xref: /openbmc/linux/drivers/spi/spi-nxp-fspi.c (revision 583f12a80dfb7997d59a42e8642019695f5aa15a)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * NXP FlexSPI(FSPI) controller driver.
5  *
6  * Copyright 2019-2020 NXP
7  * Copyright 2020 Puresoftware Ltd.
8  *
9  * FlexSPI is a flexsible SPI host controller which supports two SPI
10  * channels and up to 4 external devices. Each channel supports
11  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12  * data lines).
13  *
14  * FlexSPI controller is driven by the LUT(Look-up Table) registers
15  * LUT registers are a look-up-table for sequences of instructions.
16  * A valid sequence consists of four LUT registers.
17  * Maximum 32 LUT sequences can be programmed simultaneously.
18  *
19  * LUTs are being created at run-time based on the commands passed
20  * from the spi-mem framework, thus using single LUT index.
21  *
22  * Software triggered Flash read/write access by IP Bus.
23  *
24  * Memory mapped read access by AHB Bus.
25  *
26  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27  *
28  * Author:
29  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30  *     Boris Brezillon <bbrezillon@kernel.org>
31  *     Frieder Schrempf <frieder.schrempf@kontron.de>
32  */
33 
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/bitfield.h>
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/delay.h>
40 #include <linux/err.h>
41 #include <linux/errno.h>
42 #include <linux/interrupt.h>
43 #include <linux/io.h>
44 #include <linux/iopoll.h>
45 #include <linux/jiffies.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
49 #include <linux/of.h>
50 #include <linux/of_device.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/regmap.h>
54 #include <linux/sizes.h>
55 #include <linux/sys_soc.h>
56 
57 #include <linux/mfd/syscon.h>
58 #include <linux/spi/spi.h>
59 #include <linux/spi/spi-mem.h>
60 
61 /*
62  * The driver only uses one single LUT entry, that is updated on
63  * each call of exec_op(). Index 0 is preset at boot with a basic
64  * read operation, so let's use the last entry (31).
65  */
66 #define	SEQID_LUT			31
67 
68 /* Registers used by the driver */
69 #define FSPI_MCR0			0x00
70 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
71 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
72 #define FSPI_MCR0_LEARN_EN		BIT(15)
73 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
74 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
75 #define FSPI_MCR0_DOZE_EN		BIT(12)
76 #define FSPI_MCR0_HSEN			BIT(11)
77 #define FSPI_MCR0_SERCLKDIV		BIT(8)
78 #define FSPI_MCR0_ATDF_EN		BIT(7)
79 #define FSPI_MCR0_ARDF_EN		BIT(6)
80 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
81 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
82 #define FSPI_MCR0_MDIS			BIT(1)
83 #define FSPI_MCR0_SWRST			BIT(0)
84 
85 #define FSPI_MCR1			0x04
86 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
87 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
88 
89 #define FSPI_MCR2			0x08
90 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
91 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
92 #define FSPI_MCR2_CLRLRPHS		BIT(14)
93 #define FSPI_MCR2_ABRDATSZ		BIT(8)
94 #define FSPI_MCR2_ABRLEARN		BIT(7)
95 #define FSPI_MCR2_ABR_READ		BIT(6)
96 #define FSPI_MCR2_ABRWRITE		BIT(5)
97 #define FSPI_MCR2_ABRDUMMY		BIT(4)
98 #define FSPI_MCR2_ABR_MODE		BIT(3)
99 #define FSPI_MCR2_ABRCADDR		BIT(2)
100 #define FSPI_MCR2_ABRRADDR		BIT(1)
101 #define FSPI_MCR2_ABR_CMD		BIT(0)
102 
103 #define FSPI_AHBCR			0x0c
104 #define FSPI_AHBCR_RDADDROPT		BIT(6)
105 #define FSPI_AHBCR_PREF_EN		BIT(5)
106 #define FSPI_AHBCR_BUFF_EN		BIT(4)
107 #define FSPI_AHBCR_CACH_EN		BIT(3)
108 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
109 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
110 #define FSPI_AHBCR_PAR_EN		BIT(0)
111 
112 #define FSPI_INTEN			0x10
113 #define FSPI_INTEN_SCLKSBWR		BIT(9)
114 #define FSPI_INTEN_SCLKSBRD		BIT(8)
115 #define FSPI_INTEN_DATALRNFL		BIT(7)
116 #define FSPI_INTEN_IPTXWE		BIT(6)
117 #define FSPI_INTEN_IPRXWA		BIT(5)
118 #define FSPI_INTEN_AHBCMDERR		BIT(4)
119 #define FSPI_INTEN_IPCMDERR		BIT(3)
120 #define FSPI_INTEN_AHBCMDGE		BIT(2)
121 #define FSPI_INTEN_IPCMDGE		BIT(1)
122 #define FSPI_INTEN_IPCMDDONE		BIT(0)
123 
124 #define FSPI_INTR			0x14
125 #define FSPI_INTR_SCLKSBWR		BIT(9)
126 #define FSPI_INTR_SCLKSBRD		BIT(8)
127 #define FSPI_INTR_DATALRNFL		BIT(7)
128 #define FSPI_INTR_IPTXWE		BIT(6)
129 #define FSPI_INTR_IPRXWA		BIT(5)
130 #define FSPI_INTR_AHBCMDERR		BIT(4)
131 #define FSPI_INTR_IPCMDERR		BIT(3)
132 #define FSPI_INTR_AHBCMDGE		BIT(2)
133 #define FSPI_INTR_IPCMDGE		BIT(1)
134 #define FSPI_INTR_IPCMDDONE		BIT(0)
135 
136 #define FSPI_LUTKEY			0x18
137 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
138 
139 #define FSPI_LCKCR			0x1C
140 
141 #define FSPI_LCKER_LOCK			0x1
142 #define FSPI_LCKER_UNLOCK		0x2
143 
144 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
145 #define FSPI_AHBRX_BUF0CR0		0x20
146 #define FSPI_AHBRX_BUF1CR0		0x24
147 #define FSPI_AHBRX_BUF2CR0		0x28
148 #define FSPI_AHBRX_BUF3CR0		0x2C
149 #define FSPI_AHBRX_BUF4CR0		0x30
150 #define FSPI_AHBRX_BUF5CR0		0x34
151 #define FSPI_AHBRX_BUF6CR0		0x38
152 #define FSPI_AHBRX_BUF7CR0		0x3C
153 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
154 
155 #define FSPI_AHBRX_BUF0CR1		0x40
156 #define FSPI_AHBRX_BUF1CR1		0x44
157 #define FSPI_AHBRX_BUF2CR1		0x48
158 #define FSPI_AHBRX_BUF3CR1		0x4C
159 #define FSPI_AHBRX_BUF4CR1		0x50
160 #define FSPI_AHBRX_BUF5CR1		0x54
161 #define FSPI_AHBRX_BUF6CR1		0x58
162 #define FSPI_AHBRX_BUF7CR1		0x5C
163 
164 #define FSPI_FLSHA1CR0			0x60
165 #define FSPI_FLSHA2CR0			0x64
166 #define FSPI_FLSHB1CR0			0x68
167 #define FSPI_FLSHB2CR0			0x6C
168 #define FSPI_FLSHXCR0_SZ_KB		10
169 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
170 
171 #define FSPI_FLSHA1CR1			0x70
172 #define FSPI_FLSHA2CR1			0x74
173 #define FSPI_FLSHB1CR1			0x78
174 #define FSPI_FLSHB2CR1			0x7C
175 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
176 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
177 #define FSPI_FLSHXCR1_WA		BIT(10)
178 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
179 #define FSPI_FLSHXCR1_TCSS(x)		(x)
180 
181 #define FSPI_FLSHA1CR2			0x80
182 #define FSPI_FLSHA2CR2			0x84
183 #define FSPI_FLSHB1CR2			0x88
184 #define FSPI_FLSHB2CR2			0x8C
185 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
186 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
187 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
188 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
189 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
190 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
191 
192 #define FSPI_IPCR0			0xA0
193 
194 #define FSPI_IPCR1			0xA4
195 #define FSPI_IPCR1_IPAREN		BIT(31)
196 #define FSPI_IPCR1_SEQNUM_SHIFT		24
197 #define FSPI_IPCR1_SEQID_SHIFT		16
198 #define FSPI_IPCR1_IDATSZ(x)		(x)
199 
200 #define FSPI_IPCMD			0xB0
201 #define FSPI_IPCMD_TRG			BIT(0)
202 
203 #define FSPI_DLPR			0xB4
204 
205 #define FSPI_IPRXFCR			0xB8
206 #define FSPI_IPRXFCR_CLR		BIT(0)
207 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
208 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
209 
210 #define FSPI_IPTXFCR			0xBC
211 #define FSPI_IPTXFCR_CLR		BIT(0)
212 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
213 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
214 
215 #define FSPI_DLLACR			0xC0
216 #define FSPI_DLLACR_OVRDEN		BIT(8)
217 #define FSPI_DLLACR_SLVDLY(x)		((x) << 3)
218 #define FSPI_DLLACR_DLLRESET		BIT(1)
219 #define FSPI_DLLACR_DLLEN		BIT(0)
220 
221 #define FSPI_DLLBCR			0xC4
222 #define FSPI_DLLBCR_OVRDEN		BIT(8)
223 #define FSPI_DLLBCR_SLVDLY(x)		((x) << 3)
224 #define FSPI_DLLBCR_DLLRESET		BIT(1)
225 #define FSPI_DLLBCR_DLLEN		BIT(0)
226 
227 #define FSPI_STS0			0xE0
228 #define FSPI_STS0_DLPHB(x)		((x) << 8)
229 #define FSPI_STS0_DLPHA(x)		((x) << 4)
230 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
231 #define FSPI_STS0_ARB_IDLE		BIT(1)
232 #define FSPI_STS0_SEQ_IDLE		BIT(0)
233 
234 #define FSPI_STS1			0xE4
235 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
236 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
237 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
238 #define FSPI_STS1_AHB_ERRID(x)		(x)
239 
240 #define FSPI_STS2			0xE8
241 #define FSPI_STS2_BREFLOCK		BIT(17)
242 #define FSPI_STS2_BSLVLOCK		BIT(16)
243 #define FSPI_STS2_AREFLOCK		BIT(1)
244 #define FSPI_STS2_ASLVLOCK		BIT(0)
245 #define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \
246 					 FSPI_STS2_BSLVLOCK | \
247 					 FSPI_STS2_AREFLOCK | \
248 					 FSPI_STS2_ASLVLOCK)
249 
250 #define FSPI_AHBSPNST			0xEC
251 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
252 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
253 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
254 
255 #define FSPI_IPRXFSTS			0xF0
256 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
257 #define FSPI_IPRXFSTS_FILL(x)		(x)
258 
259 #define FSPI_IPTXFSTS			0xF4
260 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
261 #define FSPI_IPTXFSTS_FILL(x)		(x)
262 
263 #define FSPI_RFDR			0x100
264 #define FSPI_TFDR			0x180
265 
266 #define FSPI_LUT_BASE			0x200
267 #define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
268 #define FSPI_LUT_REG(idx) \
269 	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
270 
271 /* register map end */
272 
273 /* Instruction set for the LUT register. */
274 #define LUT_STOP			0x00
275 #define LUT_CMD				0x01
276 #define LUT_ADDR			0x02
277 #define LUT_CADDR_SDR			0x03
278 #define LUT_MODE			0x04
279 #define LUT_MODE2			0x05
280 #define LUT_MODE4			0x06
281 #define LUT_MODE8			0x07
282 #define LUT_NXP_WRITE			0x08
283 #define LUT_NXP_READ			0x09
284 #define LUT_LEARN_SDR			0x0A
285 #define LUT_DATSZ_SDR			0x0B
286 #define LUT_DUMMY			0x0C
287 #define LUT_DUMMY_RWDS_SDR		0x0D
288 #define LUT_JMP_ON_CS			0x1F
289 #define LUT_CMD_DDR			0x21
290 #define LUT_ADDR_DDR			0x22
291 #define LUT_CADDR_DDR			0x23
292 #define LUT_MODE_DDR			0x24
293 #define LUT_MODE2_DDR			0x25
294 #define LUT_MODE4_DDR			0x26
295 #define LUT_MODE8_DDR			0x27
296 #define LUT_WRITE_DDR			0x28
297 #define LUT_READ_DDR			0x29
298 #define LUT_LEARN_DDR			0x2A
299 #define LUT_DATSZ_DDR			0x2B
300 #define LUT_DUMMY_DDR			0x2C
301 #define LUT_DUMMY_RWDS_DDR		0x2D
302 
303 /*
304  * Calculate number of required PAD bits for LUT register.
305  *
306  * The pad stands for the number of IO lines [0:7].
307  * For example, the octal read needs eight IO lines,
308  * so you should use LUT_PAD(8). This macro
309  * returns 3 i.e. use eight (2^3) IP lines for read.
310  */
311 #define LUT_PAD(x) (fls(x) - 1)
312 
313 /*
314  * Macro for constructing the LUT entries with the following
315  * register layout:
316  *
317  *  ---------------------------------------------------
318  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
319  *  ---------------------------------------------------
320  */
321 #define PAD_SHIFT		8
322 #define INSTR_SHIFT		10
323 #define OPRND_SHIFT		16
324 
325 /* Macros for constructing the LUT register. */
326 #define LUT_DEF(idx, ins, pad, opr)			  \
327 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
328 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
329 
330 #define POLL_TOUT		5000
331 #define NXP_FSPI_MAX_CHIPSELECT		4
332 #define NXP_FSPI_MIN_IOMAP	SZ_4M
333 
334 #define DCFG_RCWSR1		0x100
335 #define SYS_PLL_RAT		GENMASK(6, 2)
336 
337 /* Access flash memory using IP bus only */
338 #define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
339 
340 struct nxp_fspi_devtype_data {
341 	unsigned int rxfifo;
342 	unsigned int txfifo;
343 	unsigned int ahb_buf_size;
344 	unsigned int quirks;
345 	bool little_endian;
346 };
347 
348 static struct nxp_fspi_devtype_data lx2160a_data = {
349 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
350 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
351 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
352 	.quirks = 0,
353 	.little_endian = true,  /* little-endian    */
354 };
355 
356 static struct nxp_fspi_devtype_data imx8mm_data = {
357 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
358 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
359 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
360 	.quirks = 0,
361 	.little_endian = true,  /* little-endian    */
362 };
363 
364 static struct nxp_fspi_devtype_data imx8qxp_data = {
365 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
366 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
367 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
368 	.quirks = 0,
369 	.little_endian = true,  /* little-endian    */
370 };
371 
372 static struct nxp_fspi_devtype_data imx8dxl_data = {
373 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
374 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
375 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
376 	.quirks = FSPI_QUIRK_USE_IP_ONLY,
377 	.little_endian = true,  /* little-endian    */
378 };
379 
380 struct nxp_fspi {
381 	void __iomem *iobase;
382 	void __iomem *ahb_addr;
383 	u32 memmap_phy;
384 	u32 memmap_phy_size;
385 	u32 memmap_start;
386 	u32 memmap_len;
387 	struct clk *clk, *clk_en;
388 	struct device *dev;
389 	struct completion c;
390 	struct nxp_fspi_devtype_data *devtype_data;
391 	struct mutex lock;
392 	struct pm_qos_request pm_qos_req;
393 	int selected;
394 };
395 
396 static inline int needs_ip_only(struct nxp_fspi *f)
397 {
398 	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
399 }
400 
401 /*
402  * R/W functions for big- or little-endian registers:
403  * The FSPI controller's endianness is independent of
404  * the CPU core's endianness. So far, although the CPU
405  * core is little-endian the FSPI controller can use
406  * big-endian or little-endian.
407  */
408 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
409 {
410 	if (f->devtype_data->little_endian)
411 		iowrite32(val, addr);
412 	else
413 		iowrite32be(val, addr);
414 }
415 
416 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
417 {
418 	if (f->devtype_data->little_endian)
419 		return ioread32(addr);
420 	else
421 		return ioread32be(addr);
422 }
423 
424 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
425 {
426 	struct nxp_fspi *f = dev_id;
427 	u32 reg;
428 
429 	/* clear interrupt */
430 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
431 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
432 
433 	if (reg & FSPI_INTR_IPCMDDONE)
434 		complete(&f->c);
435 
436 	return IRQ_HANDLED;
437 }
438 
439 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
440 {
441 	switch (width) {
442 	case 1:
443 	case 2:
444 	case 4:
445 	case 8:
446 		return 0;
447 	}
448 
449 	return -ENOTSUPP;
450 }
451 
452 static bool nxp_fspi_supports_op(struct spi_mem *mem,
453 				 const struct spi_mem_op *op)
454 {
455 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
456 	int ret;
457 
458 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
459 
460 	if (op->addr.nbytes)
461 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
462 
463 	if (op->dummy.nbytes)
464 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
465 
466 	if (op->data.nbytes)
467 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
468 
469 	if (ret)
470 		return false;
471 
472 	/*
473 	 * The number of address bytes should be equal to or less than 4 bytes.
474 	 */
475 	if (op->addr.nbytes > 4)
476 		return false;
477 
478 	/*
479 	 * If requested address value is greater than controller assigned
480 	 * memory mapped space, return error as it didn't fit in the range
481 	 * of assigned address space.
482 	 */
483 	if (op->addr.val >= f->memmap_phy_size)
484 		return false;
485 
486 	/* Max 64 dummy clock cycles supported */
487 	if (op->dummy.buswidth &&
488 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
489 		return false;
490 
491 	/* Max data length, check controller limits and alignment */
492 	if (op->data.dir == SPI_MEM_DATA_IN &&
493 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
494 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
495 	      !IS_ALIGNED(op->data.nbytes, 8))))
496 		return false;
497 
498 	if (op->data.dir == SPI_MEM_DATA_OUT &&
499 	    op->data.nbytes > f->devtype_data->txfifo)
500 		return false;
501 
502 	return spi_mem_default_supports_op(mem, op);
503 }
504 
505 /* Instead of busy looping invoke readl_poll_timeout functionality. */
506 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
507 				u32 mask, u32 delay_us,
508 				u32 timeout_us, bool c)
509 {
510 	u32 reg;
511 
512 	if (!f->devtype_data->little_endian)
513 		mask = (u32)cpu_to_be32(mask);
514 
515 	if (c)
516 		return readl_poll_timeout(base, reg, (reg & mask),
517 					  delay_us, timeout_us);
518 	else
519 		return readl_poll_timeout(base, reg, !(reg & mask),
520 					  delay_us, timeout_us);
521 }
522 
523 /*
524  * If the slave device content being changed by Write/Erase, need to
525  * invalidate the AHB buffer. This can be achieved by doing the reset
526  * of controller after setting MCR0[SWRESET] bit.
527  */
528 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
529 {
530 	u32 reg;
531 	int ret;
532 
533 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
534 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
535 
536 	/* w1c register, wait unit clear */
537 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
538 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
539 	WARN_ON(ret);
540 }
541 
542 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
543 				 const struct spi_mem_op *op)
544 {
545 	void __iomem *base = f->iobase;
546 	u32 lutval[4] = {};
547 	int lutidx = 1, i;
548 
549 	/* cmd */
550 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
551 			     op->cmd.opcode);
552 
553 	/* addr bytes */
554 	if (op->addr.nbytes) {
555 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
556 					      LUT_PAD(op->addr.buswidth),
557 					      op->addr.nbytes * 8);
558 		lutidx++;
559 	}
560 
561 	/* dummy bytes, if needed */
562 	if (op->dummy.nbytes) {
563 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
564 		/*
565 		 * Due to FlexSPI controller limitation number of PAD for dummy
566 		 * buswidth needs to be programmed as equal to data buswidth.
567 		 */
568 					      LUT_PAD(op->data.buswidth),
569 					      op->dummy.nbytes * 8 /
570 					      op->dummy.buswidth);
571 		lutidx++;
572 	}
573 
574 	/* read/write data bytes */
575 	if (op->data.nbytes) {
576 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
577 					      op->data.dir == SPI_MEM_DATA_IN ?
578 					      LUT_NXP_READ : LUT_NXP_WRITE,
579 					      LUT_PAD(op->data.buswidth),
580 					      0);
581 		lutidx++;
582 	}
583 
584 	/* stop condition. */
585 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
586 
587 	/* unlock LUT */
588 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
589 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
590 
591 	/* fill LUT */
592 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
593 		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
594 
595 	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
596 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
597 
598 	/* lock LUT */
599 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
600 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
601 }
602 
603 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
604 {
605 	int ret;
606 
607 	if (is_acpi_node(dev_fwnode(f->dev)))
608 		return 0;
609 
610 	ret = clk_prepare_enable(f->clk_en);
611 	if (ret)
612 		return ret;
613 
614 	ret = clk_prepare_enable(f->clk);
615 	if (ret) {
616 		clk_disable_unprepare(f->clk_en);
617 		return ret;
618 	}
619 
620 	return 0;
621 }
622 
623 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
624 {
625 	if (is_acpi_node(dev_fwnode(f->dev)))
626 		return 0;
627 
628 	clk_disable_unprepare(f->clk);
629 	clk_disable_unprepare(f->clk_en);
630 
631 	return 0;
632 }
633 
634 static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
635 {
636 	int ret;
637 
638 	/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
639 	fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
640 	fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
641 	fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
642 	fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
643 
644 	/*
645 	 * Enable the DLL calibration mode.
646 	 * The delay target for slave delay line is:
647 	 *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
648 	 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
649 	 * means half of clock cycle of reference clock.
650 	 */
651 	fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
652 		    f->iobase + FSPI_DLLACR);
653 	fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
654 		    f->iobase + FSPI_DLLBCR);
655 
656 	/* Wait to get REF/SLV lock */
657 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
658 				   0, POLL_TOUT, true);
659 	if (ret)
660 		dev_warn(f->dev, "DLL lock failed, please fix it!\n");
661 }
662 
663 /*
664  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
665  * register and start base address of the slave device.
666  *
667  *							    (Higher address)
668  *				--------    <-- FLSHB2CR0
669  *				|  B2  |
670  *				|      |
671  *	B2 start address -->	--------    <-- FLSHB1CR0
672  *				|  B1  |
673  *				|      |
674  *	B1 start address -->	--------    <-- FLSHA2CR0
675  *				|  A2  |
676  *				|      |
677  *	A2 start address -->	--------    <-- FLSHA1CR0
678  *				|  A1  |
679  *				|      |
680  *	A1 start address -->	--------		    (Lower address)
681  *
682  *
683  * Start base address defines the starting address range for given CS and
684  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
685  *
686  * But, different targets are having different combinations of number of CS,
687  * some targets only have single CS or two CS covering controller's full
688  * memory mapped space area.
689  * Thus, implementation is being done as independent of the size and number
690  * of the connected slave device.
691  * Assign controller memory mapped space size as the size to the connected
692  * slave device.
693  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
694  * chip-select Flash configuration register.
695  *
696  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
697  * memory mapped size of the controller.
698  * Value for rest of the CS FLSHxxCR0 register would be zero.
699  *
700  */
701 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
702 {
703 	unsigned long rate = spi->max_speed_hz;
704 	int ret;
705 	uint64_t size_kb;
706 
707 	/*
708 	 * Return, if previously selected slave device is same as current
709 	 * requested slave device.
710 	 */
711 	if (f->selected == spi_get_chipselect(spi, 0))
712 		return;
713 
714 	/* Reset FLSHxxCR0 registers */
715 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
716 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
717 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
718 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
719 
720 	/* Assign controller memory mapped space as size, KBytes, of flash. */
721 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
722 
723 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
724 		    4 * spi_get_chipselect(spi, 0));
725 
726 	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
727 
728 	nxp_fspi_clk_disable_unprep(f);
729 
730 	ret = clk_set_rate(f->clk, rate);
731 	if (ret)
732 		return;
733 
734 	ret = nxp_fspi_clk_prep_enable(f);
735 	if (ret)
736 		return;
737 
738 	/*
739 	 * If clock rate > 100MHz, then switch from DLL override mode to
740 	 * DLL calibration mode.
741 	 */
742 	if (rate > 100000000)
743 		nxp_fspi_dll_calibration(f);
744 
745 	f->selected = spi_get_chipselect(spi, 0);
746 }
747 
748 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
749 {
750 	u32 start = op->addr.val;
751 	u32 len = op->data.nbytes;
752 
753 	/* if necessary, ioremap before AHB read */
754 	if ((!f->ahb_addr) || start < f->memmap_start ||
755 	     start + len > f->memmap_start + f->memmap_len) {
756 		if (f->ahb_addr)
757 			iounmap(f->ahb_addr);
758 
759 		f->memmap_start = start;
760 		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
761 				len : NXP_FSPI_MIN_IOMAP;
762 
763 		f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
764 					 f->memmap_len);
765 
766 		if (!f->ahb_addr) {
767 			dev_err(f->dev, "failed to alloc memory\n");
768 			return -ENOMEM;
769 		}
770 	}
771 
772 	/* Read out the data directly from the AHB buffer. */
773 	memcpy_fromio(op->data.buf.in,
774 		      f->ahb_addr + start - f->memmap_start, len);
775 
776 	return 0;
777 }
778 
779 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
780 				 const struct spi_mem_op *op)
781 {
782 	void __iomem *base = f->iobase;
783 	int i, ret;
784 	u8 *buf = (u8 *) op->data.buf.out;
785 
786 	/* clear the TX FIFO. */
787 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
788 
789 	/*
790 	 * Default value of water mark level is 8 bytes, hence in single
791 	 * write request controller can write max 8 bytes of data.
792 	 */
793 
794 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
795 		/* Wait for TXFIFO empty */
796 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
797 					   FSPI_INTR_IPTXWE, 0,
798 					   POLL_TOUT, true);
799 		WARN_ON(ret);
800 
801 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
802 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
803 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
804 	}
805 
806 	if (i < op->data.nbytes) {
807 		u32 data = 0;
808 		int j;
809 		/* Wait for TXFIFO empty */
810 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
811 					   FSPI_INTR_IPTXWE, 0,
812 					   POLL_TOUT, true);
813 		WARN_ON(ret);
814 
815 		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
816 			memcpy(&data, buf + i + j, 4);
817 			fspi_writel(f, data, base + FSPI_TFDR + j);
818 		}
819 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
820 	}
821 }
822 
823 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
824 			  const struct spi_mem_op *op)
825 {
826 	void __iomem *base = f->iobase;
827 	int i, ret;
828 	int len = op->data.nbytes;
829 	u8 *buf = (u8 *) op->data.buf.in;
830 
831 	/*
832 	 * Default value of water mark level is 8 bytes, hence in single
833 	 * read request controller can read max 8 bytes of data.
834 	 */
835 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
836 		/* Wait for RXFIFO available */
837 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
838 					   FSPI_INTR_IPRXWA, 0,
839 					   POLL_TOUT, true);
840 		WARN_ON(ret);
841 
842 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
843 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
844 		/* move the FIFO pointer */
845 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
846 	}
847 
848 	if (i < len) {
849 		u32 tmp;
850 		int size, j;
851 
852 		buf = op->data.buf.in + i;
853 		/* Wait for RXFIFO available */
854 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
855 					   FSPI_INTR_IPRXWA, 0,
856 					   POLL_TOUT, true);
857 		WARN_ON(ret);
858 
859 		len = op->data.nbytes - i;
860 		for (j = 0; j < op->data.nbytes - i; j += 4) {
861 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
862 			size = min(len, 4);
863 			memcpy(buf + j, &tmp, size);
864 			len -= size;
865 		}
866 	}
867 
868 	/* invalid the RXFIFO */
869 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
870 	/* move the FIFO pointer */
871 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
872 }
873 
874 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
875 {
876 	void __iomem *base = f->iobase;
877 	int seqnum = 0;
878 	int err = 0;
879 	u32 reg;
880 
881 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
882 	/* invalid RXFIFO first */
883 	reg &= ~FSPI_IPRXFCR_DMA_EN;
884 	reg = reg | FSPI_IPRXFCR_CLR;
885 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
886 
887 	init_completion(&f->c);
888 
889 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
890 	/*
891 	 * Always start the sequence at the same index since we update
892 	 * the LUT at each exec_op() call. And also specify the DATA
893 	 * length, since it's has not been specified in the LUT.
894 	 */
895 	fspi_writel(f, op->data.nbytes |
896 		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
897 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
898 		 base + FSPI_IPCR1);
899 
900 	/* Trigger the LUT now. */
901 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
902 
903 	/* Wait for the interrupt. */
904 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
905 		err = -ETIMEDOUT;
906 
907 	/* Invoke IP data read, if request is of data read. */
908 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
909 		nxp_fspi_read_rxfifo(f, op);
910 
911 	return err;
912 }
913 
914 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
915 {
916 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
917 	int err = 0;
918 
919 	mutex_lock(&f->lock);
920 
921 	/* Wait for controller being ready. */
922 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
923 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
924 	WARN_ON(err);
925 
926 	nxp_fspi_select_mem(f, mem->spi);
927 
928 	nxp_fspi_prepare_lut(f, op);
929 	/*
930 	 * If we have large chunks of data, we read them through the AHB bus by
931 	 * accessing the mapped memory. In all other cases we use IP commands
932 	 * to access the flash. Read via AHB bus may be corrupted due to
933 	 * existence of an errata and therefore discard AHB read in such cases.
934 	 */
935 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
936 	    op->data.dir == SPI_MEM_DATA_IN &&
937 	    !needs_ip_only(f)) {
938 		err = nxp_fspi_read_ahb(f, op);
939 	} else {
940 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
941 			nxp_fspi_fill_txfifo(f, op);
942 
943 		err = nxp_fspi_do_op(f, op);
944 	}
945 
946 	/* Invalidate the data in the AHB buffer. */
947 	nxp_fspi_invalid(f);
948 
949 	mutex_unlock(&f->lock);
950 
951 	return err;
952 }
953 
954 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
955 {
956 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
957 
958 	if (op->data.dir == SPI_MEM_DATA_OUT) {
959 		if (op->data.nbytes > f->devtype_data->txfifo)
960 			op->data.nbytes = f->devtype_data->txfifo;
961 	} else {
962 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
963 			op->data.nbytes = f->devtype_data->ahb_buf_size;
964 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
965 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
966 	}
967 
968 	/* Limit data bytes to RX FIFO in case of IP read only */
969 	if (op->data.dir == SPI_MEM_DATA_IN &&
970 	    needs_ip_only(f) &&
971 	    op->data.nbytes > f->devtype_data->rxfifo)
972 		op->data.nbytes = f->devtype_data->rxfifo;
973 
974 	return 0;
975 }
976 
977 static void erratum_err050568(struct nxp_fspi *f)
978 {
979 	static const struct soc_device_attribute ls1028a_soc_attr[] = {
980 		{ .family = "QorIQ LS1028A" },
981 		{ /* sentinel */ }
982 	};
983 	struct regmap *map;
984 	u32 val, sys_pll_ratio;
985 	int ret;
986 
987 	/* Check for LS1028A family */
988 	if (!soc_device_match(ls1028a_soc_attr)) {
989 		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
990 		return;
991 	}
992 
993 	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
994 	if (IS_ERR(map)) {
995 		dev_err(f->dev, "No syscon regmap\n");
996 		goto err;
997 	}
998 
999 	ret = regmap_read(map, DCFG_RCWSR1, &val);
1000 	if (ret < 0)
1001 		goto err;
1002 
1003 	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1004 	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1005 
1006 	/* Use IP bus only if platform clock is 300MHz */
1007 	if (sys_pll_ratio == 3)
1008 		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1009 
1010 	return;
1011 
1012 err:
1013 	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1014 }
1015 
1016 static int nxp_fspi_default_setup(struct nxp_fspi *f)
1017 {
1018 	void __iomem *base = f->iobase;
1019 	int ret, i;
1020 	u32 reg;
1021 
1022 	/* disable and unprepare clock to avoid glitch pass to controller */
1023 	nxp_fspi_clk_disable_unprep(f);
1024 
1025 	/* the default frequency, we will change it later if necessary. */
1026 	ret = clk_set_rate(f->clk, 20000000);
1027 	if (ret)
1028 		return ret;
1029 
1030 	ret = nxp_fspi_clk_prep_enable(f);
1031 	if (ret)
1032 		return ret;
1033 
1034 	/*
1035 	 * ERR050568: Flash access by FlexSPI AHB command may not work with
1036 	 * platform frequency equal to 300 MHz on LS1028A.
1037 	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1038 	 * Layerscape LS1028A platform.
1039 	 */
1040 	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1041 		erratum_err050568(f);
1042 
1043 	/* Reset the module */
1044 	/* w1c register, wait unit clear */
1045 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1046 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1047 	WARN_ON(ret);
1048 
1049 	/* Disable the module */
1050 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1051 
1052 	/*
1053 	 * Config the DLL register to default value, enable the slave clock delay
1054 	 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1055 	 * chain, this is the suggested setting when clock rate < 100MHz.
1056 	 */
1057 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1058 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1059 
1060 	/* enable module */
1061 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1062 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1063 		    base + FSPI_MCR0);
1064 
1065 	/*
1066 	 * Disable same device enable bit and configure all slave devices
1067 	 * independently.
1068 	 */
1069 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1070 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1071 	fspi_writel(f, reg, base + FSPI_MCR2);
1072 
1073 	/* AHB configuration for access buffer 0~7. */
1074 	for (i = 0; i < 7; i++)
1075 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1076 
1077 	/*
1078 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1079 	 * performance.
1080 	 */
1081 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1082 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1083 
1084 	/* prefetch and no start address alignment limitation */
1085 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1086 		 base + FSPI_AHBCR);
1087 
1088 	/* AHB Read - Set lut sequence ID for all CS. */
1089 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1090 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1091 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1092 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1093 
1094 	f->selected = -1;
1095 
1096 	/* enable the interrupt */
1097 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1098 
1099 	return 0;
1100 }
1101 
1102 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1103 {
1104 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
1105 	struct device *dev = &mem->spi->dev;
1106 	const char *name;
1107 
1108 	// Set custom name derived from the platform_device of the controller.
1109 	if (of_get_available_child_count(f->dev->of_node) == 1)
1110 		return dev_name(f->dev);
1111 
1112 	name = devm_kasprintf(dev, GFP_KERNEL,
1113 			      "%s-%d", dev_name(f->dev),
1114 			      spi_get_chipselect(mem->spi, 0));
1115 
1116 	if (!name) {
1117 		dev_err(dev, "failed to get memory for custom flash name\n");
1118 		return ERR_PTR(-ENOMEM);
1119 	}
1120 
1121 	return name;
1122 }
1123 
1124 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1125 	.adjust_op_size = nxp_fspi_adjust_op_size,
1126 	.supports_op = nxp_fspi_supports_op,
1127 	.exec_op = nxp_fspi_exec_op,
1128 	.get_name = nxp_fspi_get_name,
1129 };
1130 
1131 static int nxp_fspi_probe(struct platform_device *pdev)
1132 {
1133 	struct spi_controller *ctlr;
1134 	struct device *dev = &pdev->dev;
1135 	struct device_node *np = dev->of_node;
1136 	struct resource *res;
1137 	struct nxp_fspi *f;
1138 	int ret;
1139 	u32 reg;
1140 
1141 	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1142 	if (!ctlr)
1143 		return -ENOMEM;
1144 
1145 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1146 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1147 
1148 	f = spi_controller_get_devdata(ctlr);
1149 	f->dev = dev;
1150 	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1151 	if (!f->devtype_data) {
1152 		ret = -ENODEV;
1153 		goto err_put_ctrl;
1154 	}
1155 
1156 	platform_set_drvdata(pdev, f);
1157 
1158 	/* find the resources - configuration register address space */
1159 	if (is_acpi_node(dev_fwnode(f->dev)))
1160 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1161 	else
1162 		res = platform_get_resource_byname(pdev,
1163 				IORESOURCE_MEM, "fspi_base");
1164 
1165 	f->iobase = devm_ioremap_resource(dev, res);
1166 	if (IS_ERR(f->iobase)) {
1167 		ret = PTR_ERR(f->iobase);
1168 		goto err_put_ctrl;
1169 	}
1170 
1171 	/* find the resources - controller memory mapped space */
1172 	if (is_acpi_node(dev_fwnode(f->dev)))
1173 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1174 	else
1175 		res = platform_get_resource_byname(pdev,
1176 				IORESOURCE_MEM, "fspi_mmap");
1177 
1178 	if (!res) {
1179 		ret = -ENODEV;
1180 		goto err_put_ctrl;
1181 	}
1182 
1183 	/* assign memory mapped starting address and mapped size. */
1184 	f->memmap_phy = res->start;
1185 	f->memmap_phy_size = resource_size(res);
1186 
1187 	/* find the clocks */
1188 	if (dev_of_node(&pdev->dev)) {
1189 		f->clk_en = devm_clk_get(dev, "fspi_en");
1190 		if (IS_ERR(f->clk_en)) {
1191 			ret = PTR_ERR(f->clk_en);
1192 			goto err_put_ctrl;
1193 		}
1194 
1195 		f->clk = devm_clk_get(dev, "fspi");
1196 		if (IS_ERR(f->clk)) {
1197 			ret = PTR_ERR(f->clk);
1198 			goto err_put_ctrl;
1199 		}
1200 
1201 		ret = nxp_fspi_clk_prep_enable(f);
1202 		if (ret) {
1203 			dev_err(dev, "can not enable the clock\n");
1204 			goto err_put_ctrl;
1205 		}
1206 	}
1207 
1208 	/* Clear potential interrupts */
1209 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1210 	if (reg)
1211 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1212 
1213 	/* find the irq */
1214 	ret = platform_get_irq(pdev, 0);
1215 	if (ret < 0)
1216 		goto err_disable_clk;
1217 
1218 	ret = devm_request_irq(dev, ret,
1219 			nxp_fspi_irq_handler, 0, pdev->name, f);
1220 	if (ret) {
1221 		dev_err(dev, "failed to request irq: %d\n", ret);
1222 		goto err_disable_clk;
1223 	}
1224 
1225 	mutex_init(&f->lock);
1226 
1227 	ctlr->bus_num = -1;
1228 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1229 	ctlr->mem_ops = &nxp_fspi_mem_ops;
1230 
1231 	nxp_fspi_default_setup(f);
1232 
1233 	ctlr->dev.of_node = np;
1234 
1235 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1236 	if (ret)
1237 		goto err_destroy_mutex;
1238 
1239 	return 0;
1240 
1241 err_destroy_mutex:
1242 	mutex_destroy(&f->lock);
1243 
1244 err_disable_clk:
1245 	nxp_fspi_clk_disable_unprep(f);
1246 
1247 err_put_ctrl:
1248 	spi_controller_put(ctlr);
1249 
1250 	dev_err(dev, "NXP FSPI probe failed\n");
1251 	return ret;
1252 }
1253 
1254 static void nxp_fspi_remove(struct platform_device *pdev)
1255 {
1256 	struct nxp_fspi *f = platform_get_drvdata(pdev);
1257 
1258 	/* disable the hardware */
1259 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1260 
1261 	nxp_fspi_clk_disable_unprep(f);
1262 
1263 	mutex_destroy(&f->lock);
1264 
1265 	if (f->ahb_addr)
1266 		iounmap(f->ahb_addr);
1267 }
1268 
1269 static int nxp_fspi_suspend(struct device *dev)
1270 {
1271 	return 0;
1272 }
1273 
1274 static int nxp_fspi_resume(struct device *dev)
1275 {
1276 	struct nxp_fspi *f = dev_get_drvdata(dev);
1277 
1278 	nxp_fspi_default_setup(f);
1279 
1280 	return 0;
1281 }
1282 
1283 static const struct of_device_id nxp_fspi_dt_ids[] = {
1284 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1285 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1286 	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1287 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1288 	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1289 	{ /* sentinel */ }
1290 };
1291 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1292 
1293 #ifdef CONFIG_ACPI
1294 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1295 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1296 	{}
1297 };
1298 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1299 #endif
1300 
1301 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1302 	.suspend	= nxp_fspi_suspend,
1303 	.resume		= nxp_fspi_resume,
1304 };
1305 
1306 static struct platform_driver nxp_fspi_driver = {
1307 	.driver = {
1308 		.name	= "nxp-fspi",
1309 		.of_match_table = nxp_fspi_dt_ids,
1310 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1311 		.pm =   &nxp_fspi_pm_ops,
1312 	},
1313 	.probe          = nxp_fspi_probe,
1314 	.remove_new	= nxp_fspi_remove,
1315 };
1316 module_platform_driver(nxp_fspi_driver);
1317 
1318 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1319 MODULE_AUTHOR("NXP Semiconductor");
1320 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1321 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1322 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1323 MODULE_LICENSE("GPL v2");
1324