xref: /openbmc/linux/drivers/spi/spi-nxp-fspi.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * NXP FlexSPI(FSPI) controller driver.
5  *
6  * Copyright 2019 NXP.
7  *
8  * FlexSPI is a flexsible SPI host controller which supports two SPI
9  * channels and up to 4 external devices. Each channel supports
10  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
11  * data lines).
12  *
13  * FlexSPI controller is driven by the LUT(Look-up Table) registers
14  * LUT registers are a look-up-table for sequences of instructions.
15  * A valid sequence consists of four LUT registers.
16  * Maximum 32 LUT sequences can be programmed simultaneously.
17  *
18  * LUTs are being created at run-time based on the commands passed
19  * from the spi-mem framework, thus using single LUT index.
20  *
21  * Software triggered Flash read/write access by IP Bus.
22  *
23  * Memory mapped read access by AHB Bus.
24  *
25  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
26  *
27  * Author:
28  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
29  *     Boris Brezillon <bbrezillon@kernel.org>
30  *     Frieder Schrempf <frieder.schrempf@kontron.de>
31  */
32 
33 #include <linux/bitops.h>
34 #include <linux/clk.h>
35 #include <linux/completion.h>
36 #include <linux/delay.h>
37 #include <linux/err.h>
38 #include <linux/errno.h>
39 #include <linux/interrupt.h>
40 #include <linux/io.h>
41 #include <linux/iopoll.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/mutex.h>
46 #include <linux/of.h>
47 #include <linux/of_device.h>
48 #include <linux/platform_device.h>
49 #include <linux/pm_qos.h>
50 #include <linux/sizes.h>
51 
52 #include <linux/spi/spi.h>
53 #include <linux/spi/spi-mem.h>
54 
55 /*
56  * The driver only uses one single LUT entry, that is updated on
57  * each call of exec_op(). Index 0 is preset at boot with a basic
58  * read operation, so let's use the last entry (31).
59  */
60 #define	SEQID_LUT			31
61 
62 /* Registers used by the driver */
63 #define FSPI_MCR0			0x00
64 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
65 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
66 #define FSPI_MCR0_LEARN_EN		BIT(15)
67 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
68 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
69 #define FSPI_MCR0_DOZE_EN		BIT(12)
70 #define FSPI_MCR0_HSEN			BIT(11)
71 #define FSPI_MCR0_SERCLKDIV		BIT(8)
72 #define FSPI_MCR0_ATDF_EN		BIT(7)
73 #define FSPI_MCR0_ARDF_EN		BIT(6)
74 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
75 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
76 #define FSPI_MCR0_MDIS			BIT(1)
77 #define FSPI_MCR0_SWRST			BIT(0)
78 
79 #define FSPI_MCR1			0x04
80 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
81 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
82 
83 #define FSPI_MCR2			0x08
84 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
85 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
86 #define FSPI_MCR2_CLRLRPHS		BIT(14)
87 #define FSPI_MCR2_ABRDATSZ		BIT(8)
88 #define FSPI_MCR2_ABRLEARN		BIT(7)
89 #define FSPI_MCR2_ABR_READ		BIT(6)
90 #define FSPI_MCR2_ABRWRITE		BIT(5)
91 #define FSPI_MCR2_ABRDUMMY		BIT(4)
92 #define FSPI_MCR2_ABR_MODE		BIT(3)
93 #define FSPI_MCR2_ABRCADDR		BIT(2)
94 #define FSPI_MCR2_ABRRADDR		BIT(1)
95 #define FSPI_MCR2_ABR_CMD		BIT(0)
96 
97 #define FSPI_AHBCR			0x0c
98 #define FSPI_AHBCR_RDADDROPT		BIT(6)
99 #define FSPI_AHBCR_PREF_EN		BIT(5)
100 #define FSPI_AHBCR_BUFF_EN		BIT(4)
101 #define FSPI_AHBCR_CACH_EN		BIT(3)
102 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
103 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
104 #define FSPI_AHBCR_PAR_EN		BIT(0)
105 
106 #define FSPI_INTEN			0x10
107 #define FSPI_INTEN_SCLKSBWR		BIT(9)
108 #define FSPI_INTEN_SCLKSBRD		BIT(8)
109 #define FSPI_INTEN_DATALRNFL		BIT(7)
110 #define FSPI_INTEN_IPTXWE		BIT(6)
111 #define FSPI_INTEN_IPRXWA		BIT(5)
112 #define FSPI_INTEN_AHBCMDERR		BIT(4)
113 #define FSPI_INTEN_IPCMDERR		BIT(3)
114 #define FSPI_INTEN_AHBCMDGE		BIT(2)
115 #define FSPI_INTEN_IPCMDGE		BIT(1)
116 #define FSPI_INTEN_IPCMDDONE		BIT(0)
117 
118 #define FSPI_INTR			0x14
119 #define FSPI_INTR_SCLKSBWR		BIT(9)
120 #define FSPI_INTR_SCLKSBRD		BIT(8)
121 #define FSPI_INTR_DATALRNFL		BIT(7)
122 #define FSPI_INTR_IPTXWE		BIT(6)
123 #define FSPI_INTR_IPRXWA		BIT(5)
124 #define FSPI_INTR_AHBCMDERR		BIT(4)
125 #define FSPI_INTR_IPCMDERR		BIT(3)
126 #define FSPI_INTR_AHBCMDGE		BIT(2)
127 #define FSPI_INTR_IPCMDGE		BIT(1)
128 #define FSPI_INTR_IPCMDDONE		BIT(0)
129 
130 #define FSPI_LUTKEY			0x18
131 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
132 
133 #define FSPI_LCKCR			0x1C
134 
135 #define FSPI_LCKER_LOCK			0x1
136 #define FSPI_LCKER_UNLOCK		0x2
137 
138 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
139 #define FSPI_AHBRX_BUF0CR0		0x20
140 #define FSPI_AHBRX_BUF1CR0		0x24
141 #define FSPI_AHBRX_BUF2CR0		0x28
142 #define FSPI_AHBRX_BUF3CR0		0x2C
143 #define FSPI_AHBRX_BUF4CR0		0x30
144 #define FSPI_AHBRX_BUF5CR0		0x34
145 #define FSPI_AHBRX_BUF6CR0		0x38
146 #define FSPI_AHBRX_BUF7CR0		0x3C
147 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
148 
149 #define FSPI_AHBRX_BUF0CR1		0x40
150 #define FSPI_AHBRX_BUF1CR1		0x44
151 #define FSPI_AHBRX_BUF2CR1		0x48
152 #define FSPI_AHBRX_BUF3CR1		0x4C
153 #define FSPI_AHBRX_BUF4CR1		0x50
154 #define FSPI_AHBRX_BUF5CR1		0x54
155 #define FSPI_AHBRX_BUF6CR1		0x58
156 #define FSPI_AHBRX_BUF7CR1		0x5C
157 
158 #define FSPI_FLSHA1CR0			0x60
159 #define FSPI_FLSHA2CR0			0x64
160 #define FSPI_FLSHB1CR0			0x68
161 #define FSPI_FLSHB2CR0			0x6C
162 #define FSPI_FLSHXCR0_SZ_KB		10
163 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
164 
165 #define FSPI_FLSHA1CR1			0x70
166 #define FSPI_FLSHA2CR1			0x74
167 #define FSPI_FLSHB1CR1			0x78
168 #define FSPI_FLSHB2CR1			0x7C
169 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
170 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
171 #define FSPI_FLSHXCR1_WA		BIT(10)
172 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
173 #define FSPI_FLSHXCR1_TCSS(x)		(x)
174 
175 #define FSPI_FLSHA1CR2			0x80
176 #define FSPI_FLSHA2CR2			0x84
177 #define FSPI_FLSHB1CR2			0x88
178 #define FSPI_FLSHB2CR2			0x8C
179 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
180 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
181 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
182 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
183 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
184 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
185 
186 #define FSPI_IPCR0			0xA0
187 
188 #define FSPI_IPCR1			0xA4
189 #define FSPI_IPCR1_IPAREN		BIT(31)
190 #define FSPI_IPCR1_SEQNUM_SHIFT		24
191 #define FSPI_IPCR1_SEQID_SHIFT		16
192 #define FSPI_IPCR1_IDATSZ(x)		(x)
193 
194 #define FSPI_IPCMD			0xB0
195 #define FSPI_IPCMD_TRG			BIT(0)
196 
197 #define FSPI_DLPR			0xB4
198 
199 #define FSPI_IPRXFCR			0xB8
200 #define FSPI_IPRXFCR_CLR		BIT(0)
201 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
202 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
203 
204 #define FSPI_IPTXFCR			0xBC
205 #define FSPI_IPTXFCR_CLR		BIT(0)
206 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
207 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
208 
209 #define FSPI_DLLACR			0xC0
210 #define FSPI_DLLACR_OVRDEN		BIT(8)
211 
212 #define FSPI_DLLBCR			0xC4
213 #define FSPI_DLLBCR_OVRDEN		BIT(8)
214 
215 #define FSPI_STS0			0xE0
216 #define FSPI_STS0_DLPHB(x)		((x) << 8)
217 #define FSPI_STS0_DLPHA(x)		((x) << 4)
218 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
219 #define FSPI_STS0_ARB_IDLE		BIT(1)
220 #define FSPI_STS0_SEQ_IDLE		BIT(0)
221 
222 #define FSPI_STS1			0xE4
223 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
224 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
225 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
226 #define FSPI_STS1_AHB_ERRID(x)		(x)
227 
228 #define FSPI_AHBSPNST			0xEC
229 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
230 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
231 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
232 
233 #define FSPI_IPRXFSTS			0xF0
234 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
235 #define FSPI_IPRXFSTS_FILL(x)		(x)
236 
237 #define FSPI_IPTXFSTS			0xF4
238 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
239 #define FSPI_IPTXFSTS_FILL(x)		(x)
240 
241 #define FSPI_RFDR			0x100
242 #define FSPI_TFDR			0x180
243 
244 #define FSPI_LUT_BASE			0x200
245 #define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
246 #define FSPI_LUT_REG(idx) \
247 	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
248 
249 /* register map end */
250 
251 /* Instruction set for the LUT register. */
252 #define LUT_STOP			0x00
253 #define LUT_CMD				0x01
254 #define LUT_ADDR			0x02
255 #define LUT_CADDR_SDR			0x03
256 #define LUT_MODE			0x04
257 #define LUT_MODE2			0x05
258 #define LUT_MODE4			0x06
259 #define LUT_MODE8			0x07
260 #define LUT_NXP_WRITE			0x08
261 #define LUT_NXP_READ			0x09
262 #define LUT_LEARN_SDR			0x0A
263 #define LUT_DATSZ_SDR			0x0B
264 #define LUT_DUMMY			0x0C
265 #define LUT_DUMMY_RWDS_SDR		0x0D
266 #define LUT_JMP_ON_CS			0x1F
267 #define LUT_CMD_DDR			0x21
268 #define LUT_ADDR_DDR			0x22
269 #define LUT_CADDR_DDR			0x23
270 #define LUT_MODE_DDR			0x24
271 #define LUT_MODE2_DDR			0x25
272 #define LUT_MODE4_DDR			0x26
273 #define LUT_MODE8_DDR			0x27
274 #define LUT_WRITE_DDR			0x28
275 #define LUT_READ_DDR			0x29
276 #define LUT_LEARN_DDR			0x2A
277 #define LUT_DATSZ_DDR			0x2B
278 #define LUT_DUMMY_DDR			0x2C
279 #define LUT_DUMMY_RWDS_DDR		0x2D
280 
281 /*
282  * Calculate number of required PAD bits for LUT register.
283  *
284  * The pad stands for the number of IO lines [0:7].
285  * For example, the octal read needs eight IO lines,
286  * so you should use LUT_PAD(8). This macro
287  * returns 3 i.e. use eight (2^3) IP lines for read.
288  */
289 #define LUT_PAD(x) (fls(x) - 1)
290 
291 /*
292  * Macro for constructing the LUT entries with the following
293  * register layout:
294  *
295  *  ---------------------------------------------------
296  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
297  *  ---------------------------------------------------
298  */
299 #define PAD_SHIFT		8
300 #define INSTR_SHIFT		10
301 #define OPRND_SHIFT		16
302 
303 /* Macros for constructing the LUT register. */
304 #define LUT_DEF(idx, ins, pad, opr)			  \
305 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
306 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
307 
308 #define POLL_TOUT		5000
309 #define NXP_FSPI_MAX_CHIPSELECT		4
310 #define NXP_FSPI_MIN_IOMAP	SZ_4M
311 
312 struct nxp_fspi_devtype_data {
313 	unsigned int rxfifo;
314 	unsigned int txfifo;
315 	unsigned int ahb_buf_size;
316 	unsigned int quirks;
317 	bool little_endian;
318 };
319 
320 static const struct nxp_fspi_devtype_data lx2160a_data = {
321 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
322 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
323 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
324 	.quirks = 0,
325 	.little_endian = true,  /* little-endian    */
326 };
327 
328 static const struct nxp_fspi_devtype_data imx8mm_data = {
329 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
330 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
331 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
332 	.quirks = 0,
333 	.little_endian = true,  /* little-endian    */
334 };
335 
336 static const struct nxp_fspi_devtype_data imx8qxp_data = {
337 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
338 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
339 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
340 	.quirks = 0,
341 	.little_endian = true,  /* little-endian    */
342 };
343 
344 struct nxp_fspi {
345 	void __iomem *iobase;
346 	void __iomem *ahb_addr;
347 	u32 memmap_phy;
348 	u32 memmap_phy_size;
349 	u32 memmap_start;
350 	u32 memmap_len;
351 	struct clk *clk, *clk_en;
352 	struct device *dev;
353 	struct completion c;
354 	const struct nxp_fspi_devtype_data *devtype_data;
355 	struct mutex lock;
356 	struct pm_qos_request pm_qos_req;
357 	int selected;
358 };
359 
360 /*
361  * R/W functions for big- or little-endian registers:
362  * The FSPI controller's endianness is independent of
363  * the CPU core's endianness. So far, although the CPU
364  * core is little-endian the FSPI controller can use
365  * big-endian or little-endian.
366  */
367 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
368 {
369 	if (f->devtype_data->little_endian)
370 		iowrite32(val, addr);
371 	else
372 		iowrite32be(val, addr);
373 }
374 
375 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
376 {
377 	if (f->devtype_data->little_endian)
378 		return ioread32(addr);
379 	else
380 		return ioread32be(addr);
381 }
382 
383 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
384 {
385 	struct nxp_fspi *f = dev_id;
386 	u32 reg;
387 
388 	/* clear interrupt */
389 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
390 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
391 
392 	if (reg & FSPI_INTR_IPCMDDONE)
393 		complete(&f->c);
394 
395 	return IRQ_HANDLED;
396 }
397 
398 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
399 {
400 	switch (width) {
401 	case 1:
402 	case 2:
403 	case 4:
404 	case 8:
405 		return 0;
406 	}
407 
408 	return -ENOTSUPP;
409 }
410 
411 static bool nxp_fspi_supports_op(struct spi_mem *mem,
412 				 const struct spi_mem_op *op)
413 {
414 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
415 	int ret;
416 
417 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
418 
419 	if (op->addr.nbytes)
420 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
421 
422 	if (op->dummy.nbytes)
423 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
424 
425 	if (op->data.nbytes)
426 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
427 
428 	if (ret)
429 		return false;
430 
431 	/*
432 	 * The number of address bytes should be equal to or less than 4 bytes.
433 	 */
434 	if (op->addr.nbytes > 4)
435 		return false;
436 
437 	/*
438 	 * If requested address value is greater than controller assigned
439 	 * memory mapped space, return error as it didn't fit in the range
440 	 * of assigned address space.
441 	 */
442 	if (op->addr.val >= f->memmap_phy_size)
443 		return false;
444 
445 	/* Max 64 dummy clock cycles supported */
446 	if (op->dummy.buswidth &&
447 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
448 		return false;
449 
450 	/* Max data length, check controller limits and alignment */
451 	if (op->data.dir == SPI_MEM_DATA_IN &&
452 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
453 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
454 	      !IS_ALIGNED(op->data.nbytes, 8))))
455 		return false;
456 
457 	if (op->data.dir == SPI_MEM_DATA_OUT &&
458 	    op->data.nbytes > f->devtype_data->txfifo)
459 		return false;
460 
461 	return spi_mem_default_supports_op(mem, op);
462 }
463 
464 /* Instead of busy looping invoke readl_poll_timeout functionality. */
465 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
466 				u32 mask, u32 delay_us,
467 				u32 timeout_us, bool c)
468 {
469 	u32 reg;
470 
471 	if (!f->devtype_data->little_endian)
472 		mask = (u32)cpu_to_be32(mask);
473 
474 	if (c)
475 		return readl_poll_timeout(base, reg, (reg & mask),
476 					  delay_us, timeout_us);
477 	else
478 		return readl_poll_timeout(base, reg, !(reg & mask),
479 					  delay_us, timeout_us);
480 }
481 
482 /*
483  * If the slave device content being changed by Write/Erase, need to
484  * invalidate the AHB buffer. This can be achieved by doing the reset
485  * of controller after setting MCR0[SWRESET] bit.
486  */
487 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
488 {
489 	u32 reg;
490 	int ret;
491 
492 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
493 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
494 
495 	/* w1c register, wait unit clear */
496 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
497 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
498 	WARN_ON(ret);
499 }
500 
501 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
502 				 const struct spi_mem_op *op)
503 {
504 	void __iomem *base = f->iobase;
505 	u32 lutval[4] = {};
506 	int lutidx = 1, i;
507 
508 	/* cmd */
509 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
510 			     op->cmd.opcode);
511 
512 	/* addr bytes */
513 	if (op->addr.nbytes) {
514 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
515 					      LUT_PAD(op->addr.buswidth),
516 					      op->addr.nbytes * 8);
517 		lutidx++;
518 	}
519 
520 	/* dummy bytes, if needed */
521 	if (op->dummy.nbytes) {
522 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
523 		/*
524 		 * Due to FlexSPI controller limitation number of PAD for dummy
525 		 * buswidth needs to be programmed as equal to data buswidth.
526 		 */
527 					      LUT_PAD(op->data.buswidth),
528 					      op->dummy.nbytes * 8 /
529 					      op->dummy.buswidth);
530 		lutidx++;
531 	}
532 
533 	/* read/write data bytes */
534 	if (op->data.nbytes) {
535 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
536 					      op->data.dir == SPI_MEM_DATA_IN ?
537 					      LUT_NXP_READ : LUT_NXP_WRITE,
538 					      LUT_PAD(op->data.buswidth),
539 					      0);
540 		lutidx++;
541 	}
542 
543 	/* stop condition. */
544 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
545 
546 	/* unlock LUT */
547 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
548 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
549 
550 	/* fill LUT */
551 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
552 		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
553 
554 	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
555 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
556 
557 	/* lock LUT */
558 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
559 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
560 }
561 
562 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
563 {
564 	int ret;
565 
566 	ret = clk_prepare_enable(f->clk_en);
567 	if (ret)
568 		return ret;
569 
570 	ret = clk_prepare_enable(f->clk);
571 	if (ret) {
572 		clk_disable_unprepare(f->clk_en);
573 		return ret;
574 	}
575 
576 	return 0;
577 }
578 
579 static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
580 {
581 	clk_disable_unprepare(f->clk);
582 	clk_disable_unprepare(f->clk_en);
583 }
584 
585 /*
586  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
587  * register and start base address of the slave device.
588  *
589  *							    (Higher address)
590  *				--------    <-- FLSHB2CR0
591  *				|  B2  |
592  *				|      |
593  *	B2 start address -->	--------    <-- FLSHB1CR0
594  *				|  B1  |
595  *				|      |
596  *	B1 start address -->	--------    <-- FLSHA2CR0
597  *				|  A2  |
598  *				|      |
599  *	A2 start address -->	--------    <-- FLSHA1CR0
600  *				|  A1  |
601  *				|      |
602  *	A1 start address -->	--------		    (Lower address)
603  *
604  *
605  * Start base address defines the starting address range for given CS and
606  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
607  *
608  * But, different targets are having different combinations of number of CS,
609  * some targets only have single CS or two CS covering controller's full
610  * memory mapped space area.
611  * Thus, implementation is being done as independent of the size and number
612  * of the connected slave device.
613  * Assign controller memory mapped space size as the size to the connected
614  * slave device.
615  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
616  * chip-select Flash configuration register.
617  *
618  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
619  * memory mapped size of the controller.
620  * Value for rest of the CS FLSHxxCR0 register would be zero.
621  *
622  */
623 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
624 {
625 	unsigned long rate = spi->max_speed_hz;
626 	int ret;
627 	uint64_t size_kb;
628 
629 	/*
630 	 * Return, if previously selected slave device is same as current
631 	 * requested slave device.
632 	 */
633 	if (f->selected == spi->chip_select)
634 		return;
635 
636 	/* Reset FLSHxxCR0 registers */
637 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
638 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
639 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
640 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
641 
642 	/* Assign controller memory mapped space as size, KBytes, of flash. */
643 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
644 
645 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
646 		    4 * spi->chip_select);
647 
648 	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
649 
650 	nxp_fspi_clk_disable_unprep(f);
651 
652 	ret = clk_set_rate(f->clk, rate);
653 	if (ret)
654 		return;
655 
656 	ret = nxp_fspi_clk_prep_enable(f);
657 	if (ret)
658 		return;
659 
660 	f->selected = spi->chip_select;
661 }
662 
663 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
664 {
665 	u32 start = op->addr.val;
666 	u32 len = op->data.nbytes;
667 
668 	/* if necessary, ioremap before AHB read */
669 	if ((!f->ahb_addr) || start < f->memmap_start ||
670 	     start + len > f->memmap_start + f->memmap_len) {
671 		if (f->ahb_addr)
672 			iounmap(f->ahb_addr);
673 
674 		f->memmap_start = start;
675 		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
676 				len : NXP_FSPI_MIN_IOMAP;
677 
678 		f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
679 					 f->memmap_len);
680 
681 		if (!f->ahb_addr) {
682 			dev_err(f->dev, "failed to alloc memory\n");
683 			return -ENOMEM;
684 		}
685 	}
686 
687 	/* Read out the data directly from the AHB buffer. */
688 	memcpy_fromio(op->data.buf.in,
689 		      f->ahb_addr + start - f->memmap_start, len);
690 
691 	return 0;
692 }
693 
694 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
695 				 const struct spi_mem_op *op)
696 {
697 	void __iomem *base = f->iobase;
698 	int i, ret;
699 	u8 *buf = (u8 *) op->data.buf.out;
700 
701 	/* clear the TX FIFO. */
702 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
703 
704 	/*
705 	 * Default value of water mark level is 8 bytes, hence in single
706 	 * write request controller can write max 8 bytes of data.
707 	 */
708 
709 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
710 		/* Wait for TXFIFO empty */
711 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
712 					   FSPI_INTR_IPTXWE, 0,
713 					   POLL_TOUT, true);
714 		WARN_ON(ret);
715 
716 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
717 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
718 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
719 	}
720 
721 	if (i < op->data.nbytes) {
722 		u32 data = 0;
723 		int j;
724 		/* Wait for TXFIFO empty */
725 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
726 					   FSPI_INTR_IPTXWE, 0,
727 					   POLL_TOUT, true);
728 		WARN_ON(ret);
729 
730 		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
731 			memcpy(&data, buf + i + j, 4);
732 			fspi_writel(f, data, base + FSPI_TFDR + j);
733 		}
734 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
735 	}
736 }
737 
738 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
739 			  const struct spi_mem_op *op)
740 {
741 	void __iomem *base = f->iobase;
742 	int i, ret;
743 	int len = op->data.nbytes;
744 	u8 *buf = (u8 *) op->data.buf.in;
745 
746 	/*
747 	 * Default value of water mark level is 8 bytes, hence in single
748 	 * read request controller can read max 8 bytes of data.
749 	 */
750 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
751 		/* Wait for RXFIFO available */
752 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
753 					   FSPI_INTR_IPRXWA, 0,
754 					   POLL_TOUT, true);
755 		WARN_ON(ret);
756 
757 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
758 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
759 		/* move the FIFO pointer */
760 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
761 	}
762 
763 	if (i < len) {
764 		u32 tmp;
765 		int size, j;
766 
767 		buf = op->data.buf.in + i;
768 		/* Wait for RXFIFO available */
769 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
770 					   FSPI_INTR_IPRXWA, 0,
771 					   POLL_TOUT, true);
772 		WARN_ON(ret);
773 
774 		len = op->data.nbytes - i;
775 		for (j = 0; j < op->data.nbytes - i; j += 4) {
776 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
777 			size = min(len, 4);
778 			memcpy(buf + j, &tmp, size);
779 			len -= size;
780 		}
781 	}
782 
783 	/* invalid the RXFIFO */
784 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
785 	/* move the FIFO pointer */
786 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
787 }
788 
789 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
790 {
791 	void __iomem *base = f->iobase;
792 	int seqnum = 0;
793 	int err = 0;
794 	u32 reg;
795 
796 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
797 	/* invalid RXFIFO first */
798 	reg &= ~FSPI_IPRXFCR_DMA_EN;
799 	reg = reg | FSPI_IPRXFCR_CLR;
800 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
801 
802 	init_completion(&f->c);
803 
804 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
805 	/*
806 	 * Always start the sequence at the same index since we update
807 	 * the LUT at each exec_op() call. And also specify the DATA
808 	 * length, since it's has not been specified in the LUT.
809 	 */
810 	fspi_writel(f, op->data.nbytes |
811 		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
812 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
813 		 base + FSPI_IPCR1);
814 
815 	/* Trigger the LUT now. */
816 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
817 
818 	/* Wait for the interrupt. */
819 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
820 		err = -ETIMEDOUT;
821 
822 	/* Invoke IP data read, if request is of data read. */
823 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
824 		nxp_fspi_read_rxfifo(f, op);
825 
826 	return err;
827 }
828 
829 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
830 {
831 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
832 	int err = 0;
833 
834 	mutex_lock(&f->lock);
835 
836 	/* Wait for controller being ready. */
837 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
838 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
839 	WARN_ON(err);
840 
841 	nxp_fspi_select_mem(f, mem->spi);
842 
843 	nxp_fspi_prepare_lut(f, op);
844 	/*
845 	 * If we have large chunks of data, we read them through the AHB bus
846 	 * by accessing the mapped memory. In all other cases we use
847 	 * IP commands to access the flash.
848 	 */
849 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
850 	    op->data.dir == SPI_MEM_DATA_IN) {
851 		err = nxp_fspi_read_ahb(f, op);
852 	} else {
853 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
854 			nxp_fspi_fill_txfifo(f, op);
855 
856 		err = nxp_fspi_do_op(f, op);
857 	}
858 
859 	/* Invalidate the data in the AHB buffer. */
860 	nxp_fspi_invalid(f);
861 
862 	mutex_unlock(&f->lock);
863 
864 	return err;
865 }
866 
867 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
868 {
869 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
870 
871 	if (op->data.dir == SPI_MEM_DATA_OUT) {
872 		if (op->data.nbytes > f->devtype_data->txfifo)
873 			op->data.nbytes = f->devtype_data->txfifo;
874 	} else {
875 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
876 			op->data.nbytes = f->devtype_data->ahb_buf_size;
877 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
878 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
879 	}
880 
881 	return 0;
882 }
883 
884 static int nxp_fspi_default_setup(struct nxp_fspi *f)
885 {
886 	void __iomem *base = f->iobase;
887 	int ret, i;
888 	u32 reg;
889 
890 	/* disable and unprepare clock to avoid glitch pass to controller */
891 	nxp_fspi_clk_disable_unprep(f);
892 
893 	/* the default frequency, we will change it later if necessary. */
894 	ret = clk_set_rate(f->clk, 20000000);
895 	if (ret)
896 		return ret;
897 
898 	ret = nxp_fspi_clk_prep_enable(f);
899 	if (ret)
900 		return ret;
901 
902 	/* Reset the module */
903 	/* w1c register, wait unit clear */
904 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
905 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
906 	WARN_ON(ret);
907 
908 	/* Disable the module */
909 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
910 
911 	/* Reset the DLL register to default value */
912 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
913 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
914 
915 	/* enable module */
916 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
917 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
918 		    base + FSPI_MCR0);
919 
920 	/*
921 	 * Disable same device enable bit and configure all slave devices
922 	 * independently.
923 	 */
924 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
925 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
926 	fspi_writel(f, reg, base + FSPI_MCR2);
927 
928 	/* AHB configuration for access buffer 0~7. */
929 	for (i = 0; i < 7; i++)
930 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
931 
932 	/*
933 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
934 	 * performance.
935 	 */
936 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
937 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
938 
939 	/* prefetch and no start address alignment limitation */
940 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
941 		 base + FSPI_AHBCR);
942 
943 	/* AHB Read - Set lut sequence ID for all CS. */
944 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
945 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
946 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
947 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
948 
949 	f->selected = -1;
950 
951 	/* enable the interrupt */
952 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
953 
954 	return 0;
955 }
956 
957 static const char *nxp_fspi_get_name(struct spi_mem *mem)
958 {
959 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
960 	struct device *dev = &mem->spi->dev;
961 	const char *name;
962 
963 	// Set custom name derived from the platform_device of the controller.
964 	if (of_get_available_child_count(f->dev->of_node) == 1)
965 		return dev_name(f->dev);
966 
967 	name = devm_kasprintf(dev, GFP_KERNEL,
968 			      "%s-%d", dev_name(f->dev),
969 			      mem->spi->chip_select);
970 
971 	if (!name) {
972 		dev_err(dev, "failed to get memory for custom flash name\n");
973 		return ERR_PTR(-ENOMEM);
974 	}
975 
976 	return name;
977 }
978 
979 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
980 	.adjust_op_size = nxp_fspi_adjust_op_size,
981 	.supports_op = nxp_fspi_supports_op,
982 	.exec_op = nxp_fspi_exec_op,
983 	.get_name = nxp_fspi_get_name,
984 };
985 
986 static int nxp_fspi_probe(struct platform_device *pdev)
987 {
988 	struct spi_controller *ctlr;
989 	struct device *dev = &pdev->dev;
990 	struct device_node *np = dev->of_node;
991 	struct resource *res;
992 	struct nxp_fspi *f;
993 	int ret;
994 
995 	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
996 	if (!ctlr)
997 		return -ENOMEM;
998 
999 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1000 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1001 
1002 	f = spi_controller_get_devdata(ctlr);
1003 	f->dev = dev;
1004 	f->devtype_data = of_device_get_match_data(dev);
1005 	if (!f->devtype_data) {
1006 		ret = -ENODEV;
1007 		goto err_put_ctrl;
1008 	}
1009 
1010 	platform_set_drvdata(pdev, f);
1011 
1012 	/* find the resources - configuration register address space */
1013 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base");
1014 	f->iobase = devm_ioremap_resource(dev, res);
1015 	if (IS_ERR(f->iobase)) {
1016 		ret = PTR_ERR(f->iobase);
1017 		goto err_put_ctrl;
1018 	}
1019 
1020 	/* find the resources - controller memory mapped space */
1021 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap");
1022 	if (!res) {
1023 		ret = -ENODEV;
1024 		goto err_put_ctrl;
1025 	}
1026 
1027 	/* assign memory mapped starting address and mapped size. */
1028 	f->memmap_phy = res->start;
1029 	f->memmap_phy_size = resource_size(res);
1030 
1031 	/* find the clocks */
1032 	f->clk_en = devm_clk_get(dev, "fspi_en");
1033 	if (IS_ERR(f->clk_en)) {
1034 		ret = PTR_ERR(f->clk_en);
1035 		goto err_put_ctrl;
1036 	}
1037 
1038 	f->clk = devm_clk_get(dev, "fspi");
1039 	if (IS_ERR(f->clk)) {
1040 		ret = PTR_ERR(f->clk);
1041 		goto err_put_ctrl;
1042 	}
1043 
1044 	ret = nxp_fspi_clk_prep_enable(f);
1045 	if (ret) {
1046 		dev_err(dev, "can not enable the clock\n");
1047 		goto err_put_ctrl;
1048 	}
1049 
1050 	/* find the irq */
1051 	ret = platform_get_irq(pdev, 0);
1052 	if (ret < 0)
1053 		goto err_disable_clk;
1054 
1055 	ret = devm_request_irq(dev, ret,
1056 			nxp_fspi_irq_handler, 0, pdev->name, f);
1057 	if (ret) {
1058 		dev_err(dev, "failed to request irq: %d\n", ret);
1059 		goto err_disable_clk;
1060 	}
1061 
1062 	mutex_init(&f->lock);
1063 
1064 	ctlr->bus_num = -1;
1065 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1066 	ctlr->mem_ops = &nxp_fspi_mem_ops;
1067 
1068 	nxp_fspi_default_setup(f);
1069 
1070 	ctlr->dev.of_node = np;
1071 
1072 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1073 	if (ret)
1074 		goto err_destroy_mutex;
1075 
1076 	return 0;
1077 
1078 err_destroy_mutex:
1079 	mutex_destroy(&f->lock);
1080 
1081 err_disable_clk:
1082 	nxp_fspi_clk_disable_unprep(f);
1083 
1084 err_put_ctrl:
1085 	spi_controller_put(ctlr);
1086 
1087 	dev_err(dev, "NXP FSPI probe failed\n");
1088 	return ret;
1089 }
1090 
1091 static int nxp_fspi_remove(struct platform_device *pdev)
1092 {
1093 	struct nxp_fspi *f = platform_get_drvdata(pdev);
1094 
1095 	/* disable the hardware */
1096 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1097 
1098 	nxp_fspi_clk_disable_unprep(f);
1099 
1100 	mutex_destroy(&f->lock);
1101 
1102 	if (f->ahb_addr)
1103 		iounmap(f->ahb_addr);
1104 
1105 	return 0;
1106 }
1107 
1108 static int nxp_fspi_suspend(struct device *dev)
1109 {
1110 	return 0;
1111 }
1112 
1113 static int nxp_fspi_resume(struct device *dev)
1114 {
1115 	struct nxp_fspi *f = dev_get_drvdata(dev);
1116 
1117 	nxp_fspi_default_setup(f);
1118 
1119 	return 0;
1120 }
1121 
1122 static const struct of_device_id nxp_fspi_dt_ids[] = {
1123 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1124 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1125 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1126 	{ /* sentinel */ }
1127 };
1128 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1129 
1130 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1131 	.suspend	= nxp_fspi_suspend,
1132 	.resume		= nxp_fspi_resume,
1133 };
1134 
1135 static struct platform_driver nxp_fspi_driver = {
1136 	.driver = {
1137 		.name	= "nxp-fspi",
1138 		.of_match_table = nxp_fspi_dt_ids,
1139 		.pm =   &nxp_fspi_pm_ops,
1140 	},
1141 	.probe          = nxp_fspi_probe,
1142 	.remove		= nxp_fspi_remove,
1143 };
1144 module_platform_driver(nxp_fspi_driver);
1145 
1146 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1147 MODULE_AUTHOR("NXP Semiconductor");
1148 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1149 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1150 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1151 MODULE_LICENSE("GPL v2");
1152