xref: /openbmc/linux/drivers/spi/spi-nxp-fspi.c (revision 6fcd6fea)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * NXP FlexSPI(FSPI) controller driver.
5  *
6  * Copyright 2019-2020 NXP
7  * Copyright 2020 Puresoftware Ltd.
8  *
9  * FlexSPI is a flexsible SPI host controller which supports two SPI
10  * channels and up to 4 external devices. Each channel supports
11  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12  * data lines).
13  *
14  * FlexSPI controller is driven by the LUT(Look-up Table) registers
15  * LUT registers are a look-up-table for sequences of instructions.
16  * A valid sequence consists of four LUT registers.
17  * Maximum 32 LUT sequences can be programmed simultaneously.
18  *
19  * LUTs are being created at run-time based on the commands passed
20  * from the spi-mem framework, thus using single LUT index.
21  *
22  * Software triggered Flash read/write access by IP Bus.
23  *
24  * Memory mapped read access by AHB Bus.
25  *
26  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27  *
28  * Author:
29  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30  *     Boris Brezillon <bbrezillon@kernel.org>
31  *     Frieder Schrempf <frieder.schrempf@kontron.de>
32  */
33 
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/bitfield.h>
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/delay.h>
40 #include <linux/err.h>
41 #include <linux/errno.h>
42 #include <linux/interrupt.h>
43 #include <linux/io.h>
44 #include <linux/iopoll.h>
45 #include <linux/jiffies.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
49 #include <linux/of.h>
50 #include <linux/platform_device.h>
51 #include <linux/pm_qos.h>
52 #include <linux/regmap.h>
53 #include <linux/sizes.h>
54 #include <linux/sys_soc.h>
55 
56 #include <linux/mfd/syscon.h>
57 #include <linux/spi/spi.h>
58 #include <linux/spi/spi-mem.h>
59 
60 /* Registers used by the driver */
61 #define FSPI_MCR0			0x00
62 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
63 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
64 #define FSPI_MCR0_LEARN_EN		BIT(15)
65 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
66 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
67 #define FSPI_MCR0_DOZE_EN		BIT(12)
68 #define FSPI_MCR0_HSEN			BIT(11)
69 #define FSPI_MCR0_SERCLKDIV		BIT(8)
70 #define FSPI_MCR0_ATDF_EN		BIT(7)
71 #define FSPI_MCR0_ARDF_EN		BIT(6)
72 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
73 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
74 #define FSPI_MCR0_MDIS			BIT(1)
75 #define FSPI_MCR0_SWRST			BIT(0)
76 
77 #define FSPI_MCR1			0x04
78 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
79 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
80 
81 #define FSPI_MCR2			0x08
82 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
83 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
84 #define FSPI_MCR2_CLRLRPHS		BIT(14)
85 #define FSPI_MCR2_ABRDATSZ		BIT(8)
86 #define FSPI_MCR2_ABRLEARN		BIT(7)
87 #define FSPI_MCR2_ABR_READ		BIT(6)
88 #define FSPI_MCR2_ABRWRITE		BIT(5)
89 #define FSPI_MCR2_ABRDUMMY		BIT(4)
90 #define FSPI_MCR2_ABR_MODE		BIT(3)
91 #define FSPI_MCR2_ABRCADDR		BIT(2)
92 #define FSPI_MCR2_ABRRADDR		BIT(1)
93 #define FSPI_MCR2_ABR_CMD		BIT(0)
94 
95 #define FSPI_AHBCR			0x0c
96 #define FSPI_AHBCR_RDADDROPT		BIT(6)
97 #define FSPI_AHBCR_PREF_EN		BIT(5)
98 #define FSPI_AHBCR_BUFF_EN		BIT(4)
99 #define FSPI_AHBCR_CACH_EN		BIT(3)
100 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
101 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
102 #define FSPI_AHBCR_PAR_EN		BIT(0)
103 
104 #define FSPI_INTEN			0x10
105 #define FSPI_INTEN_SCLKSBWR		BIT(9)
106 #define FSPI_INTEN_SCLKSBRD		BIT(8)
107 #define FSPI_INTEN_DATALRNFL		BIT(7)
108 #define FSPI_INTEN_IPTXWE		BIT(6)
109 #define FSPI_INTEN_IPRXWA		BIT(5)
110 #define FSPI_INTEN_AHBCMDERR		BIT(4)
111 #define FSPI_INTEN_IPCMDERR		BIT(3)
112 #define FSPI_INTEN_AHBCMDGE		BIT(2)
113 #define FSPI_INTEN_IPCMDGE		BIT(1)
114 #define FSPI_INTEN_IPCMDDONE		BIT(0)
115 
116 #define FSPI_INTR			0x14
117 #define FSPI_INTR_SCLKSBWR		BIT(9)
118 #define FSPI_INTR_SCLKSBRD		BIT(8)
119 #define FSPI_INTR_DATALRNFL		BIT(7)
120 #define FSPI_INTR_IPTXWE		BIT(6)
121 #define FSPI_INTR_IPRXWA		BIT(5)
122 #define FSPI_INTR_AHBCMDERR		BIT(4)
123 #define FSPI_INTR_IPCMDERR		BIT(3)
124 #define FSPI_INTR_AHBCMDGE		BIT(2)
125 #define FSPI_INTR_IPCMDGE		BIT(1)
126 #define FSPI_INTR_IPCMDDONE		BIT(0)
127 
128 #define FSPI_LUTKEY			0x18
129 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
130 
131 #define FSPI_LCKCR			0x1C
132 
133 #define FSPI_LCKER_LOCK			0x1
134 #define FSPI_LCKER_UNLOCK		0x2
135 
136 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
137 #define FSPI_AHBRX_BUF0CR0		0x20
138 #define FSPI_AHBRX_BUF1CR0		0x24
139 #define FSPI_AHBRX_BUF2CR0		0x28
140 #define FSPI_AHBRX_BUF3CR0		0x2C
141 #define FSPI_AHBRX_BUF4CR0		0x30
142 #define FSPI_AHBRX_BUF5CR0		0x34
143 #define FSPI_AHBRX_BUF6CR0		0x38
144 #define FSPI_AHBRX_BUF7CR0		0x3C
145 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
146 
147 #define FSPI_AHBRX_BUF0CR1		0x40
148 #define FSPI_AHBRX_BUF1CR1		0x44
149 #define FSPI_AHBRX_BUF2CR1		0x48
150 #define FSPI_AHBRX_BUF3CR1		0x4C
151 #define FSPI_AHBRX_BUF4CR1		0x50
152 #define FSPI_AHBRX_BUF5CR1		0x54
153 #define FSPI_AHBRX_BUF6CR1		0x58
154 #define FSPI_AHBRX_BUF7CR1		0x5C
155 
156 #define FSPI_FLSHA1CR0			0x60
157 #define FSPI_FLSHA2CR0			0x64
158 #define FSPI_FLSHB1CR0			0x68
159 #define FSPI_FLSHB2CR0			0x6C
160 #define FSPI_FLSHXCR0_SZ_KB		10
161 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
162 
163 #define FSPI_FLSHA1CR1			0x70
164 #define FSPI_FLSHA2CR1			0x74
165 #define FSPI_FLSHB1CR1			0x78
166 #define FSPI_FLSHB2CR1			0x7C
167 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
168 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
169 #define FSPI_FLSHXCR1_WA		BIT(10)
170 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
171 #define FSPI_FLSHXCR1_TCSS(x)		(x)
172 
173 #define FSPI_FLSHA1CR2			0x80
174 #define FSPI_FLSHA2CR2			0x84
175 #define FSPI_FLSHB1CR2			0x88
176 #define FSPI_FLSHB2CR2			0x8C
177 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
178 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
179 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
180 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
181 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
182 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
183 
184 #define FSPI_IPCR0			0xA0
185 
186 #define FSPI_IPCR1			0xA4
187 #define FSPI_IPCR1_IPAREN		BIT(31)
188 #define FSPI_IPCR1_SEQNUM_SHIFT		24
189 #define FSPI_IPCR1_SEQID_SHIFT		16
190 #define FSPI_IPCR1_IDATSZ(x)		(x)
191 
192 #define FSPI_IPCMD			0xB0
193 #define FSPI_IPCMD_TRG			BIT(0)
194 
195 #define FSPI_DLPR			0xB4
196 
197 #define FSPI_IPRXFCR			0xB8
198 #define FSPI_IPRXFCR_CLR		BIT(0)
199 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
200 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
201 
202 #define FSPI_IPTXFCR			0xBC
203 #define FSPI_IPTXFCR_CLR		BIT(0)
204 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
205 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
206 
207 #define FSPI_DLLACR			0xC0
208 #define FSPI_DLLACR_OVRDEN		BIT(8)
209 #define FSPI_DLLACR_SLVDLY(x)		((x) << 3)
210 #define FSPI_DLLACR_DLLRESET		BIT(1)
211 #define FSPI_DLLACR_DLLEN		BIT(0)
212 
213 #define FSPI_DLLBCR			0xC4
214 #define FSPI_DLLBCR_OVRDEN		BIT(8)
215 #define FSPI_DLLBCR_SLVDLY(x)		((x) << 3)
216 #define FSPI_DLLBCR_DLLRESET		BIT(1)
217 #define FSPI_DLLBCR_DLLEN		BIT(0)
218 
219 #define FSPI_STS0			0xE0
220 #define FSPI_STS0_DLPHB(x)		((x) << 8)
221 #define FSPI_STS0_DLPHA(x)		((x) << 4)
222 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
223 #define FSPI_STS0_ARB_IDLE		BIT(1)
224 #define FSPI_STS0_SEQ_IDLE		BIT(0)
225 
226 #define FSPI_STS1			0xE4
227 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
228 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
229 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
230 #define FSPI_STS1_AHB_ERRID(x)		(x)
231 
232 #define FSPI_STS2			0xE8
233 #define FSPI_STS2_BREFLOCK		BIT(17)
234 #define FSPI_STS2_BSLVLOCK		BIT(16)
235 #define FSPI_STS2_AREFLOCK		BIT(1)
236 #define FSPI_STS2_ASLVLOCK		BIT(0)
237 #define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \
238 					 FSPI_STS2_BSLVLOCK | \
239 					 FSPI_STS2_AREFLOCK | \
240 					 FSPI_STS2_ASLVLOCK)
241 
242 #define FSPI_AHBSPNST			0xEC
243 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
244 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
245 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
246 
247 #define FSPI_IPRXFSTS			0xF0
248 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
249 #define FSPI_IPRXFSTS_FILL(x)		(x)
250 
251 #define FSPI_IPTXFSTS			0xF4
252 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
253 #define FSPI_IPTXFSTS_FILL(x)		(x)
254 
255 #define FSPI_RFDR			0x100
256 #define FSPI_TFDR			0x180
257 
258 #define FSPI_LUT_BASE			0x200
259 
260 /* register map end */
261 
262 /* Instruction set for the LUT register. */
263 #define LUT_STOP			0x00
264 #define LUT_CMD				0x01
265 #define LUT_ADDR			0x02
266 #define LUT_CADDR_SDR			0x03
267 #define LUT_MODE			0x04
268 #define LUT_MODE2			0x05
269 #define LUT_MODE4			0x06
270 #define LUT_MODE8			0x07
271 #define LUT_NXP_WRITE			0x08
272 #define LUT_NXP_READ			0x09
273 #define LUT_LEARN_SDR			0x0A
274 #define LUT_DATSZ_SDR			0x0B
275 #define LUT_DUMMY			0x0C
276 #define LUT_DUMMY_RWDS_SDR		0x0D
277 #define LUT_JMP_ON_CS			0x1F
278 #define LUT_CMD_DDR			0x21
279 #define LUT_ADDR_DDR			0x22
280 #define LUT_CADDR_DDR			0x23
281 #define LUT_MODE_DDR			0x24
282 #define LUT_MODE2_DDR			0x25
283 #define LUT_MODE4_DDR			0x26
284 #define LUT_MODE8_DDR			0x27
285 #define LUT_WRITE_DDR			0x28
286 #define LUT_READ_DDR			0x29
287 #define LUT_LEARN_DDR			0x2A
288 #define LUT_DATSZ_DDR			0x2B
289 #define LUT_DUMMY_DDR			0x2C
290 #define LUT_DUMMY_RWDS_DDR		0x2D
291 
292 /*
293  * Calculate number of required PAD bits for LUT register.
294  *
295  * The pad stands for the number of IO lines [0:7].
296  * For example, the octal read needs eight IO lines,
297  * so you should use LUT_PAD(8). This macro
298  * returns 3 i.e. use eight (2^3) IP lines for read.
299  */
300 #define LUT_PAD(x) (fls(x) - 1)
301 
302 /*
303  * Macro for constructing the LUT entries with the following
304  * register layout:
305  *
306  *  ---------------------------------------------------
307  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
308  *  ---------------------------------------------------
309  */
310 #define PAD_SHIFT		8
311 #define INSTR_SHIFT		10
312 #define OPRND_SHIFT		16
313 
314 /* Macros for constructing the LUT register. */
315 #define LUT_DEF(idx, ins, pad, opr)			  \
316 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
317 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
318 
319 #define POLL_TOUT		5000
320 #define NXP_FSPI_MAX_CHIPSELECT		4
321 #define NXP_FSPI_MIN_IOMAP	SZ_4M
322 
323 #define DCFG_RCWSR1		0x100
324 #define SYS_PLL_RAT		GENMASK(6, 2)
325 
326 /* Access flash memory using IP bus only */
327 #define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
328 
329 struct nxp_fspi_devtype_data {
330 	unsigned int rxfifo;
331 	unsigned int txfifo;
332 	unsigned int ahb_buf_size;
333 	unsigned int quirks;
334 	unsigned int lut_num;
335 	bool little_endian;
336 };
337 
338 static struct nxp_fspi_devtype_data lx2160a_data = {
339 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
340 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
341 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
342 	.quirks = 0,
343 	.lut_num = 32,
344 	.little_endian = true,  /* little-endian    */
345 };
346 
347 static struct nxp_fspi_devtype_data imx8mm_data = {
348 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
349 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
350 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
351 	.quirks = 0,
352 	.lut_num = 32,
353 	.little_endian = true,  /* little-endian    */
354 };
355 
356 static struct nxp_fspi_devtype_data imx8qxp_data = {
357 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
358 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
359 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
360 	.quirks = 0,
361 	.lut_num = 32,
362 	.little_endian = true,  /* little-endian    */
363 };
364 
365 static struct nxp_fspi_devtype_data imx8dxl_data = {
366 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
367 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
368 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
369 	.quirks = FSPI_QUIRK_USE_IP_ONLY,
370 	.lut_num = 32,
371 	.little_endian = true,  /* little-endian    */
372 };
373 
374 static struct nxp_fspi_devtype_data imx8ulp_data = {
375 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
376 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
377 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
378 	.quirks = 0,
379 	.lut_num = 16,
380 	.little_endian = true,  /* little-endian    */
381 };
382 
383 struct nxp_fspi {
384 	void __iomem *iobase;
385 	void __iomem *ahb_addr;
386 	u32 memmap_phy;
387 	u32 memmap_phy_size;
388 	u32 memmap_start;
389 	u32 memmap_len;
390 	struct clk *clk, *clk_en;
391 	struct device *dev;
392 	struct completion c;
393 	struct nxp_fspi_devtype_data *devtype_data;
394 	struct mutex lock;
395 	struct pm_qos_request pm_qos_req;
396 	int selected;
397 };
398 
399 static inline int needs_ip_only(struct nxp_fspi *f)
400 {
401 	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
402 }
403 
404 /*
405  * R/W functions for big- or little-endian registers:
406  * The FSPI controller's endianness is independent of
407  * the CPU core's endianness. So far, although the CPU
408  * core is little-endian the FSPI controller can use
409  * big-endian or little-endian.
410  */
411 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
412 {
413 	if (f->devtype_data->little_endian)
414 		iowrite32(val, addr);
415 	else
416 		iowrite32be(val, addr);
417 }
418 
419 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
420 {
421 	if (f->devtype_data->little_endian)
422 		return ioread32(addr);
423 	else
424 		return ioread32be(addr);
425 }
426 
427 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
428 {
429 	struct nxp_fspi *f = dev_id;
430 	u32 reg;
431 
432 	/* clear interrupt */
433 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
434 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
435 
436 	if (reg & FSPI_INTR_IPCMDDONE)
437 		complete(&f->c);
438 
439 	return IRQ_HANDLED;
440 }
441 
442 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
443 {
444 	switch (width) {
445 	case 1:
446 	case 2:
447 	case 4:
448 	case 8:
449 		return 0;
450 	}
451 
452 	return -ENOTSUPP;
453 }
454 
455 static bool nxp_fspi_supports_op(struct spi_mem *mem,
456 				 const struct spi_mem_op *op)
457 {
458 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
459 	int ret;
460 
461 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
462 
463 	if (op->addr.nbytes)
464 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
465 
466 	if (op->dummy.nbytes)
467 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
468 
469 	if (op->data.nbytes)
470 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
471 
472 	if (ret)
473 		return false;
474 
475 	/*
476 	 * The number of address bytes should be equal to or less than 4 bytes.
477 	 */
478 	if (op->addr.nbytes > 4)
479 		return false;
480 
481 	/*
482 	 * If requested address value is greater than controller assigned
483 	 * memory mapped space, return error as it didn't fit in the range
484 	 * of assigned address space.
485 	 */
486 	if (op->addr.val >= f->memmap_phy_size)
487 		return false;
488 
489 	/* Max 64 dummy clock cycles supported */
490 	if (op->dummy.buswidth &&
491 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
492 		return false;
493 
494 	/* Max data length, check controller limits and alignment */
495 	if (op->data.dir == SPI_MEM_DATA_IN &&
496 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
497 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
498 	      !IS_ALIGNED(op->data.nbytes, 8))))
499 		return false;
500 
501 	if (op->data.dir == SPI_MEM_DATA_OUT &&
502 	    op->data.nbytes > f->devtype_data->txfifo)
503 		return false;
504 
505 	return spi_mem_default_supports_op(mem, op);
506 }
507 
508 /* Instead of busy looping invoke readl_poll_timeout functionality. */
509 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
510 				u32 mask, u32 delay_us,
511 				u32 timeout_us, bool c)
512 {
513 	u32 reg;
514 
515 	if (!f->devtype_data->little_endian)
516 		mask = (u32)cpu_to_be32(mask);
517 
518 	if (c)
519 		return readl_poll_timeout(base, reg, (reg & mask),
520 					  delay_us, timeout_us);
521 	else
522 		return readl_poll_timeout(base, reg, !(reg & mask),
523 					  delay_us, timeout_us);
524 }
525 
526 /*
527  * If the slave device content being changed by Write/Erase, need to
528  * invalidate the AHB buffer. This can be achieved by doing the reset
529  * of controller after setting MCR0[SWRESET] bit.
530  */
531 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
532 {
533 	u32 reg;
534 	int ret;
535 
536 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
537 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
538 
539 	/* w1c register, wait unit clear */
540 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
541 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
542 	WARN_ON(ret);
543 }
544 
545 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
546 				 const struct spi_mem_op *op)
547 {
548 	void __iomem *base = f->iobase;
549 	u32 lutval[4] = {};
550 	int lutidx = 1, i;
551 	u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4;
552 	u32 target_lut_reg;
553 
554 	/* cmd */
555 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
556 			     op->cmd.opcode);
557 
558 	/* addr bytes */
559 	if (op->addr.nbytes) {
560 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
561 					      LUT_PAD(op->addr.buswidth),
562 					      op->addr.nbytes * 8);
563 		lutidx++;
564 	}
565 
566 	/* dummy bytes, if needed */
567 	if (op->dummy.nbytes) {
568 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
569 		/*
570 		 * Due to FlexSPI controller limitation number of PAD for dummy
571 		 * buswidth needs to be programmed as equal to data buswidth.
572 		 */
573 					      LUT_PAD(op->data.buswidth),
574 					      op->dummy.nbytes * 8 /
575 					      op->dummy.buswidth);
576 		lutidx++;
577 	}
578 
579 	/* read/write data bytes */
580 	if (op->data.nbytes) {
581 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
582 					      op->data.dir == SPI_MEM_DATA_IN ?
583 					      LUT_NXP_READ : LUT_NXP_WRITE,
584 					      LUT_PAD(op->data.buswidth),
585 					      0);
586 		lutidx++;
587 	}
588 
589 	/* stop condition. */
590 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
591 
592 	/* unlock LUT */
593 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
594 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
595 
596 	/* fill LUT */
597 	for (i = 0; i < ARRAY_SIZE(lutval); i++) {
598 		target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4;
599 		fspi_writel(f, lutval[i], base + target_lut_reg);
600 	}
601 
602 	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
603 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
604 
605 	/* lock LUT */
606 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
607 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
608 }
609 
610 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
611 {
612 	int ret;
613 
614 	if (is_acpi_node(dev_fwnode(f->dev)))
615 		return 0;
616 
617 	ret = clk_prepare_enable(f->clk_en);
618 	if (ret)
619 		return ret;
620 
621 	ret = clk_prepare_enable(f->clk);
622 	if (ret) {
623 		clk_disable_unprepare(f->clk_en);
624 		return ret;
625 	}
626 
627 	return 0;
628 }
629 
630 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
631 {
632 	if (is_acpi_node(dev_fwnode(f->dev)))
633 		return 0;
634 
635 	clk_disable_unprepare(f->clk);
636 	clk_disable_unprepare(f->clk_en);
637 
638 	return 0;
639 }
640 
641 static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
642 {
643 	int ret;
644 
645 	/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
646 	fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
647 	fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
648 	fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
649 	fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
650 
651 	/*
652 	 * Enable the DLL calibration mode.
653 	 * The delay target for slave delay line is:
654 	 *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
655 	 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
656 	 * means half of clock cycle of reference clock.
657 	 */
658 	fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
659 		    f->iobase + FSPI_DLLACR);
660 	fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
661 		    f->iobase + FSPI_DLLBCR);
662 
663 	/* Wait to get REF/SLV lock */
664 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
665 				   0, POLL_TOUT, true);
666 	if (ret)
667 		dev_warn(f->dev, "DLL lock failed, please fix it!\n");
668 }
669 
670 /*
671  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
672  * register and start base address of the slave device.
673  *
674  *							    (Higher address)
675  *				--------    <-- FLSHB2CR0
676  *				|  B2  |
677  *				|      |
678  *	B2 start address -->	--------    <-- FLSHB1CR0
679  *				|  B1  |
680  *				|      |
681  *	B1 start address -->	--------    <-- FLSHA2CR0
682  *				|  A2  |
683  *				|      |
684  *	A2 start address -->	--------    <-- FLSHA1CR0
685  *				|  A1  |
686  *				|      |
687  *	A1 start address -->	--------		    (Lower address)
688  *
689  *
690  * Start base address defines the starting address range for given CS and
691  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
692  *
693  * But, different targets are having different combinations of number of CS,
694  * some targets only have single CS or two CS covering controller's full
695  * memory mapped space area.
696  * Thus, implementation is being done as independent of the size and number
697  * of the connected slave device.
698  * Assign controller memory mapped space size as the size to the connected
699  * slave device.
700  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
701  * chip-select Flash configuration register.
702  *
703  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
704  * memory mapped size of the controller.
705  * Value for rest of the CS FLSHxxCR0 register would be zero.
706  *
707  */
708 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
709 {
710 	unsigned long rate = spi->max_speed_hz;
711 	int ret;
712 	uint64_t size_kb;
713 
714 	/*
715 	 * Return, if previously selected slave device is same as current
716 	 * requested slave device.
717 	 */
718 	if (f->selected == spi_get_chipselect(spi, 0))
719 		return;
720 
721 	/* Reset FLSHxxCR0 registers */
722 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
723 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
724 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
725 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
726 
727 	/* Assign controller memory mapped space as size, KBytes, of flash. */
728 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
729 
730 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
731 		    4 * spi_get_chipselect(spi, 0));
732 
733 	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
734 
735 	nxp_fspi_clk_disable_unprep(f);
736 
737 	ret = clk_set_rate(f->clk, rate);
738 	if (ret)
739 		return;
740 
741 	ret = nxp_fspi_clk_prep_enable(f);
742 	if (ret)
743 		return;
744 
745 	/*
746 	 * If clock rate > 100MHz, then switch from DLL override mode to
747 	 * DLL calibration mode.
748 	 */
749 	if (rate > 100000000)
750 		nxp_fspi_dll_calibration(f);
751 
752 	f->selected = spi_get_chipselect(spi, 0);
753 }
754 
755 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
756 {
757 	u32 start = op->addr.val;
758 	u32 len = op->data.nbytes;
759 
760 	/* if necessary, ioremap before AHB read */
761 	if ((!f->ahb_addr) || start < f->memmap_start ||
762 	     start + len > f->memmap_start + f->memmap_len) {
763 		if (f->ahb_addr)
764 			iounmap(f->ahb_addr);
765 
766 		f->memmap_start = start;
767 		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
768 				len : NXP_FSPI_MIN_IOMAP;
769 
770 		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
771 					 f->memmap_len);
772 
773 		if (!f->ahb_addr) {
774 			dev_err(f->dev, "failed to alloc memory\n");
775 			return -ENOMEM;
776 		}
777 	}
778 
779 	/* Read out the data directly from the AHB buffer. */
780 	memcpy_fromio(op->data.buf.in,
781 		      f->ahb_addr + start - f->memmap_start, len);
782 
783 	return 0;
784 }
785 
786 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
787 				 const struct spi_mem_op *op)
788 {
789 	void __iomem *base = f->iobase;
790 	int i, ret;
791 	u8 *buf = (u8 *) op->data.buf.out;
792 
793 	/* clear the TX FIFO. */
794 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
795 
796 	/*
797 	 * Default value of water mark level is 8 bytes, hence in single
798 	 * write request controller can write max 8 bytes of data.
799 	 */
800 
801 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
802 		/* Wait for TXFIFO empty */
803 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
804 					   FSPI_INTR_IPTXWE, 0,
805 					   POLL_TOUT, true);
806 		WARN_ON(ret);
807 
808 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
809 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
810 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
811 	}
812 
813 	if (i < op->data.nbytes) {
814 		u32 data = 0;
815 		int j;
816 		int remaining = op->data.nbytes - i;
817 		/* Wait for TXFIFO empty */
818 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
819 					   FSPI_INTR_IPTXWE, 0,
820 					   POLL_TOUT, true);
821 		WARN_ON(ret);
822 
823 		for (j = 0; j < ALIGN(remaining, 4); j += 4) {
824 			memcpy(&data, buf + i + j, min_t(int, 4, remaining - j));
825 			fspi_writel(f, data, base + FSPI_TFDR + j);
826 		}
827 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
828 	}
829 }
830 
831 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
832 			  const struct spi_mem_op *op)
833 {
834 	void __iomem *base = f->iobase;
835 	int i, ret;
836 	int len = op->data.nbytes;
837 	u8 *buf = (u8 *) op->data.buf.in;
838 
839 	/*
840 	 * Default value of water mark level is 8 bytes, hence in single
841 	 * read request controller can read max 8 bytes of data.
842 	 */
843 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
844 		/* Wait for RXFIFO available */
845 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
846 					   FSPI_INTR_IPRXWA, 0,
847 					   POLL_TOUT, true);
848 		WARN_ON(ret);
849 
850 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
851 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
852 		/* move the FIFO pointer */
853 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
854 	}
855 
856 	if (i < len) {
857 		u32 tmp;
858 		int size, j;
859 
860 		buf = op->data.buf.in + i;
861 		/* Wait for RXFIFO available */
862 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
863 					   FSPI_INTR_IPRXWA, 0,
864 					   POLL_TOUT, true);
865 		WARN_ON(ret);
866 
867 		len = op->data.nbytes - i;
868 		for (j = 0; j < op->data.nbytes - i; j += 4) {
869 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
870 			size = min(len, 4);
871 			memcpy(buf + j, &tmp, size);
872 			len -= size;
873 		}
874 	}
875 
876 	/* invalid the RXFIFO */
877 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
878 	/* move the FIFO pointer */
879 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
880 }
881 
882 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
883 {
884 	void __iomem *base = f->iobase;
885 	int seqnum = 0;
886 	int err = 0;
887 	u32 reg, seqid_lut;
888 
889 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
890 	/* invalid RXFIFO first */
891 	reg &= ~FSPI_IPRXFCR_DMA_EN;
892 	reg = reg | FSPI_IPRXFCR_CLR;
893 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
894 
895 	init_completion(&f->c);
896 
897 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
898 	/*
899 	 * Always start the sequence at the same index since we update
900 	 * the LUT at each exec_op() call. And also specify the DATA
901 	 * length, since it's has not been specified in the LUT.
902 	 */
903 	seqid_lut = f->devtype_data->lut_num - 1;
904 	fspi_writel(f, op->data.nbytes |
905 		 (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) |
906 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
907 		 base + FSPI_IPCR1);
908 
909 	/* Trigger the LUT now. */
910 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
911 
912 	/* Wait for the interrupt. */
913 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
914 		err = -ETIMEDOUT;
915 
916 	/* Invoke IP data read, if request is of data read. */
917 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
918 		nxp_fspi_read_rxfifo(f, op);
919 
920 	return err;
921 }
922 
923 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
924 {
925 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
926 	int err = 0;
927 
928 	mutex_lock(&f->lock);
929 
930 	/* Wait for controller being ready. */
931 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
932 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
933 	WARN_ON(err);
934 
935 	nxp_fspi_select_mem(f, mem->spi);
936 
937 	nxp_fspi_prepare_lut(f, op);
938 	/*
939 	 * If we have large chunks of data, we read them through the AHB bus by
940 	 * accessing the mapped memory. In all other cases we use IP commands
941 	 * to access the flash. Read via AHB bus may be corrupted due to
942 	 * existence of an errata and therefore discard AHB read in such cases.
943 	 */
944 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
945 	    op->data.dir == SPI_MEM_DATA_IN &&
946 	    !needs_ip_only(f)) {
947 		err = nxp_fspi_read_ahb(f, op);
948 	} else {
949 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
950 			nxp_fspi_fill_txfifo(f, op);
951 
952 		err = nxp_fspi_do_op(f, op);
953 	}
954 
955 	/* Invalidate the data in the AHB buffer. */
956 	nxp_fspi_invalid(f);
957 
958 	mutex_unlock(&f->lock);
959 
960 	return err;
961 }
962 
963 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
964 {
965 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
966 
967 	if (op->data.dir == SPI_MEM_DATA_OUT) {
968 		if (op->data.nbytes > f->devtype_data->txfifo)
969 			op->data.nbytes = f->devtype_data->txfifo;
970 	} else {
971 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
972 			op->data.nbytes = f->devtype_data->ahb_buf_size;
973 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
974 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
975 	}
976 
977 	/* Limit data bytes to RX FIFO in case of IP read only */
978 	if (op->data.dir == SPI_MEM_DATA_IN &&
979 	    needs_ip_only(f) &&
980 	    op->data.nbytes > f->devtype_data->rxfifo)
981 		op->data.nbytes = f->devtype_data->rxfifo;
982 
983 	return 0;
984 }
985 
986 static void erratum_err050568(struct nxp_fspi *f)
987 {
988 	static const struct soc_device_attribute ls1028a_soc_attr[] = {
989 		{ .family = "QorIQ LS1028A" },
990 		{ /* sentinel */ }
991 	};
992 	struct regmap *map;
993 	u32 val, sys_pll_ratio;
994 	int ret;
995 
996 	/* Check for LS1028A family */
997 	if (!soc_device_match(ls1028a_soc_attr)) {
998 		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
999 		return;
1000 	}
1001 
1002 	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
1003 	if (IS_ERR(map)) {
1004 		dev_err(f->dev, "No syscon regmap\n");
1005 		goto err;
1006 	}
1007 
1008 	ret = regmap_read(map, DCFG_RCWSR1, &val);
1009 	if (ret < 0)
1010 		goto err;
1011 
1012 	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1013 	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1014 
1015 	/* Use IP bus only if platform clock is 300MHz */
1016 	if (sys_pll_ratio == 3)
1017 		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1018 
1019 	return;
1020 
1021 err:
1022 	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1023 }
1024 
1025 static int nxp_fspi_default_setup(struct nxp_fspi *f)
1026 {
1027 	void __iomem *base = f->iobase;
1028 	int ret, i;
1029 	u32 reg, seqid_lut;
1030 
1031 	/* disable and unprepare clock to avoid glitch pass to controller */
1032 	nxp_fspi_clk_disable_unprep(f);
1033 
1034 	/* the default frequency, we will change it later if necessary. */
1035 	ret = clk_set_rate(f->clk, 20000000);
1036 	if (ret)
1037 		return ret;
1038 
1039 	ret = nxp_fspi_clk_prep_enable(f);
1040 	if (ret)
1041 		return ret;
1042 
1043 	/*
1044 	 * ERR050568: Flash access by FlexSPI AHB command may not work with
1045 	 * platform frequency equal to 300 MHz on LS1028A.
1046 	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1047 	 * Layerscape LS1028A platform.
1048 	 */
1049 	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1050 		erratum_err050568(f);
1051 
1052 	/* Reset the module */
1053 	/* w1c register, wait unit clear */
1054 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1055 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1056 	WARN_ON(ret);
1057 
1058 	/* Disable the module */
1059 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1060 
1061 	/*
1062 	 * Config the DLL register to default value, enable the slave clock delay
1063 	 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1064 	 * chain, this is the suggested setting when clock rate < 100MHz.
1065 	 */
1066 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1067 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1068 
1069 	/* enable module */
1070 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1071 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1072 		    base + FSPI_MCR0);
1073 
1074 	/*
1075 	 * Disable same device enable bit and configure all slave devices
1076 	 * independently.
1077 	 */
1078 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1079 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1080 	fspi_writel(f, reg, base + FSPI_MCR2);
1081 
1082 	/* AHB configuration for access buffer 0~7. */
1083 	for (i = 0; i < 7; i++)
1084 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1085 
1086 	/*
1087 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1088 	 * performance.
1089 	 */
1090 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1091 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1092 
1093 	/* prefetch and no start address alignment limitation */
1094 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1095 		 base + FSPI_AHBCR);
1096 
1097 	/* Reset the FLSHxCR1 registers. */
1098 	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1099 	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1100 	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1101 	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1102 	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1103 
1104 	/*
1105 	 * The driver only uses one single LUT entry, that is updated on
1106 	 * each call of exec_op(). Index 0 is preset at boot with a basic
1107 	 * read operation, so let's use the last entry.
1108 	 */
1109 	seqid_lut = f->devtype_data->lut_num - 1;
1110 	/* AHB Read - Set lut sequence ID for all CS. */
1111 	fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2);
1112 	fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2);
1113 	fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2);
1114 	fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2);
1115 
1116 	f->selected = -1;
1117 
1118 	/* enable the interrupt */
1119 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1120 
1121 	return 0;
1122 }
1123 
1124 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1125 {
1126 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
1127 	struct device *dev = &mem->spi->dev;
1128 	const char *name;
1129 
1130 	// Set custom name derived from the platform_device of the controller.
1131 	if (of_get_available_child_count(f->dev->of_node) == 1)
1132 		return dev_name(f->dev);
1133 
1134 	name = devm_kasprintf(dev, GFP_KERNEL,
1135 			      "%s-%d", dev_name(f->dev),
1136 			      spi_get_chipselect(mem->spi, 0));
1137 
1138 	if (!name) {
1139 		dev_err(dev, "failed to get memory for custom flash name\n");
1140 		return ERR_PTR(-ENOMEM);
1141 	}
1142 
1143 	return name;
1144 }
1145 
1146 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1147 	.adjust_op_size = nxp_fspi_adjust_op_size,
1148 	.supports_op = nxp_fspi_supports_op,
1149 	.exec_op = nxp_fspi_exec_op,
1150 	.get_name = nxp_fspi_get_name,
1151 };
1152 
1153 static int nxp_fspi_probe(struct platform_device *pdev)
1154 {
1155 	struct spi_controller *ctlr;
1156 	struct device *dev = &pdev->dev;
1157 	struct device_node *np = dev->of_node;
1158 	struct resource *res;
1159 	struct nxp_fspi *f;
1160 	int ret;
1161 	u32 reg;
1162 
1163 	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1164 	if (!ctlr)
1165 		return -ENOMEM;
1166 
1167 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1168 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1169 
1170 	f = spi_controller_get_devdata(ctlr);
1171 	f->dev = dev;
1172 	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1173 	if (!f->devtype_data) {
1174 		ret = -ENODEV;
1175 		goto err_put_ctrl;
1176 	}
1177 
1178 	platform_set_drvdata(pdev, f);
1179 
1180 	/* find the resources - configuration register address space */
1181 	if (is_acpi_node(dev_fwnode(f->dev)))
1182 		f->iobase = devm_platform_ioremap_resource(pdev, 0);
1183 	else
1184 		f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1185 
1186 	if (IS_ERR(f->iobase)) {
1187 		ret = PTR_ERR(f->iobase);
1188 		goto err_put_ctrl;
1189 	}
1190 
1191 	/* find the resources - controller memory mapped space */
1192 	if (is_acpi_node(dev_fwnode(f->dev)))
1193 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1194 	else
1195 		res = platform_get_resource_byname(pdev,
1196 				IORESOURCE_MEM, "fspi_mmap");
1197 
1198 	if (!res) {
1199 		ret = -ENODEV;
1200 		goto err_put_ctrl;
1201 	}
1202 
1203 	/* assign memory mapped starting address and mapped size. */
1204 	f->memmap_phy = res->start;
1205 	f->memmap_phy_size = resource_size(res);
1206 
1207 	/* find the clocks */
1208 	if (dev_of_node(&pdev->dev)) {
1209 		f->clk_en = devm_clk_get(dev, "fspi_en");
1210 		if (IS_ERR(f->clk_en)) {
1211 			ret = PTR_ERR(f->clk_en);
1212 			goto err_put_ctrl;
1213 		}
1214 
1215 		f->clk = devm_clk_get(dev, "fspi");
1216 		if (IS_ERR(f->clk)) {
1217 			ret = PTR_ERR(f->clk);
1218 			goto err_put_ctrl;
1219 		}
1220 
1221 		ret = nxp_fspi_clk_prep_enable(f);
1222 		if (ret) {
1223 			dev_err(dev, "can not enable the clock\n");
1224 			goto err_put_ctrl;
1225 		}
1226 	}
1227 
1228 	/* Clear potential interrupts */
1229 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1230 	if (reg)
1231 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1232 
1233 	/* find the irq */
1234 	ret = platform_get_irq(pdev, 0);
1235 	if (ret < 0)
1236 		goto err_disable_clk;
1237 
1238 	ret = devm_request_irq(dev, ret,
1239 			nxp_fspi_irq_handler, 0, pdev->name, f);
1240 	if (ret) {
1241 		dev_err(dev, "failed to request irq: %d\n", ret);
1242 		goto err_disable_clk;
1243 	}
1244 
1245 	mutex_init(&f->lock);
1246 
1247 	ctlr->bus_num = -1;
1248 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1249 	ctlr->mem_ops = &nxp_fspi_mem_ops;
1250 
1251 	nxp_fspi_default_setup(f);
1252 
1253 	ctlr->dev.of_node = np;
1254 
1255 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1256 	if (ret)
1257 		goto err_destroy_mutex;
1258 
1259 	return 0;
1260 
1261 err_destroy_mutex:
1262 	mutex_destroy(&f->lock);
1263 
1264 err_disable_clk:
1265 	nxp_fspi_clk_disable_unprep(f);
1266 
1267 err_put_ctrl:
1268 	spi_controller_put(ctlr);
1269 
1270 	dev_err(dev, "NXP FSPI probe failed\n");
1271 	return ret;
1272 }
1273 
1274 static void nxp_fspi_remove(struct platform_device *pdev)
1275 {
1276 	struct nxp_fspi *f = platform_get_drvdata(pdev);
1277 
1278 	/* disable the hardware */
1279 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1280 
1281 	nxp_fspi_clk_disable_unprep(f);
1282 
1283 	mutex_destroy(&f->lock);
1284 
1285 	if (f->ahb_addr)
1286 		iounmap(f->ahb_addr);
1287 }
1288 
1289 static int nxp_fspi_suspend(struct device *dev)
1290 {
1291 	return 0;
1292 }
1293 
1294 static int nxp_fspi_resume(struct device *dev)
1295 {
1296 	struct nxp_fspi *f = dev_get_drvdata(dev);
1297 
1298 	nxp_fspi_default_setup(f);
1299 
1300 	return 0;
1301 }
1302 
1303 static const struct of_device_id nxp_fspi_dt_ids[] = {
1304 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1305 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1306 	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1307 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1308 	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1309 	{ .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, },
1310 	{ /* sentinel */ }
1311 };
1312 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1313 
1314 #ifdef CONFIG_ACPI
1315 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1316 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1317 	{}
1318 };
1319 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1320 #endif
1321 
1322 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1323 	.suspend	= nxp_fspi_suspend,
1324 	.resume		= nxp_fspi_resume,
1325 };
1326 
1327 static struct platform_driver nxp_fspi_driver = {
1328 	.driver = {
1329 		.name	= "nxp-fspi",
1330 		.of_match_table = nxp_fspi_dt_ids,
1331 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1332 		.pm =   &nxp_fspi_pm_ops,
1333 	},
1334 	.probe          = nxp_fspi_probe,
1335 	.remove_new	= nxp_fspi_remove,
1336 };
1337 module_platform_driver(nxp_fspi_driver);
1338 
1339 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1340 MODULE_AUTHOR("NXP Semiconductor");
1341 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1342 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1343 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1344 MODULE_LICENSE("GPL v2");
1345