				       struct spi_message *msg)
1261 {
1262 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
1263 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1264 	struct omap2_mcspi_cs	*cs;
1265 
1266 	/* Only a single channel can have the FORCE bit enabled
1267 	 * in its chconf0 register.
1268 	 * Scan all channels and disable them except the current one.
1269 	 * A FORCE can remain from a last transfer having cs_change enabled
1270 	 */
1271 	list_for_each_entry(cs, &ctx->cs, node) {
1272 		if (msg->spi->controller_state == cs)
1273 			continue;
1274 
1275 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1276 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1277 			writel_relaxed(cs->chconf0,
1278 					cs->base + OMAP2_MCSPI_CHCONF0);
1279 			readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1280 		}
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static bool omap2_mcspi_can_dma(struct spi_master *master,
1287 				struct spi_device *spi,
1288 				struct spi_transfer *xfer)
1289 {
1290 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1291 	struct omap2_mcspi_dma *mcspi_dma =
1292 		&mcspi->dma_channels[spi->chip_select];
1293 
1294 	if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1295 		return false;
1296 
1297 	if (spi_controller_is_slave(master))
1298 		return true;
1299 
1300 	master->dma_rx = mcspi_dma->dma_rx;
1301 	master->dma_tx = mcspi_dma->dma_tx;
1302 
1303 	return (xfer->len >= DMA_MIN_BYTES);
1304 }
1305 
1306 static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1307 {
1308 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1309 	struct omap2_mcspi_dma *mcspi_dma =
1310 		&mcspi->dma_channels[spi->chip_select];
1311 
1312 	if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1313 		return mcspi->max_xfer_len;
1314 
1315 	return SIZE_MAX;
1316 }
1317 
1318 static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1319 {
1320 	struct spi_master	*master = mcspi->master;
1321 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1322 	int			ret = 0;
1323 
1324 	ret = pm_runtime_resume_and_get(mcspi->dev);
1325 	if (ret < 0)
1326 		return ret;
1327 
1328 	mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1329 			OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1330 	ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1331 
1332 	omap2_mcspi_set_mode(master);
1333 	pm_runtime_mark_last_busy(mcspi->dev);
1334 	pm_runtime_put_autosuspend(mcspi->dev);
1335 	return 0;
1336 }
1337 
1338 static int omap_mcspi_runtime_suspend(struct device *dev)
1339 {
1340 	int error;
1341 
1342 	error = pinctrl_pm_select_idle_state(dev);
1343 	if (error)
1344 		dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1345 
1346 	return 0;
1347 }
1348 
1349 /*
1350  * When SPI wake up from off-mode, CS is in activate state. If it was in
1351  * inactive state when driver was suspend, then force it to inactive state at
1352  * wake up.
1353  */
1354 static int omap_mcspi_runtime_resume(struct device *dev)
1355 {
1356 	struct spi_master *master = dev_get_drvdata(dev);
1357 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1358 	struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1359 	struct omap2_mcspi_cs *cs;
1360 	int error;
1361 
1362 	error = pinctrl_pm_select_default_state(dev);
1363 	if (error)
1364 		dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1365 
1366 	/* McSPI: context restore */
1367 	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1368 	mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1369 
1370 	list_for_each_entry(cs, &ctx->cs, node) {
1371 		/*
1372 		 * We need to toggle CS state for OMAP take this
1373 		 * change in account.
1374 		 */
1375 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1376 			cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1377 			writel_relaxed(cs->chconf0,
1378 				       cs->base + OMAP2_MCSPI_CHCONF0);
1379 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1380 			writel_relaxed(cs->chconf0,
1381 				       cs->base + OMAP2_MCSPI_CHCONF0);
1382 		} else {
1383 			writel_relaxed(cs->chconf0,
1384 				       cs->base + OMAP2_MCSPI_CHCONF0);
1385 		}
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static struct omap2_mcspi_platform_config omap2_pdata = {
1392 	.regs_offset = 0,
1393 };
1394 
1395 static struct omap2_mcspi_platform_config omap4_pdata = {
1396 	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1397 };
1398 
1399 static struct omap2_mcspi_platform_config am654_pdata = {
1400 	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1401 	.max_xfer_len = SZ_4K - 1,
1402 };
1403 
1404 static const struct of_device_id omap_mcspi_of_match[] = {
1405 	{
1406 		.compatible = "ti,omap2-mcspi",
1407 		.data = &omap2_pdata,
1408 	},
1409 	{
1410 		.compatible = "ti,omap4-mcspi",
1411 		.data = &omap4_pdata,
1412 	},
1413 	{
1414 		.compatible = "ti,am654-mcspi",
1415 		.data = &am654_pdata,
1416 	},
1417 	{ },
1418 };
1419 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1420 
1421 static int omap2_mcspi_probe(struct platform_device *pdev)
1422 {
1423 	struct spi_master	*master;
1424 	const struct omap2_mcspi_platform_config *pdata;
1425 	struct omap2_mcspi	*mcspi;
1426 	struct resource		*r;
1427 	int			status = 0, i;
1428 	u32			regs_offset = 0;
1429 	struct device_node	*node = pdev->dev.of_node;
1430 	const struct of_device_id *match;
1431 
1432 	if (of_property_read_bool(node, "spi-slave"))
1433 		master = spi_alloc_slave(&pdev->dev, sizeof(*mcspi));
1434 	else
1435 		master = spi_alloc_master(&pdev->dev, sizeof(*mcspi));
1436 	if (!master)
1437 		return -ENOMEM;
1438 
1439 	/* the spi->mode bits understood by this driver: */
1440 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1441 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1442 	master->setup = omap2_mcspi_setup;
1443 	master->auto_runtime_pm = true;
1444 	master->prepare_message = omap2_mcspi_prepare_message;
1445 	master->can_dma = omap2_mcspi_can_dma;
1446 	master->transfer_one = omap2_mcspi_transfer_one;
1447 	master->set_cs = omap2_mcspi_set_cs;
1448 	master->cleanup = omap2_mcspi_cleanup;
1449 	master->slave_abort = omap2_mcspi_slave_abort;
1450 	master->dev.of_node = node;
1451 	master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1452 	master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1453 	master->use_gpio_descriptors = true;
1454 
1455 	platform_set_drvdata(pdev, master);
1456 
1457 	mcspi = spi_master_get_devdata(master);
1458 	mcspi->master = master;
1459 
1460 	match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1461 	if (match) {
1462 		u32 num_cs = 1; /* default number of chipselect */
1463 		pdata = match->data;
1464 
1465 		of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1466 		master->num_chipselect = num_cs;
1467 		if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1468 			mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1469 	} else {
1470 		pdata = dev_get_platdata(&pdev->dev);
1471 		master->num_chipselect = pdata->num_cs;
1472 		mcspi->pin_dir = pdata->pin_dir;
1473 	}
1474 	regs_offset = pdata->regs_offset;
1475 	if (pdata->max_xfer_len) {
1476 		mcspi->max_xfer_len = pdata->max_xfer_len;
1477 		master->max_transfer_size = omap2_mcspi_max_xfer_size;
1478 	}
1479 
1480 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1481 	mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1482 	if (IS_ERR(mcspi->base)) {
1483 		status = PTR_ERR(mcspi->base);
1484 		goto free_master;
1485 	}
1486 	mcspi->phys = r->start + regs_offset;
1487 	mcspi->base += regs_offset;
1488 
1489 	mcspi->dev = &pdev->dev;
1490 
1491 	INIT_LIST_HEAD(&mcspi->ctx.cs);
1492 
1493 	mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1494 					   sizeof(struct omap2_mcspi_dma),
1495 					   GFP_KERNEL);
1496 	if (mcspi->dma_channels == NULL) {
1497 		status = -ENOMEM;
1498 		goto free_master;
1499 	}
1500 
1501 	for (i = 0; i < master->num_chipselect; i++) {
1502 		sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1503 		sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1504 
1505 		status = omap2_mcspi_request_dma(mcspi,
1506 						 &mcspi->dma_channels[i]);
1507 		if (status == -EPROBE_DEFER)
1508 			goto free_master;
1509 	}
1510 
1511 	status = platform_get_irq(pdev, 0);
1512 	if (status < 0) {
1513 		dev_err_probe(&pdev->dev, status, "no irq resource found\n");
1514 		goto free_master;
1515 	}
1516 	init_completion(&mcspi->txdone);
1517 	status = devm_request_irq(&pdev->dev, status,
1518 				  omap2_mcspi_irq_handler, 0, pdev->name,
1519 				  mcspi);
1520 	if (status) {
1521 		dev_err(&pdev->dev, "Cannot request IRQ");
1522 		goto free_master;
1523 	}
1524 
1525 	pm_runtime_use_autosuspend(&pdev->dev);
1526 	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1527 	pm_runtime_enable(&pdev->dev);
1528 
1529 	status = omap2_mcspi_controller_setup(mcspi);
1530 	if (status < 0)
1531 		goto disable_pm;
1532 
1533 	status = devm_spi_register_controller(&pdev->dev, master);
1534 	if (status < 0)
1535 		goto disable_pm;
1536 
1537 	return status;
1538 
1539 disable_pm:
1540 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1541 	pm_runtime_put_sync(&pdev->dev);
1542 	pm_runtime_disable(&pdev->dev);
1543 free_master:
1544 	omap2_mcspi_release_dma(master);
1545 	spi_master_put(master);
1546 	return status;
1547 }
1548 
1549 static int omap2_mcspi_remove(struct platform_device *pdev)
1550 {
1551 	struct spi_master *master = platform_get_drvdata(pdev);
1552 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1553 
1554 	omap2_mcspi_release_dma(master);
1555 
1556 	pm_runtime_dont_use_autosuspend(mcspi->dev);
1557 	pm_runtime_put_sync(mcspi->dev);
1558 	pm_runtime_disable(&pdev->dev);
1559 
1560 	return 0;
1561 }
1562 
1563 /* work with hotplug and coldplug */
1564 MODULE_ALIAS("platform:omap2_mcspi");
1565 
1566 static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1567 {
1568 	struct spi_master *master = dev_get_drvdata(dev);
1569 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1570 	int error;
1571 
1572 	error = pinctrl_pm_select_sleep_state(dev);
1573 	if (error)
1574 		dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1575 			 __func__, error);
1576 
1577 	error = spi_master_suspend(master);
1578 	if (error)
1579 		dev_warn(mcspi->dev, "%s: master suspend failed: %i\n",
1580 			 __func__, error);
1581 
1582 	return pm_runtime_force_suspend(dev);
1583 }
1584 
1585 static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1586 {
1587 	struct spi_master *master = dev_get_drvdata(dev);
1588 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1589 	int error;
1590 
1591 	error = spi_master_resume(master);
1592 	if (error)
1593 		dev_warn(mcspi->dev, "%s: master resume failed: %i\n",
1594 			 __func__, error);
1595 
1596 	return pm_runtime_force_resume(dev);
1597 }
1598 
1599 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1600 	SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1601 				omap2_mcspi_resume)
1602 	.runtime_suspend	= omap_mcspi_runtime_suspend,
1603 	.runtime_resume		= omap_mcspi_runtime_resume,
1604 };
1605 
1606 static struct platform_driver omap2_mcspi_driver = {
1607 	.driver = {
1608 		.name =		"omap2_mcspi",
1609 		.pm =		&omap2_mcspi_pm_ops,
1610 		.of_match_table = omap_mcspi_of_match,
1611 	},
1612 	.probe =	omap2_mcspi_probe,
1613 	.remove =	omap2_mcspi_remove,
1614 };
1615 
1616 module_platform_driver(omap2_mcspi_driver);
1617 MODULE_LICENSE("GPL");
1618