xref: /openbmc/linux/drivers/spi/spi-nxp-fspi.c (revision 48cc39c3)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * NXP FlexSPI(FSPI) controller driver.
5  *
6  * Copyright 2019-2020 NXP
7  * Copyright 2020 Puresoftware Ltd.
8  *
9  * FlexSPI is a flexsible SPI host controller which supports two SPI
10  * channels and up to 4 external devices. Each channel supports
11  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12  * data lines).
13  *
14  * FlexSPI controller is driven by the LUT(Look-up Table) registers
15  * LUT registers are a look-up-table for sequences of instructions.
16  * A valid sequence consists of four LUT registers.
17  * Maximum 32 LUT sequences can be programmed simultaneously.
18  *
19  * LUTs are being created at run-time based on the commands passed
20  * from the spi-mem framework, thus using single LUT index.
21  *
22  * Software triggered Flash read/write access by IP Bus.
23  *
24  * Memory mapped read access by AHB Bus.
25  *
26  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27  *
28  * Author:
29  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30  *     Boris Brezillon <bbrezillon@kernel.org>
31  *     Frieder Schrempf <frieder.schrempf@kontron.de>
32  */
33 
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/err.h>
40 #include <linux/errno.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43 #include <linux/iopoll.h>
44 #include <linux/jiffies.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/mutex.h>
48 #include <linux/of.h>
49 #include <linux/of_device.h>
50 #include <linux/platform_device.h>
51 #include <linux/pm_qos.h>
52 #include <linux/regmap.h>
53 #include <linux/sizes.h>
54 #include <linux/sys_soc.h>
55 
56 #include <linux/mfd/syscon.h>
57 #include <linux/spi/spi.h>
58 #include <linux/spi/spi-mem.h>
59 
60 /*
61  * The driver only uses one single LUT entry, that is updated on
62  * each call of exec_op(). Index 0 is preset at boot with a basic
63  * read operation, so let's use the last entry (31).
64  */
65 #define	SEQID_LUT			31
66 
67 /* Registers used by the driver */
68 #define FSPI_MCR0			0x00
69 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
70 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
71 #define FSPI_MCR0_LEARN_EN		BIT(15)
72 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
73 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
74 #define FSPI_MCR0_DOZE_EN		BIT(12)
75 #define FSPI_MCR0_HSEN			BIT(11)
76 #define FSPI_MCR0_SERCLKDIV		BIT(8)
77 #define FSPI_MCR0_ATDF_EN		BIT(7)
78 #define FSPI_MCR0_ARDF_EN		BIT(6)
79 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
80 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
81 #define FSPI_MCR0_MDIS			BIT(1)
82 #define FSPI_MCR0_SWRST			BIT(0)
83 
84 #define FSPI_MCR1			0x04
85 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
86 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
87 
88 #define FSPI_MCR2			0x08
89 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
90 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
91 #define FSPI_MCR2_CLRLRPHS		BIT(14)
92 #define FSPI_MCR2_ABRDATSZ		BIT(8)
93 #define FSPI_MCR2_ABRLEARN		BIT(7)
94 #define FSPI_MCR2_ABR_READ		BIT(6)
95 #define FSPI_MCR2_ABRWRITE		BIT(5)
96 #define FSPI_MCR2_ABRDUMMY		BIT(4)
97 #define FSPI_MCR2_ABR_MODE		BIT(3)
98 #define FSPI_MCR2_ABRCADDR		BIT(2)
99 #define FSPI_MCR2_ABRRADDR		BIT(1)
100 #define FSPI_MCR2_ABR_CMD		BIT(0)
101 
102 #define FSPI_AHBCR			0x0c
103 #define FSPI_AHBCR_RDADDROPT		BIT(6)
104 #define FSPI_AHBCR_PREF_EN		BIT(5)
105 #define FSPI_AHBCR_BUFF_EN		BIT(4)
106 #define FSPI_AHBCR_CACH_EN		BIT(3)
107 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
108 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
109 #define FSPI_AHBCR_PAR_EN		BIT(0)
110 
111 #define FSPI_INTEN			0x10
112 #define FSPI_INTEN_SCLKSBWR		BIT(9)
113 #define FSPI_INTEN_SCLKSBRD		BIT(8)
114 #define FSPI_INTEN_DATALRNFL		BIT(7)
115 #define FSPI_INTEN_IPTXWE		BIT(6)
116 #define FSPI_INTEN_IPRXWA		BIT(5)
117 #define FSPI_INTEN_AHBCMDERR		BIT(4)
118 #define FSPI_INTEN_IPCMDERR		BIT(3)
119 #define FSPI_INTEN_AHBCMDGE		BIT(2)
120 #define FSPI_INTEN_IPCMDGE		BIT(1)
121 #define FSPI_INTEN_IPCMDDONE		BIT(0)
122 
123 #define FSPI_INTR			0x14
124 #define FSPI_INTR_SCLKSBWR		BIT(9)
125 #define FSPI_INTR_SCLKSBRD		BIT(8)
126 #define FSPI_INTR_DATALRNFL		BIT(7)
127 #define FSPI_INTR_IPTXWE		BIT(6)
128 #define FSPI_INTR_IPRXWA		BIT(5)
129 #define FSPI_INTR_AHBCMDERR		BIT(4)
130 #define FSPI_INTR_IPCMDERR		BIT(3)
131 #define FSPI_INTR_AHBCMDGE		BIT(2)
132 #define FSPI_INTR_IPCMDGE		BIT(1)
133 #define FSPI_INTR_IPCMDDONE		BIT(0)
134 
135 #define FSPI_LUTKEY			0x18
136 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
137 
138 #define FSPI_LCKCR			0x1C
139 
140 #define FSPI_LCKER_LOCK			0x1
141 #define FSPI_LCKER_UNLOCK		0x2
142 
143 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
144 #define FSPI_AHBRX_BUF0CR0		0x20
145 #define FSPI_AHBRX_BUF1CR0		0x24
146 #define FSPI_AHBRX_BUF2CR0		0x28
147 #define FSPI_AHBRX_BUF3CR0		0x2C
148 #define FSPI_AHBRX_BUF4CR0		0x30
149 #define FSPI_AHBRX_BUF5CR0		0x34
150 #define FSPI_AHBRX_BUF6CR0		0x38
151 #define FSPI_AHBRX_BUF7CR0		0x3C
152 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
153 
154 #define FSPI_AHBRX_BUF0CR1		0x40
155 #define FSPI_AHBRX_BUF1CR1		0x44
156 #define FSPI_AHBRX_BUF2CR1		0x48
157 #define FSPI_AHBRX_BUF3CR1		0x4C
158 #define FSPI_AHBRX_BUF4CR1		0x50
159 #define FSPI_AHBRX_BUF5CR1		0x54
160 #define FSPI_AHBRX_BUF6CR1		0x58
161 #define FSPI_AHBRX_BUF7CR1		0x5C
162 
163 #define FSPI_FLSHA1CR0			0x60
164 #define FSPI_FLSHA2CR0			0x64
165 #define FSPI_FLSHB1CR0			0x68
166 #define FSPI_FLSHB2CR0			0x6C
167 #define FSPI_FLSHXCR0_SZ_KB		10
168 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
169 
170 #define FSPI_FLSHA1CR1			0x70
171 #define FSPI_FLSHA2CR1			0x74
172 #define FSPI_FLSHB1CR1			0x78
173 #define FSPI_FLSHB2CR1			0x7C
174 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
175 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
176 #define FSPI_FLSHXCR1_WA		BIT(10)
177 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
178 #define FSPI_FLSHXCR1_TCSS(x)		(x)
179 
180 #define FSPI_FLSHA1CR2			0x80
181 #define FSPI_FLSHA2CR2			0x84
182 #define FSPI_FLSHB1CR2			0x88
183 #define FSPI_FLSHB2CR2			0x8C
184 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
185 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
186 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
187 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
188 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
189 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
190 
191 #define FSPI_IPCR0			0xA0
192 
193 #define FSPI_IPCR1			0xA4
194 #define FSPI_IPCR1_IPAREN		BIT(31)
195 #define FSPI_IPCR1_SEQNUM_SHIFT		24
196 #define FSPI_IPCR1_SEQID_SHIFT		16
197 #define FSPI_IPCR1_IDATSZ(x)		(x)
198 
199 #define FSPI_IPCMD			0xB0
200 #define FSPI_IPCMD_TRG			BIT(0)
201 
202 #define FSPI_DLPR			0xB4
203 
204 #define FSPI_IPRXFCR			0xB8
205 #define FSPI_IPRXFCR_CLR		BIT(0)
206 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
207 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
208 
209 #define FSPI_IPTXFCR			0xBC
210 #define FSPI_IPTXFCR_CLR		BIT(0)
211 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
212 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
213 
214 #define FSPI_DLLACR			0xC0
215 #define FSPI_DLLACR_OVRDEN		BIT(8)
216 
217 #define FSPI_DLLBCR			0xC4
218 #define FSPI_DLLBCR_OVRDEN		BIT(8)
219 
220 #define FSPI_STS0			0xE0
221 #define FSPI_STS0_DLPHB(x)		((x) << 8)
222 #define FSPI_STS0_DLPHA(x)		((x) << 4)
223 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
224 #define FSPI_STS0_ARB_IDLE		BIT(1)
225 #define FSPI_STS0_SEQ_IDLE		BIT(0)
226 
227 #define FSPI_STS1			0xE4
228 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
229 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
230 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
231 #define FSPI_STS1_AHB_ERRID(x)		(x)
232 
233 #define FSPI_AHBSPNST			0xEC
234 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
235 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
236 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
237 
238 #define FSPI_IPRXFSTS			0xF0
239 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
240 #define FSPI_IPRXFSTS_FILL(x)		(x)
241 
242 #define FSPI_IPTXFSTS			0xF4
243 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
244 #define FSPI_IPTXFSTS_FILL(x)		(x)
245 
246 #define FSPI_RFDR			0x100
247 #define FSPI_TFDR			0x180
248 
249 #define FSPI_LUT_BASE			0x200
250 #define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
251 #define FSPI_LUT_REG(idx) \
252 	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
253 
254 /* register map end */
255 
256 /* Instruction set for the LUT register. */
257 #define LUT_STOP			0x00
258 #define LUT_CMD				0x01
259 #define LUT_ADDR			0x02
260 #define LUT_CADDR_SDR			0x03
261 #define LUT_MODE			0x04
262 #define LUT_MODE2			0x05
263 #define LUT_MODE4			0x06
264 #define LUT_MODE8			0x07
265 #define LUT_NXP_WRITE			0x08
266 #define LUT_NXP_READ			0x09
267 #define LUT_LEARN_SDR			0x0A
268 #define LUT_DATSZ_SDR			0x0B
269 #define LUT_DUMMY			0x0C
270 #define LUT_DUMMY_RWDS_SDR		0x0D
271 #define LUT_JMP_ON_CS			0x1F
272 #define LUT_CMD_DDR			0x21
273 #define LUT_ADDR_DDR			0x22
274 #define LUT_CADDR_DDR			0x23
275 #define LUT_MODE_DDR			0x24
276 #define LUT_MODE2_DDR			0x25
277 #define LUT_MODE4_DDR			0x26
278 #define LUT_MODE8_DDR			0x27
279 #define LUT_WRITE_DDR			0x28
280 #define LUT_READ_DDR			0x29
281 #define LUT_LEARN_DDR			0x2A
282 #define LUT_DATSZ_DDR			0x2B
283 #define LUT_DUMMY_DDR			0x2C
284 #define LUT_DUMMY_RWDS_DDR		0x2D
285 
286 /*
287  * Calculate number of required PAD bits for LUT register.
288  *
289  * The pad stands for the number of IO lines [0:7].
290  * For example, the octal read needs eight IO lines,
291  * so you should use LUT_PAD(8). This macro
292  * returns 3 i.e. use eight (2^3) IP lines for read.
293  */
294 #define LUT_PAD(x) (fls(x) - 1)
295 
296 /*
297  * Macro for constructing the LUT entries with the following
298  * register layout:
299  *
300  *  ---------------------------------------------------
301  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
302  *  ---------------------------------------------------
303  */
304 #define PAD_SHIFT		8
305 #define INSTR_SHIFT		10
306 #define OPRND_SHIFT		16
307 
308 /* Macros for constructing the LUT register. */
309 #define LUT_DEF(idx, ins, pad, opr)			  \
310 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
311 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
312 
313 #define POLL_TOUT		5000
314 #define NXP_FSPI_MAX_CHIPSELECT		4
315 #define NXP_FSPI_MIN_IOMAP	SZ_4M
316 
317 #define DCFG_RCWSR1		0x100
318 
319 /* Access flash memory using IP bus only */
320 #define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
321 
322 struct nxp_fspi_devtype_data {
323 	unsigned int rxfifo;
324 	unsigned int txfifo;
325 	unsigned int ahb_buf_size;
326 	unsigned int quirks;
327 	bool little_endian;
328 };
329 
330 static struct nxp_fspi_devtype_data lx2160a_data = {
331 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
332 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
333 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
334 	.quirks = 0,
335 	.little_endian = true,  /* little-endian    */
336 };
337 
338 static struct nxp_fspi_devtype_data imx8mm_data = {
339 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
340 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
341 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
342 	.quirks = 0,
343 	.little_endian = true,  /* little-endian    */
344 };
345 
346 static struct nxp_fspi_devtype_data imx8qxp_data = {
347 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
348 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
349 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
350 	.quirks = 0,
351 	.little_endian = true,  /* little-endian    */
352 };
353 
354 static struct nxp_fspi_devtype_data imx8dxl_data = {
355 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
356 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
357 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
358 	.quirks = FSPI_QUIRK_USE_IP_ONLY,
359 	.little_endian = true,  /* little-endian    */
360 };
361 
362 struct nxp_fspi {
363 	void __iomem *iobase;
364 	void __iomem *ahb_addr;
365 	u32 memmap_phy;
366 	u32 memmap_phy_size;
367 	u32 memmap_start;
368 	u32 memmap_len;
369 	struct clk *clk, *clk_en;
370 	struct device *dev;
371 	struct completion c;
372 	struct nxp_fspi_devtype_data *devtype_data;
373 	struct mutex lock;
374 	struct pm_qos_request pm_qos_req;
375 	int selected;
376 };
377 
378 static inline int needs_ip_only(struct nxp_fspi *f)
379 {
380 	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
381 }
382 
383 /*
384  * R/W functions for big- or little-endian registers:
385  * The FSPI controller's endianness is independent of
386  * the CPU core's endianness. So far, although the CPU
387  * core is little-endian the FSPI controller can use
388  * big-endian or little-endian.
389  */
390 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
391 {
392 	if (f->devtype_data->little_endian)
393 		iowrite32(val, addr);
394 	else
395 		iowrite32be(val, addr);
396 }
397 
398 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
399 {
400 	if (f->devtype_data->little_endian)
401 		return ioread32(addr);
402 	else
403 		return ioread32be(addr);
404 }
405 
406 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
407 {
408 	struct nxp_fspi *f = dev_id;
409 	u32 reg;
410 
411 	/* clear interrupt */
412 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
413 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
414 
415 	if (reg & FSPI_INTR_IPCMDDONE)
416 		complete(&f->c);
417 
418 	return IRQ_HANDLED;
419 }
420 
421 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
422 {
423 	switch (width) {
424 	case 1:
425 	case 2:
426 	case 4:
427 	case 8:
428 		return 0;
429 	}
430 
431 	return -ENOTSUPP;
432 }
433 
434 static bool nxp_fspi_supports_op(struct spi_mem *mem,
435 				 const struct spi_mem_op *op)
436 {
437 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
438 	int ret;
439 
440 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
441 
442 	if (op->addr.nbytes)
443 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
444 
445 	if (op->dummy.nbytes)
446 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
447 
448 	if (op->data.nbytes)
449 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
450 
451 	if (ret)
452 		return false;
453 
454 	/*
455 	 * The number of address bytes should be equal to or less than 4 bytes.
456 	 */
457 	if (op->addr.nbytes > 4)
458 		return false;
459 
460 	/*
461 	 * If requested address value is greater than controller assigned
462 	 * memory mapped space, return error as it didn't fit in the range
463 	 * of assigned address space.
464 	 */
465 	if (op->addr.val >= f->memmap_phy_size)
466 		return false;
467 
468 	/* Max 64 dummy clock cycles supported */
469 	if (op->dummy.buswidth &&
470 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
471 		return false;
472 
473 	/* Max data length, check controller limits and alignment */
474 	if (op->data.dir == SPI_MEM_DATA_IN &&
475 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
476 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
477 	      !IS_ALIGNED(op->data.nbytes, 8))))
478 		return false;
479 
480 	if (op->data.dir == SPI_MEM_DATA_OUT &&
481 	    op->data.nbytes > f->devtype_data->txfifo)
482 		return false;
483 
484 	return spi_mem_default_supports_op(mem, op);
485 }
486 
487 /* Instead of busy looping invoke readl_poll_timeout functionality. */
488 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
489 				u32 mask, u32 delay_us,
490 				u32 timeout_us, bool c)
491 {
492 	u32 reg;
493 
494 	if (!f->devtype_data->little_endian)
495 		mask = (u32)cpu_to_be32(mask);
496 
497 	if (c)
498 		return readl_poll_timeout(base, reg, (reg & mask),
499 					  delay_us, timeout_us);
500 	else
501 		return readl_poll_timeout(base, reg, !(reg & mask),
502 					  delay_us, timeout_us);
503 }
504 
505 /*
506  * If the slave device content being changed by Write/Erase, need to
507  * invalidate the AHB buffer. This can be achieved by doing the reset
508  * of controller after setting MCR0[SWRESET] bit.
509  */
510 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
511 {
512 	u32 reg;
513 	int ret;
514 
515 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
516 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
517 
518 	/* w1c register, wait unit clear */
519 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
520 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
521 	WARN_ON(ret);
522 }
523 
524 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
525 				 const struct spi_mem_op *op)
526 {
527 	void __iomem *base = f->iobase;
528 	u32 lutval[4] = {};
529 	int lutidx = 1, i;
530 
531 	/* cmd */
532 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
533 			     op->cmd.opcode);
534 
535 	/* addr bytes */
536 	if (op->addr.nbytes) {
537 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
538 					      LUT_PAD(op->addr.buswidth),
539 					      op->addr.nbytes * 8);
540 		lutidx++;
541 	}
542 
543 	/* dummy bytes, if needed */
544 	if (op->dummy.nbytes) {
545 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
546 		/*
547 		 * Due to FlexSPI controller limitation number of PAD for dummy
548 		 * buswidth needs to be programmed as equal to data buswidth.
549 		 */
550 					      LUT_PAD(op->data.buswidth),
551 					      op->dummy.nbytes * 8 /
552 					      op->dummy.buswidth);
553 		lutidx++;
554 	}
555 
556 	/* read/write data bytes */
557 	if (op->data.nbytes) {
558 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
559 					      op->data.dir == SPI_MEM_DATA_IN ?
560 					      LUT_NXP_READ : LUT_NXP_WRITE,
561 					      LUT_PAD(op->data.buswidth),
562 					      0);
563 		lutidx++;
564 	}
565 
566 	/* stop condition. */
567 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
568 
569 	/* unlock LUT */
570 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
571 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
572 
573 	/* fill LUT */
574 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
575 		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
576 
577 	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
578 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
579 
580 	/* lock LUT */
581 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
582 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
583 }
584 
585 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
586 {
587 	int ret;
588 
589 	if (is_acpi_node(f->dev->fwnode))
590 		return 0;
591 
592 	ret = clk_prepare_enable(f->clk_en);
593 	if (ret)
594 		return ret;
595 
596 	ret = clk_prepare_enable(f->clk);
597 	if (ret) {
598 		clk_disable_unprepare(f->clk_en);
599 		return ret;
600 	}
601 
602 	return 0;
603 }
604 
605 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
606 {
607 	if (is_acpi_node(f->dev->fwnode))
608 		return 0;
609 
610 	clk_disable_unprepare(f->clk);
611 	clk_disable_unprepare(f->clk_en);
612 
613 	return 0;
614 }
615 
616 /*
617  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
618  * register and start base address of the slave device.
619  *
620  *							    (Higher address)
621  *				--------    <-- FLSHB2CR0
622  *				|  B2  |
623  *				|      |
624  *	B2 start address -->	--------    <-- FLSHB1CR0
625  *				|  B1  |
626  *				|      |
627  *	B1 start address -->	--------    <-- FLSHA2CR0
628  *				|  A2  |
629  *				|      |
630  *	A2 start address -->	--------    <-- FLSHA1CR0
631  *				|  A1  |
632  *				|      |
633  *	A1 start address -->	--------		    (Lower address)
634  *
635  *
636  * Start base address defines the starting address range for given CS and
637  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
638  *
639  * But, different targets are having different combinations of number of CS,
640  * some targets only have single CS or two CS covering controller's full
641  * memory mapped space area.
642  * Thus, implementation is being done as independent of the size and number
643  * of the connected slave device.
644  * Assign controller memory mapped space size as the size to the connected
645  * slave device.
646  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
647  * chip-select Flash configuration register.
648  *
649  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
650  * memory mapped size of the controller.
651  * Value for rest of the CS FLSHxxCR0 register would be zero.
652  *
653  */
654 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
655 {
656 	unsigned long rate = spi->max_speed_hz;
657 	int ret;
658 	uint64_t size_kb;
659 
660 	/*
661 	 * Return, if previously selected slave device is same as current
662 	 * requested slave device.
663 	 */
664 	if (f->selected == spi->chip_select)
665 		return;
666 
667 	/* Reset FLSHxxCR0 registers */
668 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
669 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
670 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
671 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
672 
673 	/* Assign controller memory mapped space as size, KBytes, of flash. */
674 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
675 
676 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
677 		    4 * spi->chip_select);
678 
679 	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
680 
681 	nxp_fspi_clk_disable_unprep(f);
682 
683 	ret = clk_set_rate(f->clk, rate);
684 	if (ret)
685 		return;
686 
687 	ret = nxp_fspi_clk_prep_enable(f);
688 	if (ret)
689 		return;
690 
691 	f->selected = spi->chip_select;
692 }
693 
694 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
695 {
696 	u32 start = op->addr.val;
697 	u32 len = op->data.nbytes;
698 
699 	/* if necessary, ioremap before AHB read */
700 	if ((!f->ahb_addr) || start < f->memmap_start ||
701 	     start + len > f->memmap_start + f->memmap_len) {
702 		if (f->ahb_addr)
703 			iounmap(f->ahb_addr);
704 
705 		f->memmap_start = start;
706 		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
707 				len : NXP_FSPI_MIN_IOMAP;
708 
709 		f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
710 					 f->memmap_len);
711 
712 		if (!f->ahb_addr) {
713 			dev_err(f->dev, "failed to alloc memory\n");
714 			return -ENOMEM;
715 		}
716 	}
717 
718 	/* Read out the data directly from the AHB buffer. */
719 	memcpy_fromio(op->data.buf.in,
720 		      f->ahb_addr + start - f->memmap_start, len);
721 
722 	return 0;
723 }
724 
725 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
726 				 const struct spi_mem_op *op)
727 {
728 	void __iomem *base = f->iobase;
729 	int i, ret;
730 	u8 *buf = (u8 *) op->data.buf.out;
731 
732 	/* clear the TX FIFO. */
733 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
734 
735 	/*
736 	 * Default value of water mark level is 8 bytes, hence in single
737 	 * write request controller can write max 8 bytes of data.
738 	 */
739 
740 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
741 		/* Wait for TXFIFO empty */
742 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
743 					   FSPI_INTR_IPTXWE, 0,
744 					   POLL_TOUT, true);
745 		WARN_ON(ret);
746 
747 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
748 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
749 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
750 	}
751 
752 	if (i < op->data.nbytes) {
753 		u32 data = 0;
754 		int j;
755 		/* Wait for TXFIFO empty */
756 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
757 					   FSPI_INTR_IPTXWE, 0,
758 					   POLL_TOUT, true);
759 		WARN_ON(ret);
760 
761 		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
762 			memcpy(&data, buf + i + j, 4);
763 			fspi_writel(f, data, base + FSPI_TFDR + j);
764 		}
765 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
766 	}
767 }
768 
769 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
770 			  const struct spi_mem_op *op)
771 {
772 	void __iomem *base = f->iobase;
773 	int i, ret;
774 	int len = op->data.nbytes;
775 	u8 *buf = (u8 *) op->data.buf.in;
776 
777 	/*
778 	 * Default value of water mark level is 8 bytes, hence in single
779 	 * read request controller can read max 8 bytes of data.
780 	 */
781 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
782 		/* Wait for RXFIFO available */
783 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
784 					   FSPI_INTR_IPRXWA, 0,
785 					   POLL_TOUT, true);
786 		WARN_ON(ret);
787 
788 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
789 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
790 		/* move the FIFO pointer */
791 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
792 	}
793 
794 	if (i < len) {
795 		u32 tmp;
796 		int size, j;
797 
798 		buf = op->data.buf.in + i;
799 		/* Wait for RXFIFO available */
800 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
801 					   FSPI_INTR_IPRXWA, 0,
802 					   POLL_TOUT, true);
803 		WARN_ON(ret);
804 
805 		len = op->data.nbytes - i;
806 		for (j = 0; j < op->data.nbytes - i; j += 4) {
807 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
808 			size = min(len, 4);
809 			memcpy(buf + j, &tmp, size);
810 			len -= size;
811 		}
812 	}
813 
814 	/* invalid the RXFIFO */
815 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
816 	/* move the FIFO pointer */
817 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
818 }
819 
820 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
821 {
822 	void __iomem *base = f->iobase;
823 	int seqnum = 0;
824 	int err = 0;
825 	u32 reg;
826 
827 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
828 	/* invalid RXFIFO first */
829 	reg &= ~FSPI_IPRXFCR_DMA_EN;
830 	reg = reg | FSPI_IPRXFCR_CLR;
831 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
832 
833 	init_completion(&f->c);
834 
835 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
836 	/*
837 	 * Always start the sequence at the same index since we update
838 	 * the LUT at each exec_op() call. And also specify the DATA
839 	 * length, since it's has not been specified in the LUT.
840 	 */
841 	fspi_writel(f, op->data.nbytes |
842 		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
843 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
844 		 base + FSPI_IPCR1);
845 
846 	/* Trigger the LUT now. */
847 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
848 
849 	/* Wait for the interrupt. */
850 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
851 		err = -ETIMEDOUT;
852 
853 	/* Invoke IP data read, if request is of data read. */
854 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
855 		nxp_fspi_read_rxfifo(f, op);
856 
857 	return err;
858 }
859 
860 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
861 {
862 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
863 	int err = 0;
864 
865 	mutex_lock(&f->lock);
866 
867 	/* Wait for controller being ready. */
868 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
869 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
870 	WARN_ON(err);
871 
872 	nxp_fspi_select_mem(f, mem->spi);
873 
874 	nxp_fspi_prepare_lut(f, op);
875 	/*
876 	 * If we have large chunks of data, we read them through the AHB bus by
877 	 * accessing the mapped memory. In all other cases we use IP commands
878 	 * to access the flash. Read via AHB bus may be corrupted due to
879 	 * existence of an errata and therefore discard AHB read in such cases.
880 	 */
881 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
882 	    op->data.dir == SPI_MEM_DATA_IN &&
883 	    !needs_ip_only(f)) {
884 		err = nxp_fspi_read_ahb(f, op);
885 	} else {
886 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
887 			nxp_fspi_fill_txfifo(f, op);
888 
889 		err = nxp_fspi_do_op(f, op);
890 	}
891 
892 	/* Invalidate the data in the AHB buffer. */
893 	nxp_fspi_invalid(f);
894 
895 	mutex_unlock(&f->lock);
896 
897 	return err;
898 }
899 
900 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
901 {
902 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
903 
904 	if (op->data.dir == SPI_MEM_DATA_OUT) {
905 		if (op->data.nbytes > f->devtype_data->txfifo)
906 			op->data.nbytes = f->devtype_data->txfifo;
907 	} else {
908 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
909 			op->data.nbytes = f->devtype_data->ahb_buf_size;
910 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
911 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
912 	}
913 
914 	/* Limit data bytes to RX FIFO in case of IP read only */
915 	if (op->data.dir == SPI_MEM_DATA_IN &&
916 	    needs_ip_only(f) &&
917 	    op->data.nbytes > f->devtype_data->rxfifo)
918 		op->data.nbytes = f->devtype_data->rxfifo;
919 
920 	return 0;
921 }
922 
923 static void erratum_err050568(struct nxp_fspi *f)
924 {
925 	const struct soc_device_attribute ls1028a_soc_attr[] = {
926 		{ .family = "QorIQ LS1028A" },
927 		{ /* sentinel */ }
928 	};
929 	struct device_node *np;
930 	struct regmap *map;
931 	u32 val = 0, sysclk = 0;
932 	int ret;
933 
934 	/* Check for LS1028A family */
935 	if (!soc_device_match(ls1028a_soc_attr)) {
936 		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
937 		return;
938 	}
939 
940 	/* Compute system clock frequency multiplier ratio */
941 	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
942 	if (IS_ERR(map)) {
943 		dev_err(f->dev, "No syscon regmap\n");
944 		goto err;
945 	}
946 
947 	ret = regmap_read(map, DCFG_RCWSR1, &val);
948 	if (ret < 0)
949 		goto err;
950 
951 	/* Strap bits 6:2 define SYS_PLL_RAT i.e frequency multiplier ratio */
952 	val = (val >> 2) & 0x1F;
953 	WARN(val == 0, "Strapping is zero: Cannot determine ratio");
954 
955 	/* Compute system clock frequency */
956 	np = of_find_node_by_name(NULL, "clock-sysclk");
957 	if (!np)
958 		goto err;
959 
960 	if (of_property_read_u32(np, "clock-frequency", &sysclk))
961 		goto err;
962 
963 	sysclk = (sysclk * val) / 1000000; /* Convert sysclk to Mhz */
964 	dev_dbg(f->dev, "val: 0x%08x, sysclk: %dMhz\n", val, sysclk);
965 
966 	/* Use IP bus only if PLL is 300MHz */
967 	if (sysclk == 300)
968 		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
969 
970 	return;
971 
972 err:
973 	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
974 }
975 
976 static int nxp_fspi_default_setup(struct nxp_fspi *f)
977 {
978 	void __iomem *base = f->iobase;
979 	int ret, i;
980 	u32 reg;
981 
982 	/* disable and unprepare clock to avoid glitch pass to controller */
983 	nxp_fspi_clk_disable_unprep(f);
984 
985 	/* the default frequency, we will change it later if necessary. */
986 	ret = clk_set_rate(f->clk, 20000000);
987 	if (ret)
988 		return ret;
989 
990 	ret = nxp_fspi_clk_prep_enable(f);
991 	if (ret)
992 		return ret;
993 
994 	/*
995 	 * ERR050568: Flash access by FlexSPI AHB command may not work with
996 	 * platform frequency equal to 300 MHz on LS1028A.
997 	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
998 	 * Layerscape LS1028A platform.
999 	 */
1000 	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1001 		erratum_err050568(f);
1002 
1003 	/* Reset the module */
1004 	/* w1c register, wait unit clear */
1005 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1006 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1007 	WARN_ON(ret);
1008 
1009 	/* Disable the module */
1010 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1011 
1012 	/* Reset the DLL register to default value */
1013 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1014 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1015 
1016 	/* enable module */
1017 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1018 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1019 		    base + FSPI_MCR0);
1020 
1021 	/*
1022 	 * Disable same device enable bit and configure all slave devices
1023 	 * independently.
1024 	 */
1025 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1026 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1027 	fspi_writel(f, reg, base + FSPI_MCR2);
1028 
1029 	/* AHB configuration for access buffer 0~7. */
1030 	for (i = 0; i < 7; i++)
1031 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1032 
1033 	/*
1034 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1035 	 * performance.
1036 	 */
1037 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1038 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1039 
1040 	/* prefetch and no start address alignment limitation */
1041 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1042 		 base + FSPI_AHBCR);
1043 
1044 	/* AHB Read - Set lut sequence ID for all CS. */
1045 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1046 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1047 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1048 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1049 
1050 	f->selected = -1;
1051 
1052 	/* enable the interrupt */
1053 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1054 
1055 	return 0;
1056 }
1057 
1058 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1059 {
1060 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
1061 	struct device *dev = &mem->spi->dev;
1062 	const char *name;
1063 
1064 	// Set custom name derived from the platform_device of the controller.
1065 	if (of_get_available_child_count(f->dev->of_node) == 1)
1066 		return dev_name(f->dev);
1067 
1068 	name = devm_kasprintf(dev, GFP_KERNEL,
1069 			      "%s-%d", dev_name(f->dev),
1070 			      mem->spi->chip_select);
1071 
1072 	if (!name) {
1073 		dev_err(dev, "failed to get memory for custom flash name\n");
1074 		return ERR_PTR(-ENOMEM);
1075 	}
1076 
1077 	return name;
1078 }
1079 
1080 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1081 	.adjust_op_size = nxp_fspi_adjust_op_size,
1082 	.supports_op = nxp_fspi_supports_op,
1083 	.exec_op = nxp_fspi_exec_op,
1084 	.get_name = nxp_fspi_get_name,
1085 };
1086 
1087 static int nxp_fspi_probe(struct platform_device *pdev)
1088 {
1089 	struct spi_controller *ctlr;
1090 	struct device *dev = &pdev->dev;
1091 	struct device_node *np = dev->of_node;
1092 	struct resource *res;
1093 	struct nxp_fspi *f;
1094 	int ret;
1095 	u32 reg;
1096 
1097 	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1098 	if (!ctlr)
1099 		return -ENOMEM;
1100 
1101 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1102 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1103 
1104 	f = spi_controller_get_devdata(ctlr);
1105 	f->dev = dev;
1106 	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1107 	if (!f->devtype_data) {
1108 		ret = -ENODEV;
1109 		goto err_put_ctrl;
1110 	}
1111 
1112 	platform_set_drvdata(pdev, f);
1113 
1114 	/* find the resources - configuration register address space */
1115 	if (is_acpi_node(f->dev->fwnode))
1116 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1117 	else
1118 		res = platform_get_resource_byname(pdev,
1119 				IORESOURCE_MEM, "fspi_base");
1120 
1121 	f->iobase = devm_ioremap_resource(dev, res);
1122 	if (IS_ERR(f->iobase)) {
1123 		ret = PTR_ERR(f->iobase);
1124 		goto err_put_ctrl;
1125 	}
1126 
1127 	/* find the resources - controller memory mapped space */
1128 	if (is_acpi_node(f->dev->fwnode))
1129 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1130 	else
1131 		res = platform_get_resource_byname(pdev,
1132 				IORESOURCE_MEM, "fspi_mmap");
1133 
1134 	if (!res) {
1135 		ret = -ENODEV;
1136 		goto err_put_ctrl;
1137 	}
1138 
1139 	/* assign memory mapped starting address and mapped size. */
1140 	f->memmap_phy = res->start;
1141 	f->memmap_phy_size = resource_size(res);
1142 
1143 	/* find the clocks */
1144 	if (dev_of_node(&pdev->dev)) {
1145 		f->clk_en = devm_clk_get(dev, "fspi_en");
1146 		if (IS_ERR(f->clk_en)) {
1147 			ret = PTR_ERR(f->clk_en);
1148 			goto err_put_ctrl;
1149 		}
1150 
1151 		f->clk = devm_clk_get(dev, "fspi");
1152 		if (IS_ERR(f->clk)) {
1153 			ret = PTR_ERR(f->clk);
1154 			goto err_put_ctrl;
1155 		}
1156 
1157 		ret = nxp_fspi_clk_prep_enable(f);
1158 		if (ret) {
1159 			dev_err(dev, "can not enable the clock\n");
1160 			goto err_put_ctrl;
1161 		}
1162 	}
1163 
1164 	/* Clear potential interrupts */
1165 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1166 	if (reg)
1167 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1168 
1169 	/* find the irq */
1170 	ret = platform_get_irq(pdev, 0);
1171 	if (ret < 0)
1172 		goto err_disable_clk;
1173 
1174 	ret = devm_request_irq(dev, ret,
1175 			nxp_fspi_irq_handler, 0, pdev->name, f);
1176 	if (ret) {
1177 		dev_err(dev, "failed to request irq: %d\n", ret);
1178 		goto err_disable_clk;
1179 	}
1180 
1181 	mutex_init(&f->lock);
1182 
1183 	ctlr->bus_num = -1;
1184 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1185 	ctlr->mem_ops = &nxp_fspi_mem_ops;
1186 
1187 	nxp_fspi_default_setup(f);
1188 
1189 	ctlr->dev.of_node = np;
1190 
1191 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1192 	if (ret)
1193 		goto err_destroy_mutex;
1194 
1195 	return 0;
1196 
1197 err_destroy_mutex:
1198 	mutex_destroy(&f->lock);
1199 
1200 err_disable_clk:
1201 	nxp_fspi_clk_disable_unprep(f);
1202 
1203 err_put_ctrl:
1204 	spi_controller_put(ctlr);
1205 
1206 	dev_err(dev, "NXP FSPI probe failed\n");
1207 	return ret;
1208 }
1209 
1210 static int nxp_fspi_remove(struct platform_device *pdev)
1211 {
1212 	struct nxp_fspi *f = platform_get_drvdata(pdev);
1213 
1214 	/* disable the hardware */
1215 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1216 
1217 	nxp_fspi_clk_disable_unprep(f);
1218 
1219 	mutex_destroy(&f->lock);
1220 
1221 	if (f->ahb_addr)
1222 		iounmap(f->ahb_addr);
1223 
1224 	return 0;
1225 }
1226 
1227 static int nxp_fspi_suspend(struct device *dev)
1228 {
1229 	return 0;
1230 }
1231 
1232 static int nxp_fspi_resume(struct device *dev)
1233 {
1234 	struct nxp_fspi *f = dev_get_drvdata(dev);
1235 
1236 	nxp_fspi_default_setup(f);
1237 
1238 	return 0;
1239 }
1240 
1241 static const struct of_device_id nxp_fspi_dt_ids[] = {
1242 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1243 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1244 	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1245 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1246 	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1247 	{ /* sentinel */ }
1248 };
1249 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1250 
1251 #ifdef CONFIG_ACPI
1252 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1253 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1254 	{}
1255 };
1256 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1257 #endif
1258 
1259 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1260 	.suspend	= nxp_fspi_suspend,
1261 	.resume		= nxp_fspi_resume,
1262 };
1263 
1264 static struct platform_driver nxp_fspi_driver = {
1265 	.driver = {
1266 		.name	= "nxp-fspi",
1267 		.of_match_table = nxp_fspi_dt_ids,
1268 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1269 		.pm =   &nxp_fspi_pm_ops,
1270 	},
1271 	.probe          = nxp_fspi_probe,
1272 	.remove		= nxp_fspi_remove,
1273 };
1274 module_platform_driver(nxp_fspi_driver);
1275 
1276 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1277 MODULE_AUTHOR("NXP Semiconductor");
1278 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1279 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1280 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1281 MODULE_LICENSE("GPL v2");
1282