1 /* 2 * Freescale MXS SPI master driver 3 * 4 * Copyright 2012 DENX Software Engineering, GmbH. 5 * Copyright 2012 Freescale Semiconductor, Inc. 6 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved. 7 * 8 * Rework and transition to new API by: 9 * Marek Vasut <marex@denx.de> 10 * 11 * Based on previous attempt by: 12 * Fabio Estevam <fabio.estevam@freescale.com> 13 * 14 * Based on code from U-Boot bootloader by: 15 * Marek Vasut <marex@denx.de> 16 * 17 * Based on spi-stmp.c, which is: 18 * Author: Dmitry Pervushin <dimka@embeddedalley.com> 19 * 20 * This program is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 * This program is distributed in the hope that it will be useful, 26 * but WITHOUT ANY WARRANTY; without even the implied warranty of 27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 28 * GNU General Public License for more details. 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/ioport.h> 34 #include <linux/of.h> 35 #include <linux/of_device.h> 36 #include <linux/of_gpio.h> 37 #include <linux/platform_device.h> 38 #include <linux/delay.h> 39 #include <linux/interrupt.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/dmaengine.h> 42 #include <linux/highmem.h> 43 #include <linux/clk.h> 44 #include <linux/err.h> 45 #include <linux/completion.h> 46 #include <linux/gpio.h> 47 #include <linux/regulator/consumer.h> 48 #include <linux/module.h> 49 #include <linux/stmp_device.h> 50 #include <linux/spi/spi.h> 51 #include <linux/spi/mxs-spi.h> 52 53 #define DRIVER_NAME "mxs-spi" 54 55 /* Use 10S timeout for very long transfers, it should suffice. */ 56 #define SSP_TIMEOUT 10000 57 58 #define SG_MAXLEN 0xff00 59 60 /* 61 * Flags for txrx functions. More efficient that using an argument register for 62 * each one. 63 */ 64 #define TXRX_WRITE (1<<0) /* This is a write */ 65 #define TXRX_DEASSERT_CS (1<<1) /* De-assert CS at end of txrx */ 66 67 struct mxs_spi { 68 struct mxs_ssp ssp; 69 struct completion c; 70 unsigned int sck; /* Rate requested (vs actual) */ 71 }; 72 73 static int mxs_spi_setup_transfer(struct spi_device *dev, 74 const struct spi_transfer *t) 75 { 76 struct mxs_spi *spi = spi_master_get_devdata(dev->master); 77 struct mxs_ssp *ssp = &spi->ssp; 78 const unsigned int hz = min(dev->max_speed_hz, t->speed_hz); 79 80 if (hz == 0) { 81 dev_err(&dev->dev, "SPI clock rate of zero not allowed\n"); 82 return -EINVAL; 83 } 84 85 if (hz != spi->sck) { 86 mxs_ssp_set_clk_rate(ssp, hz); 87 /* 88 * Save requested rate, hz, rather than the actual rate, 89 * ssp->clk_rate. Otherwise we would set the rate every trasfer 90 * when the actual rate is not quite the same as requested rate. 91 */ 92 spi->sck = hz; 93 /* 94 * Perhaps we should return an error if the actual clock is 95 * nowhere close to what was requested? 96 */ 97 } 98 99 writel(BM_SSP_CTRL0_LOCK_CS, 100 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 101 102 writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) | 103 BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) | 104 ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) | 105 ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0), 106 ssp->base + HW_SSP_CTRL1(ssp)); 107 108 writel(0x0, ssp->base + HW_SSP_CMD0); 109 writel(0x0, ssp->base + HW_SSP_CMD1); 110 111 return 0; 112 } 113 114 static int mxs_spi_setup(struct spi_device *dev) 115 { 116 if (!dev->bits_per_word) 117 dev->bits_per_word = 8; 118 119 return 0; 120 } 121 122 static u32 mxs_spi_cs_to_reg(unsigned cs) 123 { 124 u32 select = 0; 125 126 /* 127 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0 128 * 129 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ 130 * in HW_SSP_CTRL0 register do have multiple usage, please refer to 131 * the datasheet for further details. In SPI mode, they are used to 132 * toggle the chip-select lines (nCS pins). 133 */ 134 if (cs & 1) 135 select |= BM_SSP_CTRL0_WAIT_FOR_CMD; 136 if (cs & 2) 137 select |= BM_SSP_CTRL0_WAIT_FOR_IRQ; 138 139 return select; 140 } 141 142 static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set) 143 { 144 const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT); 145 struct mxs_ssp *ssp = &spi->ssp; 146 u32 reg; 147 148 do { 149 reg = readl_relaxed(ssp->base + offset); 150 151 if (!set) 152 reg = ~reg; 153 154 reg &= mask; 155 156 if (reg == mask) 157 return 0; 158 } while (time_before(jiffies, timeout)); 159 160 return -ETIMEDOUT; 161 } 162 163 static void mxs_ssp_dma_irq_callback(void *param) 164 { 165 struct mxs_spi *spi = param; 166 complete(&spi->c); 167 } 168 169 static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id) 170 { 171 struct mxs_ssp *ssp = dev_id; 172 dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n", 173 __func__, __LINE__, 174 readl(ssp->base + HW_SSP_CTRL1(ssp)), 175 readl(ssp->base + HW_SSP_STATUS(ssp))); 176 return IRQ_HANDLED; 177 } 178 179 static int mxs_spi_txrx_dma(struct mxs_spi *spi, 180 unsigned char *buf, int len, 181 unsigned int flags) 182 { 183 struct mxs_ssp *ssp = &spi->ssp; 184 struct dma_async_tx_descriptor *desc = NULL; 185 const bool vmalloced_buf = is_vmalloc_addr(buf); 186 const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN; 187 const int sgs = DIV_ROUND_UP(len, desc_len); 188 int sg_count; 189 int min, ret; 190 u32 ctrl0; 191 struct page *vm_page; 192 void *sg_buf; 193 struct { 194 u32 pio[4]; 195 struct scatterlist sg; 196 } *dma_xfer; 197 198 if (!len) 199 return -EINVAL; 200 201 dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL); 202 if (!dma_xfer) 203 return -ENOMEM; 204 205 reinit_completion(&spi->c); 206 207 /* Chip select was already programmed into CTRL0 */ 208 ctrl0 = readl(ssp->base + HW_SSP_CTRL0); 209 ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC | 210 BM_SSP_CTRL0_READ); 211 ctrl0 |= BM_SSP_CTRL0_DATA_XFER; 212 213 if (!(flags & TXRX_WRITE)) 214 ctrl0 |= BM_SSP_CTRL0_READ; 215 216 /* Queue the DMA data transfer. */ 217 for (sg_count = 0; sg_count < sgs; sg_count++) { 218 /* Prepare the transfer descriptor. */ 219 min = min(len, desc_len); 220 221 /* 222 * De-assert CS on last segment if flag is set (i.e., no more 223 * transfers will follow) 224 */ 225 if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS)) 226 ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC; 227 228 if (ssp->devid == IMX23_SSP) { 229 ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT; 230 ctrl0 |= min; 231 } 232 233 dma_xfer[sg_count].pio[0] = ctrl0; 234 dma_xfer[sg_count].pio[3] = min; 235 236 if (vmalloced_buf) { 237 vm_page = vmalloc_to_page(buf); 238 if (!vm_page) { 239 ret = -ENOMEM; 240 goto err_vmalloc; 241 } 242 sg_buf = page_address(vm_page) + 243 ((size_t)buf & ~PAGE_MASK); 244 } else { 245 sg_buf = buf; 246 } 247 248 sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min); 249 ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1, 250 (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 251 252 len -= min; 253 buf += min; 254 255 /* Queue the PIO register write transfer. */ 256 desc = dmaengine_prep_slave_sg(ssp->dmach, 257 (struct scatterlist *)dma_xfer[sg_count].pio, 258 (ssp->devid == IMX23_SSP) ? 1 : 4, 259 DMA_TRANS_NONE, 260 sg_count ? DMA_PREP_INTERRUPT : 0); 261 if (!desc) { 262 dev_err(ssp->dev, 263 "Failed to get PIO reg. write descriptor.\n"); 264 ret = -EINVAL; 265 goto err_mapped; 266 } 267 268 desc = dmaengine_prep_slave_sg(ssp->dmach, 269 &dma_xfer[sg_count].sg, 1, 270 (flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, 271 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 272 273 if (!desc) { 274 dev_err(ssp->dev, 275 "Failed to get DMA data write descriptor.\n"); 276 ret = -EINVAL; 277 goto err_mapped; 278 } 279 } 280 281 /* 282 * The last descriptor must have this callback, 283 * to finish the DMA transaction. 284 */ 285 desc->callback = mxs_ssp_dma_irq_callback; 286 desc->callback_param = spi; 287 288 /* Start the transfer. */ 289 dmaengine_submit(desc); 290 dma_async_issue_pending(ssp->dmach); 291 292 ret = wait_for_completion_timeout(&spi->c, 293 msecs_to_jiffies(SSP_TIMEOUT)); 294 if (!ret) { 295 dev_err(ssp->dev, "DMA transfer timeout\n"); 296 ret = -ETIMEDOUT; 297 dmaengine_terminate_all(ssp->dmach); 298 goto err_vmalloc; 299 } 300 301 ret = 0; 302 303 err_vmalloc: 304 while (--sg_count >= 0) { 305 err_mapped: 306 dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1, 307 (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 308 } 309 310 kfree(dma_xfer); 311 312 return ret; 313 } 314 315 static int mxs_spi_txrx_pio(struct mxs_spi *spi, 316 unsigned char *buf, int len, 317 unsigned int flags) 318 { 319 struct mxs_ssp *ssp = &spi->ssp; 320 321 writel(BM_SSP_CTRL0_IGNORE_CRC, 322 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); 323 324 while (len--) { 325 if (len == 0 && (flags & TXRX_DEASSERT_CS)) 326 writel(BM_SSP_CTRL0_IGNORE_CRC, 327 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 328 329 if (ssp->devid == IMX23_SSP) { 330 writel(BM_SSP_CTRL0_XFER_COUNT, 331 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); 332 writel(1, 333 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 334 } else { 335 writel(1, ssp->base + HW_SSP_XFER_SIZE); 336 } 337 338 if (flags & TXRX_WRITE) 339 writel(BM_SSP_CTRL0_READ, 340 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); 341 else 342 writel(BM_SSP_CTRL0_READ, 343 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 344 345 writel(BM_SSP_CTRL0_RUN, 346 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 347 348 if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1)) 349 return -ETIMEDOUT; 350 351 if (flags & TXRX_WRITE) 352 writel(*buf, ssp->base + HW_SSP_DATA(ssp)); 353 354 writel(BM_SSP_CTRL0_DATA_XFER, 355 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 356 357 if (!(flags & TXRX_WRITE)) { 358 if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp), 359 BM_SSP_STATUS_FIFO_EMPTY, 0)) 360 return -ETIMEDOUT; 361 362 *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff); 363 } 364 365 if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0)) 366 return -ETIMEDOUT; 367 368 buf++; 369 } 370 371 if (len <= 0) 372 return 0; 373 374 return -ETIMEDOUT; 375 } 376 377 static int mxs_spi_transfer_one(struct spi_master *master, 378 struct spi_message *m) 379 { 380 struct mxs_spi *spi = spi_master_get_devdata(master); 381 struct mxs_ssp *ssp = &spi->ssp; 382 struct spi_transfer *t, *tmp_t; 383 unsigned int flag; 384 int status = 0; 385 386 /* Program CS register bits here, it will be used for all transfers. */ 387 writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ, 388 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); 389 writel(mxs_spi_cs_to_reg(m->spi->chip_select), 390 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 391 392 list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) { 393 394 status = mxs_spi_setup_transfer(m->spi, t); 395 if (status) 396 break; 397 398 /* De-assert on last transfer, inverted by cs_change flag */ 399 flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ? 400 TXRX_DEASSERT_CS : 0; 401 402 /* 403 * Small blocks can be transfered via PIO. 404 * Measured by empiric means: 405 * 406 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1 407 * 408 * DMA only: 2.164808 seconds, 473.0KB/s 409 * Combined: 1.676276 seconds, 610.9KB/s 410 */ 411 if (t->len < 32) { 412 writel(BM_SSP_CTRL1_DMA_ENABLE, 413 ssp->base + HW_SSP_CTRL1(ssp) + 414 STMP_OFFSET_REG_CLR); 415 416 if (t->tx_buf) 417 status = mxs_spi_txrx_pio(spi, 418 (void *)t->tx_buf, 419 t->len, flag | TXRX_WRITE); 420 if (t->rx_buf) 421 status = mxs_spi_txrx_pio(spi, 422 t->rx_buf, t->len, 423 flag); 424 } else { 425 writel(BM_SSP_CTRL1_DMA_ENABLE, 426 ssp->base + HW_SSP_CTRL1(ssp) + 427 STMP_OFFSET_REG_SET); 428 429 if (t->tx_buf) 430 status = mxs_spi_txrx_dma(spi, 431 (void *)t->tx_buf, t->len, 432 flag | TXRX_WRITE); 433 if (t->rx_buf) 434 status = mxs_spi_txrx_dma(spi, 435 t->rx_buf, t->len, 436 flag); 437 } 438 439 if (status) { 440 stmp_reset_block(ssp->base); 441 break; 442 } 443 444 m->actual_length += t->len; 445 } 446 447 m->status = status; 448 spi_finalize_current_message(master); 449 450 return status; 451 } 452 453 static const struct of_device_id mxs_spi_dt_ids[] = { 454 { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, }, 455 { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, }, 456 { /* sentinel */ } 457 }; 458 MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids); 459 460 static int mxs_spi_probe(struct platform_device *pdev) 461 { 462 const struct of_device_id *of_id = 463 of_match_device(mxs_spi_dt_ids, &pdev->dev); 464 struct device_node *np = pdev->dev.of_node; 465 struct spi_master *master; 466 struct mxs_spi *spi; 467 struct mxs_ssp *ssp; 468 struct resource *iores; 469 struct clk *clk; 470 void __iomem *base; 471 int devid, clk_freq; 472 int ret = 0, irq_err; 473 474 /* 475 * Default clock speed for the SPI core. 160MHz seems to 476 * work reasonably well with most SPI flashes, so use this 477 * as a default. Override with "clock-frequency" DT prop. 478 */ 479 const int clk_freq_default = 160000000; 480 481 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 482 irq_err = platform_get_irq(pdev, 0); 483 if (irq_err < 0) 484 return -EINVAL; 485 486 base = devm_ioremap_resource(&pdev->dev, iores); 487 if (IS_ERR(base)) 488 return PTR_ERR(base); 489 490 clk = devm_clk_get(&pdev->dev, NULL); 491 if (IS_ERR(clk)) 492 return PTR_ERR(clk); 493 494 devid = (enum mxs_ssp_id) of_id->data; 495 ret = of_property_read_u32(np, "clock-frequency", 496 &clk_freq); 497 if (ret) 498 clk_freq = clk_freq_default; 499 500 master = spi_alloc_master(&pdev->dev, sizeof(*spi)); 501 if (!master) 502 return -ENOMEM; 503 504 master->transfer_one_message = mxs_spi_transfer_one; 505 master->setup = mxs_spi_setup; 506 master->bits_per_word_mask = SPI_BPW_MASK(8); 507 master->mode_bits = SPI_CPOL | SPI_CPHA; 508 master->num_chipselect = 3; 509 master->dev.of_node = np; 510 master->flags = SPI_MASTER_HALF_DUPLEX; 511 512 spi = spi_master_get_devdata(master); 513 ssp = &spi->ssp; 514 ssp->dev = &pdev->dev; 515 ssp->clk = clk; 516 ssp->base = base; 517 ssp->devid = devid; 518 519 init_completion(&spi->c); 520 521 ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0, 522 DRIVER_NAME, ssp); 523 if (ret) 524 goto out_master_free; 525 526 ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx"); 527 if (!ssp->dmach) { 528 dev_err(ssp->dev, "Failed to request DMA\n"); 529 ret = -ENODEV; 530 goto out_master_free; 531 } 532 533 ret = clk_prepare_enable(ssp->clk); 534 if (ret) 535 goto out_dma_release; 536 537 clk_set_rate(ssp->clk, clk_freq); 538 539 ret = stmp_reset_block(ssp->base); 540 if (ret) 541 goto out_disable_clk; 542 543 platform_set_drvdata(pdev, master); 544 545 ret = devm_spi_register_master(&pdev->dev, master); 546 if (ret) { 547 dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret); 548 goto out_disable_clk; 549 } 550 551 return 0; 552 553 out_disable_clk: 554 clk_disable_unprepare(ssp->clk); 555 out_dma_release: 556 dma_release_channel(ssp->dmach); 557 out_master_free: 558 spi_master_put(master); 559 return ret; 560 } 561 562 static int mxs_spi_remove(struct platform_device *pdev) 563 { 564 struct spi_master *master; 565 struct mxs_spi *spi; 566 struct mxs_ssp *ssp; 567 568 master = platform_get_drvdata(pdev); 569 spi = spi_master_get_devdata(master); 570 ssp = &spi->ssp; 571 572 clk_disable_unprepare(ssp->clk); 573 dma_release_channel(ssp->dmach); 574 575 return 0; 576 } 577 578 static struct platform_driver mxs_spi_driver = { 579 .probe = mxs_spi_probe, 580 .remove = mxs_spi_remove, 581 .driver = { 582 .name = DRIVER_NAME, 583 .owner = THIS_MODULE, 584 .of_match_table = mxs_spi_dt_ids, 585 }, 586 }; 587 588 module_platform_driver(mxs_spi_driver); 589 590 MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); 591 MODULE_DESCRIPTION("MXS SPI master driver"); 592 MODULE_LICENSE("GPL"); 593 MODULE_ALIAS("platform:mxs-spi"); 594