xref: /openbmc/linux/drivers/spi/spi-mxs.c (revision f220d3eb)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale MXS SPI master driver
4 //
5 // Copyright 2012 DENX Software Engineering, GmbH.
6 // Copyright 2012 Freescale Semiconductor, Inc.
7 // Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
8 //
9 // Rework and transition to new API by:
10 // Marek Vasut <marex@denx.de>
11 //
12 // Based on previous attempt by:
13 // Fabio Estevam <fabio.estevam@freescale.com>
14 //
15 // Based on code from U-Boot bootloader by:
16 // Marek Vasut <marex@denx.de>
17 //
18 // Based on spi-stmp.c, which is:
19 // Author: Dmitry Pervushin <dimka@embeddedalley.com>
20 
21 #include <linux/kernel.h>
22 #include <linux/ioport.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_gpio.h>
26 #include <linux/platform_device.h>
27 #include <linux/delay.h>
28 #include <linux/interrupt.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmaengine.h>
31 #include <linux/highmem.h>
32 #include <linux/clk.h>
33 #include <linux/err.h>
34 #include <linux/completion.h>
35 #include <linux/gpio.h>
36 #include <linux/regulator/consumer.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/module.h>
39 #include <linux/stmp_device.h>
40 #include <linux/spi/spi.h>
41 #include <linux/spi/mxs-spi.h>
42 
43 #define DRIVER_NAME		"mxs-spi"
44 
45 /* Use 10S timeout for very long transfers, it should suffice. */
46 #define SSP_TIMEOUT		10000
47 
48 #define SG_MAXLEN		0xff00
49 
50 /*
51  * Flags for txrx functions.  More efficient that using an argument register for
52  * each one.
53  */
54 #define TXRX_WRITE		(1<<0)	/* This is a write */
55 #define TXRX_DEASSERT_CS	(1<<1)	/* De-assert CS at end of txrx */
56 
57 struct mxs_spi {
58 	struct mxs_ssp		ssp;
59 	struct completion	c;
60 	unsigned int		sck;	/* Rate requested (vs actual) */
61 };
62 
63 static int mxs_spi_setup_transfer(struct spi_device *dev,
64 				  const struct spi_transfer *t)
65 {
66 	struct mxs_spi *spi = spi_master_get_devdata(dev->master);
67 	struct mxs_ssp *ssp = &spi->ssp;
68 	const unsigned int hz = min(dev->max_speed_hz, t->speed_hz);
69 
70 	if (hz == 0) {
71 		dev_err(&dev->dev, "SPI clock rate of zero not allowed\n");
72 		return -EINVAL;
73 	}
74 
75 	if (hz != spi->sck) {
76 		mxs_ssp_set_clk_rate(ssp, hz);
77 		/*
78 		 * Save requested rate, hz, rather than the actual rate,
79 		 * ssp->clk_rate.  Otherwise we would set the rate every transfer
80 		 * when the actual rate is not quite the same as requested rate.
81 		 */
82 		spi->sck = hz;
83 		/*
84 		 * Perhaps we should return an error if the actual clock is
85 		 * nowhere close to what was requested?
86 		 */
87 	}
88 
89 	writel(BM_SSP_CTRL0_LOCK_CS,
90 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
91 
92 	writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
93 	       BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
94 	       ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
95 	       ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
96 	       ssp->base + HW_SSP_CTRL1(ssp));
97 
98 	writel(0x0, ssp->base + HW_SSP_CMD0);
99 	writel(0x0, ssp->base + HW_SSP_CMD1);
100 
101 	return 0;
102 }
103 
104 static u32 mxs_spi_cs_to_reg(unsigned cs)
105 {
106 	u32 select = 0;
107 
108 	/*
109 	 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
110 	 *
111 	 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
112 	 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
113 	 * the datasheet for further details. In SPI mode, they are used to
114 	 * toggle the chip-select lines (nCS pins).
115 	 */
116 	if (cs & 1)
117 		select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
118 	if (cs & 2)
119 		select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
120 
121 	return select;
122 }
123 
124 static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
125 {
126 	const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
127 	struct mxs_ssp *ssp = &spi->ssp;
128 	u32 reg;
129 
130 	do {
131 		reg = readl_relaxed(ssp->base + offset);
132 
133 		if (!set)
134 			reg = ~reg;
135 
136 		reg &= mask;
137 
138 		if (reg == mask)
139 			return 0;
140 	} while (time_before(jiffies, timeout));
141 
142 	return -ETIMEDOUT;
143 }
144 
145 static void mxs_ssp_dma_irq_callback(void *param)
146 {
147 	struct mxs_spi *spi = param;
148 
149 	complete(&spi->c);
150 }
151 
152 static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
153 {
154 	struct mxs_ssp *ssp = dev_id;
155 
156 	dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
157 		__func__, __LINE__,
158 		readl(ssp->base + HW_SSP_CTRL1(ssp)),
159 		readl(ssp->base + HW_SSP_STATUS(ssp)));
160 	return IRQ_HANDLED;
161 }
162 
163 static int mxs_spi_txrx_dma(struct mxs_spi *spi,
164 			    unsigned char *buf, int len,
165 			    unsigned int flags)
166 {
167 	struct mxs_ssp *ssp = &spi->ssp;
168 	struct dma_async_tx_descriptor *desc = NULL;
169 	const bool vmalloced_buf = is_vmalloc_addr(buf);
170 	const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
171 	const int sgs = DIV_ROUND_UP(len, desc_len);
172 	int sg_count;
173 	int min, ret;
174 	u32 ctrl0;
175 	struct page *vm_page;
176 	struct {
177 		u32			pio[4];
178 		struct scatterlist	sg;
179 	} *dma_xfer;
180 
181 	if (!len)
182 		return -EINVAL;
183 
184 	dma_xfer = kcalloc(sgs, sizeof(*dma_xfer), GFP_KERNEL);
185 	if (!dma_xfer)
186 		return -ENOMEM;
187 
188 	reinit_completion(&spi->c);
189 
190 	/* Chip select was already programmed into CTRL0 */
191 	ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
192 	ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC |
193 		 BM_SSP_CTRL0_READ);
194 	ctrl0 |= BM_SSP_CTRL0_DATA_XFER;
195 
196 	if (!(flags & TXRX_WRITE))
197 		ctrl0 |= BM_SSP_CTRL0_READ;
198 
199 	/* Queue the DMA data transfer. */
200 	for (sg_count = 0; sg_count < sgs; sg_count++) {
201 		/* Prepare the transfer descriptor. */
202 		min = min(len, desc_len);
203 
204 		/*
205 		 * De-assert CS on last segment if flag is set (i.e., no more
206 		 * transfers will follow)
207 		 */
208 		if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS))
209 			ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
210 
211 		if (ssp->devid == IMX23_SSP) {
212 			ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
213 			ctrl0 |= min;
214 		}
215 
216 		dma_xfer[sg_count].pio[0] = ctrl0;
217 		dma_xfer[sg_count].pio[3] = min;
218 
219 		if (vmalloced_buf) {
220 			vm_page = vmalloc_to_page(buf);
221 			if (!vm_page) {
222 				ret = -ENOMEM;
223 				goto err_vmalloc;
224 			}
225 
226 			sg_init_table(&dma_xfer[sg_count].sg, 1);
227 			sg_set_page(&dma_xfer[sg_count].sg, vm_page,
228 				    min, offset_in_page(buf));
229 		} else {
230 			sg_init_one(&dma_xfer[sg_count].sg, buf, min);
231 		}
232 
233 		ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
234 			(flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
235 
236 		len -= min;
237 		buf += min;
238 
239 		/* Queue the PIO register write transfer. */
240 		desc = dmaengine_prep_slave_sg(ssp->dmach,
241 				(struct scatterlist *)dma_xfer[sg_count].pio,
242 				(ssp->devid == IMX23_SSP) ? 1 : 4,
243 				DMA_TRANS_NONE,
244 				sg_count ? DMA_PREP_INTERRUPT : 0);
245 		if (!desc) {
246 			dev_err(ssp->dev,
247 				"Failed to get PIO reg. write descriptor.\n");
248 			ret = -EINVAL;
249 			goto err_mapped;
250 		}
251 
252 		desc = dmaengine_prep_slave_sg(ssp->dmach,
253 				&dma_xfer[sg_count].sg, 1,
254 				(flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
255 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
256 
257 		if (!desc) {
258 			dev_err(ssp->dev,
259 				"Failed to get DMA data write descriptor.\n");
260 			ret = -EINVAL;
261 			goto err_mapped;
262 		}
263 	}
264 
265 	/*
266 	 * The last descriptor must have this callback,
267 	 * to finish the DMA transaction.
268 	 */
269 	desc->callback = mxs_ssp_dma_irq_callback;
270 	desc->callback_param = spi;
271 
272 	/* Start the transfer. */
273 	dmaengine_submit(desc);
274 	dma_async_issue_pending(ssp->dmach);
275 
276 	if (!wait_for_completion_timeout(&spi->c,
277 					 msecs_to_jiffies(SSP_TIMEOUT))) {
278 		dev_err(ssp->dev, "DMA transfer timeout\n");
279 		ret = -ETIMEDOUT;
280 		dmaengine_terminate_all(ssp->dmach);
281 		goto err_vmalloc;
282 	}
283 
284 	ret = 0;
285 
286 err_vmalloc:
287 	while (--sg_count >= 0) {
288 err_mapped:
289 		dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
290 			(flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
291 	}
292 
293 	kfree(dma_xfer);
294 
295 	return ret;
296 }
297 
298 static int mxs_spi_txrx_pio(struct mxs_spi *spi,
299 			    unsigned char *buf, int len,
300 			    unsigned int flags)
301 {
302 	struct mxs_ssp *ssp = &spi->ssp;
303 
304 	writel(BM_SSP_CTRL0_IGNORE_CRC,
305 	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
306 
307 	while (len--) {
308 		if (len == 0 && (flags & TXRX_DEASSERT_CS))
309 			writel(BM_SSP_CTRL0_IGNORE_CRC,
310 			       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
311 
312 		if (ssp->devid == IMX23_SSP) {
313 			writel(BM_SSP_CTRL0_XFER_COUNT,
314 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
315 			writel(1,
316 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
317 		} else {
318 			writel(1, ssp->base + HW_SSP_XFER_SIZE);
319 		}
320 
321 		if (flags & TXRX_WRITE)
322 			writel(BM_SSP_CTRL0_READ,
323 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
324 		else
325 			writel(BM_SSP_CTRL0_READ,
326 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
327 
328 		writel(BM_SSP_CTRL0_RUN,
329 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
330 
331 		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
332 			return -ETIMEDOUT;
333 
334 		if (flags & TXRX_WRITE)
335 			writel(*buf, ssp->base + HW_SSP_DATA(ssp));
336 
337 		writel(BM_SSP_CTRL0_DATA_XFER,
338 			     ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
339 
340 		if (!(flags & TXRX_WRITE)) {
341 			if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
342 						BM_SSP_STATUS_FIFO_EMPTY, 0))
343 				return -ETIMEDOUT;
344 
345 			*buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
346 		}
347 
348 		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
349 			return -ETIMEDOUT;
350 
351 		buf++;
352 	}
353 
354 	if (len <= 0)
355 		return 0;
356 
357 	return -ETIMEDOUT;
358 }
359 
360 static int mxs_spi_transfer_one(struct spi_master *master,
361 				struct spi_message *m)
362 {
363 	struct mxs_spi *spi = spi_master_get_devdata(master);
364 	struct mxs_ssp *ssp = &spi->ssp;
365 	struct spi_transfer *t;
366 	unsigned int flag;
367 	int status = 0;
368 
369 	/* Program CS register bits here, it will be used for all transfers. */
370 	writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ,
371 	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
372 	writel(mxs_spi_cs_to_reg(m->spi->chip_select),
373 	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
374 
375 	list_for_each_entry(t, &m->transfers, transfer_list) {
376 
377 		status = mxs_spi_setup_transfer(m->spi, t);
378 		if (status)
379 			break;
380 
381 		/* De-assert on last transfer, inverted by cs_change flag */
382 		flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ?
383 		       TXRX_DEASSERT_CS : 0;
384 
385 		/*
386 		 * Small blocks can be transfered via PIO.
387 		 * Measured by empiric means:
388 		 *
389 		 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
390 		 *
391 		 * DMA only: 2.164808 seconds, 473.0KB/s
392 		 * Combined: 1.676276 seconds, 610.9KB/s
393 		 */
394 		if (t->len < 32) {
395 			writel(BM_SSP_CTRL1_DMA_ENABLE,
396 				ssp->base + HW_SSP_CTRL1(ssp) +
397 				STMP_OFFSET_REG_CLR);
398 
399 			if (t->tx_buf)
400 				status = mxs_spi_txrx_pio(spi,
401 						(void *)t->tx_buf,
402 						t->len, flag | TXRX_WRITE);
403 			if (t->rx_buf)
404 				status = mxs_spi_txrx_pio(spi,
405 						t->rx_buf, t->len,
406 						flag);
407 		} else {
408 			writel(BM_SSP_CTRL1_DMA_ENABLE,
409 				ssp->base + HW_SSP_CTRL1(ssp) +
410 				STMP_OFFSET_REG_SET);
411 
412 			if (t->tx_buf)
413 				status = mxs_spi_txrx_dma(spi,
414 						(void *)t->tx_buf, t->len,
415 						flag | TXRX_WRITE);
416 			if (t->rx_buf)
417 				status = mxs_spi_txrx_dma(spi,
418 						t->rx_buf, t->len,
419 						flag);
420 		}
421 
422 		if (status) {
423 			stmp_reset_block(ssp->base);
424 			break;
425 		}
426 
427 		m->actual_length += t->len;
428 	}
429 
430 	m->status = status;
431 	spi_finalize_current_message(master);
432 
433 	return status;
434 }
435 
436 static int mxs_spi_runtime_suspend(struct device *dev)
437 {
438 	struct spi_master *master = dev_get_drvdata(dev);
439 	struct mxs_spi *spi = spi_master_get_devdata(master);
440 	struct mxs_ssp *ssp = &spi->ssp;
441 	int ret;
442 
443 	clk_disable_unprepare(ssp->clk);
444 
445 	ret = pinctrl_pm_select_idle_state(dev);
446 	if (ret) {
447 		int ret2 = clk_prepare_enable(ssp->clk);
448 
449 		if (ret2)
450 			dev_warn(dev, "Failed to reenable clock after failing pinctrl request (pinctrl: %d, clk: %d)\n",
451 				 ret, ret2);
452 	}
453 
454 	return ret;
455 }
456 
457 static int mxs_spi_runtime_resume(struct device *dev)
458 {
459 	struct spi_master *master = dev_get_drvdata(dev);
460 	struct mxs_spi *spi = spi_master_get_devdata(master);
461 	struct mxs_ssp *ssp = &spi->ssp;
462 	int ret;
463 
464 	ret = pinctrl_pm_select_default_state(dev);
465 	if (ret)
466 		return ret;
467 
468 	ret = clk_prepare_enable(ssp->clk);
469 	if (ret)
470 		pinctrl_pm_select_idle_state(dev);
471 
472 	return ret;
473 }
474 
475 static int __maybe_unused mxs_spi_suspend(struct device *dev)
476 {
477 	struct spi_master *master = dev_get_drvdata(dev);
478 	int ret;
479 
480 	ret = spi_master_suspend(master);
481 	if (ret)
482 		return ret;
483 
484 	if (!pm_runtime_suspended(dev))
485 		return mxs_spi_runtime_suspend(dev);
486 	else
487 		return 0;
488 }
489 
490 static int __maybe_unused mxs_spi_resume(struct device *dev)
491 {
492 	struct spi_master *master = dev_get_drvdata(dev);
493 	int ret;
494 
495 	if (!pm_runtime_suspended(dev))
496 		ret = mxs_spi_runtime_resume(dev);
497 	else
498 		ret = 0;
499 	if (ret)
500 		return ret;
501 
502 	ret = spi_master_resume(master);
503 	if (ret < 0 && !pm_runtime_suspended(dev))
504 		mxs_spi_runtime_suspend(dev);
505 
506 	return ret;
507 }
508 
509 static const struct dev_pm_ops mxs_spi_pm = {
510 	SET_RUNTIME_PM_OPS(mxs_spi_runtime_suspend,
511 			   mxs_spi_runtime_resume, NULL)
512 	SET_SYSTEM_SLEEP_PM_OPS(mxs_spi_suspend, mxs_spi_resume)
513 };
514 
515 static const struct of_device_id mxs_spi_dt_ids[] = {
516 	{ .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
517 	{ .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
518 	{ /* sentinel */ }
519 };
520 MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
521 
522 static int mxs_spi_probe(struct platform_device *pdev)
523 {
524 	const struct of_device_id *of_id =
525 			of_match_device(mxs_spi_dt_ids, &pdev->dev);
526 	struct device_node *np = pdev->dev.of_node;
527 	struct spi_master *master;
528 	struct mxs_spi *spi;
529 	struct mxs_ssp *ssp;
530 	struct resource *iores;
531 	struct clk *clk;
532 	void __iomem *base;
533 	int devid, clk_freq;
534 	int ret = 0, irq_err;
535 
536 	/*
537 	 * Default clock speed for the SPI core. 160MHz seems to
538 	 * work reasonably well with most SPI flashes, so use this
539 	 * as a default. Override with "clock-frequency" DT prop.
540 	 */
541 	const int clk_freq_default = 160000000;
542 
543 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
544 	irq_err = platform_get_irq(pdev, 0);
545 	if (irq_err < 0)
546 		return irq_err;
547 
548 	base = devm_ioremap_resource(&pdev->dev, iores);
549 	if (IS_ERR(base))
550 		return PTR_ERR(base);
551 
552 	clk = devm_clk_get(&pdev->dev, NULL);
553 	if (IS_ERR(clk))
554 		return PTR_ERR(clk);
555 
556 	devid = (enum mxs_ssp_id) of_id->data;
557 	ret = of_property_read_u32(np, "clock-frequency",
558 				   &clk_freq);
559 	if (ret)
560 		clk_freq = clk_freq_default;
561 
562 	master = spi_alloc_master(&pdev->dev, sizeof(*spi));
563 	if (!master)
564 		return -ENOMEM;
565 
566 	platform_set_drvdata(pdev, master);
567 
568 	master->transfer_one_message = mxs_spi_transfer_one;
569 	master->bits_per_word_mask = SPI_BPW_MASK(8);
570 	master->mode_bits = SPI_CPOL | SPI_CPHA;
571 	master->num_chipselect = 3;
572 	master->dev.of_node = np;
573 	master->flags = SPI_MASTER_HALF_DUPLEX;
574 	master->auto_runtime_pm = true;
575 
576 	spi = spi_master_get_devdata(master);
577 	ssp = &spi->ssp;
578 	ssp->dev = &pdev->dev;
579 	ssp->clk = clk;
580 	ssp->base = base;
581 	ssp->devid = devid;
582 
583 	init_completion(&spi->c);
584 
585 	ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
586 			       dev_name(&pdev->dev), ssp);
587 	if (ret)
588 		goto out_master_free;
589 
590 	ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
591 	if (!ssp->dmach) {
592 		dev_err(ssp->dev, "Failed to request DMA\n");
593 		ret = -ENODEV;
594 		goto out_master_free;
595 	}
596 
597 	pm_runtime_enable(ssp->dev);
598 	if (!pm_runtime_enabled(ssp->dev)) {
599 		ret = mxs_spi_runtime_resume(ssp->dev);
600 		if (ret < 0) {
601 			dev_err(ssp->dev, "runtime resume failed\n");
602 			goto out_dma_release;
603 		}
604 	}
605 
606 	ret = pm_runtime_get_sync(ssp->dev);
607 	if (ret < 0) {
608 		dev_err(ssp->dev, "runtime_get_sync failed\n");
609 		goto out_pm_runtime_disable;
610 	}
611 
612 	clk_set_rate(ssp->clk, clk_freq);
613 
614 	ret = stmp_reset_block(ssp->base);
615 	if (ret)
616 		goto out_pm_runtime_put;
617 
618 	ret = devm_spi_register_master(&pdev->dev, master);
619 	if (ret) {
620 		dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
621 		goto out_pm_runtime_put;
622 	}
623 
624 	pm_runtime_put(ssp->dev);
625 
626 	return 0;
627 
628 out_pm_runtime_put:
629 	pm_runtime_put(ssp->dev);
630 out_pm_runtime_disable:
631 	pm_runtime_disable(ssp->dev);
632 out_dma_release:
633 	dma_release_channel(ssp->dmach);
634 out_master_free:
635 	spi_master_put(master);
636 	return ret;
637 }
638 
639 static int mxs_spi_remove(struct platform_device *pdev)
640 {
641 	struct spi_master *master;
642 	struct mxs_spi *spi;
643 	struct mxs_ssp *ssp;
644 
645 	master = platform_get_drvdata(pdev);
646 	spi = spi_master_get_devdata(master);
647 	ssp = &spi->ssp;
648 
649 	pm_runtime_disable(&pdev->dev);
650 	if (!pm_runtime_status_suspended(&pdev->dev))
651 		mxs_spi_runtime_suspend(&pdev->dev);
652 
653 	dma_release_channel(ssp->dmach);
654 
655 	return 0;
656 }
657 
658 static struct platform_driver mxs_spi_driver = {
659 	.probe	= mxs_spi_probe,
660 	.remove	= mxs_spi_remove,
661 	.driver	= {
662 		.name	= DRIVER_NAME,
663 		.of_match_table = mxs_spi_dt_ids,
664 		.pm = &mxs_spi_pm,
665 	},
666 };
667 
668 module_platform_driver(mxs_spi_driver);
669 
670 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
671 MODULE_DESCRIPTION("MXS SPI master driver");
672 MODULE_LICENSE("GPL");
673 MODULE_ALIAS("platform:mxs-spi");
674