xref: /openbmc/linux/drivers/spi/spi-nxp-fspi.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * NXP FlexSPI(FSPI) controller driver.
5  *
6  * Copyright 2019-2020 NXP
7  * Copyright 2020 Puresoftware Ltd.
8  *
9  * FlexSPI is a flexsible SPI host controller which supports two SPI
10  * channels and up to 4 external devices. Each channel supports
11  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12  * data lines).
13  *
14  * FlexSPI controller is driven by the LUT(Look-up Table) registers
15  * LUT registers are a look-up-table for sequences of instructions.
16  * A valid sequence consists of four LUT registers.
17  * Maximum 32 LUT sequences can be programmed simultaneously.
18  *
19  * LUTs are being created at run-time based on the commands passed
20  * from the spi-mem framework, thus using single LUT index.
21  *
22  * Software triggered Flash read/write access by IP Bus.
23  *
24  * Memory mapped read access by AHB Bus.
25  *
26  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27  *
28  * Author:
29  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30  *     Boris Brezillon <bbrezillon@kernel.org>
31  *     Frieder Schrempf <frieder.schrempf@kontron.de>
32  */
33 
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/err.h>
40 #include <linux/errno.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43 #include <linux/iopoll.h>
44 #include <linux/jiffies.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/mutex.h>
48 #include <linux/of.h>
49 #include <linux/of_device.h>
50 #include <linux/platform_device.h>
51 #include <linux/pm_qos.h>
52 #include <linux/sizes.h>
53 
54 #include <linux/spi/spi.h>
55 #include <linux/spi/spi-mem.h>
56 
57 /*
58  * The driver only uses one single LUT entry, that is updated on
59  * each call of exec_op(). Index 0 is preset at boot with a basic
60  * read operation, so let's use the last entry (31).
61  */
62 #define	SEQID_LUT			31
63 
64 /* Registers used by the driver */
65 #define FSPI_MCR0			0x00
66 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
67 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
68 #define FSPI_MCR0_LEARN_EN		BIT(15)
69 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
70 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
71 #define FSPI_MCR0_DOZE_EN		BIT(12)
72 #define FSPI_MCR0_HSEN			BIT(11)
73 #define FSPI_MCR0_SERCLKDIV		BIT(8)
74 #define FSPI_MCR0_ATDF_EN		BIT(7)
75 #define FSPI_MCR0_ARDF_EN		BIT(6)
76 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
77 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
78 #define FSPI_MCR0_MDIS			BIT(1)
79 #define FSPI_MCR0_SWRST			BIT(0)
80 
81 #define FSPI_MCR1			0x04
82 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
83 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
84 
85 #define FSPI_MCR2			0x08
86 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
87 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
88 #define FSPI_MCR2_CLRLRPHS		BIT(14)
89 #define FSPI_MCR2_ABRDATSZ		BIT(8)
90 #define FSPI_MCR2_ABRLEARN		BIT(7)
91 #define FSPI_MCR2_ABR_READ		BIT(6)
92 #define FSPI_MCR2_ABRWRITE		BIT(5)
93 #define FSPI_MCR2_ABRDUMMY		BIT(4)
94 #define FSPI_MCR2_ABR_MODE		BIT(3)
95 #define FSPI_MCR2_ABRCADDR		BIT(2)
96 #define FSPI_MCR2_ABRRADDR		BIT(1)
97 #define FSPI_MCR2_ABR_CMD		BIT(0)
98 
99 #define FSPI_AHBCR			0x0c
100 #define FSPI_AHBCR_RDADDROPT		BIT(6)
101 #define FSPI_AHBCR_PREF_EN		BIT(5)
102 #define FSPI_AHBCR_BUFF_EN		BIT(4)
103 #define FSPI_AHBCR_CACH_EN		BIT(3)
104 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
105 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
106 #define FSPI_AHBCR_PAR_EN		BIT(0)
107 
108 #define FSPI_INTEN			0x10
109 #define FSPI_INTEN_SCLKSBWR		BIT(9)
110 #define FSPI_INTEN_SCLKSBRD		BIT(8)
111 #define FSPI_INTEN_DATALRNFL		BIT(7)
112 #define FSPI_INTEN_IPTXWE		BIT(6)
113 #define FSPI_INTEN_IPRXWA		BIT(5)
114 #define FSPI_INTEN_AHBCMDERR		BIT(4)
115 #define FSPI_INTEN_IPCMDERR		BIT(3)
116 #define FSPI_INTEN_AHBCMDGE		BIT(2)
117 #define FSPI_INTEN_IPCMDGE		BIT(1)
118 #define FSPI_INTEN_IPCMDDONE		BIT(0)
119 
120 #define FSPI_INTR			0x14
121 #define FSPI_INTR_SCLKSBWR		BIT(9)
122 #define FSPI_INTR_SCLKSBRD		BIT(8)
123 #define FSPI_INTR_DATALRNFL		BIT(7)
124 #define FSPI_INTR_IPTXWE		BIT(6)
125 #define FSPI_INTR_IPRXWA		BIT(5)
126 #define FSPI_INTR_AHBCMDERR		BIT(4)
127 #define FSPI_INTR_IPCMDERR		BIT(3)
128 #define FSPI_INTR_AHBCMDGE		BIT(2)
129 #define FSPI_INTR_IPCMDGE		BIT(1)
130 #define FSPI_INTR_IPCMDDONE		BIT(0)
131 
132 #define FSPI_LUTKEY			0x18
133 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
134 
135 #define FSPI_LCKCR			0x1C
136 
137 #define FSPI_LCKER_LOCK			0x1
138 #define FSPI_LCKER_UNLOCK		0x2
139 
140 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
141 #define FSPI_AHBRX_BUF0CR0		0x20
142 #define FSPI_AHBRX_BUF1CR0		0x24
143 #define FSPI_AHBRX_BUF2CR0		0x28
144 #define FSPI_AHBRX_BUF3CR0		0x2C
145 #define FSPI_AHBRX_BUF4CR0		0x30
146 #define FSPI_AHBRX_BUF5CR0		0x34
147 #define FSPI_AHBRX_BUF6CR0		0x38
148 #define FSPI_AHBRX_BUF7CR0		0x3C
149 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
150 
151 #define FSPI_AHBRX_BUF0CR1		0x40
152 #define FSPI_AHBRX_BUF1CR1		0x44
153 #define FSPI_AHBRX_BUF2CR1		0x48
154 #define FSPI_AHBRX_BUF3CR1		0x4C
155 #define FSPI_AHBRX_BUF4CR1		0x50
156 #define FSPI_AHBRX_BUF5CR1		0x54
157 #define FSPI_AHBRX_BUF6CR1		0x58
158 #define FSPI_AHBRX_BUF7CR1		0x5C
159 
160 #define FSPI_FLSHA1CR0			0x60
161 #define FSPI_FLSHA2CR0			0x64
162 #define FSPI_FLSHB1CR0			0x68
163 #define FSPI_FLSHB2CR0			0x6C
164 #define FSPI_FLSHXCR0_SZ_KB		10
165 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
166 
167 #define FSPI_FLSHA1CR1			0x70
168 #define FSPI_FLSHA2CR1			0x74
169 #define FSPI_FLSHB1CR1			0x78
170 #define FSPI_FLSHB2CR1			0x7C
171 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
172 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
173 #define FSPI_FLSHXCR1_WA		BIT(10)
174 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
175 #define FSPI_FLSHXCR1_TCSS(x)		(x)
176 
177 #define FSPI_FLSHA1CR2			0x80
178 #define FSPI_FLSHA2CR2			0x84
179 #define FSPI_FLSHB1CR2			0x88
180 #define FSPI_FLSHB2CR2			0x8C
181 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
182 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
183 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
184 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
185 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
186 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
187 
188 #define FSPI_IPCR0			0xA0
189 
190 #define FSPI_IPCR1			0xA4
191 #define FSPI_IPCR1_IPAREN		BIT(31)
192 #define FSPI_IPCR1_SEQNUM_SHIFT		24
193 #define FSPI_IPCR1_SEQID_SHIFT		16
194 #define FSPI_IPCR1_IDATSZ(x)		(x)
195 
196 #define FSPI_IPCMD			0xB0
197 #define FSPI_IPCMD_TRG			BIT(0)
198 
199 #define FSPI_DLPR			0xB4
200 
201 #define FSPI_IPRXFCR			0xB8
202 #define FSPI_IPRXFCR_CLR		BIT(0)
203 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
204 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
205 
206 #define FSPI_IPTXFCR			0xBC
207 #define FSPI_IPTXFCR_CLR		BIT(0)
208 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
209 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
210 
211 #define FSPI_DLLACR			0xC0
212 #define FSPI_DLLACR_OVRDEN		BIT(8)
213 
214 #define FSPI_DLLBCR			0xC4
215 #define FSPI_DLLBCR_OVRDEN		BIT(8)
216 
217 #define FSPI_STS0			0xE0
218 #define FSPI_STS0_DLPHB(x)		((x) << 8)
219 #define FSPI_STS0_DLPHA(x)		((x) << 4)
220 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
221 #define FSPI_STS0_ARB_IDLE		BIT(1)
222 #define FSPI_STS0_SEQ_IDLE		BIT(0)
223 
224 #define FSPI_STS1			0xE4
225 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
226 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
227 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
228 #define FSPI_STS1_AHB_ERRID(x)		(x)
229 
230 #define FSPI_AHBSPNST			0xEC
231 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
232 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
233 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
234 
235 #define FSPI_IPRXFSTS			0xF0
236 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
237 #define FSPI_IPRXFSTS_FILL(x)		(x)
238 
239 #define FSPI_IPTXFSTS			0xF4
240 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
241 #define FSPI_IPTXFSTS_FILL(x)		(x)
242 
243 #define FSPI_RFDR			0x100
244 #define FSPI_TFDR			0x180
245 
246 #define FSPI_LUT_BASE			0x200
247 #define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
248 #define FSPI_LUT_REG(idx) \
249 	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
250 
251 /* register map end */
252 
253 /* Instruction set for the LUT register. */
254 #define LUT_STOP			0x00
255 #define LUT_CMD				0x01
256 #define LUT_ADDR			0x02
257 #define LUT_CADDR_SDR			0x03
258 #define LUT_MODE			0x04
259 #define LUT_MODE2			0x05
260 #define LUT_MODE4			0x06
261 #define LUT_MODE8			0x07
262 #define LUT_NXP_WRITE			0x08
263 #define LUT_NXP_READ			0x09
264 #define LUT_LEARN_SDR			0x0A
265 #define LUT_DATSZ_SDR			0x0B
266 #define LUT_DUMMY			0x0C
267 #define LUT_DUMMY_RWDS_SDR		0x0D
268 #define LUT_JMP_ON_CS			0x1F
269 #define LUT_CMD_DDR			0x21
270 #define LUT_ADDR_DDR			0x22
271 #define LUT_CADDR_DDR			0x23
272 #define LUT_MODE_DDR			0x24
273 #define LUT_MODE2_DDR			0x25
274 #define LUT_MODE4_DDR			0x26
275 #define LUT_MODE8_DDR			0x27
276 #define LUT_WRITE_DDR			0x28
277 #define LUT_READ_DDR			0x29
278 #define LUT_LEARN_DDR			0x2A
279 #define LUT_DATSZ_DDR			0x2B
280 #define LUT_DUMMY_DDR			0x2C
281 #define LUT_DUMMY_RWDS_DDR		0x2D
282 
283 /*
284  * Calculate number of required PAD bits for LUT register.
285  *
286  * The pad stands for the number of IO lines [0:7].
287  * For example, the octal read needs eight IO lines,
288  * so you should use LUT_PAD(8). This macro
289  * returns 3 i.e. use eight (2^3) IP lines for read.
290  */
291 #define LUT_PAD(x) (fls(x) - 1)
292 
293 /*
294  * Macro for constructing the LUT entries with the following
295  * register layout:
296  *
297  *  ---------------------------------------------------
298  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
299  *  ---------------------------------------------------
300  */
301 #define PAD_SHIFT		8
302 #define INSTR_SHIFT		10
303 #define OPRND_SHIFT		16
304 
305 /* Macros for constructing the LUT register. */
306 #define LUT_DEF(idx, ins, pad, opr)			  \
307 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
308 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
309 
310 #define POLL_TOUT		5000
311 #define NXP_FSPI_MAX_CHIPSELECT		4
312 #define NXP_FSPI_MIN_IOMAP	SZ_4M
313 
314 struct nxp_fspi_devtype_data {
315 	unsigned int rxfifo;
316 	unsigned int txfifo;
317 	unsigned int ahb_buf_size;
318 	unsigned int quirks;
319 	bool little_endian;
320 };
321 
322 static const struct nxp_fspi_devtype_data lx2160a_data = {
323 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
324 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
325 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
326 	.quirks = 0,
327 	.little_endian = true,  /* little-endian    */
328 };
329 
330 static const struct nxp_fspi_devtype_data imx8mm_data = {
331 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
332 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
333 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
334 	.quirks = 0,
335 	.little_endian = true,  /* little-endian    */
336 };
337 
338 static const struct nxp_fspi_devtype_data imx8qxp_data = {
339 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
340 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
341 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
342 	.quirks = 0,
343 	.little_endian = true,  /* little-endian    */
344 };
345 
346 struct nxp_fspi {
347 	void __iomem *iobase;
348 	void __iomem *ahb_addr;
349 	u32 memmap_phy;
350 	u32 memmap_phy_size;
351 	u32 memmap_start;
352 	u32 memmap_len;
353 	struct clk *clk, *clk_en;
354 	struct device *dev;
355 	struct completion c;
356 	const struct nxp_fspi_devtype_data *devtype_data;
357 	struct mutex lock;
358 	struct pm_qos_request pm_qos_req;
359 	int selected;
360 };
361 
362 /*
363  * R/W functions for big- or little-endian registers:
364  * The FSPI controller's endianness is independent of
365  * the CPU core's endianness. So far, although the CPU
366  * core is little-endian the FSPI controller can use
367  * big-endian or little-endian.
368  */
369 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
370 {
371 	if (f->devtype_data->little_endian)
372 		iowrite32(val, addr);
373 	else
374 		iowrite32be(val, addr);
375 }
376 
377 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
378 {
379 	if (f->devtype_data->little_endian)
380 		return ioread32(addr);
381 	else
382 		return ioread32be(addr);
383 }
384 
385 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
386 {
387 	struct nxp_fspi *f = dev_id;
388 	u32 reg;
389 
390 	/* clear interrupt */
391 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
392 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
393 
394 	if (reg & FSPI_INTR_IPCMDDONE)
395 		complete(&f->c);
396 
397 	return IRQ_HANDLED;
398 }
399 
400 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
401 {
402 	switch (width) {
403 	case 1:
404 	case 2:
405 	case 4:
406 	case 8:
407 		return 0;
408 	}
409 
410 	return -ENOTSUPP;
411 }
412 
413 static bool nxp_fspi_supports_op(struct spi_mem *mem,
414 				 const struct spi_mem_op *op)
415 {
416 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
417 	int ret;
418 
419 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
420 
421 	if (op->addr.nbytes)
422 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
423 
424 	if (op->dummy.nbytes)
425 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
426 
427 	if (op->data.nbytes)
428 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
429 
430 	if (ret)
431 		return false;
432 
433 	/*
434 	 * The number of address bytes should be equal to or less than 4 bytes.
435 	 */
436 	if (op->addr.nbytes > 4)
437 		return false;
438 
439 	/*
440 	 * If requested address value is greater than controller assigned
441 	 * memory mapped space, return error as it didn't fit in the range
442 	 * of assigned address space.
443 	 */
444 	if (op->addr.val >= f->memmap_phy_size)
445 		return false;
446 
447 	/* Max 64 dummy clock cycles supported */
448 	if (op->dummy.buswidth &&
449 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
450 		return false;
451 
452 	/* Max data length, check controller limits and alignment */
453 	if (op->data.dir == SPI_MEM_DATA_IN &&
454 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
455 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
456 	      !IS_ALIGNED(op->data.nbytes, 8))))
457 		return false;
458 
459 	if (op->data.dir == SPI_MEM_DATA_OUT &&
460 	    op->data.nbytes > f->devtype_data->txfifo)
461 		return false;
462 
463 	return spi_mem_default_supports_op(mem, op);
464 }
465 
466 /* Instead of busy looping invoke readl_poll_timeout functionality. */
467 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
468 				u32 mask, u32 delay_us,
469 				u32 timeout_us, bool c)
470 {
471 	u32 reg;
472 
473 	if (!f->devtype_data->little_endian)
474 		mask = (u32)cpu_to_be32(mask);
475 
476 	if (c)
477 		return readl_poll_timeout(base, reg, (reg & mask),
478 					  delay_us, timeout_us);
479 	else
480 		return readl_poll_timeout(base, reg, !(reg & mask),
481 					  delay_us, timeout_us);
482 }
483 
484 /*
485  * If the slave device content being changed by Write/Erase, need to
486  * invalidate the AHB buffer. This can be achieved by doing the reset
487  * of controller after setting MCR0[SWRESET] bit.
488  */
489 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
490 {
491 	u32 reg;
492 	int ret;
493 
494 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
495 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
496 
497 	/* w1c register, wait unit clear */
498 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
499 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
500 	WARN_ON(ret);
501 }
502 
503 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
504 				 const struct spi_mem_op *op)
505 {
506 	void __iomem *base = f->iobase;
507 	u32 lutval[4] = {};
508 	int lutidx = 1, i;
509 
510 	/* cmd */
511 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
512 			     op->cmd.opcode);
513 
514 	/* addr bytes */
515 	if (op->addr.nbytes) {
516 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
517 					      LUT_PAD(op->addr.buswidth),
518 					      op->addr.nbytes * 8);
519 		lutidx++;
520 	}
521 
522 	/* dummy bytes, if needed */
523 	if (op->dummy.nbytes) {
524 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
525 		/*
526 		 * Due to FlexSPI controller limitation number of PAD for dummy
527 		 * buswidth needs to be programmed as equal to data buswidth.
528 		 */
529 					      LUT_PAD(op->data.buswidth),
530 					      op->dummy.nbytes * 8 /
531 					      op->dummy.buswidth);
532 		lutidx++;
533 	}
534 
535 	/* read/write data bytes */
536 	if (op->data.nbytes) {
537 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
538 					      op->data.dir == SPI_MEM_DATA_IN ?
539 					      LUT_NXP_READ : LUT_NXP_WRITE,
540 					      LUT_PAD(op->data.buswidth),
541 					      0);
542 		lutidx++;
543 	}
544 
545 	/* stop condition. */
546 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
547 
548 	/* unlock LUT */
549 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
550 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
551 
552 	/* fill LUT */
553 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
554 		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
555 
556 	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
557 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
558 
559 	/* lock LUT */
560 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
561 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
562 }
563 
564 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
565 {
566 	int ret;
567 
568 	if (is_acpi_node(f->dev->fwnode))
569 		return 0;
570 
571 	ret = clk_prepare_enable(f->clk_en);
572 	if (ret)
573 		return ret;
574 
575 	ret = clk_prepare_enable(f->clk);
576 	if (ret) {
577 		clk_disable_unprepare(f->clk_en);
578 		return ret;
579 	}
580 
581 	return 0;
582 }
583 
584 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
585 {
586 	if (is_acpi_node(f->dev->fwnode))
587 		return 0;
588 
589 	clk_disable_unprepare(f->clk);
590 	clk_disable_unprepare(f->clk_en);
591 
592 	return 0;
593 }
594 
595 /*
596  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
597  * register and start base address of the slave device.
598  *
599  *							    (Higher address)
600  *				--------    <-- FLSHB2CR0
601  *				|  B2  |
602  *				|      |
603  *	B2 start address -->	--------    <-- FLSHB1CR0
604  *				|  B1  |
605  *				|      |
606  *	B1 start address -->	--------    <-- FLSHA2CR0
607  *				|  A2  |
608  *				|      |
609  *	A2 start address -->	--------    <-- FLSHA1CR0
610  *				|  A1  |
611  *				|      |
612  *	A1 start address -->	--------		    (Lower address)
613  *
614  *
615  * Start base address defines the starting address range for given CS and
616  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
617  *
618  * But, different targets are having different combinations of number of CS,
619  * some targets only have single CS or two CS covering controller's full
620  * memory mapped space area.
621  * Thus, implementation is being done as independent of the size and number
622  * of the connected slave device.
623  * Assign controller memory mapped space size as the size to the connected
624  * slave device.
625  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
626  * chip-select Flash configuration register.
627  *
628  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
629  * memory mapped size of the controller.
630  * Value for rest of the CS FLSHxxCR0 register would be zero.
631  *
632  */
633 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
634 {
635 	unsigned long rate = spi->max_speed_hz;
636 	int ret;
637 	uint64_t size_kb;
638 
639 	/*
640 	 * Return, if previously selected slave device is same as current
641 	 * requested slave device.
642 	 */
643 	if (f->selected == spi->chip_select)
644 		return;
645 
646 	/* Reset FLSHxxCR0 registers */
647 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
648 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
649 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
650 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
651 
652 	/* Assign controller memory mapped space as size, KBytes, of flash. */
653 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
654 
655 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
656 		    4 * spi->chip_select);
657 
658 	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
659 
660 	nxp_fspi_clk_disable_unprep(f);
661 
662 	ret = clk_set_rate(f->clk, rate);
663 	if (ret)
664 		return;
665 
666 	ret = nxp_fspi_clk_prep_enable(f);
667 	if (ret)
668 		return;
669 
670 	f->selected = spi->chip_select;
671 }
672 
673 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
674 {
675 	u32 start = op->addr.val;
676 	u32 len = op->data.nbytes;
677 
678 	/* if necessary, ioremap before AHB read */
679 	if ((!f->ahb_addr) || start < f->memmap_start ||
680 	     start + len > f->memmap_start + f->memmap_len) {
681 		if (f->ahb_addr)
682 			iounmap(f->ahb_addr);
683 
684 		f->memmap_start = start;
685 		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
686 				len : NXP_FSPI_MIN_IOMAP;
687 
688 		f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
689 					 f->memmap_len);
690 
691 		if (!f->ahb_addr) {
692 			dev_err(f->dev, "failed to alloc memory\n");
693 			return -ENOMEM;
694 		}
695 	}
696 
697 	/* Read out the data directly from the AHB buffer. */
698 	memcpy_fromio(op->data.buf.in,
699 		      f->ahb_addr + start - f->memmap_start, len);
700 
701 	return 0;
702 }
703 
704 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
705 				 const struct spi_mem_op *op)
706 {
707 	void __iomem *base = f->iobase;
708 	int i, ret;
709 	u8 *buf = (u8 *) op->data.buf.out;
710 
711 	/* clear the TX FIFO. */
712 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
713 
714 	/*
715 	 * Default value of water mark level is 8 bytes, hence in single
716 	 * write request controller can write max 8 bytes of data.
717 	 */
718 
719 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
720 		/* Wait for TXFIFO empty */
721 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
722 					   FSPI_INTR_IPTXWE, 0,
723 					   POLL_TOUT, true);
724 		WARN_ON(ret);
725 
726 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
727 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
728 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
729 	}
730 
731 	if (i < op->data.nbytes) {
732 		u32 data = 0;
733 		int j;
734 		/* Wait for TXFIFO empty */
735 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
736 					   FSPI_INTR_IPTXWE, 0,
737 					   POLL_TOUT, true);
738 		WARN_ON(ret);
739 
740 		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
741 			memcpy(&data, buf + i + j, 4);
742 			fspi_writel(f, data, base + FSPI_TFDR + j);
743 		}
744 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
745 	}
746 }
747 
748 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
749 			  const struct spi_mem_op *op)
750 {
751 	void __iomem *base = f->iobase;
752 	int i, ret;
753 	int len = op->data.nbytes;
754 	u8 *buf = (u8 *) op->data.buf.in;
755 
756 	/*
757 	 * Default value of water mark level is 8 bytes, hence in single
758 	 * read request controller can read max 8 bytes of data.
759 	 */
760 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
761 		/* Wait for RXFIFO available */
762 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
763 					   FSPI_INTR_IPRXWA, 0,
764 					   POLL_TOUT, true);
765 		WARN_ON(ret);
766 
767 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
768 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
769 		/* move the FIFO pointer */
770 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
771 	}
772 
773 	if (i < len) {
774 		u32 tmp;
775 		int size, j;
776 
777 		buf = op->data.buf.in + i;
778 		/* Wait for RXFIFO available */
779 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
780 					   FSPI_INTR_IPRXWA, 0,
781 					   POLL_TOUT, true);
782 		WARN_ON(ret);
783 
784 		len = op->data.nbytes - i;
785 		for (j = 0; j < op->data.nbytes - i; j += 4) {
786 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
787 			size = min(len, 4);
788 			memcpy(buf + j, &tmp, size);
789 			len -= size;
790 		}
791 	}
792 
793 	/* invalid the RXFIFO */
794 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
795 	/* move the FIFO pointer */
796 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
797 }
798 
799 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
800 {
801 	void __iomem *base = f->iobase;
802 	int seqnum = 0;
803 	int err = 0;
804 	u32 reg;
805 
806 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
807 	/* invalid RXFIFO first */
808 	reg &= ~FSPI_IPRXFCR_DMA_EN;
809 	reg = reg | FSPI_IPRXFCR_CLR;
810 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
811 
812 	init_completion(&f->c);
813 
814 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
815 	/*
816 	 * Always start the sequence at the same index since we update
817 	 * the LUT at each exec_op() call. And also specify the DATA
818 	 * length, since it's has not been specified in the LUT.
819 	 */
820 	fspi_writel(f, op->data.nbytes |
821 		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
822 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
823 		 base + FSPI_IPCR1);
824 
825 	/* Trigger the LUT now. */
826 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
827 
828 	/* Wait for the interrupt. */
829 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
830 		err = -ETIMEDOUT;
831 
832 	/* Invoke IP data read, if request is of data read. */
833 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
834 		nxp_fspi_read_rxfifo(f, op);
835 
836 	return err;
837 }
838 
839 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
840 {
841 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
842 	int err = 0;
843 
844 	mutex_lock(&f->lock);
845 
846 	/* Wait for controller being ready. */
847 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
848 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
849 	WARN_ON(err);
850 
851 	nxp_fspi_select_mem(f, mem->spi);
852 
853 	nxp_fspi_prepare_lut(f, op);
854 	/*
855 	 * If we have large chunks of data, we read them through the AHB bus
856 	 * by accessing the mapped memory. In all other cases we use
857 	 * IP commands to access the flash.
858 	 */
859 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
860 	    op->data.dir == SPI_MEM_DATA_IN) {
861 		err = nxp_fspi_read_ahb(f, op);
862 	} else {
863 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
864 			nxp_fspi_fill_txfifo(f, op);
865 
866 		err = nxp_fspi_do_op(f, op);
867 	}
868 
869 	/* Invalidate the data in the AHB buffer. */
870 	nxp_fspi_invalid(f);
871 
872 	mutex_unlock(&f->lock);
873 
874 	return err;
875 }
876 
877 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
878 {
879 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
880 
881 	if (op->data.dir == SPI_MEM_DATA_OUT) {
882 		if (op->data.nbytes > f->devtype_data->txfifo)
883 			op->data.nbytes = f->devtype_data->txfifo;
884 	} else {
885 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
886 			op->data.nbytes = f->devtype_data->ahb_buf_size;
887 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
888 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
889 	}
890 
891 	return 0;
892 }
893 
894 static int nxp_fspi_default_setup(struct nxp_fspi *f)
895 {
896 	void __iomem *base = f->iobase;
897 	int ret, i;
898 	u32 reg;
899 
900 	/* disable and unprepare clock to avoid glitch pass to controller */
901 	nxp_fspi_clk_disable_unprep(f);
902 
903 	/* the default frequency, we will change it later if necessary. */
904 	ret = clk_set_rate(f->clk, 20000000);
905 	if (ret)
906 		return ret;
907 
908 	ret = nxp_fspi_clk_prep_enable(f);
909 	if (ret)
910 		return ret;
911 
912 	/* Reset the module */
913 	/* w1c register, wait unit clear */
914 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
915 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
916 	WARN_ON(ret);
917 
918 	/* Disable the module */
919 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
920 
921 	/* Reset the DLL register to default value */
922 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
923 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
924 
925 	/* enable module */
926 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
927 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
928 		    base + FSPI_MCR0);
929 
930 	/*
931 	 * Disable same device enable bit and configure all slave devices
932 	 * independently.
933 	 */
934 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
935 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
936 	fspi_writel(f, reg, base + FSPI_MCR2);
937 
938 	/* AHB configuration for access buffer 0~7. */
939 	for (i = 0; i < 7; i++)
940 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
941 
942 	/*
943 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
944 	 * performance.
945 	 */
946 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
947 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
948 
949 	/* prefetch and no start address alignment limitation */
950 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
951 		 base + FSPI_AHBCR);
952 
953 	/* AHB Read - Set lut sequence ID for all CS. */
954 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
955 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
956 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
957 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
958 
959 	f->selected = -1;
960 
961 	/* enable the interrupt */
962 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
963 
964 	return 0;
965 }
966 
967 static const char *nxp_fspi_get_name(struct spi_mem *mem)
968 {
969 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
970 	struct device *dev = &mem->spi->dev;
971 	const char *name;
972 
973 	// Set custom name derived from the platform_device of the controller.
974 	if (of_get_available_child_count(f->dev->of_node) == 1)
975 		return dev_name(f->dev);
976 
977 	name = devm_kasprintf(dev, GFP_KERNEL,
978 			      "%s-%d", dev_name(f->dev),
979 			      mem->spi->chip_select);
980 
981 	if (!name) {
982 		dev_err(dev, "failed to get memory for custom flash name\n");
983 		return ERR_PTR(-ENOMEM);
984 	}
985 
986 	return name;
987 }
988 
989 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
990 	.adjust_op_size = nxp_fspi_adjust_op_size,
991 	.supports_op = nxp_fspi_supports_op,
992 	.exec_op = nxp_fspi_exec_op,
993 	.get_name = nxp_fspi_get_name,
994 };
995 
996 static int nxp_fspi_probe(struct platform_device *pdev)
997 {
998 	struct spi_controller *ctlr;
999 	struct device *dev = &pdev->dev;
1000 	struct device_node *np = dev->of_node;
1001 	struct resource *res;
1002 	struct nxp_fspi *f;
1003 	int ret;
1004 	u32 reg;
1005 
1006 	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1007 	if (!ctlr)
1008 		return -ENOMEM;
1009 
1010 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1011 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1012 
1013 	f = spi_controller_get_devdata(ctlr);
1014 	f->dev = dev;
1015 	f->devtype_data = device_get_match_data(dev);
1016 	if (!f->devtype_data) {
1017 		ret = -ENODEV;
1018 		goto err_put_ctrl;
1019 	}
1020 
1021 	platform_set_drvdata(pdev, f);
1022 
1023 	/* find the resources - configuration register address space */
1024 	if (is_acpi_node(f->dev->fwnode))
1025 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1026 	else
1027 		res = platform_get_resource_byname(pdev,
1028 				IORESOURCE_MEM, "fspi_base");
1029 
1030 	f->iobase = devm_ioremap_resource(dev, res);
1031 	if (IS_ERR(f->iobase)) {
1032 		ret = PTR_ERR(f->iobase);
1033 		goto err_put_ctrl;
1034 	}
1035 
1036 	/* Clear potential interrupts */
1037 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1038 	if (reg)
1039 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1040 
1041 
1042 	/* find the resources - controller memory mapped space */
1043 	if (is_acpi_node(f->dev->fwnode))
1044 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1045 	else
1046 		res = platform_get_resource_byname(pdev,
1047 				IORESOURCE_MEM, "fspi_mmap");
1048 
1049 	if (!res) {
1050 		ret = -ENODEV;
1051 		goto err_put_ctrl;
1052 	}
1053 
1054 	/* assign memory mapped starting address and mapped size. */
1055 	f->memmap_phy = res->start;
1056 	f->memmap_phy_size = resource_size(res);
1057 
1058 	/* find the clocks */
1059 	if (dev_of_node(&pdev->dev)) {
1060 		f->clk_en = devm_clk_get(dev, "fspi_en");
1061 		if (IS_ERR(f->clk_en)) {
1062 			ret = PTR_ERR(f->clk_en);
1063 			goto err_put_ctrl;
1064 		}
1065 
1066 		f->clk = devm_clk_get(dev, "fspi");
1067 		if (IS_ERR(f->clk)) {
1068 			ret = PTR_ERR(f->clk);
1069 			goto err_put_ctrl;
1070 		}
1071 
1072 		ret = nxp_fspi_clk_prep_enable(f);
1073 		if (ret) {
1074 			dev_err(dev, "can not enable the clock\n");
1075 			goto err_put_ctrl;
1076 		}
1077 	}
1078 
1079 	/* find the irq */
1080 	ret = platform_get_irq(pdev, 0);
1081 	if (ret < 0)
1082 		goto err_disable_clk;
1083 
1084 	ret = devm_request_irq(dev, ret,
1085 			nxp_fspi_irq_handler, 0, pdev->name, f);
1086 	if (ret) {
1087 		dev_err(dev, "failed to request irq: %d\n", ret);
1088 		goto err_disable_clk;
1089 	}
1090 
1091 	mutex_init(&f->lock);
1092 
1093 	ctlr->bus_num = -1;
1094 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1095 	ctlr->mem_ops = &nxp_fspi_mem_ops;
1096 
1097 	nxp_fspi_default_setup(f);
1098 
1099 	ctlr->dev.of_node = np;
1100 
1101 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1102 	if (ret)
1103 		goto err_destroy_mutex;
1104 
1105 	return 0;
1106 
1107 err_destroy_mutex:
1108 	mutex_destroy(&f->lock);
1109 
1110 err_disable_clk:
1111 	nxp_fspi_clk_disable_unprep(f);
1112 
1113 err_put_ctrl:
1114 	spi_controller_put(ctlr);
1115 
1116 	dev_err(dev, "NXP FSPI probe failed\n");
1117 	return ret;
1118 }
1119 
1120 static int nxp_fspi_remove(struct platform_device *pdev)
1121 {
1122 	struct nxp_fspi *f = platform_get_drvdata(pdev);
1123 
1124 	/* disable the hardware */
1125 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1126 
1127 	nxp_fspi_clk_disable_unprep(f);
1128 
1129 	mutex_destroy(&f->lock);
1130 
1131 	if (f->ahb_addr)
1132 		iounmap(f->ahb_addr);
1133 
1134 	return 0;
1135 }
1136 
1137 static int nxp_fspi_suspend(struct device *dev)
1138 {
1139 	return 0;
1140 }
1141 
1142 static int nxp_fspi_resume(struct device *dev)
1143 {
1144 	struct nxp_fspi *f = dev_get_drvdata(dev);
1145 
1146 	nxp_fspi_default_setup(f);
1147 
1148 	return 0;
1149 }
1150 
1151 static const struct of_device_id nxp_fspi_dt_ids[] = {
1152 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1153 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1154 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1155 	{ /* sentinel */ }
1156 };
1157 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1158 
1159 #ifdef CONFIG_ACPI
1160 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1161 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1162 	{}
1163 };
1164 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1165 #endif
1166 
1167 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1168 	.suspend	= nxp_fspi_suspend,
1169 	.resume		= nxp_fspi_resume,
1170 };
1171 
1172 static struct platform_driver nxp_fspi_driver = {
1173 	.driver = {
1174 		.name	= "nxp-fspi",
1175 		.of_match_table = nxp_fspi_dt_ids,
1176 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1177 		.pm =   &nxp_fspi_pm_ops,
1178 	},
1179 	.probe          = nxp_fspi_probe,
1180 	.remove		= nxp_fspi_remove,
1181 };
1182 module_platform_driver(nxp_fspi_driver);
1183 
1184 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1185 MODULE_AUTHOR("NXP Semiconductor");
1186 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1187 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1188 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1189 MODULE_LICENSE("GPL v2");
1190