xref: /openbmc/linux/drivers/spi/spi-nxp-fspi.c (revision e9fd34ab)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * NXP FlexSPI(FSPI) controller driver.
5  *
6  * Copyright 2019-2020 NXP
7  * Copyright 2020 Puresoftware Ltd.
8  *
9  * FlexSPI is a flexsible SPI host controller which supports two SPI
10  * channels and up to 4 external devices. Each channel supports
11  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12  * data lines).
13  *
14  * FlexSPI controller is driven by the LUT(Look-up Table) registers
15  * LUT registers are a look-up-table for sequences of instructions.
16  * A valid sequence consists of four LUT registers.
17  * Maximum 32 LUT sequences can be programmed simultaneously.
18  *
19  * LUTs are being created at run-time based on the commands passed
20  * from the spi-mem framework, thus using single LUT index.
21  *
22  * Software triggered Flash read/write access by IP Bus.
23  *
24  * Memory mapped read access by AHB Bus.
25  *
26  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27  *
28  * Author:
29  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30  *     Boris Brezillon <bbrezillon@kernel.org>
31  *     Frieder Schrempf <frieder.schrempf@kontron.de>
32  */
33 
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/bitfield.h>
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/delay.h>
40 #include <linux/err.h>
41 #include <linux/errno.h>
42 #include <linux/interrupt.h>
43 #include <linux/io.h>
44 #include <linux/iopoll.h>
45 #include <linux/jiffies.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
49 #include <linux/of.h>
50 #include <linux/platform_device.h>
51 #include <linux/pm_qos.h>
52 #include <linux/regmap.h>
53 #include <linux/sizes.h>
54 #include <linux/sys_soc.h>
55 
56 #include <linux/mfd/syscon.h>
57 #include <linux/spi/spi.h>
58 #include <linux/spi/spi-mem.h>
59 
60 /*
61  * The driver only uses one single LUT entry, that is updated on
62  * each call of exec_op(). Index 0 is preset at boot with a basic
63  * read operation, so let's use the last entry (31).
64  */
65 #define	SEQID_LUT			31
66 
67 /* Registers used by the driver */
68 #define FSPI_MCR0			0x00
69 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
70 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
71 #define FSPI_MCR0_LEARN_EN		BIT(15)
72 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
73 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
74 #define FSPI_MCR0_DOZE_EN		BIT(12)
75 #define FSPI_MCR0_HSEN			BIT(11)
76 #define FSPI_MCR0_SERCLKDIV		BIT(8)
77 #define FSPI_MCR0_ATDF_EN		BIT(7)
78 #define FSPI_MCR0_ARDF_EN		BIT(6)
79 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
80 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
81 #define FSPI_MCR0_MDIS			BIT(1)
82 #define FSPI_MCR0_SWRST			BIT(0)
83 
84 #define FSPI_MCR1			0x04
85 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
86 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
87 
88 #define FSPI_MCR2			0x08
89 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
90 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
91 #define FSPI_MCR2_CLRLRPHS		BIT(14)
92 #define FSPI_MCR2_ABRDATSZ		BIT(8)
93 #define FSPI_MCR2_ABRLEARN		BIT(7)
94 #define FSPI_MCR2_ABR_READ		BIT(6)
95 #define FSPI_MCR2_ABRWRITE		BIT(5)
96 #define FSPI_MCR2_ABRDUMMY		BIT(4)
97 #define FSPI_MCR2_ABR_MODE		BIT(3)
98 #define FSPI_MCR2_ABRCADDR		BIT(2)
99 #define FSPI_MCR2_ABRRADDR		BIT(1)
100 #define FSPI_MCR2_ABR_CMD		BIT(0)
101 
102 #define FSPI_AHBCR			0x0c
103 #define FSPI_AHBCR_RDADDROPT		BIT(6)
104 #define FSPI_AHBCR_PREF_EN		BIT(5)
105 #define FSPI_AHBCR_BUFF_EN		BIT(4)
106 #define FSPI_AHBCR_CACH_EN		BIT(3)
107 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
108 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
109 #define FSPI_AHBCR_PAR_EN		BIT(0)
110 
111 #define FSPI_INTEN			0x10
112 #define FSPI_INTEN_SCLKSBWR		BIT(9)
113 #define FSPI_INTEN_SCLKSBRD		BIT(8)
114 #define FSPI_INTEN_DATALRNFL		BIT(7)
115 #define FSPI_INTEN_IPTXWE		BIT(6)
116 #define FSPI_INTEN_IPRXWA		BIT(5)
117 #define FSPI_INTEN_AHBCMDERR		BIT(4)
118 #define FSPI_INTEN_IPCMDERR		BIT(3)
119 #define FSPI_INTEN_AHBCMDGE		BIT(2)
120 #define FSPI_INTEN_IPCMDGE		BIT(1)
121 #define FSPI_INTEN_IPCMDDONE		BIT(0)
122 
123 #define FSPI_INTR			0x14
124 #define FSPI_INTR_SCLKSBWR		BIT(9)
125 #define FSPI_INTR_SCLKSBRD		BIT(8)
126 #define FSPI_INTR_DATALRNFL		BIT(7)
127 #define FSPI_INTR_IPTXWE		BIT(6)
128 #define FSPI_INTR_IPRXWA		BIT(5)
129 #define FSPI_INTR_AHBCMDERR		BIT(4)
130 #define FSPI_INTR_IPCMDERR		BIT(3)
131 #define FSPI_INTR_AHBCMDGE		BIT(2)
132 #define FSPI_INTR_IPCMDGE		BIT(1)
133 #define FSPI_INTR_IPCMDDONE		BIT(0)
134 
135 #define FSPI_LUTKEY			0x18
136 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
137 
138 #define FSPI_LCKCR			0x1C
139 
140 #define FSPI_LCKER_LOCK			0x1
141 #define FSPI_LCKER_UNLOCK		0x2
142 
143 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
144 #define FSPI_AHBRX_BUF0CR0		0x20
145 #define FSPI_AHBRX_BUF1CR0		0x24
146 #define FSPI_AHBRX_BUF2CR0		0x28
147 #define FSPI_AHBRX_BUF3CR0		0x2C
148 #define FSPI_AHBRX_BUF4CR0		0x30
149 #define FSPI_AHBRX_BUF5CR0		0x34
150 #define FSPI_AHBRX_BUF6CR0		0x38
151 #define FSPI_AHBRX_BUF7CR0		0x3C
152 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
153 
154 #define FSPI_AHBRX_BUF0CR1		0x40
155 #define FSPI_AHBRX_BUF1CR1		0x44
156 #define FSPI_AHBRX_BUF2CR1		0x48
157 #define FSPI_AHBRX_BUF3CR1		0x4C
158 #define FSPI_AHBRX_BUF4CR1		0x50
159 #define FSPI_AHBRX_BUF5CR1		0x54
160 #define FSPI_AHBRX_BUF6CR1		0x58
161 #define FSPI_AHBRX_BUF7CR1		0x5C
162 
163 #define FSPI_FLSHA1CR0			0x60
164 #define FSPI_FLSHA2CR0			0x64
165 #define FSPI_FLSHB1CR0			0x68
166 #define FSPI_FLSHB2CR0			0x6C
167 #define FSPI_FLSHXCR0_SZ_KB		10
168 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
169 
170 #define FSPI_FLSHA1CR1			0x70
171 #define FSPI_FLSHA2CR1			0x74
172 #define FSPI_FLSHB1CR1			0x78
173 #define FSPI_FLSHB2CR1			0x7C
174 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
175 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
176 #define FSPI_FLSHXCR1_WA		BIT(10)
177 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
178 #define FSPI_FLSHXCR1_TCSS(x)		(x)
179 
180 #define FSPI_FLSHA1CR2			0x80
181 #define FSPI_FLSHA2CR2			0x84
182 #define FSPI_FLSHB1CR2			0x88
183 #define FSPI_FLSHB2CR2			0x8C
184 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
185 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
186 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
187 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
188 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
189 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
190 
191 #define FSPI_IPCR0			0xA0
192 
193 #define FSPI_IPCR1			0xA4
194 #define FSPI_IPCR1_IPAREN		BIT(31)
195 #define FSPI_IPCR1_SEQNUM_SHIFT		24
196 #define FSPI_IPCR1_SEQID_SHIFT		16
197 #define FSPI_IPCR1_IDATSZ(x)		(x)
198 
199 #define FSPI_IPCMD			0xB0
200 #define FSPI_IPCMD_TRG			BIT(0)
201 
202 #define FSPI_DLPR			0xB4
203 
204 #define FSPI_IPRXFCR			0xB8
205 #define FSPI_IPRXFCR_CLR		BIT(0)
206 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
207 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
208 
209 #define FSPI_IPTXFCR			0xBC
210 #define FSPI_IPTXFCR_CLR		BIT(0)
211 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
212 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
213 
214 #define FSPI_DLLACR			0xC0
215 #define FSPI_DLLACR_OVRDEN		BIT(8)
216 #define FSPI_DLLACR_SLVDLY(x)		((x) << 3)
217 #define FSPI_DLLACR_DLLRESET		BIT(1)
218 #define FSPI_DLLACR_DLLEN		BIT(0)
219 
220 #define FSPI_DLLBCR			0xC4
221 #define FSPI_DLLBCR_OVRDEN		BIT(8)
222 #define FSPI_DLLBCR_SLVDLY(x)		((x) << 3)
223 #define FSPI_DLLBCR_DLLRESET		BIT(1)
224 #define FSPI_DLLBCR_DLLEN		BIT(0)
225 
226 #define FSPI_STS0			0xE0
227 #define FSPI_STS0_DLPHB(x)		((x) << 8)
228 #define FSPI_STS0_DLPHA(x)		((x) << 4)
229 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
230 #define FSPI_STS0_ARB_IDLE		BIT(1)
231 #define FSPI_STS0_SEQ_IDLE		BIT(0)
232 
233 #define FSPI_STS1			0xE4
234 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
235 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
236 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
237 #define FSPI_STS1_AHB_ERRID(x)		(x)
238 
239 #define FSPI_STS2			0xE8
240 #define FSPI_STS2_BREFLOCK		BIT(17)
241 #define FSPI_STS2_BSLVLOCK		BIT(16)
242 #define FSPI_STS2_AREFLOCK		BIT(1)
243 #define FSPI_STS2_ASLVLOCK		BIT(0)
244 #define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \
245 					 FSPI_STS2_BSLVLOCK | \
246 					 FSPI_STS2_AREFLOCK | \
247 					 FSPI_STS2_ASLVLOCK)
248 
249 #define FSPI_AHBSPNST			0xEC
250 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
251 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
252 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
253 
254 #define FSPI_IPRXFSTS			0xF0
255 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
256 #define FSPI_IPRXFSTS_FILL(x)		(x)
257 
258 #define FSPI_IPTXFSTS			0xF4
259 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
260 #define FSPI_IPTXFSTS_FILL(x)		(x)
261 
262 #define FSPI_RFDR			0x100
263 #define FSPI_TFDR			0x180
264 
265 #define FSPI_LUT_BASE			0x200
266 #define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
267 #define FSPI_LUT_REG(idx) \
268 	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
269 
270 /* register map end */
271 
272 /* Instruction set for the LUT register. */
273 #define LUT_STOP			0x00
274 #define LUT_CMD				0x01
275 #define LUT_ADDR			0x02
276 #define LUT_CADDR_SDR			0x03
277 #define LUT_MODE			0x04
278 #define LUT_MODE2			0x05
279 #define LUT_MODE4			0x06
280 #define LUT_MODE8			0x07
281 #define LUT_NXP_WRITE			0x08
282 #define LUT_NXP_READ			0x09
283 #define LUT_LEARN_SDR			0x0A
284 #define LUT_DATSZ_SDR			0x0B
285 #define LUT_DUMMY			0x0C
286 #define LUT_DUMMY_RWDS_SDR		0x0D
287 #define LUT_JMP_ON_CS			0x1F
288 #define LUT_CMD_DDR			0x21
289 #define LUT_ADDR_DDR			0x22
290 #define LUT_CADDR_DDR			0x23
291 #define LUT_MODE_DDR			0x24
292 #define LUT_MODE2_DDR			0x25
293 #define LUT_MODE4_DDR			0x26
294 #define LUT_MODE8_DDR			0x27
295 #define LUT_WRITE_DDR			0x28
296 #define LUT_READ_DDR			0x29
297 #define LUT_LEARN_DDR			0x2A
298 #define LUT_DATSZ_DDR			0x2B
299 #define LUT_DUMMY_DDR			0x2C
300 #define LUT_DUMMY_RWDS_DDR		0x2D
301 
302 /*
303  * Calculate number of required PAD bits for LUT register.
304  *
305  * The pad stands for the number of IO lines [0:7].
306  * For example, the octal read needs eight IO lines,
307  * so you should use LUT_PAD(8). This macro
308  * returns 3 i.e. use eight (2^3) IP lines for read.
309  */
310 #define LUT_PAD(x) (fls(x) - 1)
311 
312 /*
313  * Macro for constructing the LUT entries with the following
314  * register layout:
315  *
316  *  ---------------------------------------------------
317  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
318  *  ---------------------------------------------------
319  */
320 #define PAD_SHIFT		8
321 #define INSTR_SHIFT		10
322 #define OPRND_SHIFT		16
323 
324 /* Macros for constructing the LUT register. */
325 #define LUT_DEF(idx, ins, pad, opr)			  \
326 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
327 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
328 
329 #define POLL_TOUT		5000
330 #define NXP_FSPI_MAX_CHIPSELECT		4
331 #define NXP_FSPI_MIN_IOMAP	SZ_4M
332 
333 #define DCFG_RCWSR1		0x100
334 #define SYS_PLL_RAT		GENMASK(6, 2)
335 
336 /* Access flash memory using IP bus only */
337 #define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
338 
339 struct nxp_fspi_devtype_data {
340 	unsigned int rxfifo;
341 	unsigned int txfifo;
342 	unsigned int ahb_buf_size;
343 	unsigned int quirks;
344 	bool little_endian;
345 };
346 
347 static struct nxp_fspi_devtype_data lx2160a_data = {
348 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
349 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
350 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
351 	.quirks = 0,
352 	.little_endian = true,  /* little-endian    */
353 };
354 
355 static struct nxp_fspi_devtype_data imx8mm_data = {
356 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
357 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
358 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
359 	.quirks = 0,
360 	.little_endian = true,  /* little-endian    */
361 };
362 
363 static struct nxp_fspi_devtype_data imx8qxp_data = {
364 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
365 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
366 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
367 	.quirks = 0,
368 	.little_endian = true,  /* little-endian    */
369 };
370 
371 static struct nxp_fspi_devtype_data imx8dxl_data = {
372 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
373 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
374 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
375 	.quirks = FSPI_QUIRK_USE_IP_ONLY,
376 	.little_endian = true,  /* little-endian    */
377 };
378 
379 struct nxp_fspi {
380 	void __iomem *iobase;
381 	void __iomem *ahb_addr;
382 	u32 memmap_phy;
383 	u32 memmap_phy_size;
384 	u32 memmap_start;
385 	u32 memmap_len;
386 	struct clk *clk, *clk_en;
387 	struct device *dev;
388 	struct completion c;
389 	struct nxp_fspi_devtype_data *devtype_data;
390 	struct mutex lock;
391 	struct pm_qos_request pm_qos_req;
392 	int selected;
393 };
394 
395 static inline int needs_ip_only(struct nxp_fspi *f)
396 {
397 	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
398 }
399 
400 /*
401  * R/W functions for big- or little-endian registers:
402  * The FSPI controller's endianness is independent of
403  * the CPU core's endianness. So far, although the CPU
404  * core is little-endian the FSPI controller can use
405  * big-endian or little-endian.
406  */
407 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
408 {
409 	if (f->devtype_data->little_endian)
410 		iowrite32(val, addr);
411 	else
412 		iowrite32be(val, addr);
413 }
414 
415 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
416 {
417 	if (f->devtype_data->little_endian)
418 		return ioread32(addr);
419 	else
420 		return ioread32be(addr);
421 }
422 
423 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
424 {
425 	struct nxp_fspi *f = dev_id;
426 	u32 reg;
427 
428 	/* clear interrupt */
429 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
430 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
431 
432 	if (reg & FSPI_INTR_IPCMDDONE)
433 		complete(&f->c);
434 
435 	return IRQ_HANDLED;
436 }
437 
438 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
439 {
440 	switch (width) {
441 	case 1:
442 	case 2:
443 	case 4:
444 	case 8:
445 		return 0;
446 	}
447 
448 	return -ENOTSUPP;
449 }
450 
451 static bool nxp_fspi_supports_op(struct spi_mem *mem,
452 				 const struct spi_mem_op *op)
453 {
454 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
455 	int ret;
456 
457 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
458 
459 	if (op->addr.nbytes)
460 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
461 
462 	if (op->dummy.nbytes)
463 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
464 
465 	if (op->data.nbytes)
466 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
467 
468 	if (ret)
469 		return false;
470 
471 	/*
472 	 * The number of address bytes should be equal to or less than 4 bytes.
473 	 */
474 	if (op->addr.nbytes > 4)
475 		return false;
476 
477 	/*
478 	 * If requested address value is greater than controller assigned
479 	 * memory mapped space, return error as it didn't fit in the range
480 	 * of assigned address space.
481 	 */
482 	if (op->addr.val >= f->memmap_phy_size)
483 		return false;
484 
485 	/* Max 64 dummy clock cycles supported */
486 	if (op->dummy.buswidth &&
487 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
488 		return false;
489 
490 	/* Max data length, check controller limits and alignment */
491 	if (op->data.dir == SPI_MEM_DATA_IN &&
492 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
493 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
494 	      !IS_ALIGNED(op->data.nbytes, 8))))
495 		return false;
496 
497 	if (op->data.dir == SPI_MEM_DATA_OUT &&
498 	    op->data.nbytes > f->devtype_data->txfifo)
499 		return false;
500 
501 	return spi_mem_default_supports_op(mem, op);
502 }
503 
504 /* Instead of busy looping invoke readl_poll_timeout functionality. */
505 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
506 				u32 mask, u32 delay_us,
507 				u32 timeout_us, bool c)
508 {
509 	u32 reg;
510 
511 	if (!f->devtype_data->little_endian)
512 		mask = (u32)cpu_to_be32(mask);
513 
514 	if (c)
515 		return readl_poll_timeout(base, reg, (reg & mask),
516 					  delay_us, timeout_us);
517 	else
518 		return readl_poll_timeout(base, reg, !(reg & mask),
519 					  delay_us, timeout_us);
520 }
521 
522 /*
523  * If the slave device content being changed by Write/Erase, need to
524  * invalidate the AHB buffer. This can be achieved by doing the reset
525  * of controller after setting MCR0[SWRESET] bit.
526  */
527 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
528 {
529 	u32 reg;
530 	int ret;
531 
532 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
533 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
534 
535 	/* w1c register, wait unit clear */
536 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
537 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
538 	WARN_ON(ret);
539 }
540 
541 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
542 				 const struct spi_mem_op *op)
543 {
544 	void __iomem *base = f->iobase;
545 	u32 lutval[4] = {};
546 	int lutidx = 1, i;
547 
548 	/* cmd */
549 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
550 			     op->cmd.opcode);
551 
552 	/* addr bytes */
553 	if (op->addr.nbytes) {
554 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
555 					      LUT_PAD(op->addr.buswidth),
556 					      op->addr.nbytes * 8);
557 		lutidx++;
558 	}
559 
560 	/* dummy bytes, if needed */
561 	if (op->dummy.nbytes) {
562 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
563 		/*
564 		 * Due to FlexSPI controller limitation number of PAD for dummy
565 		 * buswidth needs to be programmed as equal to data buswidth.
566 		 */
567 					      LUT_PAD(op->data.buswidth),
568 					      op->dummy.nbytes * 8 /
569 					      op->dummy.buswidth);
570 		lutidx++;
571 	}
572 
573 	/* read/write data bytes */
574 	if (op->data.nbytes) {
575 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
576 					      op->data.dir == SPI_MEM_DATA_IN ?
577 					      LUT_NXP_READ : LUT_NXP_WRITE,
578 					      LUT_PAD(op->data.buswidth),
579 					      0);
580 		lutidx++;
581 	}
582 
583 	/* stop condition. */
584 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
585 
586 	/* unlock LUT */
587 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
588 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
589 
590 	/* fill LUT */
591 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
592 		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
593 
594 	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
595 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
596 
597 	/* lock LUT */
598 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
599 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
600 }
601 
602 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
603 {
604 	int ret;
605 
606 	if (is_acpi_node(dev_fwnode(f->dev)))
607 		return 0;
608 
609 	ret = clk_prepare_enable(f->clk_en);
610 	if (ret)
611 		return ret;
612 
613 	ret = clk_prepare_enable(f->clk);
614 	if (ret) {
615 		clk_disable_unprepare(f->clk_en);
616 		return ret;
617 	}
618 
619 	return 0;
620 }
621 
622 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
623 {
624 	if (is_acpi_node(dev_fwnode(f->dev)))
625 		return 0;
626 
627 	clk_disable_unprepare(f->clk);
628 	clk_disable_unprepare(f->clk_en);
629 
630 	return 0;
631 }
632 
633 static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
634 {
635 	int ret;
636 
637 	/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
638 	fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
639 	fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
640 	fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
641 	fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
642 
643 	/*
644 	 * Enable the DLL calibration mode.
645 	 * The delay target for slave delay line is:
646 	 *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
647 	 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
648 	 * means half of clock cycle of reference clock.
649 	 */
650 	fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
651 		    f->iobase + FSPI_DLLACR);
652 	fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
653 		    f->iobase + FSPI_DLLBCR);
654 
655 	/* Wait to get REF/SLV lock */
656 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
657 				   0, POLL_TOUT, true);
658 	if (ret)
659 		dev_warn(f->dev, "DLL lock failed, please fix it!\n");
660 }
661 
662 /*
663  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
664  * register and start base address of the slave device.
665  *
666  *							    (Higher address)
667  *				--------    <-- FLSHB2CR0
668  *				|  B2  |
669  *				|      |
670  *	B2 start address -->	--------    <-- FLSHB1CR0
671  *				|  B1  |
672  *				|      |
673  *	B1 start address -->	--------    <-- FLSHA2CR0
674  *				|  A2  |
675  *				|      |
676  *	A2 start address -->	--------    <-- FLSHA1CR0
677  *				|  A1  |
678  *				|      |
679  *	A1 start address -->	--------		    (Lower address)
680  *
681  *
682  * Start base address defines the starting address range for given CS and
683  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
684  *
685  * But, different targets are having different combinations of number of CS,
686  * some targets only have single CS or two CS covering controller's full
687  * memory mapped space area.
688  * Thus, implementation is being done as independent of the size and number
689  * of the connected slave device.
690  * Assign controller memory mapped space size as the size to the connected
691  * slave device.
692  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
693  * chip-select Flash configuration register.
694  *
695  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
696  * memory mapped size of the controller.
697  * Value for rest of the CS FLSHxxCR0 register would be zero.
698  *
699  */
700 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
701 {
702 	unsigned long rate = spi->max_speed_hz;
703 	int ret;
704 	uint64_t size_kb;
705 
706 	/*
707 	 * Return, if previously selected slave device is same as current
708 	 * requested slave device.
709 	 */
710 	if (f->selected == spi_get_chipselect(spi, 0))
711 		return;
712 
713 	/* Reset FLSHxxCR0 registers */
714 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
715 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
716 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
717 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
718 
719 	/* Assign controller memory mapped space as size, KBytes, of flash. */
720 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
721 
722 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
723 		    4 * spi_get_chipselect(spi, 0));
724 
725 	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
726 
727 	nxp_fspi_clk_disable_unprep(f);
728 
729 	ret = clk_set_rate(f->clk, rate);
730 	if (ret)
731 		return;
732 
733 	ret = nxp_fspi_clk_prep_enable(f);
734 	if (ret)
735 		return;
736 
737 	/*
738 	 * If clock rate > 100MHz, then switch from DLL override mode to
739 	 * DLL calibration mode.
740 	 */
741 	if (rate > 100000000)
742 		nxp_fspi_dll_calibration(f);
743 
744 	f->selected = spi_get_chipselect(spi, 0);
745 }
746 
747 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
748 {
749 	u32 start = op->addr.val;
750 	u32 len = op->data.nbytes;
751 
752 	/* if necessary, ioremap before AHB read */
753 	if ((!f->ahb_addr) || start < f->memmap_start ||
754 	     start + len > f->memmap_start + f->memmap_len) {
755 		if (f->ahb_addr)
756 			iounmap(f->ahb_addr);
757 
758 		f->memmap_start = start;
759 		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
760 				len : NXP_FSPI_MIN_IOMAP;
761 
762 		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
763 					 f->memmap_len);
764 
765 		if (!f->ahb_addr) {
766 			dev_err(f->dev, "failed to alloc memory\n");
767 			return -ENOMEM;
768 		}
769 	}
770 
771 	/* Read out the data directly from the AHB buffer. */
772 	memcpy_fromio(op->data.buf.in,
773 		      f->ahb_addr + start - f->memmap_start, len);
774 
775 	return 0;
776 }
777 
778 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
779 				 const struct spi_mem_op *op)
780 {
781 	void __iomem *base = f->iobase;
782 	int i, ret;
783 	u8 *buf = (u8 *) op->data.buf.out;
784 
785 	/* clear the TX FIFO. */
786 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
787 
788 	/*
789 	 * Default value of water mark level is 8 bytes, hence in single
790 	 * write request controller can write max 8 bytes of data.
791 	 */
792 
793 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
794 		/* Wait for TXFIFO empty */
795 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
796 					   FSPI_INTR_IPTXWE, 0,
797 					   POLL_TOUT, true);
798 		WARN_ON(ret);
799 
800 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
801 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
802 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
803 	}
804 
805 	if (i < op->data.nbytes) {
806 		u32 data = 0;
807 		int j;
808 		/* Wait for TXFIFO empty */
809 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
810 					   FSPI_INTR_IPTXWE, 0,
811 					   POLL_TOUT, true);
812 		WARN_ON(ret);
813 
814 		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
815 			memcpy(&data, buf + i + j, 4);
816 			fspi_writel(f, data, base + FSPI_TFDR + j);
817 		}
818 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
819 	}
820 }
821 
822 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
823 			  const struct spi_mem_op *op)
824 {
825 	void __iomem *base = f->iobase;
826 	int i, ret;
827 	int len = op->data.nbytes;
828 	u8 *buf = (u8 *) op->data.buf.in;
829 
830 	/*
831 	 * Default value of water mark level is 8 bytes, hence in single
832 	 * read request controller can read max 8 bytes of data.
833 	 */
834 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
835 		/* Wait for RXFIFO available */
836 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
837 					   FSPI_INTR_IPRXWA, 0,
838 					   POLL_TOUT, true);
839 		WARN_ON(ret);
840 
841 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
842 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
843 		/* move the FIFO pointer */
844 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
845 	}
846 
847 	if (i < len) {
848 		u32 tmp;
849 		int size, j;
850 
851 		buf = op->data.buf.in + i;
852 		/* Wait for RXFIFO available */
853 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
854 					   FSPI_INTR_IPRXWA, 0,
855 					   POLL_TOUT, true);
856 		WARN_ON(ret);
857 
858 		len = op->data.nbytes - i;
859 		for (j = 0; j < op->data.nbytes - i; j += 4) {
860 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
861 			size = min(len, 4);
862 			memcpy(buf + j, &tmp, size);
863 			len -= size;
864 		}
865 	}
866 
867 	/* invalid the RXFIFO */
868 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
869 	/* move the FIFO pointer */
870 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
871 }
872 
873 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
874 {
875 	void __iomem *base = f->iobase;
876 	int seqnum = 0;
877 	int err = 0;
878 	u32 reg;
879 
880 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
881 	/* invalid RXFIFO first */
882 	reg &= ~FSPI_IPRXFCR_DMA_EN;
883 	reg = reg | FSPI_IPRXFCR_CLR;
884 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
885 
886 	init_completion(&f->c);
887 
888 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
889 	/*
890 	 * Always start the sequence at the same index since we update
891 	 * the LUT at each exec_op() call. And also specify the DATA
892 	 * length, since it's has not been specified in the LUT.
893 	 */
894 	fspi_writel(f, op->data.nbytes |
895 		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
896 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
897 		 base + FSPI_IPCR1);
898 
899 	/* Trigger the LUT now. */
900 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
901 
902 	/* Wait for the interrupt. */
903 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
904 		err = -ETIMEDOUT;
905 
906 	/* Invoke IP data read, if request is of data read. */
907 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
908 		nxp_fspi_read_rxfifo(f, op);
909 
910 	return err;
911 }
912 
913 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
914 {
915 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
916 	int err = 0;
917 
918 	mutex_lock(&f->lock);
919 
920 	/* Wait for controller being ready. */
921 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
922 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
923 	WARN_ON(err);
924 
925 	nxp_fspi_select_mem(f, mem->spi);
926 
927 	nxp_fspi_prepare_lut(f, op);
928 	/*
929 	 * If we have large chunks of data, we read them through the AHB bus by
930 	 * accessing the mapped memory. In all other cases we use IP commands
931 	 * to access the flash. Read via AHB bus may be corrupted due to
932 	 * existence of an errata and therefore discard AHB read in such cases.
933 	 */
934 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
935 	    op->data.dir == SPI_MEM_DATA_IN &&
936 	    !needs_ip_only(f)) {
937 		err = nxp_fspi_read_ahb(f, op);
938 	} else {
939 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
940 			nxp_fspi_fill_txfifo(f, op);
941 
942 		err = nxp_fspi_do_op(f, op);
943 	}
944 
945 	/* Invalidate the data in the AHB buffer. */
946 	nxp_fspi_invalid(f);
947 
948 	mutex_unlock(&f->lock);
949 
950 	return err;
951 }
952 
953 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
954 {
955 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
956 
957 	if (op->data.dir == SPI_MEM_DATA_OUT) {
958 		if (op->data.nbytes > f->devtype_data->txfifo)
959 			op->data.nbytes = f->devtype_data->txfifo;
960 	} else {
961 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
962 			op->data.nbytes = f->devtype_data->ahb_buf_size;
963 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
964 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
965 	}
966 
967 	/* Limit data bytes to RX FIFO in case of IP read only */
968 	if (op->data.dir == SPI_MEM_DATA_IN &&
969 	    needs_ip_only(f) &&
970 	    op->data.nbytes > f->devtype_data->rxfifo)
971 		op->data.nbytes = f->devtype_data->rxfifo;
972 
973 	return 0;
974 }
975 
976 static void erratum_err050568(struct nxp_fspi *f)
977 {
978 	static const struct soc_device_attribute ls1028a_soc_attr[] = {
979 		{ .family = "QorIQ LS1028A" },
980 		{ /* sentinel */ }
981 	};
982 	struct regmap *map;
983 	u32 val, sys_pll_ratio;
984 	int ret;
985 
986 	/* Check for LS1028A family */
987 	if (!soc_device_match(ls1028a_soc_attr)) {
988 		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
989 		return;
990 	}
991 
992 	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
993 	if (IS_ERR(map)) {
994 		dev_err(f->dev, "No syscon regmap\n");
995 		goto err;
996 	}
997 
998 	ret = regmap_read(map, DCFG_RCWSR1, &val);
999 	if (ret < 0)
1000 		goto err;
1001 
1002 	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1003 	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1004 
1005 	/* Use IP bus only if platform clock is 300MHz */
1006 	if (sys_pll_ratio == 3)
1007 		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1008 
1009 	return;
1010 
1011 err:
1012 	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1013 }
1014 
1015 static int nxp_fspi_default_setup(struct nxp_fspi *f)
1016 {
1017 	void __iomem *base = f->iobase;
1018 	int ret, i;
1019 	u32 reg;
1020 
1021 	/* disable and unprepare clock to avoid glitch pass to controller */
1022 	nxp_fspi_clk_disable_unprep(f);
1023 
1024 	/* the default frequency, we will change it later if necessary. */
1025 	ret = clk_set_rate(f->clk, 20000000);
1026 	if (ret)
1027 		return ret;
1028 
1029 	ret = nxp_fspi_clk_prep_enable(f);
1030 	if (ret)
1031 		return ret;
1032 
1033 	/*
1034 	 * ERR050568: Flash access by FlexSPI AHB command may not work with
1035 	 * platform frequency equal to 300 MHz on LS1028A.
1036 	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1037 	 * Layerscape LS1028A platform.
1038 	 */
1039 	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1040 		erratum_err050568(f);
1041 
1042 	/* Reset the module */
1043 	/* w1c register, wait unit clear */
1044 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1045 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1046 	WARN_ON(ret);
1047 
1048 	/* Disable the module */
1049 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1050 
1051 	/*
1052 	 * Config the DLL register to default value, enable the slave clock delay
1053 	 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1054 	 * chain, this is the suggested setting when clock rate < 100MHz.
1055 	 */
1056 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1057 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1058 
1059 	/* enable module */
1060 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1061 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1062 		    base + FSPI_MCR0);
1063 
1064 	/*
1065 	 * Disable same device enable bit and configure all slave devices
1066 	 * independently.
1067 	 */
1068 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1069 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1070 	fspi_writel(f, reg, base + FSPI_MCR2);
1071 
1072 	/* AHB configuration for access buffer 0~7. */
1073 	for (i = 0; i < 7; i++)
1074 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1075 
1076 	/*
1077 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1078 	 * performance.
1079 	 */
1080 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1081 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1082 
1083 	/* prefetch and no start address alignment limitation */
1084 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1085 		 base + FSPI_AHBCR);
1086 
1087 	/* Reset the FLSHxCR1 registers. */
1088 	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1089 	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1090 	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1091 	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1092 	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1093 
1094 	/* AHB Read - Set lut sequence ID for all CS. */
1095 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1096 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1097 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1098 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1099 
1100 	f->selected = -1;
1101 
1102 	/* enable the interrupt */
1103 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1104 
1105 	return 0;
1106 }
1107 
1108 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1109 {
1110 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
1111 	struct device *dev = &mem->spi->dev;
1112 	const char *name;
1113 
1114 	// Set custom name derived from the platform_device of the controller.
1115 	if (of_get_available_child_count(f->dev->of_node) == 1)
1116 		return dev_name(f->dev);
1117 
1118 	name = devm_kasprintf(dev, GFP_KERNEL,
1119 			      "%s-%d", dev_name(f->dev),
1120 			      spi_get_chipselect(mem->spi, 0));
1121 
1122 	if (!name) {
1123 		dev_err(dev, "failed to get memory for custom flash name\n");
1124 		return ERR_PTR(-ENOMEM);
1125 	}
1126 
1127 	return name;
1128 }
1129 
1130 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1131 	.adjust_op_size = nxp_fspi_adjust_op_size,
1132 	.supports_op = nxp_fspi_supports_op,
1133 	.exec_op = nxp_fspi_exec_op,
1134 	.get_name = nxp_fspi_get_name,
1135 };
1136 
1137 static int nxp_fspi_probe(struct platform_device *pdev)
1138 {
1139 	struct spi_controller *ctlr;
1140 	struct device *dev = &pdev->dev;
1141 	struct device_node *np = dev->of_node;
1142 	struct resource *res;
1143 	struct nxp_fspi *f;
1144 	int ret;
1145 	u32 reg;
1146 
1147 	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1148 	if (!ctlr)
1149 		return -ENOMEM;
1150 
1151 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1152 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1153 
1154 	f = spi_controller_get_devdata(ctlr);
1155 	f->dev = dev;
1156 	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1157 	if (!f->devtype_data) {
1158 		ret = -ENODEV;
1159 		goto err_put_ctrl;
1160 	}
1161 
1162 	platform_set_drvdata(pdev, f);
1163 
1164 	/* find the resources - configuration register address space */
1165 	if (is_acpi_node(dev_fwnode(f->dev)))
1166 		f->iobase = devm_platform_ioremap_resource(pdev, 0);
1167 	else
1168 		f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1169 
1170 	if (IS_ERR(f->iobase)) {
1171 		ret = PTR_ERR(f->iobase);
1172 		goto err_put_ctrl;
1173 	}
1174 
1175 	/* find the resources - controller memory mapped space */
1176 	if (is_acpi_node(dev_fwnode(f->dev)))
1177 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1178 	else
1179 		res = platform_get_resource_byname(pdev,
1180 				IORESOURCE_MEM, "fspi_mmap");
1181 
1182 	if (!res) {
1183 		ret = -ENODEV;
1184 		goto err_put_ctrl;
1185 	}
1186 
1187 	/* assign memory mapped starting address and mapped size. */
1188 	f->memmap_phy = res->start;
1189 	f->memmap_phy_size = resource_size(res);
1190 
1191 	/* find the clocks */
1192 	if (dev_of_node(&pdev->dev)) {
1193 		f->clk_en = devm_clk_get(dev, "fspi_en");
1194 		if (IS_ERR(f->clk_en)) {
1195 			ret = PTR_ERR(f->clk_en);
1196 			goto err_put_ctrl;
1197 		}
1198 
1199 		f->clk = devm_clk_get(dev, "fspi");
1200 		if (IS_ERR(f->clk)) {
1201 			ret = PTR_ERR(f->clk);
1202 			goto err_put_ctrl;
1203 		}
1204 
1205 		ret = nxp_fspi_clk_prep_enable(f);
1206 		if (ret) {
1207 			dev_err(dev, "can not enable the clock\n");
1208 			goto err_put_ctrl;
1209 		}
1210 	}
1211 
1212 	/* Clear potential interrupts */
1213 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1214 	if (reg)
1215 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1216 
1217 	/* find the irq */
1218 	ret = platform_get_irq(pdev, 0);
1219 	if (ret < 0)
1220 		goto err_disable_clk;
1221 
1222 	ret = devm_request_irq(dev, ret,
1223 			nxp_fspi_irq_handler, 0, pdev->name, f);
1224 	if (ret) {
1225 		dev_err(dev, "failed to request irq: %d\n", ret);
1226 		goto err_disable_clk;
1227 	}
1228 
1229 	mutex_init(&f->lock);
1230 
1231 	ctlr->bus_num = -1;
1232 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1233 	ctlr->mem_ops = &nxp_fspi_mem_ops;
1234 
1235 	nxp_fspi_default_setup(f);
1236 
1237 	ctlr->dev.of_node = np;
1238 
1239 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1240 	if (ret)
1241 		goto err_destroy_mutex;
1242 
1243 	return 0;
1244 
1245 err_destroy_mutex:
1246 	mutex_destroy(&f->lock);
1247 
1248 err_disable_clk:
1249 	nxp_fspi_clk_disable_unprep(f);
1250 
1251 err_put_ctrl:
1252 	spi_controller_put(ctlr);
1253 
1254 	dev_err(dev, "NXP FSPI probe failed\n");
1255 	return ret;
1256 }
1257 
1258 static void nxp_fspi_remove(struct platform_device *pdev)
1259 {
1260 	struct nxp_fspi *f = platform_get_drvdata(pdev);
1261 
1262 	/* disable the hardware */
1263 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1264 
1265 	nxp_fspi_clk_disable_unprep(f);
1266 
1267 	mutex_destroy(&f->lock);
1268 
1269 	if (f->ahb_addr)
1270 		iounmap(f->ahb_addr);
1271 }
1272 
1273 static int nxp_fspi_suspend(struct device *dev)
1274 {
1275 	return 0;
1276 }
1277 
1278 static int nxp_fspi_resume(struct device *dev)
1279 {
1280 	struct nxp_fspi *f = dev_get_drvdata(dev);
1281 
1282 	nxp_fspi_default_setup(f);
1283 
1284 	return 0;
1285 }
1286 
1287 static const struct of_device_id nxp_fspi_dt_ids[] = {
1288 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1289 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1290 	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1291 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1292 	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1293 	{ /* sentinel */ }
1294 };
1295 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1296 
1297 #ifdef CONFIG_ACPI
1298 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1299 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1300 	{}
1301 };
1302 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1303 #endif
1304 
1305 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1306 	.suspend	= nxp_fspi_suspend,
1307 	.resume		= nxp_fspi_resume,
1308 };
1309 
1310 static struct platform_driver nxp_fspi_driver = {
1311 	.driver = {
1312 		.name	= "nxp-fspi",
1313 		.of_match_table = nxp_fspi_dt_ids,
1314 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1315 		.pm =   &nxp_fspi_pm_ops,
1316 	},
1317 	.probe          = nxp_fspi_probe,
1318 	.remove_new	= nxp_fspi_remove,
1319 };
1320 module_platform_driver(nxp_fspi_driver);
1321 
1322 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1323 MODULE_AUTHOR("NXP Semiconductor");
1324 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1325 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1326 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1327 MODULE_LICENSE("GPL v2");
1328