1 // SPDX-License-Identifier: GPL-2.0+ 2 3 /* 4 * NXP FlexSPI(FSPI) controller driver. 5 * 6 * Copyright 2019-2020 NXP 7 * Copyright 2020 Puresoftware Ltd. 8 * 9 * FlexSPI is a flexsible SPI host controller which supports two SPI 10 * channels and up to 4 external devices. Each channel supports 11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional 12 * data lines). 13 * 14 * FlexSPI controller is driven by the LUT(Look-up Table) registers 15 * LUT registers are a look-up-table for sequences of instructions. 16 * A valid sequence consists of four LUT registers. 17 * Maximum 32 LUT sequences can be programmed simultaneously. 18 * 19 * LUTs are being created at run-time based on the commands passed 20 * from the spi-mem framework, thus using single LUT index. 21 * 22 * Software triggered Flash read/write access by IP Bus. 23 * 24 * Memory mapped read access by AHB Bus. 25 * 26 * Based on SPI MEM interface and spi-fsl-qspi.c driver. 27 * 28 * Author: 29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> 30 * Boris Brezillon <bbrezillon@kernel.org> 31 * Frieder Schrempf <frieder.schrempf@kontron.de> 32 */ 33 34 #include <linux/acpi.h> 35 #include <linux/bitops.h> 36 #include <linux/clk.h> 37 #include <linux/completion.h> 38 #include <linux/delay.h> 39 #include <linux/err.h> 40 #include <linux/errno.h> 41 #include <linux/interrupt.h> 42 #include <linux/io.h> 43 #include <linux/iopoll.h> 44 #include <linux/jiffies.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/mutex.h> 48 #include <linux/of.h> 49 #include <linux/of_device.h> 50 #include <linux/platform_device.h> 51 #include <linux/pm_qos.h> 52 #include <linux/sizes.h> 53 54 #include <linux/spi/spi.h> 55 #include <linux/spi/spi-mem.h> 56 57 /* 58 * The driver only uses one single LUT entry, that is updated on 59 * each call of exec_op(). Index 0 is preset at boot with a basic 60 * read operation, so let's use the last entry (31). 61 */ 62 #define SEQID_LUT 31 63 64 /* Registers used by the driver */ 65 #define FSPI_MCR0 0x00 66 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) 67 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) 68 #define FSPI_MCR0_LEARN_EN BIT(15) 69 #define FSPI_MCR0_SCRFRUN_EN BIT(14) 70 #define FSPI_MCR0_OCTCOMB_EN BIT(13) 71 #define FSPI_MCR0_DOZE_EN BIT(12) 72 #define FSPI_MCR0_HSEN BIT(11) 73 #define FSPI_MCR0_SERCLKDIV BIT(8) 74 #define FSPI_MCR0_ATDF_EN BIT(7) 75 #define FSPI_MCR0_ARDF_EN BIT(6) 76 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) 77 #define FSPI_MCR0_END_CFG(x) ((x) << 2) 78 #define FSPI_MCR0_MDIS BIT(1) 79 #define FSPI_MCR0_SWRST BIT(0) 80 81 #define FSPI_MCR1 0x04 82 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) 83 #define FSPI_MCR1_AHB_TIMEOUT(x) (x) 84 85 #define FSPI_MCR2 0x08 86 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) 87 #define FSPI_MCR2_SAMEDEVICEEN BIT(15) 88 #define FSPI_MCR2_CLRLRPHS BIT(14) 89 #define FSPI_MCR2_ABRDATSZ BIT(8) 90 #define FSPI_MCR2_ABRLEARN BIT(7) 91 #define FSPI_MCR2_ABR_READ BIT(6) 92 #define FSPI_MCR2_ABRWRITE BIT(5) 93 #define FSPI_MCR2_ABRDUMMY BIT(4) 94 #define FSPI_MCR2_ABR_MODE BIT(3) 95 #define FSPI_MCR2_ABRCADDR BIT(2) 96 #define FSPI_MCR2_ABRRADDR BIT(1) 97 #define FSPI_MCR2_ABR_CMD BIT(0) 98 99 #define FSPI_AHBCR 0x0c 100 #define FSPI_AHBCR_RDADDROPT BIT(6) 101 #define FSPI_AHBCR_PREF_EN BIT(5) 102 #define FSPI_AHBCR_BUFF_EN BIT(4) 103 #define FSPI_AHBCR_CACH_EN BIT(3) 104 #define FSPI_AHBCR_CLRTXBUF BIT(2) 105 #define FSPI_AHBCR_CLRRXBUF BIT(1) 106 #define FSPI_AHBCR_PAR_EN BIT(0) 107 108 #define FSPI_INTEN 0x10 109 #define FSPI_INTEN_SCLKSBWR BIT(9) 110 #define FSPI_INTEN_SCLKSBRD BIT(8) 111 #define FSPI_INTEN_DATALRNFL BIT(7) 112 #define FSPI_INTEN_IPTXWE BIT(6) 113 #define FSPI_INTEN_IPRXWA BIT(5) 114 #define FSPI_INTEN_AHBCMDERR BIT(4) 115 #define FSPI_INTEN_IPCMDERR BIT(3) 116 #define FSPI_INTEN_AHBCMDGE BIT(2) 117 #define FSPI_INTEN_IPCMDGE BIT(1) 118 #define FSPI_INTEN_IPCMDDONE BIT(0) 119 120 #define FSPI_INTR 0x14 121 #define FSPI_INTR_SCLKSBWR BIT(9) 122 #define FSPI_INTR_SCLKSBRD BIT(8) 123 #define FSPI_INTR_DATALRNFL BIT(7) 124 #define FSPI_INTR_IPTXWE BIT(6) 125 #define FSPI_INTR_IPRXWA BIT(5) 126 #define FSPI_INTR_AHBCMDERR BIT(4) 127 #define FSPI_INTR_IPCMDERR BIT(3) 128 #define FSPI_INTR_AHBCMDGE BIT(2) 129 #define FSPI_INTR_IPCMDGE BIT(1) 130 #define FSPI_INTR_IPCMDDONE BIT(0) 131 132 #define FSPI_LUTKEY 0x18 133 #define FSPI_LUTKEY_VALUE 0x5AF05AF0 134 135 #define FSPI_LCKCR 0x1C 136 137 #define FSPI_LCKER_LOCK 0x1 138 #define FSPI_LCKER_UNLOCK 0x2 139 140 #define FSPI_BUFXCR_INVALID_MSTRID 0xE 141 #define FSPI_AHBRX_BUF0CR0 0x20 142 #define FSPI_AHBRX_BUF1CR0 0x24 143 #define FSPI_AHBRX_BUF2CR0 0x28 144 #define FSPI_AHBRX_BUF3CR0 0x2C 145 #define FSPI_AHBRX_BUF4CR0 0x30 146 #define FSPI_AHBRX_BUF5CR0 0x34 147 #define FSPI_AHBRX_BUF6CR0 0x38 148 #define FSPI_AHBRX_BUF7CR0 0x3C 149 #define FSPI_AHBRXBUF0CR7_PREF BIT(31) 150 151 #define FSPI_AHBRX_BUF0CR1 0x40 152 #define FSPI_AHBRX_BUF1CR1 0x44 153 #define FSPI_AHBRX_BUF2CR1 0x48 154 #define FSPI_AHBRX_BUF3CR1 0x4C 155 #define FSPI_AHBRX_BUF4CR1 0x50 156 #define FSPI_AHBRX_BUF5CR1 0x54 157 #define FSPI_AHBRX_BUF6CR1 0x58 158 #define FSPI_AHBRX_BUF7CR1 0x5C 159 160 #define FSPI_FLSHA1CR0 0x60 161 #define FSPI_FLSHA2CR0 0x64 162 #define FSPI_FLSHB1CR0 0x68 163 #define FSPI_FLSHB2CR0 0x6C 164 #define FSPI_FLSHXCR0_SZ_KB 10 165 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) 166 167 #define FSPI_FLSHA1CR1 0x70 168 #define FSPI_FLSHA2CR1 0x74 169 #define FSPI_FLSHB1CR1 0x78 170 #define FSPI_FLSHB2CR1 0x7C 171 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) 172 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) 173 #define FSPI_FLSHXCR1_WA BIT(10) 174 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) 175 #define FSPI_FLSHXCR1_TCSS(x) (x) 176 177 #define FSPI_FLSHA1CR2 0x80 178 #define FSPI_FLSHA2CR2 0x84 179 #define FSPI_FLSHB1CR2 0x88 180 #define FSPI_FLSHB2CR2 0x8C 181 #define FSPI_FLSHXCR2_CLRINSP BIT(24) 182 #define FSPI_FLSHXCR2_AWRWAIT BIT(16) 183 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 184 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 185 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 186 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 187 188 #define FSPI_IPCR0 0xA0 189 190 #define FSPI_IPCR1 0xA4 191 #define FSPI_IPCR1_IPAREN BIT(31) 192 #define FSPI_IPCR1_SEQNUM_SHIFT 24 193 #define FSPI_IPCR1_SEQID_SHIFT 16 194 #define FSPI_IPCR1_IDATSZ(x) (x) 195 196 #define FSPI_IPCMD 0xB0 197 #define FSPI_IPCMD_TRG BIT(0) 198 199 #define FSPI_DLPR 0xB4 200 201 #define FSPI_IPRXFCR 0xB8 202 #define FSPI_IPRXFCR_CLR BIT(0) 203 #define FSPI_IPRXFCR_DMA_EN BIT(1) 204 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) 205 206 #define FSPI_IPTXFCR 0xBC 207 #define FSPI_IPTXFCR_CLR BIT(0) 208 #define FSPI_IPTXFCR_DMA_EN BIT(1) 209 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) 210 211 #define FSPI_DLLACR 0xC0 212 #define FSPI_DLLACR_OVRDEN BIT(8) 213 214 #define FSPI_DLLBCR 0xC4 215 #define FSPI_DLLBCR_OVRDEN BIT(8) 216 217 #define FSPI_STS0 0xE0 218 #define FSPI_STS0_DLPHB(x) ((x) << 8) 219 #define FSPI_STS0_DLPHA(x) ((x) << 4) 220 #define FSPI_STS0_CMD_SRC(x) ((x) << 2) 221 #define FSPI_STS0_ARB_IDLE BIT(1) 222 #define FSPI_STS0_SEQ_IDLE BIT(0) 223 224 #define FSPI_STS1 0xE4 225 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) 226 #define FSPI_STS1_IP_ERRID(x) ((x) << 16) 227 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) 228 #define FSPI_STS1_AHB_ERRID(x) (x) 229 230 #define FSPI_AHBSPNST 0xEC 231 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) 232 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) 233 #define FSPI_AHBSPNST_ACTIVE BIT(0) 234 235 #define FSPI_IPRXFSTS 0xF0 236 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) 237 #define FSPI_IPRXFSTS_FILL(x) (x) 238 239 #define FSPI_IPTXFSTS 0xF4 240 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) 241 #define FSPI_IPTXFSTS_FILL(x) (x) 242 243 #define FSPI_RFDR 0x100 244 #define FSPI_TFDR 0x180 245 246 #define FSPI_LUT_BASE 0x200 247 #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) 248 #define FSPI_LUT_REG(idx) \ 249 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) 250 251 /* register map end */ 252 253 /* Instruction set for the LUT register. */ 254 #define LUT_STOP 0x00 255 #define LUT_CMD 0x01 256 #define LUT_ADDR 0x02 257 #define LUT_CADDR_SDR 0x03 258 #define LUT_MODE 0x04 259 #define LUT_MODE2 0x05 260 #define LUT_MODE4 0x06 261 #define LUT_MODE8 0x07 262 #define LUT_NXP_WRITE 0x08 263 #define LUT_NXP_READ 0x09 264 #define LUT_LEARN_SDR 0x0A 265 #define LUT_DATSZ_SDR 0x0B 266 #define LUT_DUMMY 0x0C 267 #define LUT_DUMMY_RWDS_SDR 0x0D 268 #define LUT_JMP_ON_CS 0x1F 269 #define LUT_CMD_DDR 0x21 270 #define LUT_ADDR_DDR 0x22 271 #define LUT_CADDR_DDR 0x23 272 #define LUT_MODE_DDR 0x24 273 #define LUT_MODE2_DDR 0x25 274 #define LUT_MODE4_DDR 0x26 275 #define LUT_MODE8_DDR 0x27 276 #define LUT_WRITE_DDR 0x28 277 #define LUT_READ_DDR 0x29 278 #define LUT_LEARN_DDR 0x2A 279 #define LUT_DATSZ_DDR 0x2B 280 #define LUT_DUMMY_DDR 0x2C 281 #define LUT_DUMMY_RWDS_DDR 0x2D 282 283 /* 284 * Calculate number of required PAD bits for LUT register. 285 * 286 * The pad stands for the number of IO lines [0:7]. 287 * For example, the octal read needs eight IO lines, 288 * so you should use LUT_PAD(8). This macro 289 * returns 3 i.e. use eight (2^3) IP lines for read. 290 */ 291 #define LUT_PAD(x) (fls(x) - 1) 292 293 /* 294 * Macro for constructing the LUT entries with the following 295 * register layout: 296 * 297 * --------------------------------------------------- 298 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | 299 * --------------------------------------------------- 300 */ 301 #define PAD_SHIFT 8 302 #define INSTR_SHIFT 10 303 #define OPRND_SHIFT 16 304 305 /* Macros for constructing the LUT register. */ 306 #define LUT_DEF(idx, ins, pad, opr) \ 307 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ 308 (opr)) << (((idx) % 2) * OPRND_SHIFT)) 309 310 #define POLL_TOUT 5000 311 #define NXP_FSPI_MAX_CHIPSELECT 4 312 #define NXP_FSPI_MIN_IOMAP SZ_4M 313 314 struct nxp_fspi_devtype_data { 315 unsigned int rxfifo; 316 unsigned int txfifo; 317 unsigned int ahb_buf_size; 318 unsigned int quirks; 319 bool little_endian; 320 }; 321 322 static const struct nxp_fspi_devtype_data lx2160a_data = { 323 .rxfifo = SZ_512, /* (64 * 64 bits) */ 324 .txfifo = SZ_1K, /* (128 * 64 bits) */ 325 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 326 .quirks = 0, 327 .little_endian = true, /* little-endian */ 328 }; 329 330 static const struct nxp_fspi_devtype_data imx8mm_data = { 331 .rxfifo = SZ_512, /* (64 * 64 bits) */ 332 .txfifo = SZ_1K, /* (128 * 64 bits) */ 333 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 334 .quirks = 0, 335 .little_endian = true, /* little-endian */ 336 }; 337 338 static const struct nxp_fspi_devtype_data imx8qxp_data = { 339 .rxfifo = SZ_512, /* (64 * 64 bits) */ 340 .txfifo = SZ_1K, /* (128 * 64 bits) */ 341 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 342 .quirks = 0, 343 .little_endian = true, /* little-endian */ 344 }; 345 346 struct nxp_fspi { 347 void __iomem *iobase; 348 void __iomem *ahb_addr; 349 u32 memmap_phy; 350 u32 memmap_phy_size; 351 u32 memmap_start; 352 u32 memmap_len; 353 struct clk *clk, *clk_en; 354 struct device *dev; 355 struct completion c; 356 const struct nxp_fspi_devtype_data *devtype_data; 357 struct mutex lock; 358 struct pm_qos_request pm_qos_req; 359 int selected; 360 }; 361 362 /* 363 * R/W functions for big- or little-endian registers: 364 * The FSPI controller's endianness is independent of 365 * the CPU core's endianness. So far, although the CPU 366 * core is little-endian the FSPI controller can use 367 * big-endian or little-endian. 368 */ 369 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) 370 { 371 if (f->devtype_data->little_endian) 372 iowrite32(val, addr); 373 else 374 iowrite32be(val, addr); 375 } 376 377 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) 378 { 379 if (f->devtype_data->little_endian) 380 return ioread32(addr); 381 else 382 return ioread32be(addr); 383 } 384 385 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) 386 { 387 struct nxp_fspi *f = dev_id; 388 u32 reg; 389 390 /* clear interrupt */ 391 reg = fspi_readl(f, f->iobase + FSPI_INTR); 392 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); 393 394 if (reg & FSPI_INTR_IPCMDDONE) 395 complete(&f->c); 396 397 return IRQ_HANDLED; 398 } 399 400 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) 401 { 402 switch (width) { 403 case 1: 404 case 2: 405 case 4: 406 case 8: 407 return 0; 408 } 409 410 return -ENOTSUPP; 411 } 412 413 static bool nxp_fspi_supports_op(struct spi_mem *mem, 414 const struct spi_mem_op *op) 415 { 416 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 417 int ret; 418 419 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); 420 421 if (op->addr.nbytes) 422 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); 423 424 if (op->dummy.nbytes) 425 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); 426 427 if (op->data.nbytes) 428 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); 429 430 if (ret) 431 return false; 432 433 /* 434 * The number of address bytes should be equal to or less than 4 bytes. 435 */ 436 if (op->addr.nbytes > 4) 437 return false; 438 439 /* 440 * If requested address value is greater than controller assigned 441 * memory mapped space, return error as it didn't fit in the range 442 * of assigned address space. 443 */ 444 if (op->addr.val >= f->memmap_phy_size) 445 return false; 446 447 /* Max 64 dummy clock cycles supported */ 448 if (op->dummy.buswidth && 449 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) 450 return false; 451 452 /* Max data length, check controller limits and alignment */ 453 if (op->data.dir == SPI_MEM_DATA_IN && 454 (op->data.nbytes > f->devtype_data->ahb_buf_size || 455 (op->data.nbytes > f->devtype_data->rxfifo - 4 && 456 !IS_ALIGNED(op->data.nbytes, 8)))) 457 return false; 458 459 if (op->data.dir == SPI_MEM_DATA_OUT && 460 op->data.nbytes > f->devtype_data->txfifo) 461 return false; 462 463 return spi_mem_default_supports_op(mem, op); 464 } 465 466 /* Instead of busy looping invoke readl_poll_timeout functionality. */ 467 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, 468 u32 mask, u32 delay_us, 469 u32 timeout_us, bool c) 470 { 471 u32 reg; 472 473 if (!f->devtype_data->little_endian) 474 mask = (u32)cpu_to_be32(mask); 475 476 if (c) 477 return readl_poll_timeout(base, reg, (reg & mask), 478 delay_us, timeout_us); 479 else 480 return readl_poll_timeout(base, reg, !(reg & mask), 481 delay_us, timeout_us); 482 } 483 484 /* 485 * If the slave device content being changed by Write/Erase, need to 486 * invalidate the AHB buffer. This can be achieved by doing the reset 487 * of controller after setting MCR0[SWRESET] bit. 488 */ 489 static inline void nxp_fspi_invalid(struct nxp_fspi *f) 490 { 491 u32 reg; 492 int ret; 493 494 reg = fspi_readl(f, f->iobase + FSPI_MCR0); 495 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); 496 497 /* w1c register, wait unit clear */ 498 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 499 FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 500 WARN_ON(ret); 501 } 502 503 static void nxp_fspi_prepare_lut(struct nxp_fspi *f, 504 const struct spi_mem_op *op) 505 { 506 void __iomem *base = f->iobase; 507 u32 lutval[4] = {}; 508 int lutidx = 1, i; 509 510 /* cmd */ 511 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), 512 op->cmd.opcode); 513 514 /* addr bytes */ 515 if (op->addr.nbytes) { 516 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, 517 LUT_PAD(op->addr.buswidth), 518 op->addr.nbytes * 8); 519 lutidx++; 520 } 521 522 /* dummy bytes, if needed */ 523 if (op->dummy.nbytes) { 524 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, 525 /* 526 * Due to FlexSPI controller limitation number of PAD for dummy 527 * buswidth needs to be programmed as equal to data buswidth. 528 */ 529 LUT_PAD(op->data.buswidth), 530 op->dummy.nbytes * 8 / 531 op->dummy.buswidth); 532 lutidx++; 533 } 534 535 /* read/write data bytes */ 536 if (op->data.nbytes) { 537 lutval[lutidx / 2] |= LUT_DEF(lutidx, 538 op->data.dir == SPI_MEM_DATA_IN ? 539 LUT_NXP_READ : LUT_NXP_WRITE, 540 LUT_PAD(op->data.buswidth), 541 0); 542 lutidx++; 543 } 544 545 /* stop condition. */ 546 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); 547 548 /* unlock LUT */ 549 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 550 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); 551 552 /* fill LUT */ 553 for (i = 0; i < ARRAY_SIZE(lutval); i++) 554 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); 555 556 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", 557 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); 558 559 /* lock LUT */ 560 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 561 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); 562 } 563 564 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) 565 { 566 int ret; 567 568 if (is_acpi_node(f->dev->fwnode)) 569 return 0; 570 571 ret = clk_prepare_enable(f->clk_en); 572 if (ret) 573 return ret; 574 575 ret = clk_prepare_enable(f->clk); 576 if (ret) { 577 clk_disable_unprepare(f->clk_en); 578 return ret; 579 } 580 581 return 0; 582 } 583 584 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) 585 { 586 if (is_acpi_node(f->dev->fwnode)) 587 return 0; 588 589 clk_disable_unprepare(f->clk); 590 clk_disable_unprepare(f->clk_en); 591 592 return 0; 593 } 594 595 /* 596 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 597 * register and start base address of the slave device. 598 * 599 * (Higher address) 600 * -------- <-- FLSHB2CR0 601 * | B2 | 602 * | | 603 * B2 start address --> -------- <-- FLSHB1CR0 604 * | B1 | 605 * | | 606 * B1 start address --> -------- <-- FLSHA2CR0 607 * | A2 | 608 * | | 609 * A2 start address --> -------- <-- FLSHA1CR0 610 * | A1 | 611 * | | 612 * A1 start address --> -------- (Lower address) 613 * 614 * 615 * Start base address defines the starting address range for given CS and 616 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. 617 * 618 * But, different targets are having different combinations of number of CS, 619 * some targets only have single CS or two CS covering controller's full 620 * memory mapped space area. 621 * Thus, implementation is being done as independent of the size and number 622 * of the connected slave device. 623 * Assign controller memory mapped space size as the size to the connected 624 * slave device. 625 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected 626 * chip-select Flash configuration register. 627 * 628 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the 629 * memory mapped size of the controller. 630 * Value for rest of the CS FLSHxxCR0 register would be zero. 631 * 632 */ 633 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) 634 { 635 unsigned long rate = spi->max_speed_hz; 636 int ret; 637 uint64_t size_kb; 638 639 /* 640 * Return, if previously selected slave device is same as current 641 * requested slave device. 642 */ 643 if (f->selected == spi->chip_select) 644 return; 645 646 /* Reset FLSHxxCR0 registers */ 647 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); 648 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); 649 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); 650 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); 651 652 /* Assign controller memory mapped space as size, KBytes, of flash. */ 653 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); 654 655 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + 656 4 * spi->chip_select); 657 658 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select); 659 660 nxp_fspi_clk_disable_unprep(f); 661 662 ret = clk_set_rate(f->clk, rate); 663 if (ret) 664 return; 665 666 ret = nxp_fspi_clk_prep_enable(f); 667 if (ret) 668 return; 669 670 f->selected = spi->chip_select; 671 } 672 673 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) 674 { 675 u32 start = op->addr.val; 676 u32 len = op->data.nbytes; 677 678 /* if necessary, ioremap before AHB read */ 679 if ((!f->ahb_addr) || start < f->memmap_start || 680 start + len > f->memmap_start + f->memmap_len) { 681 if (f->ahb_addr) 682 iounmap(f->ahb_addr); 683 684 f->memmap_start = start; 685 f->memmap_len = len > NXP_FSPI_MIN_IOMAP ? 686 len : NXP_FSPI_MIN_IOMAP; 687 688 f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start, 689 f->memmap_len); 690 691 if (!f->ahb_addr) { 692 dev_err(f->dev, "failed to alloc memory\n"); 693 return -ENOMEM; 694 } 695 } 696 697 /* Read out the data directly from the AHB buffer. */ 698 memcpy_fromio(op->data.buf.in, 699 f->ahb_addr + start - f->memmap_start, len); 700 701 return 0; 702 } 703 704 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, 705 const struct spi_mem_op *op) 706 { 707 void __iomem *base = f->iobase; 708 int i, ret; 709 u8 *buf = (u8 *) op->data.buf.out; 710 711 /* clear the TX FIFO. */ 712 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); 713 714 /* 715 * Default value of water mark level is 8 bytes, hence in single 716 * write request controller can write max 8 bytes of data. 717 */ 718 719 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { 720 /* Wait for TXFIFO empty */ 721 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 722 FSPI_INTR_IPTXWE, 0, 723 POLL_TOUT, true); 724 WARN_ON(ret); 725 726 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); 727 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); 728 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 729 } 730 731 if (i < op->data.nbytes) { 732 u32 data = 0; 733 int j; 734 /* Wait for TXFIFO empty */ 735 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 736 FSPI_INTR_IPTXWE, 0, 737 POLL_TOUT, true); 738 WARN_ON(ret); 739 740 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { 741 memcpy(&data, buf + i + j, 4); 742 fspi_writel(f, data, base + FSPI_TFDR + j); 743 } 744 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 745 } 746 } 747 748 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, 749 const struct spi_mem_op *op) 750 { 751 void __iomem *base = f->iobase; 752 int i, ret; 753 int len = op->data.nbytes; 754 u8 *buf = (u8 *) op->data.buf.in; 755 756 /* 757 * Default value of water mark level is 8 bytes, hence in single 758 * read request controller can read max 8 bytes of data. 759 */ 760 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { 761 /* Wait for RXFIFO available */ 762 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 763 FSPI_INTR_IPRXWA, 0, 764 POLL_TOUT, true); 765 WARN_ON(ret); 766 767 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); 768 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); 769 /* move the FIFO pointer */ 770 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 771 } 772 773 if (i < len) { 774 u32 tmp; 775 int size, j; 776 777 buf = op->data.buf.in + i; 778 /* Wait for RXFIFO available */ 779 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 780 FSPI_INTR_IPRXWA, 0, 781 POLL_TOUT, true); 782 WARN_ON(ret); 783 784 len = op->data.nbytes - i; 785 for (j = 0; j < op->data.nbytes - i; j += 4) { 786 tmp = fspi_readl(f, base + FSPI_RFDR + j); 787 size = min(len, 4); 788 memcpy(buf + j, &tmp, size); 789 len -= size; 790 } 791 } 792 793 /* invalid the RXFIFO */ 794 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); 795 /* move the FIFO pointer */ 796 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 797 } 798 799 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) 800 { 801 void __iomem *base = f->iobase; 802 int seqnum = 0; 803 int err = 0; 804 u32 reg; 805 806 reg = fspi_readl(f, base + FSPI_IPRXFCR); 807 /* invalid RXFIFO first */ 808 reg &= ~FSPI_IPRXFCR_DMA_EN; 809 reg = reg | FSPI_IPRXFCR_CLR; 810 fspi_writel(f, reg, base + FSPI_IPRXFCR); 811 812 init_completion(&f->c); 813 814 fspi_writel(f, op->addr.val, base + FSPI_IPCR0); 815 /* 816 * Always start the sequence at the same index since we update 817 * the LUT at each exec_op() call. And also specify the DATA 818 * length, since it's has not been specified in the LUT. 819 */ 820 fspi_writel(f, op->data.nbytes | 821 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | 822 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), 823 base + FSPI_IPCR1); 824 825 /* Trigger the LUT now. */ 826 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); 827 828 /* Wait for the interrupt. */ 829 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) 830 err = -ETIMEDOUT; 831 832 /* Invoke IP data read, if request is of data read. */ 833 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) 834 nxp_fspi_read_rxfifo(f, op); 835 836 return err; 837 } 838 839 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 840 { 841 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 842 int err = 0; 843 844 mutex_lock(&f->lock); 845 846 /* Wait for controller being ready. */ 847 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, 848 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); 849 WARN_ON(err); 850 851 nxp_fspi_select_mem(f, mem->spi); 852 853 nxp_fspi_prepare_lut(f, op); 854 /* 855 * If we have large chunks of data, we read them through the AHB bus 856 * by accessing the mapped memory. In all other cases we use 857 * IP commands to access the flash. 858 */ 859 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && 860 op->data.dir == SPI_MEM_DATA_IN) { 861 err = nxp_fspi_read_ahb(f, op); 862 } else { 863 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) 864 nxp_fspi_fill_txfifo(f, op); 865 866 err = nxp_fspi_do_op(f, op); 867 } 868 869 /* Invalidate the data in the AHB buffer. */ 870 nxp_fspi_invalid(f); 871 872 mutex_unlock(&f->lock); 873 874 return err; 875 } 876 877 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 878 { 879 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 880 881 if (op->data.dir == SPI_MEM_DATA_OUT) { 882 if (op->data.nbytes > f->devtype_data->txfifo) 883 op->data.nbytes = f->devtype_data->txfifo; 884 } else { 885 if (op->data.nbytes > f->devtype_data->ahb_buf_size) 886 op->data.nbytes = f->devtype_data->ahb_buf_size; 887 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) 888 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); 889 } 890 891 return 0; 892 } 893 894 static int nxp_fspi_default_setup(struct nxp_fspi *f) 895 { 896 void __iomem *base = f->iobase; 897 int ret, i; 898 u32 reg; 899 900 /* disable and unprepare clock to avoid glitch pass to controller */ 901 nxp_fspi_clk_disable_unprep(f); 902 903 /* the default frequency, we will change it later if necessary. */ 904 ret = clk_set_rate(f->clk, 20000000); 905 if (ret) 906 return ret; 907 908 ret = nxp_fspi_clk_prep_enable(f); 909 if (ret) 910 return ret; 911 912 /* Reset the module */ 913 /* w1c register, wait unit clear */ 914 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 915 FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 916 WARN_ON(ret); 917 918 /* Disable the module */ 919 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); 920 921 /* Reset the DLL register to default value */ 922 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); 923 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); 924 925 /* enable module */ 926 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | 927 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, 928 base + FSPI_MCR0); 929 930 /* 931 * Disable same device enable bit and configure all slave devices 932 * independently. 933 */ 934 reg = fspi_readl(f, f->iobase + FSPI_MCR2); 935 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); 936 fspi_writel(f, reg, base + FSPI_MCR2); 937 938 /* AHB configuration for access buffer 0~7. */ 939 for (i = 0; i < 7; i++) 940 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); 941 942 /* 943 * Set ADATSZ with the maximum AHB buffer size to improve the read 944 * performance. 945 */ 946 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | 947 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); 948 949 /* prefetch and no start address alignment limitation */ 950 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, 951 base + FSPI_AHBCR); 952 953 /* AHB Read - Set lut sequence ID for all CS. */ 954 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); 955 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); 956 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); 957 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); 958 959 f->selected = -1; 960 961 /* enable the interrupt */ 962 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); 963 964 return 0; 965 } 966 967 static const char *nxp_fspi_get_name(struct spi_mem *mem) 968 { 969 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 970 struct device *dev = &mem->spi->dev; 971 const char *name; 972 973 // Set custom name derived from the platform_device of the controller. 974 if (of_get_available_child_count(f->dev->of_node) == 1) 975 return dev_name(f->dev); 976 977 name = devm_kasprintf(dev, GFP_KERNEL, 978 "%s-%d", dev_name(f->dev), 979 mem->spi->chip_select); 980 981 if (!name) { 982 dev_err(dev, "failed to get memory for custom flash name\n"); 983 return ERR_PTR(-ENOMEM); 984 } 985 986 return name; 987 } 988 989 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { 990 .adjust_op_size = nxp_fspi_adjust_op_size, 991 .supports_op = nxp_fspi_supports_op, 992 .exec_op = nxp_fspi_exec_op, 993 .get_name = nxp_fspi_get_name, 994 }; 995 996 static int nxp_fspi_probe(struct platform_device *pdev) 997 { 998 struct spi_controller *ctlr; 999 struct device *dev = &pdev->dev; 1000 struct device_node *np = dev->of_node; 1001 struct resource *res; 1002 struct nxp_fspi *f; 1003 int ret; 1004 1005 ctlr = spi_alloc_master(&pdev->dev, sizeof(*f)); 1006 if (!ctlr) 1007 return -ENOMEM; 1008 1009 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | 1010 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; 1011 1012 f = spi_controller_get_devdata(ctlr); 1013 f->dev = dev; 1014 f->devtype_data = device_get_match_data(dev); 1015 if (!f->devtype_data) { 1016 ret = -ENODEV; 1017 goto err_put_ctrl; 1018 } 1019 1020 platform_set_drvdata(pdev, f); 1021 1022 /* find the resources - configuration register address space */ 1023 if (is_acpi_node(f->dev->fwnode)) 1024 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1025 else 1026 res = platform_get_resource_byname(pdev, 1027 IORESOURCE_MEM, "fspi_base"); 1028 1029 f->iobase = devm_ioremap_resource(dev, res); 1030 if (IS_ERR(f->iobase)) { 1031 ret = PTR_ERR(f->iobase); 1032 goto err_put_ctrl; 1033 } 1034 1035 /* find the resources - controller memory mapped space */ 1036 if (is_acpi_node(f->dev->fwnode)) 1037 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1038 else 1039 res = platform_get_resource_byname(pdev, 1040 IORESOURCE_MEM, "fspi_mmap"); 1041 1042 if (!res) { 1043 ret = -ENODEV; 1044 goto err_put_ctrl; 1045 } 1046 1047 /* assign memory mapped starting address and mapped size. */ 1048 f->memmap_phy = res->start; 1049 f->memmap_phy_size = resource_size(res); 1050 1051 /* find the clocks */ 1052 if (dev_of_node(&pdev->dev)) { 1053 f->clk_en = devm_clk_get(dev, "fspi_en"); 1054 if (IS_ERR(f->clk_en)) { 1055 ret = PTR_ERR(f->clk_en); 1056 goto err_put_ctrl; 1057 } 1058 1059 f->clk = devm_clk_get(dev, "fspi"); 1060 if (IS_ERR(f->clk)) { 1061 ret = PTR_ERR(f->clk); 1062 goto err_put_ctrl; 1063 } 1064 1065 ret = nxp_fspi_clk_prep_enable(f); 1066 if (ret) { 1067 dev_err(dev, "can not enable the clock\n"); 1068 goto err_put_ctrl; 1069 } 1070 } 1071 1072 /* find the irq */ 1073 ret = platform_get_irq(pdev, 0); 1074 if (ret < 0) 1075 goto err_disable_clk; 1076 1077 ret = devm_request_irq(dev, ret, 1078 nxp_fspi_irq_handler, 0, pdev->name, f); 1079 if (ret) { 1080 dev_err(dev, "failed to request irq: %d\n", ret); 1081 goto err_disable_clk; 1082 } 1083 1084 mutex_init(&f->lock); 1085 1086 ctlr->bus_num = -1; 1087 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; 1088 ctlr->mem_ops = &nxp_fspi_mem_ops; 1089 1090 nxp_fspi_default_setup(f); 1091 1092 ctlr->dev.of_node = np; 1093 1094 ret = devm_spi_register_controller(&pdev->dev, ctlr); 1095 if (ret) 1096 goto err_destroy_mutex; 1097 1098 return 0; 1099 1100 err_destroy_mutex: 1101 mutex_destroy(&f->lock); 1102 1103 err_disable_clk: 1104 nxp_fspi_clk_disable_unprep(f); 1105 1106 err_put_ctrl: 1107 spi_controller_put(ctlr); 1108 1109 dev_err(dev, "NXP FSPI probe failed\n"); 1110 return ret; 1111 } 1112 1113 static int nxp_fspi_remove(struct platform_device *pdev) 1114 { 1115 struct nxp_fspi *f = platform_get_drvdata(pdev); 1116 1117 /* disable the hardware */ 1118 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); 1119 1120 nxp_fspi_clk_disable_unprep(f); 1121 1122 mutex_destroy(&f->lock); 1123 1124 if (f->ahb_addr) 1125 iounmap(f->ahb_addr); 1126 1127 return 0; 1128 } 1129 1130 static int nxp_fspi_suspend(struct device *dev) 1131 { 1132 return 0; 1133 } 1134 1135 static int nxp_fspi_resume(struct device *dev) 1136 { 1137 struct nxp_fspi *f = dev_get_drvdata(dev); 1138 1139 nxp_fspi_default_setup(f); 1140 1141 return 0; 1142 } 1143 1144 static const struct of_device_id nxp_fspi_dt_ids[] = { 1145 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, 1146 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, }, 1147 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, }, 1148 { /* sentinel */ } 1149 }; 1150 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); 1151 1152 #ifdef CONFIG_ACPI 1153 static const struct acpi_device_id nxp_fspi_acpi_ids[] = { 1154 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, }, 1155 {} 1156 }; 1157 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); 1158 #endif 1159 1160 static const struct dev_pm_ops nxp_fspi_pm_ops = { 1161 .suspend = nxp_fspi_suspend, 1162 .resume = nxp_fspi_resume, 1163 }; 1164 1165 static struct platform_driver nxp_fspi_driver = { 1166 .driver = { 1167 .name = "nxp-fspi", 1168 .of_match_table = nxp_fspi_dt_ids, 1169 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), 1170 .pm = &nxp_fspi_pm_ops, 1171 }, 1172 .probe = nxp_fspi_probe, 1173 .remove = nxp_fspi_remove, 1174 }; 1175 module_platform_driver(nxp_fspi_driver); 1176 1177 MODULE_DESCRIPTION("NXP FSPI Controller Driver"); 1178 MODULE_AUTHOR("NXP Semiconductor"); 1179 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>"); 1180 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); 1181 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); 1182 MODULE_LICENSE("GPL v2"); 1183