1 // SPDX-License-Identifier: GPL-2.0+ 2 3 /* 4 * NXP FlexSPI(FSPI) controller driver. 5 * 6 * Copyright 2019 NXP. 7 * 8 * FlexSPI is a flexsible SPI host controller which supports two SPI 9 * channels and up to 4 external devices. Each channel supports 10 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional 11 * data lines). 12 * 13 * FlexSPI controller is driven by the LUT(Look-up Table) registers 14 * LUT registers are a look-up-table for sequences of instructions. 15 * A valid sequence consists of four LUT registers. 16 * Maximum 32 LUT sequences can be programmed simultaneously. 17 * 18 * LUTs are being created at run-time based on the commands passed 19 * from the spi-mem framework, thus using single LUT index. 20 * 21 * Software triggered Flash read/write access by IP Bus. 22 * 23 * Memory mapped read access by AHB Bus. 24 * 25 * Based on SPI MEM interface and spi-fsl-qspi.c driver. 26 * 27 * Author: 28 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> 29 * Boris Brezillon <bbrezillon@kernel.org> 30 * Frieder Schrempf <frieder.schrempf@kontron.de> 31 */ 32 33 #include <linux/bitops.h> 34 #include <linux/clk.h> 35 #include <linux/completion.h> 36 #include <linux/delay.h> 37 #include <linux/err.h> 38 #include <linux/errno.h> 39 #include <linux/interrupt.h> 40 #include <linux/io.h> 41 #include <linux/iopoll.h> 42 #include <linux/jiffies.h> 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/mutex.h> 46 #include <linux/of.h> 47 #include <linux/of_device.h> 48 #include <linux/platform_device.h> 49 #include <linux/pm_qos.h> 50 #include <linux/sizes.h> 51 52 #include <linux/spi/spi.h> 53 #include <linux/spi/spi-mem.h> 54 55 /* 56 * The driver only uses one single LUT entry, that is updated on 57 * each call of exec_op(). Index 0 is preset at boot with a basic 58 * read operation, so let's use the last entry (31). 59 */ 60 #define SEQID_LUT 31 61 62 /* Registers used by the driver */ 63 #define FSPI_MCR0 0x00 64 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) 65 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) 66 #define FSPI_MCR0_LEARN_EN BIT(15) 67 #define FSPI_MCR0_SCRFRUN_EN BIT(14) 68 #define FSPI_MCR0_OCTCOMB_EN BIT(13) 69 #define FSPI_MCR0_DOZE_EN BIT(12) 70 #define FSPI_MCR0_HSEN BIT(11) 71 #define FSPI_MCR0_SERCLKDIV BIT(8) 72 #define FSPI_MCR0_ATDF_EN BIT(7) 73 #define FSPI_MCR0_ARDF_EN BIT(6) 74 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) 75 #define FSPI_MCR0_END_CFG(x) ((x) << 2) 76 #define FSPI_MCR0_MDIS BIT(1) 77 #define FSPI_MCR0_SWRST BIT(0) 78 79 #define FSPI_MCR1 0x04 80 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) 81 #define FSPI_MCR1_AHB_TIMEOUT(x) (x) 82 83 #define FSPI_MCR2 0x08 84 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) 85 #define FSPI_MCR2_SAMEDEVICEEN BIT(15) 86 #define FSPI_MCR2_CLRLRPHS BIT(14) 87 #define FSPI_MCR2_ABRDATSZ BIT(8) 88 #define FSPI_MCR2_ABRLEARN BIT(7) 89 #define FSPI_MCR2_ABR_READ BIT(6) 90 #define FSPI_MCR2_ABRWRITE BIT(5) 91 #define FSPI_MCR2_ABRDUMMY BIT(4) 92 #define FSPI_MCR2_ABR_MODE BIT(3) 93 #define FSPI_MCR2_ABRCADDR BIT(2) 94 #define FSPI_MCR2_ABRRADDR BIT(1) 95 #define FSPI_MCR2_ABR_CMD BIT(0) 96 97 #define FSPI_AHBCR 0x0c 98 #define FSPI_AHBCR_RDADDROPT BIT(6) 99 #define FSPI_AHBCR_PREF_EN BIT(5) 100 #define FSPI_AHBCR_BUFF_EN BIT(4) 101 #define FSPI_AHBCR_CACH_EN BIT(3) 102 #define FSPI_AHBCR_CLRTXBUF BIT(2) 103 #define FSPI_AHBCR_CLRRXBUF BIT(1) 104 #define FSPI_AHBCR_PAR_EN BIT(0) 105 106 #define FSPI_INTEN 0x10 107 #define FSPI_INTEN_SCLKSBWR BIT(9) 108 #define FSPI_INTEN_SCLKSBRD BIT(8) 109 #define FSPI_INTEN_DATALRNFL BIT(7) 110 #define FSPI_INTEN_IPTXWE BIT(6) 111 #define FSPI_INTEN_IPRXWA BIT(5) 112 #define FSPI_INTEN_AHBCMDERR BIT(4) 113 #define FSPI_INTEN_IPCMDERR BIT(3) 114 #define FSPI_INTEN_AHBCMDGE BIT(2) 115 #define FSPI_INTEN_IPCMDGE BIT(1) 116 #define FSPI_INTEN_IPCMDDONE BIT(0) 117 118 #define FSPI_INTR 0x14 119 #define FSPI_INTR_SCLKSBWR BIT(9) 120 #define FSPI_INTR_SCLKSBRD BIT(8) 121 #define FSPI_INTR_DATALRNFL BIT(7) 122 #define FSPI_INTR_IPTXWE BIT(6) 123 #define FSPI_INTR_IPRXWA BIT(5) 124 #define FSPI_INTR_AHBCMDERR BIT(4) 125 #define FSPI_INTR_IPCMDERR BIT(3) 126 #define FSPI_INTR_AHBCMDGE BIT(2) 127 #define FSPI_INTR_IPCMDGE BIT(1) 128 #define FSPI_INTR_IPCMDDONE BIT(0) 129 130 #define FSPI_LUTKEY 0x18 131 #define FSPI_LUTKEY_VALUE 0x5AF05AF0 132 133 #define FSPI_LCKCR 0x1C 134 135 #define FSPI_LCKER_LOCK 0x1 136 #define FSPI_LCKER_UNLOCK 0x2 137 138 #define FSPI_BUFXCR_INVALID_MSTRID 0xE 139 #define FSPI_AHBRX_BUF0CR0 0x20 140 #define FSPI_AHBRX_BUF1CR0 0x24 141 #define FSPI_AHBRX_BUF2CR0 0x28 142 #define FSPI_AHBRX_BUF3CR0 0x2C 143 #define FSPI_AHBRX_BUF4CR0 0x30 144 #define FSPI_AHBRX_BUF5CR0 0x34 145 #define FSPI_AHBRX_BUF6CR0 0x38 146 #define FSPI_AHBRX_BUF7CR0 0x3C 147 #define FSPI_AHBRXBUF0CR7_PREF BIT(31) 148 149 #define FSPI_AHBRX_BUF0CR1 0x40 150 #define FSPI_AHBRX_BUF1CR1 0x44 151 #define FSPI_AHBRX_BUF2CR1 0x48 152 #define FSPI_AHBRX_BUF3CR1 0x4C 153 #define FSPI_AHBRX_BUF4CR1 0x50 154 #define FSPI_AHBRX_BUF5CR1 0x54 155 #define FSPI_AHBRX_BUF6CR1 0x58 156 #define FSPI_AHBRX_BUF7CR1 0x5C 157 158 #define FSPI_FLSHA1CR0 0x60 159 #define FSPI_FLSHA2CR0 0x64 160 #define FSPI_FLSHB1CR0 0x68 161 #define FSPI_FLSHB2CR0 0x6C 162 #define FSPI_FLSHXCR0_SZ_KB 10 163 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) 164 165 #define FSPI_FLSHA1CR1 0x70 166 #define FSPI_FLSHA2CR1 0x74 167 #define FSPI_FLSHB1CR1 0x78 168 #define FSPI_FLSHB2CR1 0x7C 169 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) 170 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) 171 #define FSPI_FLSHXCR1_WA BIT(10) 172 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) 173 #define FSPI_FLSHXCR1_TCSS(x) (x) 174 175 #define FSPI_FLSHA1CR2 0x80 176 #define FSPI_FLSHA2CR2 0x84 177 #define FSPI_FLSHB1CR2 0x88 178 #define FSPI_FLSHB2CR2 0x8C 179 #define FSPI_FLSHXCR2_CLRINSP BIT(24) 180 #define FSPI_FLSHXCR2_AWRWAIT BIT(16) 181 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 182 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 183 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 184 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 185 186 #define FSPI_IPCR0 0xA0 187 188 #define FSPI_IPCR1 0xA4 189 #define FSPI_IPCR1_IPAREN BIT(31) 190 #define FSPI_IPCR1_SEQNUM_SHIFT 24 191 #define FSPI_IPCR1_SEQID_SHIFT 16 192 #define FSPI_IPCR1_IDATSZ(x) (x) 193 194 #define FSPI_IPCMD 0xB0 195 #define FSPI_IPCMD_TRG BIT(0) 196 197 #define FSPI_DLPR 0xB4 198 199 #define FSPI_IPRXFCR 0xB8 200 #define FSPI_IPRXFCR_CLR BIT(0) 201 #define FSPI_IPRXFCR_DMA_EN BIT(1) 202 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) 203 204 #define FSPI_IPTXFCR 0xBC 205 #define FSPI_IPTXFCR_CLR BIT(0) 206 #define FSPI_IPTXFCR_DMA_EN BIT(1) 207 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) 208 209 #define FSPI_DLLACR 0xC0 210 #define FSPI_DLLACR_OVRDEN BIT(8) 211 212 #define FSPI_DLLBCR 0xC4 213 #define FSPI_DLLBCR_OVRDEN BIT(8) 214 215 #define FSPI_STS0 0xE0 216 #define FSPI_STS0_DLPHB(x) ((x) << 8) 217 #define FSPI_STS0_DLPHA(x) ((x) << 4) 218 #define FSPI_STS0_CMD_SRC(x) ((x) << 2) 219 #define FSPI_STS0_ARB_IDLE BIT(1) 220 #define FSPI_STS0_SEQ_IDLE BIT(0) 221 222 #define FSPI_STS1 0xE4 223 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) 224 #define FSPI_STS1_IP_ERRID(x) ((x) << 16) 225 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) 226 #define FSPI_STS1_AHB_ERRID(x) (x) 227 228 #define FSPI_AHBSPNST 0xEC 229 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) 230 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) 231 #define FSPI_AHBSPNST_ACTIVE BIT(0) 232 233 #define FSPI_IPRXFSTS 0xF0 234 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) 235 #define FSPI_IPRXFSTS_FILL(x) (x) 236 237 #define FSPI_IPTXFSTS 0xF4 238 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) 239 #define FSPI_IPTXFSTS_FILL(x) (x) 240 241 #define FSPI_RFDR 0x100 242 #define FSPI_TFDR 0x180 243 244 #define FSPI_LUT_BASE 0x200 245 #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) 246 #define FSPI_LUT_REG(idx) \ 247 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) 248 249 /* register map end */ 250 251 /* Instruction set for the LUT register. */ 252 #define LUT_STOP 0x00 253 #define LUT_CMD 0x01 254 #define LUT_ADDR 0x02 255 #define LUT_CADDR_SDR 0x03 256 #define LUT_MODE 0x04 257 #define LUT_MODE2 0x05 258 #define LUT_MODE4 0x06 259 #define LUT_MODE8 0x07 260 #define LUT_NXP_WRITE 0x08 261 #define LUT_NXP_READ 0x09 262 #define LUT_LEARN_SDR 0x0A 263 #define LUT_DATSZ_SDR 0x0B 264 #define LUT_DUMMY 0x0C 265 #define LUT_DUMMY_RWDS_SDR 0x0D 266 #define LUT_JMP_ON_CS 0x1F 267 #define LUT_CMD_DDR 0x21 268 #define LUT_ADDR_DDR 0x22 269 #define LUT_CADDR_DDR 0x23 270 #define LUT_MODE_DDR 0x24 271 #define LUT_MODE2_DDR 0x25 272 #define LUT_MODE4_DDR 0x26 273 #define LUT_MODE8_DDR 0x27 274 #define LUT_WRITE_DDR 0x28 275 #define LUT_READ_DDR 0x29 276 #define LUT_LEARN_DDR 0x2A 277 #define LUT_DATSZ_DDR 0x2B 278 #define LUT_DUMMY_DDR 0x2C 279 #define LUT_DUMMY_RWDS_DDR 0x2D 280 281 /* 282 * Calculate number of required PAD bits for LUT register. 283 * 284 * The pad stands for the number of IO lines [0:7]. 285 * For example, the octal read needs eight IO lines, 286 * so you should use LUT_PAD(8). This macro 287 * returns 3 i.e. use eight (2^3) IP lines for read. 288 */ 289 #define LUT_PAD(x) (fls(x) - 1) 290 291 /* 292 * Macro for constructing the LUT entries with the following 293 * register layout: 294 * 295 * --------------------------------------------------- 296 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | 297 * --------------------------------------------------- 298 */ 299 #define PAD_SHIFT 8 300 #define INSTR_SHIFT 10 301 #define OPRND_SHIFT 16 302 303 /* Macros for constructing the LUT register. */ 304 #define LUT_DEF(idx, ins, pad, opr) \ 305 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ 306 (opr)) << (((idx) % 2) * OPRND_SHIFT)) 307 308 #define POLL_TOUT 5000 309 #define NXP_FSPI_MAX_CHIPSELECT 4 310 311 struct nxp_fspi_devtype_data { 312 unsigned int rxfifo; 313 unsigned int txfifo; 314 unsigned int ahb_buf_size; 315 unsigned int quirks; 316 bool little_endian; 317 }; 318 319 static const struct nxp_fspi_devtype_data lx2160a_data = { 320 .rxfifo = SZ_512, /* (64 * 64 bits) */ 321 .txfifo = SZ_1K, /* (128 * 64 bits) */ 322 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 323 .quirks = 0, 324 .little_endian = true, /* little-endian */ 325 }; 326 327 struct nxp_fspi { 328 void __iomem *iobase; 329 void __iomem *ahb_addr; 330 u32 memmap_phy; 331 u32 memmap_phy_size; 332 struct clk *clk, *clk_en; 333 struct device *dev; 334 struct completion c; 335 const struct nxp_fspi_devtype_data *devtype_data; 336 struct mutex lock; 337 struct pm_qos_request pm_qos_req; 338 int selected; 339 }; 340 341 /* 342 * R/W functions for big- or little-endian registers: 343 * The FSPI controller's endianness is independent of 344 * the CPU core's endianness. So far, although the CPU 345 * core is little-endian the FSPI controller can use 346 * big-endian or little-endian. 347 */ 348 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) 349 { 350 if (f->devtype_data->little_endian) 351 iowrite32(val, addr); 352 else 353 iowrite32be(val, addr); 354 } 355 356 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) 357 { 358 if (f->devtype_data->little_endian) 359 return ioread32(addr); 360 else 361 return ioread32be(addr); 362 } 363 364 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) 365 { 366 struct nxp_fspi *f = dev_id; 367 u32 reg; 368 369 /* clear interrupt */ 370 reg = fspi_readl(f, f->iobase + FSPI_INTR); 371 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); 372 373 if (reg & FSPI_INTR_IPCMDDONE) 374 complete(&f->c); 375 376 return IRQ_HANDLED; 377 } 378 379 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) 380 { 381 switch (width) { 382 case 1: 383 case 2: 384 case 4: 385 case 8: 386 return 0; 387 } 388 389 return -ENOTSUPP; 390 } 391 392 static bool nxp_fspi_supports_op(struct spi_mem *mem, 393 const struct spi_mem_op *op) 394 { 395 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 396 int ret; 397 398 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); 399 400 if (op->addr.nbytes) 401 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); 402 403 if (op->dummy.nbytes) 404 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); 405 406 if (op->data.nbytes) 407 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); 408 409 if (ret) 410 return false; 411 412 /* 413 * The number of address bytes should be equal to or less than 4 bytes. 414 */ 415 if (op->addr.nbytes > 4) 416 return false; 417 418 /* 419 * If requested address value is greater than controller assigned 420 * memory mapped space, return error as it didn't fit in the range 421 * of assigned address space. 422 */ 423 if (op->addr.val >= f->memmap_phy_size) 424 return false; 425 426 /* Max 64 dummy clock cycles supported */ 427 if (op->dummy.buswidth && 428 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) 429 return false; 430 431 /* Max data length, check controller limits and alignment */ 432 if (op->data.dir == SPI_MEM_DATA_IN && 433 (op->data.nbytes > f->devtype_data->ahb_buf_size || 434 (op->data.nbytes > f->devtype_data->rxfifo - 4 && 435 !IS_ALIGNED(op->data.nbytes, 8)))) 436 return false; 437 438 if (op->data.dir == SPI_MEM_DATA_OUT && 439 op->data.nbytes > f->devtype_data->txfifo) 440 return false; 441 442 return true; 443 } 444 445 /* Instead of busy looping invoke readl_poll_timeout functionality. */ 446 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, 447 u32 mask, u32 delay_us, 448 u32 timeout_us, bool c) 449 { 450 u32 reg; 451 452 if (!f->devtype_data->little_endian) 453 mask = (u32)cpu_to_be32(mask); 454 455 if (c) 456 return readl_poll_timeout(base, reg, (reg & mask), 457 delay_us, timeout_us); 458 else 459 return readl_poll_timeout(base, reg, !(reg & mask), 460 delay_us, timeout_us); 461 } 462 463 /* 464 * If the slave device content being changed by Write/Erase, need to 465 * invalidate the AHB buffer. This can be achieved by doing the reset 466 * of controller after setting MCR0[SWRESET] bit. 467 */ 468 static inline void nxp_fspi_invalid(struct nxp_fspi *f) 469 { 470 u32 reg; 471 int ret; 472 473 reg = fspi_readl(f, f->iobase + FSPI_MCR0); 474 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); 475 476 /* w1c register, wait unit clear */ 477 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 478 FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 479 WARN_ON(ret); 480 } 481 482 static void nxp_fspi_prepare_lut(struct nxp_fspi *f, 483 const struct spi_mem_op *op) 484 { 485 void __iomem *base = f->iobase; 486 u32 lutval[4] = {}; 487 int lutidx = 1, i; 488 489 /* cmd */ 490 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), 491 op->cmd.opcode); 492 493 /* addr bytes */ 494 if (op->addr.nbytes) { 495 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, 496 LUT_PAD(op->addr.buswidth), 497 op->addr.nbytes * 8); 498 lutidx++; 499 } 500 501 /* dummy bytes, if needed */ 502 if (op->dummy.nbytes) { 503 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, 504 /* 505 * Due to FlexSPI controller limitation number of PAD for dummy 506 * buswidth needs to be programmed as equal to data buswidth. 507 */ 508 LUT_PAD(op->data.buswidth), 509 op->dummy.nbytes * 8 / 510 op->dummy.buswidth); 511 lutidx++; 512 } 513 514 /* read/write data bytes */ 515 if (op->data.nbytes) { 516 lutval[lutidx / 2] |= LUT_DEF(lutidx, 517 op->data.dir == SPI_MEM_DATA_IN ? 518 LUT_NXP_READ : LUT_NXP_WRITE, 519 LUT_PAD(op->data.buswidth), 520 0); 521 lutidx++; 522 } 523 524 /* stop condition. */ 525 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); 526 527 /* unlock LUT */ 528 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 529 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); 530 531 /* fill LUT */ 532 for (i = 0; i < ARRAY_SIZE(lutval); i++) 533 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); 534 535 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", 536 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); 537 538 /* lock LUT */ 539 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 540 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); 541 } 542 543 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) 544 { 545 int ret; 546 547 ret = clk_prepare_enable(f->clk_en); 548 if (ret) 549 return ret; 550 551 ret = clk_prepare_enable(f->clk); 552 if (ret) { 553 clk_disable_unprepare(f->clk_en); 554 return ret; 555 } 556 557 return 0; 558 } 559 560 static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) 561 { 562 clk_disable_unprepare(f->clk); 563 clk_disable_unprepare(f->clk_en); 564 } 565 566 /* 567 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 568 * register and start base address of the slave device. 569 * 570 * (Higher address) 571 * -------- <-- FLSHB2CR0 572 * | B2 | 573 * | | 574 * B2 start address --> -------- <-- FLSHB1CR0 575 * | B1 | 576 * | | 577 * B1 start address --> -------- <-- FLSHA2CR0 578 * | A2 | 579 * | | 580 * A2 start address --> -------- <-- FLSHA1CR0 581 * | A1 | 582 * | | 583 * A1 start address --> -------- (Lower address) 584 * 585 * 586 * Start base address defines the starting address range for given CS and 587 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. 588 * 589 * But, different targets are having different combinations of number of CS, 590 * some targets only have single CS or two CS covering controller's full 591 * memory mapped space area. 592 * Thus, implementation is being done as independent of the size and number 593 * of the connected slave device. 594 * Assign controller memory mapped space size as the size to the connected 595 * slave device. 596 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected 597 * chip-select Flash configuration register. 598 * 599 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the 600 * memory mapped size of the controller. 601 * Value for rest of the CS FLSHxxCR0 register would be zero. 602 * 603 */ 604 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) 605 { 606 unsigned long rate = spi->max_speed_hz; 607 int ret; 608 uint64_t size_kb; 609 610 /* 611 * Return, if previously selected slave device is same as current 612 * requested slave device. 613 */ 614 if (f->selected == spi->chip_select) 615 return; 616 617 /* Reset FLSHxxCR0 registers */ 618 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); 619 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); 620 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); 621 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); 622 623 /* Assign controller memory mapped space as size, KBytes, of flash. */ 624 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); 625 626 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + 627 4 * spi->chip_select); 628 629 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select); 630 631 nxp_fspi_clk_disable_unprep(f); 632 633 ret = clk_set_rate(f->clk, rate); 634 if (ret) 635 return; 636 637 ret = nxp_fspi_clk_prep_enable(f); 638 if (ret) 639 return; 640 641 f->selected = spi->chip_select; 642 } 643 644 static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) 645 { 646 u32 len = op->data.nbytes; 647 648 /* Read out the data directly from the AHB buffer. */ 649 memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); 650 } 651 652 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, 653 const struct spi_mem_op *op) 654 { 655 void __iomem *base = f->iobase; 656 int i, ret; 657 u8 *buf = (u8 *) op->data.buf.out; 658 659 /* clear the TX FIFO. */ 660 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); 661 662 /* 663 * Default value of water mark level is 8 bytes, hence in single 664 * write request controller can write max 8 bytes of data. 665 */ 666 667 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { 668 /* Wait for TXFIFO empty */ 669 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 670 FSPI_INTR_IPTXWE, 0, 671 POLL_TOUT, true); 672 WARN_ON(ret); 673 674 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); 675 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); 676 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 677 } 678 679 if (i < op->data.nbytes) { 680 u32 data = 0; 681 int j; 682 /* Wait for TXFIFO empty */ 683 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 684 FSPI_INTR_IPTXWE, 0, 685 POLL_TOUT, true); 686 WARN_ON(ret); 687 688 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { 689 memcpy(&data, buf + i + j, 4); 690 fspi_writel(f, data, base + FSPI_TFDR + j); 691 } 692 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 693 } 694 } 695 696 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, 697 const struct spi_mem_op *op) 698 { 699 void __iomem *base = f->iobase; 700 int i, ret; 701 int len = op->data.nbytes; 702 u8 *buf = (u8 *) op->data.buf.in; 703 704 /* 705 * Default value of water mark level is 8 bytes, hence in single 706 * read request controller can read max 8 bytes of data. 707 */ 708 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { 709 /* Wait for RXFIFO available */ 710 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 711 FSPI_INTR_IPRXWA, 0, 712 POLL_TOUT, true); 713 WARN_ON(ret); 714 715 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); 716 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); 717 /* move the FIFO pointer */ 718 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 719 } 720 721 if (i < len) { 722 u32 tmp; 723 int size, j; 724 725 buf = op->data.buf.in + i; 726 /* Wait for RXFIFO available */ 727 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 728 FSPI_INTR_IPRXWA, 0, 729 POLL_TOUT, true); 730 WARN_ON(ret); 731 732 len = op->data.nbytes - i; 733 for (j = 0; j < op->data.nbytes - i; j += 4) { 734 tmp = fspi_readl(f, base + FSPI_RFDR + j); 735 size = min(len, 4); 736 memcpy(buf + j, &tmp, size); 737 len -= size; 738 } 739 } 740 741 /* invalid the RXFIFO */ 742 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); 743 /* move the FIFO pointer */ 744 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 745 } 746 747 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) 748 { 749 void __iomem *base = f->iobase; 750 int seqnum = 0; 751 int err = 0; 752 u32 reg; 753 754 reg = fspi_readl(f, base + FSPI_IPRXFCR); 755 /* invalid RXFIFO first */ 756 reg &= ~FSPI_IPRXFCR_DMA_EN; 757 reg = reg | FSPI_IPRXFCR_CLR; 758 fspi_writel(f, reg, base + FSPI_IPRXFCR); 759 760 init_completion(&f->c); 761 762 fspi_writel(f, op->addr.val, base + FSPI_IPCR0); 763 /* 764 * Always start the sequence at the same index since we update 765 * the LUT at each exec_op() call. And also specify the DATA 766 * length, since it's has not been specified in the LUT. 767 */ 768 fspi_writel(f, op->data.nbytes | 769 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | 770 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), 771 base + FSPI_IPCR1); 772 773 /* Trigger the LUT now. */ 774 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); 775 776 /* Wait for the interrupt. */ 777 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) 778 err = -ETIMEDOUT; 779 780 /* Invoke IP data read, if request is of data read. */ 781 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) 782 nxp_fspi_read_rxfifo(f, op); 783 784 return err; 785 } 786 787 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 788 { 789 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 790 int err = 0; 791 792 mutex_lock(&f->lock); 793 794 /* Wait for controller being ready. */ 795 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, 796 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); 797 WARN_ON(err); 798 799 nxp_fspi_select_mem(f, mem->spi); 800 801 nxp_fspi_prepare_lut(f, op); 802 /* 803 * If we have large chunks of data, we read them through the AHB bus 804 * by accessing the mapped memory. In all other cases we use 805 * IP commands to access the flash. 806 */ 807 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && 808 op->data.dir == SPI_MEM_DATA_IN) { 809 nxp_fspi_read_ahb(f, op); 810 } else { 811 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) 812 nxp_fspi_fill_txfifo(f, op); 813 814 err = nxp_fspi_do_op(f, op); 815 } 816 817 /* Invalidate the data in the AHB buffer. */ 818 nxp_fspi_invalid(f); 819 820 mutex_unlock(&f->lock); 821 822 return err; 823 } 824 825 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 826 { 827 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 828 829 if (op->data.dir == SPI_MEM_DATA_OUT) { 830 if (op->data.nbytes > f->devtype_data->txfifo) 831 op->data.nbytes = f->devtype_data->txfifo; 832 } else { 833 if (op->data.nbytes > f->devtype_data->ahb_buf_size) 834 op->data.nbytes = f->devtype_data->ahb_buf_size; 835 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) 836 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); 837 } 838 839 return 0; 840 } 841 842 static int nxp_fspi_default_setup(struct nxp_fspi *f) 843 { 844 void __iomem *base = f->iobase; 845 int ret, i; 846 u32 reg; 847 848 /* disable and unprepare clock to avoid glitch pass to controller */ 849 nxp_fspi_clk_disable_unprep(f); 850 851 /* the default frequency, we will change it later if necessary. */ 852 ret = clk_set_rate(f->clk, 20000000); 853 if (ret) 854 return ret; 855 856 ret = nxp_fspi_clk_prep_enable(f); 857 if (ret) 858 return ret; 859 860 /* Reset the module */ 861 /* w1c register, wait unit clear */ 862 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 863 FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 864 WARN_ON(ret); 865 866 /* Disable the module */ 867 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); 868 869 /* Reset the DLL register to default value */ 870 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); 871 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); 872 873 /* enable module */ 874 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF), 875 base + FSPI_MCR0); 876 877 /* 878 * Disable same device enable bit and configure all slave devices 879 * independently. 880 */ 881 reg = fspi_readl(f, f->iobase + FSPI_MCR2); 882 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); 883 fspi_writel(f, reg, base + FSPI_MCR2); 884 885 /* AHB configuration for access buffer 0~7. */ 886 for (i = 0; i < 7; i++) 887 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); 888 889 /* 890 * Set ADATSZ with the maximum AHB buffer size to improve the read 891 * performance. 892 */ 893 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | 894 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); 895 896 /* prefetch and no start address alignment limitation */ 897 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, 898 base + FSPI_AHBCR); 899 900 /* AHB Read - Set lut sequence ID for all CS. */ 901 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); 902 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); 903 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); 904 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); 905 906 f->selected = -1; 907 908 /* enable the interrupt */ 909 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); 910 911 return 0; 912 } 913 914 static const char *nxp_fspi_get_name(struct spi_mem *mem) 915 { 916 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 917 struct device *dev = &mem->spi->dev; 918 const char *name; 919 920 // Set custom name derived from the platform_device of the controller. 921 if (of_get_available_child_count(f->dev->of_node) == 1) 922 return dev_name(f->dev); 923 924 name = devm_kasprintf(dev, GFP_KERNEL, 925 "%s-%d", dev_name(f->dev), 926 mem->spi->chip_select); 927 928 if (!name) { 929 dev_err(dev, "failed to get memory for custom flash name\n"); 930 return ERR_PTR(-ENOMEM); 931 } 932 933 return name; 934 } 935 936 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { 937 .adjust_op_size = nxp_fspi_adjust_op_size, 938 .supports_op = nxp_fspi_supports_op, 939 .exec_op = nxp_fspi_exec_op, 940 .get_name = nxp_fspi_get_name, 941 }; 942 943 static int nxp_fspi_probe(struct platform_device *pdev) 944 { 945 struct spi_controller *ctlr; 946 struct device *dev = &pdev->dev; 947 struct device_node *np = dev->of_node; 948 struct resource *res; 949 struct nxp_fspi *f; 950 int ret; 951 952 ctlr = spi_alloc_master(&pdev->dev, sizeof(*f)); 953 if (!ctlr) 954 return -ENOMEM; 955 956 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | 957 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; 958 959 f = spi_controller_get_devdata(ctlr); 960 f->dev = dev; 961 f->devtype_data = of_device_get_match_data(dev); 962 if (!f->devtype_data) { 963 ret = -ENODEV; 964 goto err_put_ctrl; 965 } 966 967 platform_set_drvdata(pdev, f); 968 969 /* find the resources - configuration register address space */ 970 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base"); 971 f->iobase = devm_ioremap_resource(dev, res); 972 if (IS_ERR(f->iobase)) { 973 ret = PTR_ERR(f->iobase); 974 goto err_put_ctrl; 975 } 976 977 /* find the resources - controller memory mapped space */ 978 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap"); 979 f->ahb_addr = devm_ioremap_resource(dev, res); 980 if (IS_ERR(f->ahb_addr)) { 981 ret = PTR_ERR(f->ahb_addr); 982 goto err_put_ctrl; 983 } 984 985 /* assign memory mapped starting address and mapped size. */ 986 f->memmap_phy = res->start; 987 f->memmap_phy_size = resource_size(res); 988 989 /* find the clocks */ 990 f->clk_en = devm_clk_get(dev, "fspi_en"); 991 if (IS_ERR(f->clk_en)) { 992 ret = PTR_ERR(f->clk_en); 993 goto err_put_ctrl; 994 } 995 996 f->clk = devm_clk_get(dev, "fspi"); 997 if (IS_ERR(f->clk)) { 998 ret = PTR_ERR(f->clk); 999 goto err_put_ctrl; 1000 } 1001 1002 ret = nxp_fspi_clk_prep_enable(f); 1003 if (ret) { 1004 dev_err(dev, "can not enable the clock\n"); 1005 goto err_put_ctrl; 1006 } 1007 1008 /* find the irq */ 1009 ret = platform_get_irq(pdev, 0); 1010 if (ret < 0) 1011 goto err_disable_clk; 1012 1013 ret = devm_request_irq(dev, ret, 1014 nxp_fspi_irq_handler, 0, pdev->name, f); 1015 if (ret) { 1016 dev_err(dev, "failed to request irq: %d\n", ret); 1017 goto err_disable_clk; 1018 } 1019 1020 mutex_init(&f->lock); 1021 1022 ctlr->bus_num = -1; 1023 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; 1024 ctlr->mem_ops = &nxp_fspi_mem_ops; 1025 1026 nxp_fspi_default_setup(f); 1027 1028 ctlr->dev.of_node = np; 1029 1030 ret = devm_spi_register_controller(&pdev->dev, ctlr); 1031 if (ret) 1032 goto err_destroy_mutex; 1033 1034 return 0; 1035 1036 err_destroy_mutex: 1037 mutex_destroy(&f->lock); 1038 1039 err_disable_clk: 1040 nxp_fspi_clk_disable_unprep(f); 1041 1042 err_put_ctrl: 1043 spi_controller_put(ctlr); 1044 1045 dev_err(dev, "NXP FSPI probe failed\n"); 1046 return ret; 1047 } 1048 1049 static int nxp_fspi_remove(struct platform_device *pdev) 1050 { 1051 struct nxp_fspi *f = platform_get_drvdata(pdev); 1052 1053 /* disable the hardware */ 1054 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); 1055 1056 nxp_fspi_clk_disable_unprep(f); 1057 1058 mutex_destroy(&f->lock); 1059 1060 return 0; 1061 } 1062 1063 static int nxp_fspi_suspend(struct device *dev) 1064 { 1065 return 0; 1066 } 1067 1068 static int nxp_fspi_resume(struct device *dev) 1069 { 1070 struct nxp_fspi *f = dev_get_drvdata(dev); 1071 1072 nxp_fspi_default_setup(f); 1073 1074 return 0; 1075 } 1076 1077 static const struct of_device_id nxp_fspi_dt_ids[] = { 1078 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, 1079 { /* sentinel */ } 1080 }; 1081 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); 1082 1083 static const struct dev_pm_ops nxp_fspi_pm_ops = { 1084 .suspend = nxp_fspi_suspend, 1085 .resume = nxp_fspi_resume, 1086 }; 1087 1088 static struct platform_driver nxp_fspi_driver = { 1089 .driver = { 1090 .name = "nxp-fspi", 1091 .of_match_table = nxp_fspi_dt_ids, 1092 .pm = &nxp_fspi_pm_ops, 1093 }, 1094 .probe = nxp_fspi_probe, 1095 .remove = nxp_fspi_remove, 1096 }; 1097 module_platform_driver(nxp_fspi_driver); 1098 1099 MODULE_DESCRIPTION("NXP FSPI Controller Driver"); 1100 MODULE_AUTHOR("NXP Semiconductor"); 1101 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>"); 1102 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); 1103 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); 1104 MODULE_LICENSE("GPL v2"); 1105