1 // SPDX-License-Identifier: GPL-2.0+ 2 3 /* 4 * NXP FlexSPI(FSPI) controller driver. 5 * 6 * Copyright 2019-2020 NXP 7 * Copyright 2020 Puresoftware Ltd. 8 * 9 * FlexSPI is a flexsible SPI host controller which supports two SPI 10 * channels and up to 4 external devices. Each channel supports 11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional 12 * data lines). 13 * 14 * FlexSPI controller is driven by the LUT(Look-up Table) registers 15 * LUT registers are a look-up-table for sequences of instructions. 16 * A valid sequence consists of four LUT registers. 17 * Maximum 32 LUT sequences can be programmed simultaneously. 18 * 19 * LUTs are being created at run-time based on the commands passed 20 * from the spi-mem framework, thus using single LUT index. 21 * 22 * Software triggered Flash read/write access by IP Bus. 23 * 24 * Memory mapped read access by AHB Bus. 25 * 26 * Based on SPI MEM interface and spi-fsl-qspi.c driver. 27 * 28 * Author: 29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> 30 * Boris Brezillon <bbrezillon@kernel.org> 31 * Frieder Schrempf <frieder.schrempf@kontron.de> 32 */ 33 34 #include <linux/acpi.h> 35 #include <linux/bitops.h> 36 #include <linux/bitfield.h> 37 #include <linux/clk.h> 38 #include <linux/completion.h> 39 #include <linux/delay.h> 40 #include <linux/err.h> 41 #include <linux/errno.h> 42 #include <linux/interrupt.h> 43 #include <linux/io.h> 44 #include <linux/iopoll.h> 45 #include <linux/jiffies.h> 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/mutex.h> 49 #include <linux/of.h> 50 #include <linux/platform_device.h> 51 #include <linux/pm_qos.h> 52 #include <linux/regmap.h> 53 #include <linux/sizes.h> 54 #include <linux/sys_soc.h> 55 56 #include <linux/mfd/syscon.h> 57 #include <linux/spi/spi.h> 58 #include <linux/spi/spi-mem.h> 59 60 /* 61 * The driver only uses one single LUT entry, that is updated on 62 * each call of exec_op(). Index 0 is preset at boot with a basic 63 * read operation, so let's use the last entry (31). 64 */ 65 #define SEQID_LUT 31 66 67 /* Registers used by the driver */ 68 #define FSPI_MCR0 0x00 69 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) 70 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) 71 #define FSPI_MCR0_LEARN_EN BIT(15) 72 #define FSPI_MCR0_SCRFRUN_EN BIT(14) 73 #define FSPI_MCR0_OCTCOMB_EN BIT(13) 74 #define FSPI_MCR0_DOZE_EN BIT(12) 75 #define FSPI_MCR0_HSEN BIT(11) 76 #define FSPI_MCR0_SERCLKDIV BIT(8) 77 #define FSPI_MCR0_ATDF_EN BIT(7) 78 #define FSPI_MCR0_ARDF_EN BIT(6) 79 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) 80 #define FSPI_MCR0_END_CFG(x) ((x) << 2) 81 #define FSPI_MCR0_MDIS BIT(1) 82 #define FSPI_MCR0_SWRST BIT(0) 83 84 #define FSPI_MCR1 0x04 85 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) 86 #define FSPI_MCR1_AHB_TIMEOUT(x) (x) 87 88 #define FSPI_MCR2 0x08 89 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) 90 #define FSPI_MCR2_SAMEDEVICEEN BIT(15) 91 #define FSPI_MCR2_CLRLRPHS BIT(14) 92 #define FSPI_MCR2_ABRDATSZ BIT(8) 93 #define FSPI_MCR2_ABRLEARN BIT(7) 94 #define FSPI_MCR2_ABR_READ BIT(6) 95 #define FSPI_MCR2_ABRWRITE BIT(5) 96 #define FSPI_MCR2_ABRDUMMY BIT(4) 97 #define FSPI_MCR2_ABR_MODE BIT(3) 98 #define FSPI_MCR2_ABRCADDR BIT(2) 99 #define FSPI_MCR2_ABRRADDR BIT(1) 100 #define FSPI_MCR2_ABR_CMD BIT(0) 101 102 #define FSPI_AHBCR 0x0c 103 #define FSPI_AHBCR_RDADDROPT BIT(6) 104 #define FSPI_AHBCR_PREF_EN BIT(5) 105 #define FSPI_AHBCR_BUFF_EN BIT(4) 106 #define FSPI_AHBCR_CACH_EN BIT(3) 107 #define FSPI_AHBCR_CLRTXBUF BIT(2) 108 #define FSPI_AHBCR_CLRRXBUF BIT(1) 109 #define FSPI_AHBCR_PAR_EN BIT(0) 110 111 #define FSPI_INTEN 0x10 112 #define FSPI_INTEN_SCLKSBWR BIT(9) 113 #define FSPI_INTEN_SCLKSBRD BIT(8) 114 #define FSPI_INTEN_DATALRNFL BIT(7) 115 #define FSPI_INTEN_IPTXWE BIT(6) 116 #define FSPI_INTEN_IPRXWA BIT(5) 117 #define FSPI_INTEN_AHBCMDERR BIT(4) 118 #define FSPI_INTEN_IPCMDERR BIT(3) 119 #define FSPI_INTEN_AHBCMDGE BIT(2) 120 #define FSPI_INTEN_IPCMDGE BIT(1) 121 #define FSPI_INTEN_IPCMDDONE BIT(0) 122 123 #define FSPI_INTR 0x14 124 #define FSPI_INTR_SCLKSBWR BIT(9) 125 #define FSPI_INTR_SCLKSBRD BIT(8) 126 #define FSPI_INTR_DATALRNFL BIT(7) 127 #define FSPI_INTR_IPTXWE BIT(6) 128 #define FSPI_INTR_IPRXWA BIT(5) 129 #define FSPI_INTR_AHBCMDERR BIT(4) 130 #define FSPI_INTR_IPCMDERR BIT(3) 131 #define FSPI_INTR_AHBCMDGE BIT(2) 132 #define FSPI_INTR_IPCMDGE BIT(1) 133 #define FSPI_INTR_IPCMDDONE BIT(0) 134 135 #define FSPI_LUTKEY 0x18 136 #define FSPI_LUTKEY_VALUE 0x5AF05AF0 137 138 #define FSPI_LCKCR 0x1C 139 140 #define FSPI_LCKER_LOCK 0x1 141 #define FSPI_LCKER_UNLOCK 0x2 142 143 #define FSPI_BUFXCR_INVALID_MSTRID 0xE 144 #define FSPI_AHBRX_BUF0CR0 0x20 145 #define FSPI_AHBRX_BUF1CR0 0x24 146 #define FSPI_AHBRX_BUF2CR0 0x28 147 #define FSPI_AHBRX_BUF3CR0 0x2C 148 #define FSPI_AHBRX_BUF4CR0 0x30 149 #define FSPI_AHBRX_BUF5CR0 0x34 150 #define FSPI_AHBRX_BUF6CR0 0x38 151 #define FSPI_AHBRX_BUF7CR0 0x3C 152 #define FSPI_AHBRXBUF0CR7_PREF BIT(31) 153 154 #define FSPI_AHBRX_BUF0CR1 0x40 155 #define FSPI_AHBRX_BUF1CR1 0x44 156 #define FSPI_AHBRX_BUF2CR1 0x48 157 #define FSPI_AHBRX_BUF3CR1 0x4C 158 #define FSPI_AHBRX_BUF4CR1 0x50 159 #define FSPI_AHBRX_BUF5CR1 0x54 160 #define FSPI_AHBRX_BUF6CR1 0x58 161 #define FSPI_AHBRX_BUF7CR1 0x5C 162 163 #define FSPI_FLSHA1CR0 0x60 164 #define FSPI_FLSHA2CR0 0x64 165 #define FSPI_FLSHB1CR0 0x68 166 #define FSPI_FLSHB2CR0 0x6C 167 #define FSPI_FLSHXCR0_SZ_KB 10 168 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) 169 170 #define FSPI_FLSHA1CR1 0x70 171 #define FSPI_FLSHA2CR1 0x74 172 #define FSPI_FLSHB1CR1 0x78 173 #define FSPI_FLSHB2CR1 0x7C 174 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) 175 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) 176 #define FSPI_FLSHXCR1_WA BIT(10) 177 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) 178 #define FSPI_FLSHXCR1_TCSS(x) (x) 179 180 #define FSPI_FLSHA1CR2 0x80 181 #define FSPI_FLSHA2CR2 0x84 182 #define FSPI_FLSHB1CR2 0x88 183 #define FSPI_FLSHB2CR2 0x8C 184 #define FSPI_FLSHXCR2_CLRINSP BIT(24) 185 #define FSPI_FLSHXCR2_AWRWAIT BIT(16) 186 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 187 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 188 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 189 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 190 191 #define FSPI_IPCR0 0xA0 192 193 #define FSPI_IPCR1 0xA4 194 #define FSPI_IPCR1_IPAREN BIT(31) 195 #define FSPI_IPCR1_SEQNUM_SHIFT 24 196 #define FSPI_IPCR1_SEQID_SHIFT 16 197 #define FSPI_IPCR1_IDATSZ(x) (x) 198 199 #define FSPI_IPCMD 0xB0 200 #define FSPI_IPCMD_TRG BIT(0) 201 202 #define FSPI_DLPR 0xB4 203 204 #define FSPI_IPRXFCR 0xB8 205 #define FSPI_IPRXFCR_CLR BIT(0) 206 #define FSPI_IPRXFCR_DMA_EN BIT(1) 207 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) 208 209 #define FSPI_IPTXFCR 0xBC 210 #define FSPI_IPTXFCR_CLR BIT(0) 211 #define FSPI_IPTXFCR_DMA_EN BIT(1) 212 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) 213 214 #define FSPI_DLLACR 0xC0 215 #define FSPI_DLLACR_OVRDEN BIT(8) 216 #define FSPI_DLLACR_SLVDLY(x) ((x) << 3) 217 #define FSPI_DLLACR_DLLRESET BIT(1) 218 #define FSPI_DLLACR_DLLEN BIT(0) 219 220 #define FSPI_DLLBCR 0xC4 221 #define FSPI_DLLBCR_OVRDEN BIT(8) 222 #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3) 223 #define FSPI_DLLBCR_DLLRESET BIT(1) 224 #define FSPI_DLLBCR_DLLEN BIT(0) 225 226 #define FSPI_STS0 0xE0 227 #define FSPI_STS0_DLPHB(x) ((x) << 8) 228 #define FSPI_STS0_DLPHA(x) ((x) << 4) 229 #define FSPI_STS0_CMD_SRC(x) ((x) << 2) 230 #define FSPI_STS0_ARB_IDLE BIT(1) 231 #define FSPI_STS0_SEQ_IDLE BIT(0) 232 233 #define FSPI_STS1 0xE4 234 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) 235 #define FSPI_STS1_IP_ERRID(x) ((x) << 16) 236 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) 237 #define FSPI_STS1_AHB_ERRID(x) (x) 238 239 #define FSPI_STS2 0xE8 240 #define FSPI_STS2_BREFLOCK BIT(17) 241 #define FSPI_STS2_BSLVLOCK BIT(16) 242 #define FSPI_STS2_AREFLOCK BIT(1) 243 #define FSPI_STS2_ASLVLOCK BIT(0) 244 #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \ 245 FSPI_STS2_BSLVLOCK | \ 246 FSPI_STS2_AREFLOCK | \ 247 FSPI_STS2_ASLVLOCK) 248 249 #define FSPI_AHBSPNST 0xEC 250 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) 251 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) 252 #define FSPI_AHBSPNST_ACTIVE BIT(0) 253 254 #define FSPI_IPRXFSTS 0xF0 255 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) 256 #define FSPI_IPRXFSTS_FILL(x) (x) 257 258 #define FSPI_IPTXFSTS 0xF4 259 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) 260 #define FSPI_IPTXFSTS_FILL(x) (x) 261 262 #define FSPI_RFDR 0x100 263 #define FSPI_TFDR 0x180 264 265 #define FSPI_LUT_BASE 0x200 266 #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) 267 #define FSPI_LUT_REG(idx) \ 268 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) 269 270 /* register map end */ 271 272 /* Instruction set for the LUT register. */ 273 #define LUT_STOP 0x00 274 #define LUT_CMD 0x01 275 #define LUT_ADDR 0x02 276 #define LUT_CADDR_SDR 0x03 277 #define LUT_MODE 0x04 278 #define LUT_MODE2 0x05 279 #define LUT_MODE4 0x06 280 #define LUT_MODE8 0x07 281 #define LUT_NXP_WRITE 0x08 282 #define LUT_NXP_READ 0x09 283 #define LUT_LEARN_SDR 0x0A 284 #define LUT_DATSZ_SDR 0x0B 285 #define LUT_DUMMY 0x0C 286 #define LUT_DUMMY_RWDS_SDR 0x0D 287 #define LUT_JMP_ON_CS 0x1F 288 #define LUT_CMD_DDR 0x21 289 #define LUT_ADDR_DDR 0x22 290 #define LUT_CADDR_DDR 0x23 291 #define LUT_MODE_DDR 0x24 292 #define LUT_MODE2_DDR 0x25 293 #define LUT_MODE4_DDR 0x26 294 #define LUT_MODE8_DDR 0x27 295 #define LUT_WRITE_DDR 0x28 296 #define LUT_READ_DDR 0x29 297 #define LUT_LEARN_DDR 0x2A 298 #define LUT_DATSZ_DDR 0x2B 299 #define LUT_DUMMY_DDR 0x2C 300 #define LUT_DUMMY_RWDS_DDR 0x2D 301 302 /* 303 * Calculate number of required PAD bits for LUT register. 304 * 305 * The pad stands for the number of IO lines [0:7]. 306 * For example, the octal read needs eight IO lines, 307 * so you should use LUT_PAD(8). This macro 308 * returns 3 i.e. use eight (2^3) IP lines for read. 309 */ 310 #define LUT_PAD(x) (fls(x) - 1) 311 312 /* 313 * Macro for constructing the LUT entries with the following 314 * register layout: 315 * 316 * --------------------------------------------------- 317 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | 318 * --------------------------------------------------- 319 */ 320 #define PAD_SHIFT 8 321 #define INSTR_SHIFT 10 322 #define OPRND_SHIFT 16 323 324 /* Macros for constructing the LUT register. */ 325 #define LUT_DEF(idx, ins, pad, opr) \ 326 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ 327 (opr)) << (((idx) % 2) * OPRND_SHIFT)) 328 329 #define POLL_TOUT 5000 330 #define NXP_FSPI_MAX_CHIPSELECT 4 331 #define NXP_FSPI_MIN_IOMAP SZ_4M 332 333 #define DCFG_RCWSR1 0x100 334 #define SYS_PLL_RAT GENMASK(6, 2) 335 336 /* Access flash memory using IP bus only */ 337 #define FSPI_QUIRK_USE_IP_ONLY BIT(0) 338 339 struct nxp_fspi_devtype_data { 340 unsigned int rxfifo; 341 unsigned int txfifo; 342 unsigned int ahb_buf_size; 343 unsigned int quirks; 344 bool little_endian; 345 }; 346 347 static struct nxp_fspi_devtype_data lx2160a_data = { 348 .rxfifo = SZ_512, /* (64 * 64 bits) */ 349 .txfifo = SZ_1K, /* (128 * 64 bits) */ 350 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 351 .quirks = 0, 352 .little_endian = true, /* little-endian */ 353 }; 354 355 static struct nxp_fspi_devtype_data imx8mm_data = { 356 .rxfifo = SZ_512, /* (64 * 64 bits) */ 357 .txfifo = SZ_1K, /* (128 * 64 bits) */ 358 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 359 .quirks = 0, 360 .little_endian = true, /* little-endian */ 361 }; 362 363 static struct nxp_fspi_devtype_data imx8qxp_data = { 364 .rxfifo = SZ_512, /* (64 * 64 bits) */ 365 .txfifo = SZ_1K, /* (128 * 64 bits) */ 366 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 367 .quirks = 0, 368 .little_endian = true, /* little-endian */ 369 }; 370 371 static struct nxp_fspi_devtype_data imx8dxl_data = { 372 .rxfifo = SZ_512, /* (64 * 64 bits) */ 373 .txfifo = SZ_1K, /* (128 * 64 bits) */ 374 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 375 .quirks = FSPI_QUIRK_USE_IP_ONLY, 376 .little_endian = true, /* little-endian */ 377 }; 378 379 struct nxp_fspi { 380 void __iomem *iobase; 381 void __iomem *ahb_addr; 382 u32 memmap_phy; 383 u32 memmap_phy_size; 384 u32 memmap_start; 385 u32 memmap_len; 386 struct clk *clk, *clk_en; 387 struct device *dev; 388 struct completion c; 389 struct nxp_fspi_devtype_data *devtype_data; 390 struct mutex lock; 391 struct pm_qos_request pm_qos_req; 392 int selected; 393 }; 394 395 static inline int needs_ip_only(struct nxp_fspi *f) 396 { 397 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY; 398 } 399 400 /* 401 * R/W functions for big- or little-endian registers: 402 * The FSPI controller's endianness is independent of 403 * the CPU core's endianness. So far, although the CPU 404 * core is little-endian the FSPI controller can use 405 * big-endian or little-endian. 406 */ 407 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) 408 { 409 if (f->devtype_data->little_endian) 410 iowrite32(val, addr); 411 else 412 iowrite32be(val, addr); 413 } 414 415 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) 416 { 417 if (f->devtype_data->little_endian) 418 return ioread32(addr); 419 else 420 return ioread32be(addr); 421 } 422 423 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) 424 { 425 struct nxp_fspi *f = dev_id; 426 u32 reg; 427 428 /* clear interrupt */ 429 reg = fspi_readl(f, f->iobase + FSPI_INTR); 430 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); 431 432 if (reg & FSPI_INTR_IPCMDDONE) 433 complete(&f->c); 434 435 return IRQ_HANDLED; 436 } 437 438 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) 439 { 440 switch (width) { 441 case 1: 442 case 2: 443 case 4: 444 case 8: 445 return 0; 446 } 447 448 return -ENOTSUPP; 449 } 450 451 static bool nxp_fspi_supports_op(struct spi_mem *mem, 452 const struct spi_mem_op *op) 453 { 454 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 455 int ret; 456 457 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); 458 459 if (op->addr.nbytes) 460 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); 461 462 if (op->dummy.nbytes) 463 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); 464 465 if (op->data.nbytes) 466 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); 467 468 if (ret) 469 return false; 470 471 /* 472 * The number of address bytes should be equal to or less than 4 bytes. 473 */ 474 if (op->addr.nbytes > 4) 475 return false; 476 477 /* 478 * If requested address value is greater than controller assigned 479 * memory mapped space, return error as it didn't fit in the range 480 * of assigned address space. 481 */ 482 if (op->addr.val >= f->memmap_phy_size) 483 return false; 484 485 /* Max 64 dummy clock cycles supported */ 486 if (op->dummy.buswidth && 487 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) 488 return false; 489 490 /* Max data length, check controller limits and alignment */ 491 if (op->data.dir == SPI_MEM_DATA_IN && 492 (op->data.nbytes > f->devtype_data->ahb_buf_size || 493 (op->data.nbytes > f->devtype_data->rxfifo - 4 && 494 !IS_ALIGNED(op->data.nbytes, 8)))) 495 return false; 496 497 if (op->data.dir == SPI_MEM_DATA_OUT && 498 op->data.nbytes > f->devtype_data->txfifo) 499 return false; 500 501 return spi_mem_default_supports_op(mem, op); 502 } 503 504 /* Instead of busy looping invoke readl_poll_timeout functionality. */ 505 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, 506 u32 mask, u32 delay_us, 507 u32 timeout_us, bool c) 508 { 509 u32 reg; 510 511 if (!f->devtype_data->little_endian) 512 mask = (u32)cpu_to_be32(mask); 513 514 if (c) 515 return readl_poll_timeout(base, reg, (reg & mask), 516 delay_us, timeout_us); 517 else 518 return readl_poll_timeout(base, reg, !(reg & mask), 519 delay_us, timeout_us); 520 } 521 522 /* 523 * If the slave device content being changed by Write/Erase, need to 524 * invalidate the AHB buffer. This can be achieved by doing the reset 525 * of controller after setting MCR0[SWRESET] bit. 526 */ 527 static inline void nxp_fspi_invalid(struct nxp_fspi *f) 528 { 529 u32 reg; 530 int ret; 531 532 reg = fspi_readl(f, f->iobase + FSPI_MCR0); 533 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); 534 535 /* w1c register, wait unit clear */ 536 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 537 FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 538 WARN_ON(ret); 539 } 540 541 static void nxp_fspi_prepare_lut(struct nxp_fspi *f, 542 const struct spi_mem_op *op) 543 { 544 void __iomem *base = f->iobase; 545 u32 lutval[4] = {}; 546 int lutidx = 1, i; 547 548 /* cmd */ 549 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), 550 op->cmd.opcode); 551 552 /* addr bytes */ 553 if (op->addr.nbytes) { 554 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, 555 LUT_PAD(op->addr.buswidth), 556 op->addr.nbytes * 8); 557 lutidx++; 558 } 559 560 /* dummy bytes, if needed */ 561 if (op->dummy.nbytes) { 562 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, 563 /* 564 * Due to FlexSPI controller limitation number of PAD for dummy 565 * buswidth needs to be programmed as equal to data buswidth. 566 */ 567 LUT_PAD(op->data.buswidth), 568 op->dummy.nbytes * 8 / 569 op->dummy.buswidth); 570 lutidx++; 571 } 572 573 /* read/write data bytes */ 574 if (op->data.nbytes) { 575 lutval[lutidx / 2] |= LUT_DEF(lutidx, 576 op->data.dir == SPI_MEM_DATA_IN ? 577 LUT_NXP_READ : LUT_NXP_WRITE, 578 LUT_PAD(op->data.buswidth), 579 0); 580 lutidx++; 581 } 582 583 /* stop condition. */ 584 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); 585 586 /* unlock LUT */ 587 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 588 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); 589 590 /* fill LUT */ 591 for (i = 0; i < ARRAY_SIZE(lutval); i++) 592 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); 593 594 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n", 595 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes); 596 597 /* lock LUT */ 598 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 599 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); 600 } 601 602 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) 603 { 604 int ret; 605 606 if (is_acpi_node(dev_fwnode(f->dev))) 607 return 0; 608 609 ret = clk_prepare_enable(f->clk_en); 610 if (ret) 611 return ret; 612 613 ret = clk_prepare_enable(f->clk); 614 if (ret) { 615 clk_disable_unprepare(f->clk_en); 616 return ret; 617 } 618 619 return 0; 620 } 621 622 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) 623 { 624 if (is_acpi_node(dev_fwnode(f->dev))) 625 return 0; 626 627 clk_disable_unprepare(f->clk); 628 clk_disable_unprepare(f->clk_en); 629 630 return 0; 631 } 632 633 static void nxp_fspi_dll_calibration(struct nxp_fspi *f) 634 { 635 int ret; 636 637 /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */ 638 fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR); 639 fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR); 640 fspi_writel(f, 0, f->iobase + FSPI_DLLACR); 641 fspi_writel(f, 0, f->iobase + FSPI_DLLBCR); 642 643 /* 644 * Enable the DLL calibration mode. 645 * The delay target for slave delay line is: 646 * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock. 647 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which 648 * means half of clock cycle of reference clock. 649 */ 650 fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF), 651 f->iobase + FSPI_DLLACR); 652 fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF), 653 f->iobase + FSPI_DLLBCR); 654 655 /* Wait to get REF/SLV lock */ 656 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK, 657 0, POLL_TOUT, true); 658 if (ret) 659 dev_warn(f->dev, "DLL lock failed, please fix it!\n"); 660 } 661 662 /* 663 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 664 * register and start base address of the slave device. 665 * 666 * (Higher address) 667 * -------- <-- FLSHB2CR0 668 * | B2 | 669 * | | 670 * B2 start address --> -------- <-- FLSHB1CR0 671 * | B1 | 672 * | | 673 * B1 start address --> -------- <-- FLSHA2CR0 674 * | A2 | 675 * | | 676 * A2 start address --> -------- <-- FLSHA1CR0 677 * | A1 | 678 * | | 679 * A1 start address --> -------- (Lower address) 680 * 681 * 682 * Start base address defines the starting address range for given CS and 683 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. 684 * 685 * But, different targets are having different combinations of number of CS, 686 * some targets only have single CS or two CS covering controller's full 687 * memory mapped space area. 688 * Thus, implementation is being done as independent of the size and number 689 * of the connected slave device. 690 * Assign controller memory mapped space size as the size to the connected 691 * slave device. 692 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected 693 * chip-select Flash configuration register. 694 * 695 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the 696 * memory mapped size of the controller. 697 * Value for rest of the CS FLSHxxCR0 register would be zero. 698 * 699 */ 700 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) 701 { 702 unsigned long rate = spi->max_speed_hz; 703 int ret; 704 uint64_t size_kb; 705 706 /* 707 * Return, if previously selected slave device is same as current 708 * requested slave device. 709 */ 710 if (f->selected == spi_get_chipselect(spi, 0)) 711 return; 712 713 /* Reset FLSHxxCR0 registers */ 714 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); 715 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); 716 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); 717 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); 718 719 /* Assign controller memory mapped space as size, KBytes, of flash. */ 720 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); 721 722 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + 723 4 * spi_get_chipselect(spi, 0)); 724 725 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi_get_chipselect(spi, 0)); 726 727 nxp_fspi_clk_disable_unprep(f); 728 729 ret = clk_set_rate(f->clk, rate); 730 if (ret) 731 return; 732 733 ret = nxp_fspi_clk_prep_enable(f); 734 if (ret) 735 return; 736 737 /* 738 * If clock rate > 100MHz, then switch from DLL override mode to 739 * DLL calibration mode. 740 */ 741 if (rate > 100000000) 742 nxp_fspi_dll_calibration(f); 743 744 f->selected = spi_get_chipselect(spi, 0); 745 } 746 747 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) 748 { 749 u32 start = op->addr.val; 750 u32 len = op->data.nbytes; 751 752 /* if necessary, ioremap before AHB read */ 753 if ((!f->ahb_addr) || start < f->memmap_start || 754 start + len > f->memmap_start + f->memmap_len) { 755 if (f->ahb_addr) 756 iounmap(f->ahb_addr); 757 758 f->memmap_start = start; 759 f->memmap_len = len > NXP_FSPI_MIN_IOMAP ? 760 len : NXP_FSPI_MIN_IOMAP; 761 762 f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start, 763 f->memmap_len); 764 765 if (!f->ahb_addr) { 766 dev_err(f->dev, "failed to alloc memory\n"); 767 return -ENOMEM; 768 } 769 } 770 771 /* Read out the data directly from the AHB buffer. */ 772 memcpy_fromio(op->data.buf.in, 773 f->ahb_addr + start - f->memmap_start, len); 774 775 return 0; 776 } 777 778 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, 779 const struct spi_mem_op *op) 780 { 781 void __iomem *base = f->iobase; 782 int i, ret; 783 u8 *buf = (u8 *) op->data.buf.out; 784 785 /* clear the TX FIFO. */ 786 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); 787 788 /* 789 * Default value of water mark level is 8 bytes, hence in single 790 * write request controller can write max 8 bytes of data. 791 */ 792 793 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { 794 /* Wait for TXFIFO empty */ 795 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 796 FSPI_INTR_IPTXWE, 0, 797 POLL_TOUT, true); 798 WARN_ON(ret); 799 800 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); 801 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); 802 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 803 } 804 805 if (i < op->data.nbytes) { 806 u32 data = 0; 807 int j; 808 int remaining = op->data.nbytes - i; 809 /* Wait for TXFIFO empty */ 810 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 811 FSPI_INTR_IPTXWE, 0, 812 POLL_TOUT, true); 813 WARN_ON(ret); 814 815 for (j = 0; j < ALIGN(remaining, 4); j += 4) { 816 memcpy(&data, buf + i + j, min_t(int, 4, remaining - j)); 817 fspi_writel(f, data, base + FSPI_TFDR + j); 818 } 819 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 820 } 821 } 822 823 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, 824 const struct spi_mem_op *op) 825 { 826 void __iomem *base = f->iobase; 827 int i, ret; 828 int len = op->data.nbytes; 829 u8 *buf = (u8 *) op->data.buf.in; 830 831 /* 832 * Default value of water mark level is 8 bytes, hence in single 833 * read request controller can read max 8 bytes of data. 834 */ 835 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { 836 /* Wait for RXFIFO available */ 837 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 838 FSPI_INTR_IPRXWA, 0, 839 POLL_TOUT, true); 840 WARN_ON(ret); 841 842 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); 843 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); 844 /* move the FIFO pointer */ 845 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 846 } 847 848 if (i < len) { 849 u32 tmp; 850 int size, j; 851 852 buf = op->data.buf.in + i; 853 /* Wait for RXFIFO available */ 854 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 855 FSPI_INTR_IPRXWA, 0, 856 POLL_TOUT, true); 857 WARN_ON(ret); 858 859 len = op->data.nbytes - i; 860 for (j = 0; j < op->data.nbytes - i; j += 4) { 861 tmp = fspi_readl(f, base + FSPI_RFDR + j); 862 size = min(len, 4); 863 memcpy(buf + j, &tmp, size); 864 len -= size; 865 } 866 } 867 868 /* invalid the RXFIFO */ 869 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); 870 /* move the FIFO pointer */ 871 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 872 } 873 874 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) 875 { 876 void __iomem *base = f->iobase; 877 int seqnum = 0; 878 int err = 0; 879 u32 reg; 880 881 reg = fspi_readl(f, base + FSPI_IPRXFCR); 882 /* invalid RXFIFO first */ 883 reg &= ~FSPI_IPRXFCR_DMA_EN; 884 reg = reg | FSPI_IPRXFCR_CLR; 885 fspi_writel(f, reg, base + FSPI_IPRXFCR); 886 887 init_completion(&f->c); 888 889 fspi_writel(f, op->addr.val, base + FSPI_IPCR0); 890 /* 891 * Always start the sequence at the same index since we update 892 * the LUT at each exec_op() call. And also specify the DATA 893 * length, since it's has not been specified in the LUT. 894 */ 895 fspi_writel(f, op->data.nbytes | 896 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | 897 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), 898 base + FSPI_IPCR1); 899 900 /* Trigger the LUT now. */ 901 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); 902 903 /* Wait for the interrupt. */ 904 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) 905 err = -ETIMEDOUT; 906 907 /* Invoke IP data read, if request is of data read. */ 908 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) 909 nxp_fspi_read_rxfifo(f, op); 910 911 return err; 912 } 913 914 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 915 { 916 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 917 int err = 0; 918 919 mutex_lock(&f->lock); 920 921 /* Wait for controller being ready. */ 922 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, 923 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); 924 WARN_ON(err); 925 926 nxp_fspi_select_mem(f, mem->spi); 927 928 nxp_fspi_prepare_lut(f, op); 929 /* 930 * If we have large chunks of data, we read them through the AHB bus by 931 * accessing the mapped memory. In all other cases we use IP commands 932 * to access the flash. Read via AHB bus may be corrupted due to 933 * existence of an errata and therefore discard AHB read in such cases. 934 */ 935 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && 936 op->data.dir == SPI_MEM_DATA_IN && 937 !needs_ip_only(f)) { 938 err = nxp_fspi_read_ahb(f, op); 939 } else { 940 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) 941 nxp_fspi_fill_txfifo(f, op); 942 943 err = nxp_fspi_do_op(f, op); 944 } 945 946 /* Invalidate the data in the AHB buffer. */ 947 nxp_fspi_invalid(f); 948 949 mutex_unlock(&f->lock); 950 951 return err; 952 } 953 954 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 955 { 956 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 957 958 if (op->data.dir == SPI_MEM_DATA_OUT) { 959 if (op->data.nbytes > f->devtype_data->txfifo) 960 op->data.nbytes = f->devtype_data->txfifo; 961 } else { 962 if (op->data.nbytes > f->devtype_data->ahb_buf_size) 963 op->data.nbytes = f->devtype_data->ahb_buf_size; 964 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) 965 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); 966 } 967 968 /* Limit data bytes to RX FIFO in case of IP read only */ 969 if (op->data.dir == SPI_MEM_DATA_IN && 970 needs_ip_only(f) && 971 op->data.nbytes > f->devtype_data->rxfifo) 972 op->data.nbytes = f->devtype_data->rxfifo; 973 974 return 0; 975 } 976 977 static void erratum_err050568(struct nxp_fspi *f) 978 { 979 static const struct soc_device_attribute ls1028a_soc_attr[] = { 980 { .family = "QorIQ LS1028A" }, 981 { /* sentinel */ } 982 }; 983 struct regmap *map; 984 u32 val, sys_pll_ratio; 985 int ret; 986 987 /* Check for LS1028A family */ 988 if (!soc_device_match(ls1028a_soc_attr)) { 989 dev_dbg(f->dev, "Errata applicable only for LS1028A\n"); 990 return; 991 } 992 993 map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg"); 994 if (IS_ERR(map)) { 995 dev_err(f->dev, "No syscon regmap\n"); 996 goto err; 997 } 998 999 ret = regmap_read(map, DCFG_RCWSR1, &val); 1000 if (ret < 0) 1001 goto err; 1002 1003 sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val); 1004 dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio); 1005 1006 /* Use IP bus only if platform clock is 300MHz */ 1007 if (sys_pll_ratio == 3) 1008 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY; 1009 1010 return; 1011 1012 err: 1013 dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n"); 1014 } 1015 1016 static int nxp_fspi_default_setup(struct nxp_fspi *f) 1017 { 1018 void __iomem *base = f->iobase; 1019 int ret, i; 1020 u32 reg; 1021 1022 /* disable and unprepare clock to avoid glitch pass to controller */ 1023 nxp_fspi_clk_disable_unprep(f); 1024 1025 /* the default frequency, we will change it later if necessary. */ 1026 ret = clk_set_rate(f->clk, 20000000); 1027 if (ret) 1028 return ret; 1029 1030 ret = nxp_fspi_clk_prep_enable(f); 1031 if (ret) 1032 return ret; 1033 1034 /* 1035 * ERR050568: Flash access by FlexSPI AHB command may not work with 1036 * platform frequency equal to 300 MHz on LS1028A. 1037 * LS1028A reuses LX2160A compatible entry. Make errata applicable for 1038 * Layerscape LS1028A platform. 1039 */ 1040 if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi")) 1041 erratum_err050568(f); 1042 1043 /* Reset the module */ 1044 /* w1c register, wait unit clear */ 1045 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 1046 FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 1047 WARN_ON(ret); 1048 1049 /* Disable the module */ 1050 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); 1051 1052 /* 1053 * Config the DLL register to default value, enable the slave clock delay 1054 * line delay cell override mode, and use 1 fixed delay cell in DLL delay 1055 * chain, this is the suggested setting when clock rate < 100MHz. 1056 */ 1057 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); 1058 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); 1059 1060 /* enable module */ 1061 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | 1062 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, 1063 base + FSPI_MCR0); 1064 1065 /* 1066 * Disable same device enable bit and configure all slave devices 1067 * independently. 1068 */ 1069 reg = fspi_readl(f, f->iobase + FSPI_MCR2); 1070 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); 1071 fspi_writel(f, reg, base + FSPI_MCR2); 1072 1073 /* AHB configuration for access buffer 0~7. */ 1074 for (i = 0; i < 7; i++) 1075 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); 1076 1077 /* 1078 * Set ADATSZ with the maximum AHB buffer size to improve the read 1079 * performance. 1080 */ 1081 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | 1082 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); 1083 1084 /* prefetch and no start address alignment limitation */ 1085 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, 1086 base + FSPI_AHBCR); 1087 1088 /* Reset the FLSHxCR1 registers. */ 1089 reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); 1090 fspi_writel(f, reg, base + FSPI_FLSHA1CR1); 1091 fspi_writel(f, reg, base + FSPI_FLSHA2CR1); 1092 fspi_writel(f, reg, base + FSPI_FLSHB1CR1); 1093 fspi_writel(f, reg, base + FSPI_FLSHB2CR1); 1094 1095 /* AHB Read - Set lut sequence ID for all CS. */ 1096 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); 1097 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); 1098 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); 1099 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); 1100 1101 f->selected = -1; 1102 1103 /* enable the interrupt */ 1104 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); 1105 1106 return 0; 1107 } 1108 1109 static const char *nxp_fspi_get_name(struct spi_mem *mem) 1110 { 1111 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 1112 struct device *dev = &mem->spi->dev; 1113 const char *name; 1114 1115 // Set custom name derived from the platform_device of the controller. 1116 if (of_get_available_child_count(f->dev->of_node) == 1) 1117 return dev_name(f->dev); 1118 1119 name = devm_kasprintf(dev, GFP_KERNEL, 1120 "%s-%d", dev_name(f->dev), 1121 spi_get_chipselect(mem->spi, 0)); 1122 1123 if (!name) { 1124 dev_err(dev, "failed to get memory for custom flash name\n"); 1125 return ERR_PTR(-ENOMEM); 1126 } 1127 1128 return name; 1129 } 1130 1131 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { 1132 .adjust_op_size = nxp_fspi_adjust_op_size, 1133 .supports_op = nxp_fspi_supports_op, 1134 .exec_op = nxp_fspi_exec_op, 1135 .get_name = nxp_fspi_get_name, 1136 }; 1137 1138 static int nxp_fspi_probe(struct platform_device *pdev) 1139 { 1140 struct spi_controller *ctlr; 1141 struct device *dev = &pdev->dev; 1142 struct device_node *np = dev->of_node; 1143 struct resource *res; 1144 struct nxp_fspi *f; 1145 int ret; 1146 u32 reg; 1147 1148 ctlr = spi_alloc_master(&pdev->dev, sizeof(*f)); 1149 if (!ctlr) 1150 return -ENOMEM; 1151 1152 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | 1153 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; 1154 1155 f = spi_controller_get_devdata(ctlr); 1156 f->dev = dev; 1157 f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev); 1158 if (!f->devtype_data) { 1159 ret = -ENODEV; 1160 goto err_put_ctrl; 1161 } 1162 1163 platform_set_drvdata(pdev, f); 1164 1165 /* find the resources - configuration register address space */ 1166 if (is_acpi_node(dev_fwnode(f->dev))) 1167 f->iobase = devm_platform_ioremap_resource(pdev, 0); 1168 else 1169 f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base"); 1170 1171 if (IS_ERR(f->iobase)) { 1172 ret = PTR_ERR(f->iobase); 1173 goto err_put_ctrl; 1174 } 1175 1176 /* find the resources - controller memory mapped space */ 1177 if (is_acpi_node(dev_fwnode(f->dev))) 1178 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1179 else 1180 res = platform_get_resource_byname(pdev, 1181 IORESOURCE_MEM, "fspi_mmap"); 1182 1183 if (!res) { 1184 ret = -ENODEV; 1185 goto err_put_ctrl; 1186 } 1187 1188 /* assign memory mapped starting address and mapped size. */ 1189 f->memmap_phy = res->start; 1190 f->memmap_phy_size = resource_size(res); 1191 1192 /* find the clocks */ 1193 if (dev_of_node(&pdev->dev)) { 1194 f->clk_en = devm_clk_get(dev, "fspi_en"); 1195 if (IS_ERR(f->clk_en)) { 1196 ret = PTR_ERR(f->clk_en); 1197 goto err_put_ctrl; 1198 } 1199 1200 f->clk = devm_clk_get(dev, "fspi"); 1201 if (IS_ERR(f->clk)) { 1202 ret = PTR_ERR(f->clk); 1203 goto err_put_ctrl; 1204 } 1205 1206 ret = nxp_fspi_clk_prep_enable(f); 1207 if (ret) { 1208 dev_err(dev, "can not enable the clock\n"); 1209 goto err_put_ctrl; 1210 } 1211 } 1212 1213 /* Clear potential interrupts */ 1214 reg = fspi_readl(f, f->iobase + FSPI_INTR); 1215 if (reg) 1216 fspi_writel(f, reg, f->iobase + FSPI_INTR); 1217 1218 /* find the irq */ 1219 ret = platform_get_irq(pdev, 0); 1220 if (ret < 0) 1221 goto err_disable_clk; 1222 1223 ret = devm_request_irq(dev, ret, 1224 nxp_fspi_irq_handler, 0, pdev->name, f); 1225 if (ret) { 1226 dev_err(dev, "failed to request irq: %d\n", ret); 1227 goto err_disable_clk; 1228 } 1229 1230 mutex_init(&f->lock); 1231 1232 ctlr->bus_num = -1; 1233 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; 1234 ctlr->mem_ops = &nxp_fspi_mem_ops; 1235 1236 nxp_fspi_default_setup(f); 1237 1238 ctlr->dev.of_node = np; 1239 1240 ret = devm_spi_register_controller(&pdev->dev, ctlr); 1241 if (ret) 1242 goto err_destroy_mutex; 1243 1244 return 0; 1245 1246 err_destroy_mutex: 1247 mutex_destroy(&f->lock); 1248 1249 err_disable_clk: 1250 nxp_fspi_clk_disable_unprep(f); 1251 1252 err_put_ctrl: 1253 spi_controller_put(ctlr); 1254 1255 dev_err(dev, "NXP FSPI probe failed\n"); 1256 return ret; 1257 } 1258 1259 static void nxp_fspi_remove(struct platform_device *pdev) 1260 { 1261 struct nxp_fspi *f = platform_get_drvdata(pdev); 1262 1263 /* disable the hardware */ 1264 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); 1265 1266 nxp_fspi_clk_disable_unprep(f); 1267 1268 mutex_destroy(&f->lock); 1269 1270 if (f->ahb_addr) 1271 iounmap(f->ahb_addr); 1272 } 1273 1274 static int nxp_fspi_suspend(struct device *dev) 1275 { 1276 return 0; 1277 } 1278 1279 static int nxp_fspi_resume(struct device *dev) 1280 { 1281 struct nxp_fspi *f = dev_get_drvdata(dev); 1282 1283 nxp_fspi_default_setup(f); 1284 1285 return 0; 1286 } 1287 1288 static const struct of_device_id nxp_fspi_dt_ids[] = { 1289 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, 1290 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, }, 1291 { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, }, 1292 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, }, 1293 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, }, 1294 { /* sentinel */ } 1295 }; 1296 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); 1297 1298 #ifdef CONFIG_ACPI 1299 static const struct acpi_device_id nxp_fspi_acpi_ids[] = { 1300 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, }, 1301 {} 1302 }; 1303 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); 1304 #endif 1305 1306 static const struct dev_pm_ops nxp_fspi_pm_ops = { 1307 .suspend = nxp_fspi_suspend, 1308 .resume = nxp_fspi_resume, 1309 }; 1310 1311 static struct platform_driver nxp_fspi_driver = { 1312 .driver = { 1313 .name = "nxp-fspi", 1314 .of_match_table = nxp_fspi_dt_ids, 1315 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), 1316 .pm = &nxp_fspi_pm_ops, 1317 }, 1318 .probe = nxp_fspi_probe, 1319 .remove_new = nxp_fspi_remove, 1320 }; 1321 module_platform_driver(nxp_fspi_driver); 1322 1323 MODULE_DESCRIPTION("NXP FSPI Controller Driver"); 1324 MODULE_AUTHOR("NXP Semiconductor"); 1325 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>"); 1326 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); 1327 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); 1328 MODULE_LICENSE("GPL v2"); 1329