xref: /openbmc/linux/drivers/spi/spi-mxic.c (revision f9a82c48)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright (C) 2018 Macronix International Co., Ltd.
4 //
5 // Authors:
6 //	Mason Yang <masonccyang@mxic.com.tw>
7 //	zhengxunli <zhengxunli@mxic.com.tw>
8 //	Boris Brezillon <boris.brezillon@bootlin.com>
9 //
10 
11 #include <linux/clk.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 
20 #define HC_CFG			0x0
21 #define HC_CFG_IF_CFG(x)	((x) << 27)
22 #define HC_CFG_DUAL_SLAVE	BIT(31)
23 #define HC_CFG_INDIVIDUAL	BIT(30)
24 #define HC_CFG_NIO(x)		(((x) / 4) << 27)
25 #define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
26 #define HC_CFG_TYPE_SPI_NOR	0
27 #define HC_CFG_TYPE_SPI_NAND	1
28 #define HC_CFG_TYPE_SPI_RAM	2
29 #define HC_CFG_TYPE_RAW_NAND	3
30 #define HC_CFG_SLV_ACT(x)	((x) << 21)
31 #define HC_CFG_CLK_PH_EN	BIT(20)
32 #define HC_CFG_CLK_POL_INV	BIT(19)
33 #define HC_CFG_BIG_ENDIAN	BIT(18)
34 #define HC_CFG_DATA_PASS	BIT(17)
35 #define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
36 #define HC_CFG_MAN_START_EN	BIT(3)
37 #define HC_CFG_MAN_START	BIT(2)
38 #define HC_CFG_MAN_CS_EN	BIT(1)
39 #define HC_CFG_MAN_CS_ASSERT	BIT(0)
40 
41 #define INT_STS			0x4
42 #define INT_STS_EN		0x8
43 #define INT_SIG_EN		0xc
44 #define INT_STS_ALL		GENMASK(31, 0)
45 #define INT_RDY_PIN		BIT(26)
46 #define INT_RDY_SR		BIT(25)
47 #define INT_LNR_SUSP		BIT(24)
48 #define INT_ECC_ERR		BIT(17)
49 #define INT_CRC_ERR		BIT(16)
50 #define INT_LWR_DIS		BIT(12)
51 #define INT_LRD_DIS		BIT(11)
52 #define INT_SDMA_INT		BIT(10)
53 #define INT_DMA_FINISH		BIT(9)
54 #define INT_RX_NOT_FULL		BIT(3)
55 #define INT_RX_NOT_EMPTY	BIT(2)
56 #define INT_TX_NOT_FULL		BIT(1)
57 #define INT_TX_EMPTY		BIT(0)
58 
59 #define HC_EN			0x10
60 #define HC_EN_BIT		BIT(0)
61 
62 #define TXD(x)			(0x14 + ((x) * 4))
63 #define RXD			0x24
64 
65 #define SS_CTRL(s)		(0x30 + ((s) * 4))
66 #define LRD_CFG			0x44
67 #define LWR_CFG			0x80
68 #define RWW_CFG			0x70
69 #define OP_READ			BIT(23)
70 #define OP_DUMMY_CYC(x)		((x) << 17)
71 #define OP_ADDR_BYTES(x)	((x) << 14)
72 #define OP_CMD_BYTES(x)		(((x) - 1) << 13)
73 #define OP_OCTA_CRC_EN		BIT(12)
74 #define OP_DQS_EN		BIT(11)
75 #define OP_ENHC_EN		BIT(10)
76 #define OP_PREAMBLE_EN		BIT(9)
77 #define OP_DATA_DDR		BIT(8)
78 #define OP_DATA_BUSW(x)		((x) << 6)
79 #define OP_ADDR_DDR		BIT(5)
80 #define OP_ADDR_BUSW(x)		((x) << 3)
81 #define OP_CMD_DDR		BIT(2)
82 #define OP_CMD_BUSW(x)		(x)
83 #define OP_BUSW_1		0
84 #define OP_BUSW_2		1
85 #define OP_BUSW_4		2
86 #define OP_BUSW_8		3
87 
88 #define OCTA_CRC		0x38
89 #define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
90 #define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
91 #define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))
92 
93 #define ONFI_DIN_CNT(s)		(0x3c + (s))
94 
95 #define LRD_CTRL		0x48
96 #define RWW_CTRL		0x74
97 #define LWR_CTRL		0x84
98 #define LMODE_EN		BIT(31)
99 #define LMODE_SLV_ACT(x)	((x) << 21)
100 #define LMODE_CMD1(x)		((x) << 8)
101 #define LMODE_CMD0(x)		(x)
102 
103 #define LRD_ADDR		0x4c
104 #define LWR_ADDR		0x88
105 #define LRD_RANGE		0x50
106 #define LWR_RANGE		0x8c
107 
108 #define AXI_SLV_ADDR		0x54
109 
110 #define DMAC_RD_CFG		0x58
111 #define DMAC_WR_CFG		0x94
112 #define DMAC_CFG_PERIPH_EN	BIT(31)
113 #define DMAC_CFG_ALLFLUSH_EN	BIT(30)
114 #define DMAC_CFG_LASTFLUSH_EN	BIT(29)
115 #define DMAC_CFG_QE(x)		(((x) + 1) << 16)
116 #define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
117 #define DMAC_CFG_BURST_SZ(x)	((x) << 8)
118 #define DMAC_CFG_DIR_READ	BIT(1)
119 #define DMAC_CFG_START		BIT(0)
120 
121 #define DMAC_RD_CNT		0x5c
122 #define DMAC_WR_CNT		0x98
123 
124 #define SDMA_ADDR		0x60
125 
126 #define DMAM_CFG		0x64
127 #define DMAM_CFG_START		BIT(31)
128 #define DMAM_CFG_CONT		BIT(30)
129 #define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
130 #define DMAM_CFG_DIR_READ	BIT(1)
131 #define DMAM_CFG_EN		BIT(0)
132 
133 #define DMAM_CNT		0x68
134 
135 #define LNR_TIMER_TH		0x6c
136 
137 #define RDM_CFG0		0x78
138 #define RDM_CFG0_POLY(x)	(x)
139 
140 #define RDM_CFG1		0x7c
141 #define RDM_CFG1_RDM_EN		BIT(31)
142 #define RDM_CFG1_SEED(x)	(x)
143 
144 #define LWR_SUSP_CTRL		0x90
145 #define LWR_SUSP_CTRL_EN	BIT(31)
146 
147 #define DMAS_CTRL		0x9c
148 #define DMAS_CTRL_DIR_READ	BIT(31)
149 #define DMAS_CTRL_EN		BIT(30)
150 
151 #define DATA_STROB		0xa0
152 #define DATA_STROB_EDO_EN	BIT(2)
153 #define DATA_STROB_INV_POL	BIT(1)
154 #define DATA_STROB_DELAY_2CYC	BIT(0)
155 
156 #define IDLY_CODE(x)		(0xa4 + ((x) * 4))
157 #define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))
158 
159 #define GPIO			0xc4
160 #define GPIO_PT(x)		BIT(3 + ((x) * 16))
161 #define GPIO_RESET(x)		BIT(2 + ((x) * 16))
162 #define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
163 #define GPIO_WPB(x)		BIT((x) * 16)
164 
165 #define HC_VER			0xd0
166 
167 #define HW_TEST(x)		(0xe0 + ((x) * 4))
168 
169 struct mxic_spi {
170 	struct clk *ps_clk;
171 	struct clk *send_clk;
172 	struct clk *send_dly_clk;
173 	void __iomem *regs;
174 	u32 cur_speed_hz;
175 };
176 
177 static int mxic_spi_clk_enable(struct mxic_spi *mxic)
178 {
179 	int ret;
180 
181 	ret = clk_prepare_enable(mxic->send_clk);
182 	if (ret)
183 		return ret;
184 
185 	ret = clk_prepare_enable(mxic->send_dly_clk);
186 	if (ret)
187 		goto err_send_dly_clk;
188 
189 	return ret;
190 
191 err_send_dly_clk:
192 	clk_disable_unprepare(mxic->send_clk);
193 
194 	return ret;
195 }
196 
197 static void mxic_spi_clk_disable(struct mxic_spi *mxic)
198 {
199 	clk_disable_unprepare(mxic->send_clk);
200 	clk_disable_unprepare(mxic->send_dly_clk);
201 }
202 
203 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
204 {
205 	writel(IDLY_CODE_VAL(0, idly_code) |
206 	       IDLY_CODE_VAL(1, idly_code) |
207 	       IDLY_CODE_VAL(2, idly_code) |
208 	       IDLY_CODE_VAL(3, idly_code),
209 	       mxic->regs + IDLY_CODE(0));
210 	writel(IDLY_CODE_VAL(4, idly_code) |
211 	       IDLY_CODE_VAL(5, idly_code) |
212 	       IDLY_CODE_VAL(6, idly_code) |
213 	       IDLY_CODE_VAL(7, idly_code),
214 	       mxic->regs + IDLY_CODE(1));
215 }
216 
217 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
218 {
219 	int ret;
220 
221 	ret = clk_set_rate(mxic->send_clk, freq);
222 	if (ret)
223 		return ret;
224 
225 	ret = clk_set_rate(mxic->send_dly_clk, freq);
226 	if (ret)
227 		return ret;
228 
229 	/*
230 	 * A constant delay range from 0x0 ~ 0x1F for input delay,
231 	 * the unit is 78 ps, the max input delay is 2.418 ns.
232 	 */
233 	mxic_spi_set_input_delay_dqs(mxic, 0xf);
234 
235 	/*
236 	 * Phase degree = 360 * freq * output-delay
237 	 * where output-delay is a constant value 1 ns in FPGA.
238 	 *
239 	 * Get Phase degree = 360 * freq * 1 ns
240 	 *                  = 360 * freq * 1 sec / 1000000000
241 	 *                  = 9 * freq / 25000000
242 	 */
243 	ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
244 	if (ret)
245 		return ret;
246 
247 	return 0;
248 }
249 
250 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
251 {
252 	int ret;
253 
254 	if (mxic->cur_speed_hz == freq)
255 		return 0;
256 
257 	mxic_spi_clk_disable(mxic);
258 	ret = mxic_spi_clk_setup(mxic, freq);
259 	if (ret)
260 		return ret;
261 
262 	ret = mxic_spi_clk_enable(mxic);
263 	if (ret)
264 		return ret;
265 
266 	mxic->cur_speed_hz = freq;
267 
268 	return 0;
269 }
270 
271 static void mxic_spi_hw_init(struct mxic_spi *mxic)
272 {
273 	writel(0, mxic->regs + DATA_STROB);
274 	writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
275 	writel(0, mxic->regs + HC_EN);
276 	writel(0, mxic->regs + LRD_CFG);
277 	writel(0, mxic->regs + LRD_CTRL);
278 	writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NAND) |
279 	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
280 	       mxic->regs + HC_CFG);
281 }
282 
283 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
284 			      void *rxbuf, unsigned int len)
285 {
286 	unsigned int pos = 0;
287 
288 	while (pos < len) {
289 		unsigned int nbytes = len - pos;
290 		u32 data = 0xffffffff;
291 		u32 sts;
292 		int ret;
293 
294 		if (nbytes > 4)
295 			nbytes = 4;
296 
297 		if (txbuf)
298 			memcpy(&data, txbuf + pos, nbytes);
299 
300 		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
301 					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
302 		if (ret)
303 			return ret;
304 
305 		writel(data, mxic->regs + TXD(nbytes % 4));
306 
307 		if (rxbuf) {
308 			ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
309 						 sts & INT_TX_EMPTY, 0,
310 						 USEC_PER_SEC);
311 			if (ret)
312 				return ret;
313 
314 			ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
315 						 sts & INT_RX_NOT_EMPTY, 0,
316 						 USEC_PER_SEC);
317 			if (ret)
318 				return ret;
319 
320 			data = readl(mxic->regs + RXD);
321 			data >>= (8 * (4 - nbytes));
322 			memcpy(rxbuf + pos, &data, nbytes);
323 			WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
324 		} else {
325 			readl(mxic->regs + RXD);
326 		}
327 		WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
328 
329 		pos += nbytes;
330 	}
331 
332 	return 0;
333 }
334 
335 static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
336 				     const struct spi_mem_op *op)
337 {
338 	if (op->data.buswidth > 4 || op->addr.buswidth > 4 ||
339 	    op->dummy.buswidth > 4 || op->cmd.buswidth > 4)
340 		return false;
341 
342 	if (op->data.nbytes && op->dummy.nbytes &&
343 	    op->data.buswidth != op->dummy.buswidth)
344 		return false;
345 
346 	if (op->addr.nbytes > 7)
347 		return false;
348 
349 	return true;
350 }
351 
352 static int mxic_spi_mem_exec_op(struct spi_mem *mem,
353 				const struct spi_mem_op *op)
354 {
355 	struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master);
356 	int nio = 1, i, ret;
357 	u32 ss_ctrl;
358 	u8 addr[8];
359 
360 	ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
361 	if (ret)
362 		return ret;
363 
364 	if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
365 		nio = 4;
366 	else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
367 		nio = 2;
368 
369 	writel(HC_CFG_NIO(nio) |
370 	       HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) |
371 	       HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) |
372 	       HC_CFG_MAN_CS_EN,
373 	       mxic->regs + HC_CFG);
374 	writel(HC_EN_BIT, mxic->regs + HC_EN);
375 
376 	ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1);
377 
378 	if (op->addr.nbytes)
379 		ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
380 			   OP_ADDR_BUSW(fls(op->addr.buswidth) - 1);
381 
382 	if (op->dummy.nbytes)
383 		ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes);
384 
385 	if (op->data.nbytes) {
386 		ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1);
387 		if (op->data.dir == SPI_MEM_DATA_IN)
388 			ss_ctrl |= OP_READ;
389 	}
390 
391 	writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select));
392 
393 	writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
394 	       mxic->regs + HC_CFG);
395 
396 	ret = mxic_spi_data_xfer(mxic, &op->cmd.opcode, NULL, 1);
397 	if (ret)
398 		goto out;
399 
400 	for (i = 0; i < op->addr.nbytes; i++)
401 		addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
402 
403 	ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
404 	if (ret)
405 		goto out;
406 
407 	ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
408 	if (ret)
409 		goto out;
410 
411 	ret = mxic_spi_data_xfer(mxic,
412 				 op->data.dir == SPI_MEM_DATA_OUT ?
413 				 op->data.buf.out : NULL,
414 				 op->data.dir == SPI_MEM_DATA_IN ?
415 				 op->data.buf.in : NULL,
416 				 op->data.nbytes);
417 
418 out:
419 	writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
420 	       mxic->regs + HC_CFG);
421 	writel(0, mxic->regs + HC_EN);
422 
423 	return ret;
424 }
425 
426 static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
427 	.supports_op = mxic_spi_mem_supports_op,
428 	.exec_op = mxic_spi_mem_exec_op,
429 };
430 
431 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
432 {
433 	struct mxic_spi *mxic = spi_master_get_devdata(spi->master);
434 
435 	if (!lvl) {
436 		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
437 		       mxic->regs + HC_CFG);
438 		writel(HC_EN_BIT, mxic->regs + HC_EN);
439 		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
440 		       mxic->regs + HC_CFG);
441 	} else {
442 		writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
443 		       mxic->regs + HC_CFG);
444 		writel(0, mxic->regs + HC_EN);
445 	}
446 }
447 
448 static int mxic_spi_transfer_one(struct spi_master *master,
449 				 struct spi_device *spi,
450 				 struct spi_transfer *t)
451 {
452 	struct mxic_spi *mxic = spi_master_get_devdata(master);
453 	unsigned int busw = OP_BUSW_1;
454 	int ret;
455 
456 	if (t->rx_buf && t->tx_buf) {
457 		if (((spi->mode & SPI_TX_QUAD) &&
458 		     !(spi->mode & SPI_RX_QUAD)) ||
459 		    ((spi->mode & SPI_TX_DUAL) &&
460 		     !(spi->mode & SPI_RX_DUAL)))
461 			return -ENOTSUPP;
462 	}
463 
464 	ret = mxic_spi_set_freq(mxic, t->speed_hz);
465 	if (ret)
466 		return ret;
467 
468 	if (t->tx_buf) {
469 		if (spi->mode & SPI_TX_QUAD)
470 			busw = OP_BUSW_4;
471 		else if (spi->mode & SPI_TX_DUAL)
472 			busw = OP_BUSW_2;
473 	} else if (t->rx_buf) {
474 		if (spi->mode & SPI_RX_QUAD)
475 			busw = OP_BUSW_4;
476 		else if (spi->mode & SPI_RX_DUAL)
477 			busw = OP_BUSW_2;
478 	}
479 
480 	writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
481 	       OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
482 	       mxic->regs + SS_CTRL(0));
483 
484 	ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
485 	if (ret)
486 		return ret;
487 
488 	spi_finalize_current_transfer(master);
489 
490 	return 0;
491 }
492 
493 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
494 {
495 	struct platform_device *pdev = to_platform_device(dev);
496 	struct spi_master *master = platform_get_drvdata(pdev);
497 	struct mxic_spi *mxic = spi_master_get_devdata(master);
498 
499 	mxic_spi_clk_disable(mxic);
500 	clk_disable_unprepare(mxic->ps_clk);
501 
502 	return 0;
503 }
504 
505 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
506 {
507 	struct platform_device *pdev = to_platform_device(dev);
508 	struct spi_master *master = platform_get_drvdata(pdev);
509 	struct mxic_spi *mxic = spi_master_get_devdata(master);
510 	int ret;
511 
512 	ret = clk_prepare_enable(mxic->ps_clk);
513 	if (ret) {
514 		dev_err(dev, "Cannot enable ps_clock.\n");
515 		return ret;
516 	}
517 
518 	return mxic_spi_clk_enable(mxic);
519 }
520 
521 static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
522 	SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
523 			   mxic_spi_runtime_resume, NULL)
524 };
525 
526 static int mxic_spi_probe(struct platform_device *pdev)
527 {
528 	struct spi_master *master;
529 	struct resource *res;
530 	struct mxic_spi *mxic;
531 	int ret;
532 
533 	master = spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi));
534 	if (!master)
535 		return -ENOMEM;
536 
537 	platform_set_drvdata(pdev, master);
538 
539 	mxic = spi_master_get_devdata(master);
540 
541 	master->dev.of_node = pdev->dev.of_node;
542 
543 	mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
544 	if (IS_ERR(mxic->ps_clk))
545 		return PTR_ERR(mxic->ps_clk);
546 
547 	mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
548 	if (IS_ERR(mxic->send_clk))
549 		return PTR_ERR(mxic->send_clk);
550 
551 	mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
552 	if (IS_ERR(mxic->send_dly_clk))
553 		return PTR_ERR(mxic->send_dly_clk);
554 
555 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
556 	mxic->regs = devm_ioremap_resource(&pdev->dev, res);
557 	if (IS_ERR(mxic->regs))
558 		return PTR_ERR(mxic->regs);
559 
560 	pm_runtime_enable(&pdev->dev);
561 	master->auto_runtime_pm = true;
562 
563 	master->num_chipselect = 1;
564 	master->mem_ops = &mxic_spi_mem_ops;
565 
566 	master->set_cs = mxic_spi_set_cs;
567 	master->transfer_one = mxic_spi_transfer_one;
568 	master->bits_per_word_mask = SPI_BPW_MASK(8);
569 	master->mode_bits = SPI_CPOL | SPI_CPHA |
570 			SPI_RX_DUAL | SPI_TX_DUAL |
571 			SPI_RX_QUAD | SPI_TX_QUAD;
572 
573 	mxic_spi_hw_init(mxic);
574 
575 	ret = spi_register_master(master);
576 	if (ret) {
577 		dev_err(&pdev->dev, "spi_register_master failed\n");
578 		goto err_put_master;
579 	}
580 
581 	return 0;
582 
583 err_put_master:
584 	spi_master_put(master);
585 	pm_runtime_disable(&pdev->dev);
586 
587 	return ret;
588 }
589 
590 static int mxic_spi_remove(struct platform_device *pdev)
591 {
592 	struct spi_master *master = platform_get_drvdata(pdev);
593 
594 	pm_runtime_disable(&pdev->dev);
595 	spi_unregister_master(master);
596 
597 	return 0;
598 }
599 
600 static const struct of_device_id mxic_spi_of_ids[] = {
601 	{ .compatible = "mxicy,mx25f0a-spi", },
602 	{ /* sentinel */ }
603 };
604 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
605 
606 static struct platform_driver mxic_spi_driver = {
607 	.probe = mxic_spi_probe,
608 	.remove = mxic_spi_remove,
609 	.driver = {
610 		.name = "mxic-spi",
611 		.of_match_table = mxic_spi_of_ids,
612 		.pm = &mxic_spi_dev_pm_ops,
613 	},
614 };
615 module_platform_driver(mxic_spi_driver);
616 
617 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
618 MODULE_DESCRIPTION("MX25F0A SPI controller driver");
619 MODULE_LICENSE("GPL v2");
620