xref: /openbmc/linux/drivers/spi/spi-mxs.c (revision 160b8e75)
1 /*
2  * Freescale MXS SPI master driver
3  *
4  * Copyright 2012 DENX Software Engineering, GmbH.
5  * Copyright 2012 Freescale Semiconductor, Inc.
6  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
7  *
8  * Rework and transition to new API by:
9  * Marek Vasut <marex@denx.de>
10  *
11  * Based on previous attempt by:
12  * Fabio Estevam <fabio.estevam@freescale.com>
13  *
14  * Based on code from U-Boot bootloader by:
15  * Marek Vasut <marex@denx.de>
16  *
17  * Based on spi-stmp.c, which is:
18  * Author: Dmitry Pervushin <dimka@embeddedalley.com>
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/ioport.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/of_gpio.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <linux/interrupt.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/highmem.h>
42 #include <linux/clk.h>
43 #include <linux/err.h>
44 #include <linux/completion.h>
45 #include <linux/gpio.h>
46 #include <linux/regulator/consumer.h>
47 #include <linux/pm_runtime.h>
48 #include <linux/module.h>
49 #include <linux/stmp_device.h>
50 #include <linux/spi/spi.h>
51 #include <linux/spi/mxs-spi.h>
52 
53 #define DRIVER_NAME		"mxs-spi"
54 
55 /* Use 10S timeout for very long transfers, it should suffice. */
56 #define SSP_TIMEOUT		10000
57 
58 #define SG_MAXLEN		0xff00
59 
60 /*
61  * Flags for txrx functions.  More efficient that using an argument register for
62  * each one.
63  */
64 #define TXRX_WRITE		(1<<0)	/* This is a write */
65 #define TXRX_DEASSERT_CS	(1<<1)	/* De-assert CS at end of txrx */
66 
67 struct mxs_spi {
68 	struct mxs_ssp		ssp;
69 	struct completion	c;
70 	unsigned int		sck;	/* Rate requested (vs actual) */
71 };
72 
73 static int mxs_spi_setup_transfer(struct spi_device *dev,
74 				  const struct spi_transfer *t)
75 {
76 	struct mxs_spi *spi = spi_master_get_devdata(dev->master);
77 	struct mxs_ssp *ssp = &spi->ssp;
78 	const unsigned int hz = min(dev->max_speed_hz, t->speed_hz);
79 
80 	if (hz == 0) {
81 		dev_err(&dev->dev, "SPI clock rate of zero not allowed\n");
82 		return -EINVAL;
83 	}
84 
85 	if (hz != spi->sck) {
86 		mxs_ssp_set_clk_rate(ssp, hz);
87 		/*
88 		 * Save requested rate, hz, rather than the actual rate,
89 		 * ssp->clk_rate.  Otherwise we would set the rate every transfer
90 		 * when the actual rate is not quite the same as requested rate.
91 		 */
92 		spi->sck = hz;
93 		/*
94 		 * Perhaps we should return an error if the actual clock is
95 		 * nowhere close to what was requested?
96 		 */
97 	}
98 
99 	writel(BM_SSP_CTRL0_LOCK_CS,
100 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
101 
102 	writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
103 	       BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
104 	       ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
105 	       ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
106 	       ssp->base + HW_SSP_CTRL1(ssp));
107 
108 	writel(0x0, ssp->base + HW_SSP_CMD0);
109 	writel(0x0, ssp->base + HW_SSP_CMD1);
110 
111 	return 0;
112 }
113 
114 static u32 mxs_spi_cs_to_reg(unsigned cs)
115 {
116 	u32 select = 0;
117 
118 	/*
119 	 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
120 	 *
121 	 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
122 	 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
123 	 * the datasheet for further details. In SPI mode, they are used to
124 	 * toggle the chip-select lines (nCS pins).
125 	 */
126 	if (cs & 1)
127 		select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
128 	if (cs & 2)
129 		select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
130 
131 	return select;
132 }
133 
134 static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
135 {
136 	const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
137 	struct mxs_ssp *ssp = &spi->ssp;
138 	u32 reg;
139 
140 	do {
141 		reg = readl_relaxed(ssp->base + offset);
142 
143 		if (!set)
144 			reg = ~reg;
145 
146 		reg &= mask;
147 
148 		if (reg == mask)
149 			return 0;
150 	} while (time_before(jiffies, timeout));
151 
152 	return -ETIMEDOUT;
153 }
154 
155 static void mxs_ssp_dma_irq_callback(void *param)
156 {
157 	struct mxs_spi *spi = param;
158 
159 	complete(&spi->c);
160 }
161 
162 static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
163 {
164 	struct mxs_ssp *ssp = dev_id;
165 
166 	dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
167 		__func__, __LINE__,
168 		readl(ssp->base + HW_SSP_CTRL1(ssp)),
169 		readl(ssp->base + HW_SSP_STATUS(ssp)));
170 	return IRQ_HANDLED;
171 }
172 
173 static int mxs_spi_txrx_dma(struct mxs_spi *spi,
174 			    unsigned char *buf, int len,
175 			    unsigned int flags)
176 {
177 	struct mxs_ssp *ssp = &spi->ssp;
178 	struct dma_async_tx_descriptor *desc = NULL;
179 	const bool vmalloced_buf = is_vmalloc_addr(buf);
180 	const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
181 	const int sgs = DIV_ROUND_UP(len, desc_len);
182 	int sg_count;
183 	int min, ret;
184 	u32 ctrl0;
185 	struct page *vm_page;
186 	struct {
187 		u32			pio[4];
188 		struct scatterlist	sg;
189 	} *dma_xfer;
190 
191 	if (!len)
192 		return -EINVAL;
193 
194 	dma_xfer = kcalloc(sgs, sizeof(*dma_xfer), GFP_KERNEL);
195 	if (!dma_xfer)
196 		return -ENOMEM;
197 
198 	reinit_completion(&spi->c);
199 
200 	/* Chip select was already programmed into CTRL0 */
201 	ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
202 	ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC |
203 		 BM_SSP_CTRL0_READ);
204 	ctrl0 |= BM_SSP_CTRL0_DATA_XFER;
205 
206 	if (!(flags & TXRX_WRITE))
207 		ctrl0 |= BM_SSP_CTRL0_READ;
208 
209 	/* Queue the DMA data transfer. */
210 	for (sg_count = 0; sg_count < sgs; sg_count++) {
211 		/* Prepare the transfer descriptor. */
212 		min = min(len, desc_len);
213 
214 		/*
215 		 * De-assert CS on last segment if flag is set (i.e., no more
216 		 * transfers will follow)
217 		 */
218 		if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS))
219 			ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
220 
221 		if (ssp->devid == IMX23_SSP) {
222 			ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
223 			ctrl0 |= min;
224 		}
225 
226 		dma_xfer[sg_count].pio[0] = ctrl0;
227 		dma_xfer[sg_count].pio[3] = min;
228 
229 		if (vmalloced_buf) {
230 			vm_page = vmalloc_to_page(buf);
231 			if (!vm_page) {
232 				ret = -ENOMEM;
233 				goto err_vmalloc;
234 			}
235 
236 			sg_init_table(&dma_xfer[sg_count].sg, 1);
237 			sg_set_page(&dma_xfer[sg_count].sg, vm_page,
238 				    min, offset_in_page(buf));
239 		} else {
240 			sg_init_one(&dma_xfer[sg_count].sg, buf, min);
241 		}
242 
243 		ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
244 			(flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
245 
246 		len -= min;
247 		buf += min;
248 
249 		/* Queue the PIO register write transfer. */
250 		desc = dmaengine_prep_slave_sg(ssp->dmach,
251 				(struct scatterlist *)dma_xfer[sg_count].pio,
252 				(ssp->devid == IMX23_SSP) ? 1 : 4,
253 				DMA_TRANS_NONE,
254 				sg_count ? DMA_PREP_INTERRUPT : 0);
255 		if (!desc) {
256 			dev_err(ssp->dev,
257 				"Failed to get PIO reg. write descriptor.\n");
258 			ret = -EINVAL;
259 			goto err_mapped;
260 		}
261 
262 		desc = dmaengine_prep_slave_sg(ssp->dmach,
263 				&dma_xfer[sg_count].sg, 1,
264 				(flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
265 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
266 
267 		if (!desc) {
268 			dev_err(ssp->dev,
269 				"Failed to get DMA data write descriptor.\n");
270 			ret = -EINVAL;
271 			goto err_mapped;
272 		}
273 	}
274 
275 	/*
276 	 * The last descriptor must have this callback,
277 	 * to finish the DMA transaction.
278 	 */
279 	desc->callback = mxs_ssp_dma_irq_callback;
280 	desc->callback_param = spi;
281 
282 	/* Start the transfer. */
283 	dmaengine_submit(desc);
284 	dma_async_issue_pending(ssp->dmach);
285 
286 	if (!wait_for_completion_timeout(&spi->c,
287 					 msecs_to_jiffies(SSP_TIMEOUT))) {
288 		dev_err(ssp->dev, "DMA transfer timeout\n");
289 		ret = -ETIMEDOUT;
290 		dmaengine_terminate_all(ssp->dmach);
291 		goto err_vmalloc;
292 	}
293 
294 	ret = 0;
295 
296 err_vmalloc:
297 	while (--sg_count >= 0) {
298 err_mapped:
299 		dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
300 			(flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
301 	}
302 
303 	kfree(dma_xfer);
304 
305 	return ret;
306 }
307 
308 static int mxs_spi_txrx_pio(struct mxs_spi *spi,
309 			    unsigned char *buf, int len,
310 			    unsigned int flags)
311 {
312 	struct mxs_ssp *ssp = &spi->ssp;
313 
314 	writel(BM_SSP_CTRL0_IGNORE_CRC,
315 	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
316 
317 	while (len--) {
318 		if (len == 0 && (flags & TXRX_DEASSERT_CS))
319 			writel(BM_SSP_CTRL0_IGNORE_CRC,
320 			       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
321 
322 		if (ssp->devid == IMX23_SSP) {
323 			writel(BM_SSP_CTRL0_XFER_COUNT,
324 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
325 			writel(1,
326 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
327 		} else {
328 			writel(1, ssp->base + HW_SSP_XFER_SIZE);
329 		}
330 
331 		if (flags & TXRX_WRITE)
332 			writel(BM_SSP_CTRL0_READ,
333 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
334 		else
335 			writel(BM_SSP_CTRL0_READ,
336 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
337 
338 		writel(BM_SSP_CTRL0_RUN,
339 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
340 
341 		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
342 			return -ETIMEDOUT;
343 
344 		if (flags & TXRX_WRITE)
345 			writel(*buf, ssp->base + HW_SSP_DATA(ssp));
346 
347 		writel(BM_SSP_CTRL0_DATA_XFER,
348 			     ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
349 
350 		if (!(flags & TXRX_WRITE)) {
351 			if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
352 						BM_SSP_STATUS_FIFO_EMPTY, 0))
353 				return -ETIMEDOUT;
354 
355 			*buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
356 		}
357 
358 		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
359 			return -ETIMEDOUT;
360 
361 		buf++;
362 	}
363 
364 	if (len <= 0)
365 		return 0;
366 
367 	return -ETIMEDOUT;
368 }
369 
370 static int mxs_spi_transfer_one(struct spi_master *master,
371 				struct spi_message *m)
372 {
373 	struct mxs_spi *spi = spi_master_get_devdata(master);
374 	struct mxs_ssp *ssp = &spi->ssp;
375 	struct spi_transfer *t;
376 	unsigned int flag;
377 	int status = 0;
378 
379 	/* Program CS register bits here, it will be used for all transfers. */
380 	writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ,
381 	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
382 	writel(mxs_spi_cs_to_reg(m->spi->chip_select),
383 	       ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
384 
385 	list_for_each_entry(t, &m->transfers, transfer_list) {
386 
387 		status = mxs_spi_setup_transfer(m->spi, t);
388 		if (status)
389 			break;
390 
391 		/* De-assert on last transfer, inverted by cs_change flag */
392 		flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ?
393 		       TXRX_DEASSERT_CS : 0;
394 
395 		/*
396 		 * Small blocks can be transfered via PIO.
397 		 * Measured by empiric means:
398 		 *
399 		 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
400 		 *
401 		 * DMA only: 2.164808 seconds, 473.0KB/s
402 		 * Combined: 1.676276 seconds, 610.9KB/s
403 		 */
404 		if (t->len < 32) {
405 			writel(BM_SSP_CTRL1_DMA_ENABLE,
406 				ssp->base + HW_SSP_CTRL1(ssp) +
407 				STMP_OFFSET_REG_CLR);
408 
409 			if (t->tx_buf)
410 				status = mxs_spi_txrx_pio(spi,
411 						(void *)t->tx_buf,
412 						t->len, flag | TXRX_WRITE);
413 			if (t->rx_buf)
414 				status = mxs_spi_txrx_pio(spi,
415 						t->rx_buf, t->len,
416 						flag);
417 		} else {
418 			writel(BM_SSP_CTRL1_DMA_ENABLE,
419 				ssp->base + HW_SSP_CTRL1(ssp) +
420 				STMP_OFFSET_REG_SET);
421 
422 			if (t->tx_buf)
423 				status = mxs_spi_txrx_dma(spi,
424 						(void *)t->tx_buf, t->len,
425 						flag | TXRX_WRITE);
426 			if (t->rx_buf)
427 				status = mxs_spi_txrx_dma(spi,
428 						t->rx_buf, t->len,
429 						flag);
430 		}
431 
432 		if (status) {
433 			stmp_reset_block(ssp->base);
434 			break;
435 		}
436 
437 		m->actual_length += t->len;
438 	}
439 
440 	m->status = status;
441 	spi_finalize_current_message(master);
442 
443 	return status;
444 }
445 
446 static int mxs_spi_runtime_suspend(struct device *dev)
447 {
448 	struct spi_master *master = dev_get_drvdata(dev);
449 	struct mxs_spi *spi = spi_master_get_devdata(master);
450 	struct mxs_ssp *ssp = &spi->ssp;
451 	int ret;
452 
453 	clk_disable_unprepare(ssp->clk);
454 
455 	ret = pinctrl_pm_select_idle_state(dev);
456 	if (ret) {
457 		int ret2 = clk_prepare_enable(ssp->clk);
458 
459 		if (ret2)
460 			dev_warn(dev, "Failed to reenable clock after failing pinctrl request (pinctrl: %d, clk: %d)\n",
461 				 ret, ret2);
462 	}
463 
464 	return ret;
465 }
466 
467 static int mxs_spi_runtime_resume(struct device *dev)
468 {
469 	struct spi_master *master = dev_get_drvdata(dev);
470 	struct mxs_spi *spi = spi_master_get_devdata(master);
471 	struct mxs_ssp *ssp = &spi->ssp;
472 	int ret;
473 
474 	ret = pinctrl_pm_select_default_state(dev);
475 	if (ret)
476 		return ret;
477 
478 	ret = clk_prepare_enable(ssp->clk);
479 	if (ret)
480 		pinctrl_pm_select_idle_state(dev);
481 
482 	return ret;
483 }
484 
485 static int __maybe_unused mxs_spi_suspend(struct device *dev)
486 {
487 	struct spi_master *master = dev_get_drvdata(dev);
488 	int ret;
489 
490 	ret = spi_master_suspend(master);
491 	if (ret)
492 		return ret;
493 
494 	if (!pm_runtime_suspended(dev))
495 		return mxs_spi_runtime_suspend(dev);
496 	else
497 		return 0;
498 }
499 
500 static int __maybe_unused mxs_spi_resume(struct device *dev)
501 {
502 	struct spi_master *master = dev_get_drvdata(dev);
503 	int ret;
504 
505 	if (!pm_runtime_suspended(dev))
506 		ret = mxs_spi_runtime_resume(dev);
507 	else
508 		ret = 0;
509 	if (ret)
510 		return ret;
511 
512 	ret = spi_master_resume(master);
513 	if (ret < 0 && !pm_runtime_suspended(dev))
514 		mxs_spi_runtime_suspend(dev);
515 
516 	return ret;
517 }
518 
519 static const struct dev_pm_ops mxs_spi_pm = {
520 	SET_RUNTIME_PM_OPS(mxs_spi_runtime_suspend,
521 			   mxs_spi_runtime_resume, NULL)
522 	SET_SYSTEM_SLEEP_PM_OPS(mxs_spi_suspend, mxs_spi_resume)
523 };
524 
525 static const struct of_device_id mxs_spi_dt_ids[] = {
526 	{ .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
527 	{ .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
528 	{ /* sentinel */ }
529 };
530 MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
531 
532 static int mxs_spi_probe(struct platform_device *pdev)
533 {
534 	const struct of_device_id *of_id =
535 			of_match_device(mxs_spi_dt_ids, &pdev->dev);
536 	struct device_node *np = pdev->dev.of_node;
537 	struct spi_master *master;
538 	struct mxs_spi *spi;
539 	struct mxs_ssp *ssp;
540 	struct resource *iores;
541 	struct clk *clk;
542 	void __iomem *base;
543 	int devid, clk_freq;
544 	int ret = 0, irq_err;
545 
546 	/*
547 	 * Default clock speed for the SPI core. 160MHz seems to
548 	 * work reasonably well with most SPI flashes, so use this
549 	 * as a default. Override with "clock-frequency" DT prop.
550 	 */
551 	const int clk_freq_default = 160000000;
552 
553 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
554 	irq_err = platform_get_irq(pdev, 0);
555 	if (irq_err < 0)
556 		return irq_err;
557 
558 	base = devm_ioremap_resource(&pdev->dev, iores);
559 	if (IS_ERR(base))
560 		return PTR_ERR(base);
561 
562 	clk = devm_clk_get(&pdev->dev, NULL);
563 	if (IS_ERR(clk))
564 		return PTR_ERR(clk);
565 
566 	devid = (enum mxs_ssp_id) of_id->data;
567 	ret = of_property_read_u32(np, "clock-frequency",
568 				   &clk_freq);
569 	if (ret)
570 		clk_freq = clk_freq_default;
571 
572 	master = spi_alloc_master(&pdev->dev, sizeof(*spi));
573 	if (!master)
574 		return -ENOMEM;
575 
576 	platform_set_drvdata(pdev, master);
577 
578 	master->transfer_one_message = mxs_spi_transfer_one;
579 	master->bits_per_word_mask = SPI_BPW_MASK(8);
580 	master->mode_bits = SPI_CPOL | SPI_CPHA;
581 	master->num_chipselect = 3;
582 	master->dev.of_node = np;
583 	master->flags = SPI_MASTER_HALF_DUPLEX;
584 	master->auto_runtime_pm = true;
585 
586 	spi = spi_master_get_devdata(master);
587 	ssp = &spi->ssp;
588 	ssp->dev = &pdev->dev;
589 	ssp->clk = clk;
590 	ssp->base = base;
591 	ssp->devid = devid;
592 
593 	init_completion(&spi->c);
594 
595 	ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
596 			       dev_name(&pdev->dev), ssp);
597 	if (ret)
598 		goto out_master_free;
599 
600 	ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
601 	if (!ssp->dmach) {
602 		dev_err(ssp->dev, "Failed to request DMA\n");
603 		ret = -ENODEV;
604 		goto out_master_free;
605 	}
606 
607 	pm_runtime_enable(ssp->dev);
608 	if (!pm_runtime_enabled(ssp->dev)) {
609 		ret = mxs_spi_runtime_resume(ssp->dev);
610 		if (ret < 0) {
611 			dev_err(ssp->dev, "runtime resume failed\n");
612 			goto out_dma_release;
613 		}
614 	}
615 
616 	ret = pm_runtime_get_sync(ssp->dev);
617 	if (ret < 0) {
618 		dev_err(ssp->dev, "runtime_get_sync failed\n");
619 		goto out_pm_runtime_disable;
620 	}
621 
622 	clk_set_rate(ssp->clk, clk_freq);
623 
624 	ret = stmp_reset_block(ssp->base);
625 	if (ret)
626 		goto out_pm_runtime_put;
627 
628 	ret = devm_spi_register_master(&pdev->dev, master);
629 	if (ret) {
630 		dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
631 		goto out_pm_runtime_put;
632 	}
633 
634 	pm_runtime_put(ssp->dev);
635 
636 	return 0;
637 
638 out_pm_runtime_put:
639 	pm_runtime_put(ssp->dev);
640 out_pm_runtime_disable:
641 	pm_runtime_disable(ssp->dev);
642 out_dma_release:
643 	dma_release_channel(ssp->dmach);
644 out_master_free:
645 	spi_master_put(master);
646 	return ret;
647 }
648 
649 static int mxs_spi_remove(struct platform_device *pdev)
650 {
651 	struct spi_master *master;
652 	struct mxs_spi *spi;
653 	struct mxs_ssp *ssp;
654 
655 	master = platform_get_drvdata(pdev);
656 	spi = spi_master_get_devdata(master);
657 	ssp = &spi->ssp;
658 
659 	pm_runtime_disable(&pdev->dev);
660 	if (!pm_runtime_status_suspended(&pdev->dev))
661 		mxs_spi_runtime_suspend(&pdev->dev);
662 
663 	dma_release_channel(ssp->dmach);
664 
665 	return 0;
666 }
667 
668 static struct platform_driver mxs_spi_driver = {
669 	.probe	= mxs_spi_probe,
670 	.remove	= mxs_spi_remove,
671 	.driver	= {
672 		.name	= DRIVER_NAME,
673 		.of_match_table = mxs_spi_dt_ids,
674 		.pm = &mxs_spi_pm,
675 	},
676 };
677 
678 module_platform_driver(mxs_spi_driver);
679 
680 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
681 MODULE_DESCRIPTION("MXS SPI master driver");
682 MODULE_LICENSE("GPL");
683 MODULE_ALIAS("platform:mxs-spi");
684