xref: /openbmc/linux/drivers/spi/spi-mxs.c (revision f35e839a)
1 /*
2  * Freescale MXS SPI master driver
3  *
4  * Copyright 2012 DENX Software Engineering, GmbH.
5  * Copyright 2012 Freescale Semiconductor, Inc.
6  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
7  *
8  * Rework and transition to new API by:
9  * Marek Vasut <marex@denx.de>
10  *
11  * Based on previous attempt by:
12  * Fabio Estevam <fabio.estevam@freescale.com>
13  *
14  * Based on code from U-Boot bootloader by:
15  * Marek Vasut <marex@denx.de>
16  *
17  * Based on spi-stmp.c, which is:
18  * Author: Dmitry Pervushin <dimka@embeddedalley.com>
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/ioport.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/of_gpio.h>
37 #include <linux/platform_device.h>
38 #include <linux/delay.h>
39 #include <linux/interrupt.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/dmaengine.h>
42 #include <linux/highmem.h>
43 #include <linux/clk.h>
44 #include <linux/err.h>
45 #include <linux/completion.h>
46 #include <linux/gpio.h>
47 #include <linux/regulator/consumer.h>
48 #include <linux/module.h>
49 #include <linux/pinctrl/consumer.h>
50 #include <linux/stmp_device.h>
51 #include <linux/spi/spi.h>
52 #include <linux/spi/mxs-spi.h>
53 
54 #define DRIVER_NAME		"mxs-spi"
55 
56 /* Use 10S timeout for very long transfers, it should suffice. */
57 #define SSP_TIMEOUT		10000
58 
59 #define SG_MAXLEN		0xff00
60 
61 struct mxs_spi {
62 	struct mxs_ssp		ssp;
63 	struct completion	c;
64 };
65 
66 static int mxs_spi_setup_transfer(struct spi_device *dev,
67 				struct spi_transfer *t)
68 {
69 	struct mxs_spi *spi = spi_master_get_devdata(dev->master);
70 	struct mxs_ssp *ssp = &spi->ssp;
71 	uint8_t bits_per_word;
72 	uint32_t hz = 0;
73 
74 	bits_per_word = dev->bits_per_word;
75 	if (t && t->bits_per_word)
76 		bits_per_word = t->bits_per_word;
77 
78 	if (bits_per_word != 8) {
79 		dev_err(&dev->dev, "%s, unsupported bits_per_word=%d\n",
80 					__func__, bits_per_word);
81 		return -EINVAL;
82 	}
83 
84 	hz = dev->max_speed_hz;
85 	if (t && t->speed_hz)
86 		hz = min(hz, t->speed_hz);
87 	if (hz == 0) {
88 		dev_err(&dev->dev, "Cannot continue with zero clock\n");
89 		return -EINVAL;
90 	}
91 
92 	mxs_ssp_set_clk_rate(ssp, hz);
93 
94 	writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
95 		     BF_SSP_CTRL1_WORD_LENGTH
96 		     (BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
97 		     ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
98 		     ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
99 		     ssp->base + HW_SSP_CTRL1(ssp));
100 
101 	writel(0x0, ssp->base + HW_SSP_CMD0);
102 	writel(0x0, ssp->base + HW_SSP_CMD1);
103 
104 	return 0;
105 }
106 
107 static int mxs_spi_setup(struct spi_device *dev)
108 {
109 	int err = 0;
110 
111 	if (!dev->bits_per_word)
112 		dev->bits_per_word = 8;
113 
114 	if (dev->mode & ~(SPI_CPOL | SPI_CPHA))
115 		return -EINVAL;
116 
117 	err = mxs_spi_setup_transfer(dev, NULL);
118 	if (err) {
119 		dev_err(&dev->dev,
120 			"Failed to setup transfer, error = %d\n", err);
121 	}
122 
123 	return err;
124 }
125 
126 static uint32_t mxs_spi_cs_to_reg(unsigned cs)
127 {
128 	uint32_t select = 0;
129 
130 	/*
131 	 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
132 	 *
133 	 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
134 	 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
135 	 * the datasheet for further details. In SPI mode, they are used to
136 	 * toggle the chip-select lines (nCS pins).
137 	 */
138 	if (cs & 1)
139 		select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
140 	if (cs & 2)
141 		select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
142 
143 	return select;
144 }
145 
146 static void mxs_spi_set_cs(struct mxs_spi *spi, unsigned cs)
147 {
148 	const uint32_t mask =
149 		BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ;
150 	uint32_t select;
151 	struct mxs_ssp *ssp = &spi->ssp;
152 
153 	writel(mask, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
154 	select = mxs_spi_cs_to_reg(cs);
155 	writel(select, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
156 }
157 
158 static inline void mxs_spi_enable(struct mxs_spi *spi)
159 {
160 	struct mxs_ssp *ssp = &spi->ssp;
161 
162 	writel(BM_SSP_CTRL0_LOCK_CS,
163 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
164 	writel(BM_SSP_CTRL0_IGNORE_CRC,
165 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
166 }
167 
168 static inline void mxs_spi_disable(struct mxs_spi *spi)
169 {
170 	struct mxs_ssp *ssp = &spi->ssp;
171 
172 	writel(BM_SSP_CTRL0_LOCK_CS,
173 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
174 	writel(BM_SSP_CTRL0_IGNORE_CRC,
175 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
176 }
177 
178 static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
179 {
180 	const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
181 	struct mxs_ssp *ssp = &spi->ssp;
182 	uint32_t reg;
183 
184 	do {
185 		reg = readl_relaxed(ssp->base + offset);
186 
187 		if (!set)
188 			reg = ~reg;
189 
190 		reg &= mask;
191 
192 		if (reg == mask)
193 			return 0;
194 	} while (time_before(jiffies, timeout));
195 
196 	return -ETIMEDOUT;
197 }
198 
199 static void mxs_ssp_dma_irq_callback(void *param)
200 {
201 	struct mxs_spi *spi = param;
202 	complete(&spi->c);
203 }
204 
205 static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
206 {
207 	struct mxs_ssp *ssp = dev_id;
208 	dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
209 		__func__, __LINE__,
210 		readl(ssp->base + HW_SSP_CTRL1(ssp)),
211 		readl(ssp->base + HW_SSP_STATUS(ssp)));
212 	return IRQ_HANDLED;
213 }
214 
215 static int mxs_spi_txrx_dma(struct mxs_spi *spi, int cs,
216 			    unsigned char *buf, int len,
217 			    int *first, int *last, int write)
218 {
219 	struct mxs_ssp *ssp = &spi->ssp;
220 	struct dma_async_tx_descriptor *desc = NULL;
221 	const bool vmalloced_buf = is_vmalloc_addr(buf);
222 	const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
223 	const int sgs = DIV_ROUND_UP(len, desc_len);
224 	int sg_count;
225 	int min, ret;
226 	uint32_t ctrl0;
227 	struct page *vm_page;
228 	void *sg_buf;
229 	struct {
230 		uint32_t		pio[4];
231 		struct scatterlist	sg;
232 	} *dma_xfer;
233 
234 	if (!len)
235 		return -EINVAL;
236 
237 	dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
238 	if (!dma_xfer)
239 		return -ENOMEM;
240 
241 	INIT_COMPLETION(spi->c);
242 
243 	ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
244 	ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
245 	ctrl0 |= BM_SSP_CTRL0_DATA_XFER | mxs_spi_cs_to_reg(cs);
246 
247 	if (*first)
248 		ctrl0 |= BM_SSP_CTRL0_LOCK_CS;
249 	if (!write)
250 		ctrl0 |= BM_SSP_CTRL0_READ;
251 
252 	/* Queue the DMA data transfer. */
253 	for (sg_count = 0; sg_count < sgs; sg_count++) {
254 		min = min(len, desc_len);
255 
256 		/* Prepare the transfer descriptor. */
257 		if ((sg_count + 1 == sgs) && *last)
258 			ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
259 
260 		if (ssp->devid == IMX23_SSP) {
261 			ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
262 			ctrl0 |= min;
263 		}
264 
265 		dma_xfer[sg_count].pio[0] = ctrl0;
266 		dma_xfer[sg_count].pio[3] = min;
267 
268 		if (vmalloced_buf) {
269 			vm_page = vmalloc_to_page(buf);
270 			if (!vm_page) {
271 				ret = -ENOMEM;
272 				goto err_vmalloc;
273 			}
274 			sg_buf = page_address(vm_page) +
275 				((size_t)buf & ~PAGE_MASK);
276 		} else {
277 			sg_buf = buf;
278 		}
279 
280 		sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
281 		ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
282 			write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
283 
284 		len -= min;
285 		buf += min;
286 
287 		/* Queue the PIO register write transfer. */
288 		desc = dmaengine_prep_slave_sg(ssp->dmach,
289 				(struct scatterlist *)dma_xfer[sg_count].pio,
290 				(ssp->devid == IMX23_SSP) ? 1 : 4,
291 				DMA_TRANS_NONE,
292 				sg_count ? DMA_PREP_INTERRUPT : 0);
293 		if (!desc) {
294 			dev_err(ssp->dev,
295 				"Failed to get PIO reg. write descriptor.\n");
296 			ret = -EINVAL;
297 			goto err_mapped;
298 		}
299 
300 		desc = dmaengine_prep_slave_sg(ssp->dmach,
301 				&dma_xfer[sg_count].sg, 1,
302 				write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
303 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
304 
305 		if (!desc) {
306 			dev_err(ssp->dev,
307 				"Failed to get DMA data write descriptor.\n");
308 			ret = -EINVAL;
309 			goto err_mapped;
310 		}
311 	}
312 
313 	/*
314 	 * The last descriptor must have this callback,
315 	 * to finish the DMA transaction.
316 	 */
317 	desc->callback = mxs_ssp_dma_irq_callback;
318 	desc->callback_param = spi;
319 
320 	/* Start the transfer. */
321 	dmaengine_submit(desc);
322 	dma_async_issue_pending(ssp->dmach);
323 
324 	ret = wait_for_completion_timeout(&spi->c,
325 				msecs_to_jiffies(SSP_TIMEOUT));
326 	if (!ret) {
327 		dev_err(ssp->dev, "DMA transfer timeout\n");
328 		ret = -ETIMEDOUT;
329 		dmaengine_terminate_all(ssp->dmach);
330 		goto err_vmalloc;
331 	}
332 
333 	ret = 0;
334 
335 err_vmalloc:
336 	while (--sg_count >= 0) {
337 err_mapped:
338 		dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
339 			write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
340 	}
341 
342 	kfree(dma_xfer);
343 
344 	return ret;
345 }
346 
347 static int mxs_spi_txrx_pio(struct mxs_spi *spi, int cs,
348 			    unsigned char *buf, int len,
349 			    int *first, int *last, int write)
350 {
351 	struct mxs_ssp *ssp = &spi->ssp;
352 
353 	if (*first)
354 		mxs_spi_enable(spi);
355 
356 	mxs_spi_set_cs(spi, cs);
357 
358 	while (len--) {
359 		if (*last && len == 0)
360 			mxs_spi_disable(spi);
361 
362 		if (ssp->devid == IMX23_SSP) {
363 			writel(BM_SSP_CTRL0_XFER_COUNT,
364 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
365 			writel(1,
366 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
367 		} else {
368 			writel(1, ssp->base + HW_SSP_XFER_SIZE);
369 		}
370 
371 		if (write)
372 			writel(BM_SSP_CTRL0_READ,
373 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
374 		else
375 			writel(BM_SSP_CTRL0_READ,
376 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
377 
378 		writel(BM_SSP_CTRL0_RUN,
379 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
380 
381 		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
382 			return -ETIMEDOUT;
383 
384 		if (write)
385 			writel(*buf, ssp->base + HW_SSP_DATA(ssp));
386 
387 		writel(BM_SSP_CTRL0_DATA_XFER,
388 			     ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
389 
390 		if (!write) {
391 			if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
392 						BM_SSP_STATUS_FIFO_EMPTY, 0))
393 				return -ETIMEDOUT;
394 
395 			*buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
396 		}
397 
398 		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
399 			return -ETIMEDOUT;
400 
401 		buf++;
402 	}
403 
404 	if (len <= 0)
405 		return 0;
406 
407 	return -ETIMEDOUT;
408 }
409 
410 static int mxs_spi_transfer_one(struct spi_master *master,
411 				struct spi_message *m)
412 {
413 	struct mxs_spi *spi = spi_master_get_devdata(master);
414 	struct mxs_ssp *ssp = &spi->ssp;
415 	int first, last;
416 	struct spi_transfer *t, *tmp_t;
417 	int status = 0;
418 	int cs;
419 
420 	first = last = 0;
421 
422 	cs = m->spi->chip_select;
423 
424 	list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {
425 
426 		status = mxs_spi_setup_transfer(m->spi, t);
427 		if (status)
428 			break;
429 
430 		if (&t->transfer_list == m->transfers.next)
431 			first = 1;
432 		if (&t->transfer_list == m->transfers.prev)
433 			last = 1;
434 		if ((t->rx_buf && t->tx_buf) || (t->rx_dma && t->tx_dma)) {
435 			dev_err(ssp->dev,
436 				"Cannot send and receive simultaneously\n");
437 			status = -EINVAL;
438 			break;
439 		}
440 
441 		/*
442 		 * Small blocks can be transfered via PIO.
443 		 * Measured by empiric means:
444 		 *
445 		 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
446 		 *
447 		 * DMA only: 2.164808 seconds, 473.0KB/s
448 		 * Combined: 1.676276 seconds, 610.9KB/s
449 		 */
450 		if (t->len < 32) {
451 			writel(BM_SSP_CTRL1_DMA_ENABLE,
452 				ssp->base + HW_SSP_CTRL1(ssp) +
453 				STMP_OFFSET_REG_CLR);
454 
455 			if (t->tx_buf)
456 				status = mxs_spi_txrx_pio(spi, cs,
457 						(void *)t->tx_buf,
458 						t->len, &first, &last, 1);
459 			if (t->rx_buf)
460 				status = mxs_spi_txrx_pio(spi, cs,
461 						t->rx_buf, t->len,
462 						&first, &last, 0);
463 		} else {
464 			writel(BM_SSP_CTRL1_DMA_ENABLE,
465 				ssp->base + HW_SSP_CTRL1(ssp) +
466 				STMP_OFFSET_REG_SET);
467 
468 			if (t->tx_buf)
469 				status = mxs_spi_txrx_dma(spi, cs,
470 						(void *)t->tx_buf, t->len,
471 						&first, &last, 1);
472 			if (t->rx_buf)
473 				status = mxs_spi_txrx_dma(spi, cs,
474 						t->rx_buf, t->len,
475 						&first, &last, 0);
476 		}
477 
478 		if (status) {
479 			stmp_reset_block(ssp->base);
480 			break;
481 		}
482 
483 		m->actual_length += t->len;
484 		first = last = 0;
485 	}
486 
487 	m->status = status;
488 	spi_finalize_current_message(master);
489 
490 	return status;
491 }
492 
493 static const struct of_device_id mxs_spi_dt_ids[] = {
494 	{ .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
495 	{ .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
496 	{ /* sentinel */ }
497 };
498 MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
499 
500 static int mxs_spi_probe(struct platform_device *pdev)
501 {
502 	const struct of_device_id *of_id =
503 			of_match_device(mxs_spi_dt_ids, &pdev->dev);
504 	struct device_node *np = pdev->dev.of_node;
505 	struct spi_master *master;
506 	struct mxs_spi *spi;
507 	struct mxs_ssp *ssp;
508 	struct resource *iores;
509 	struct pinctrl *pinctrl;
510 	struct clk *clk;
511 	void __iomem *base;
512 	int devid, clk_freq;
513 	int ret = 0, irq_err;
514 
515 	/*
516 	 * Default clock speed for the SPI core. 160MHz seems to
517 	 * work reasonably well with most SPI flashes, so use this
518 	 * as a default. Override with "clock-frequency" DT prop.
519 	 */
520 	const int clk_freq_default = 160000000;
521 
522 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
523 	irq_err = platform_get_irq(pdev, 0);
524 	if (!iores || irq_err < 0)
525 		return -EINVAL;
526 
527 	base = devm_ioremap_resource(&pdev->dev, iores);
528 	if (IS_ERR(base))
529 		return PTR_ERR(base);
530 
531 	pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
532 	if (IS_ERR(pinctrl))
533 		return PTR_ERR(pinctrl);
534 
535 	clk = devm_clk_get(&pdev->dev, NULL);
536 	if (IS_ERR(clk))
537 		return PTR_ERR(clk);
538 
539 	devid = (enum mxs_ssp_id) of_id->data;
540 	ret = of_property_read_u32(np, "clock-frequency",
541 				   &clk_freq);
542 	if (ret)
543 		clk_freq = clk_freq_default;
544 
545 	master = spi_alloc_master(&pdev->dev, sizeof(*spi));
546 	if (!master)
547 		return -ENOMEM;
548 
549 	master->transfer_one_message = mxs_spi_transfer_one;
550 	master->setup = mxs_spi_setup;
551 	master->mode_bits = SPI_CPOL | SPI_CPHA;
552 	master->num_chipselect = 3;
553 	master->dev.of_node = np;
554 	master->flags = SPI_MASTER_HALF_DUPLEX;
555 
556 	spi = spi_master_get_devdata(master);
557 	ssp = &spi->ssp;
558 	ssp->dev = &pdev->dev;
559 	ssp->clk = clk;
560 	ssp->base = base;
561 	ssp->devid = devid;
562 
563 	init_completion(&spi->c);
564 
565 	ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
566 			       DRIVER_NAME, ssp);
567 	if (ret)
568 		goto out_master_free;
569 
570 	ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
571 	if (!ssp->dmach) {
572 		dev_err(ssp->dev, "Failed to request DMA\n");
573 		ret = -ENODEV;
574 		goto out_master_free;
575 	}
576 
577 	clk_prepare_enable(ssp->clk);
578 	clk_set_rate(ssp->clk, clk_freq);
579 	ssp->clk_rate = clk_get_rate(ssp->clk) / 1000;
580 
581 	stmp_reset_block(ssp->base);
582 
583 	platform_set_drvdata(pdev, master);
584 
585 	ret = spi_register_master(master);
586 	if (ret) {
587 		dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
588 		goto out_free_dma;
589 	}
590 
591 	return 0;
592 
593 out_free_dma:
594 	dma_release_channel(ssp->dmach);
595 	clk_disable_unprepare(ssp->clk);
596 out_master_free:
597 	spi_master_put(master);
598 	return ret;
599 }
600 
601 static int mxs_spi_remove(struct platform_device *pdev)
602 {
603 	struct spi_master *master;
604 	struct mxs_spi *spi;
605 	struct mxs_ssp *ssp;
606 
607 	master = spi_master_get(platform_get_drvdata(pdev));
608 	spi = spi_master_get_devdata(master);
609 	ssp = &spi->ssp;
610 
611 	spi_unregister_master(master);
612 
613 	dma_release_channel(ssp->dmach);
614 
615 	clk_disable_unprepare(ssp->clk);
616 
617 	spi_master_put(master);
618 
619 	return 0;
620 }
621 
622 static struct platform_driver mxs_spi_driver = {
623 	.probe	= mxs_spi_probe,
624 	.remove	= mxs_spi_remove,
625 	.driver	= {
626 		.name	= DRIVER_NAME,
627 		.owner	= THIS_MODULE,
628 		.of_match_table = mxs_spi_dt_ids,
629 	},
630 };
631 
632 module_platform_driver(mxs_spi_driver);
633 
634 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
635 MODULE_DESCRIPTION("MXS SPI master driver");
636 MODULE_LICENSE("GPL");
637 MODULE_ALIAS("platform:mxs-spi");
638