1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Copyright (C) 2018 Macronix International Co., Ltd. 4 // 5 // Authors: 6 // Mason Yang <masonccyang@mxic.com.tw> 7 // zhengxunli <zhengxunli@mxic.com.tw> 8 // Boris Brezillon <boris.brezillon@bootlin.com> 9 // 10 11 #include <linux/clk.h> 12 #include <linux/io.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/platform_device.h> 16 #include <linux/pm_runtime.h> 17 #include <linux/spi/spi.h> 18 #include <linux/spi/spi-mem.h> 19 20 #define HC_CFG 0x0 21 #define HC_CFG_IF_CFG(x) ((x) << 27) 22 #define HC_CFG_DUAL_SLAVE BIT(31) 23 #define HC_CFG_INDIVIDUAL BIT(30) 24 #define HC_CFG_NIO(x) (((x) / 4) << 27) 25 #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2))) 26 #define HC_CFG_TYPE_SPI_NOR 0 27 #define HC_CFG_TYPE_SPI_NAND 1 28 #define HC_CFG_TYPE_SPI_RAM 2 29 #define HC_CFG_TYPE_RAW_NAND 3 30 #define HC_CFG_SLV_ACT(x) ((x) << 21) 31 #define HC_CFG_CLK_PH_EN BIT(20) 32 #define HC_CFG_CLK_POL_INV BIT(19) 33 #define HC_CFG_BIG_ENDIAN BIT(18) 34 #define HC_CFG_DATA_PASS BIT(17) 35 #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16) 36 #define HC_CFG_MAN_START_EN BIT(3) 37 #define HC_CFG_MAN_START BIT(2) 38 #define HC_CFG_MAN_CS_EN BIT(1) 39 #define HC_CFG_MAN_CS_ASSERT BIT(0) 40 41 #define INT_STS 0x4 42 #define INT_STS_EN 0x8 43 #define INT_SIG_EN 0xc 44 #define INT_STS_ALL GENMASK(31, 0) 45 #define INT_RDY_PIN BIT(26) 46 #define INT_RDY_SR BIT(25) 47 #define INT_LNR_SUSP BIT(24) 48 #define INT_ECC_ERR BIT(17) 49 #define INT_CRC_ERR BIT(16) 50 #define INT_LWR_DIS BIT(12) 51 #define INT_LRD_DIS BIT(11) 52 #define INT_SDMA_INT BIT(10) 53 #define INT_DMA_FINISH BIT(9) 54 #define INT_RX_NOT_FULL BIT(3) 55 #define INT_RX_NOT_EMPTY BIT(2) 56 #define INT_TX_NOT_FULL BIT(1) 57 #define INT_TX_EMPTY BIT(0) 58 59 #define HC_EN 0x10 60 #define HC_EN_BIT BIT(0) 61 62 #define TXD(x) (0x14 + ((x) * 4)) 63 #define RXD 0x24 64 65 #define SS_CTRL(s) (0x30 + ((s) * 4)) 66 #define LRD_CFG 0x44 67 #define LWR_CFG 0x80 68 #define RWW_CFG 0x70 69 #define OP_READ BIT(23) 70 #define OP_DUMMY_CYC(x) ((x) << 17) 71 #define OP_ADDR_BYTES(x) ((x) << 14) 72 #define OP_CMD_BYTES(x) (((x) - 1) << 13) 73 #define OP_OCTA_CRC_EN BIT(12) 74 #define OP_DQS_EN BIT(11) 75 #define OP_ENHC_EN BIT(10) 76 #define OP_PREAMBLE_EN BIT(9) 77 #define OP_DATA_DDR BIT(8) 78 #define OP_DATA_BUSW(x) ((x) << 6) 79 #define OP_ADDR_DDR BIT(5) 80 #define OP_ADDR_BUSW(x) ((x) << 3) 81 #define OP_CMD_DDR BIT(2) 82 #define OP_CMD_BUSW(x) (x) 83 #define OP_BUSW_1 0 84 #define OP_BUSW_2 1 85 #define OP_BUSW_4 2 86 #define OP_BUSW_8 3 87 88 #define OCTA_CRC 0x38 89 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16)) 90 #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16))) 91 #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16)) 92 93 #define ONFI_DIN_CNT(s) (0x3c + (s)) 94 95 #define LRD_CTRL 0x48 96 #define RWW_CTRL 0x74 97 #define LWR_CTRL 0x84 98 #define LMODE_EN BIT(31) 99 #define LMODE_SLV_ACT(x) ((x) << 21) 100 #define LMODE_CMD1(x) ((x) << 8) 101 #define LMODE_CMD0(x) (x) 102 103 #define LRD_ADDR 0x4c 104 #define LWR_ADDR 0x88 105 #define LRD_RANGE 0x50 106 #define LWR_RANGE 0x8c 107 108 #define AXI_SLV_ADDR 0x54 109 110 #define DMAC_RD_CFG 0x58 111 #define DMAC_WR_CFG 0x94 112 #define DMAC_CFG_PERIPH_EN BIT(31) 113 #define DMAC_CFG_ALLFLUSH_EN BIT(30) 114 #define DMAC_CFG_LASTFLUSH_EN BIT(29) 115 #define DMAC_CFG_QE(x) (((x) + 1) << 16) 116 #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12) 117 #define DMAC_CFG_BURST_SZ(x) ((x) << 8) 118 #define DMAC_CFG_DIR_READ BIT(1) 119 #define DMAC_CFG_START BIT(0) 120 121 #define DMAC_RD_CNT 0x5c 122 #define DMAC_WR_CNT 0x98 123 124 #define SDMA_ADDR 0x60 125 126 #define DMAM_CFG 0x64 127 #define DMAM_CFG_START BIT(31) 128 #define DMAM_CFG_CONT BIT(30) 129 #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2) 130 #define DMAM_CFG_DIR_READ BIT(1) 131 #define DMAM_CFG_EN BIT(0) 132 133 #define DMAM_CNT 0x68 134 135 #define LNR_TIMER_TH 0x6c 136 137 #define RDM_CFG0 0x78 138 #define RDM_CFG0_POLY(x) (x) 139 140 #define RDM_CFG1 0x7c 141 #define RDM_CFG1_RDM_EN BIT(31) 142 #define RDM_CFG1_SEED(x) (x) 143 144 #define LWR_SUSP_CTRL 0x90 145 #define LWR_SUSP_CTRL_EN BIT(31) 146 147 #define DMAS_CTRL 0x9c 148 #define DMAS_CTRL_DIR_READ BIT(31) 149 #define DMAS_CTRL_EN BIT(30) 150 151 #define DATA_STROB 0xa0 152 #define DATA_STROB_EDO_EN BIT(2) 153 #define DATA_STROB_INV_POL BIT(1) 154 #define DATA_STROB_DELAY_2CYC BIT(0) 155 156 #define IDLY_CODE(x) (0xa4 + ((x) * 4)) 157 #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8)) 158 159 #define GPIO 0xc4 160 #define GPIO_PT(x) BIT(3 + ((x) * 16)) 161 #define GPIO_RESET(x) BIT(2 + ((x) * 16)) 162 #define GPIO_HOLDB(x) BIT(1 + ((x) * 16)) 163 #define GPIO_WPB(x) BIT((x) * 16) 164 165 #define HC_VER 0xd0 166 167 #define HW_TEST(x) (0xe0 + ((x) * 4)) 168 169 struct mxic_spi { 170 struct clk *ps_clk; 171 struct clk *send_clk; 172 struct clk *send_dly_clk; 173 void __iomem *regs; 174 u32 cur_speed_hz; 175 }; 176 177 static int mxic_spi_clk_enable(struct mxic_spi *mxic) 178 { 179 int ret; 180 181 ret = clk_prepare_enable(mxic->send_clk); 182 if (ret) 183 return ret; 184 185 ret = clk_prepare_enable(mxic->send_dly_clk); 186 if (ret) 187 goto err_send_dly_clk; 188 189 return ret; 190 191 err_send_dly_clk: 192 clk_disable_unprepare(mxic->send_clk); 193 194 return ret; 195 } 196 197 static void mxic_spi_clk_disable(struct mxic_spi *mxic) 198 { 199 clk_disable_unprepare(mxic->send_clk); 200 clk_disable_unprepare(mxic->send_dly_clk); 201 } 202 203 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code) 204 { 205 writel(IDLY_CODE_VAL(0, idly_code) | 206 IDLY_CODE_VAL(1, idly_code) | 207 IDLY_CODE_VAL(2, idly_code) | 208 IDLY_CODE_VAL(3, idly_code), 209 mxic->regs + IDLY_CODE(0)); 210 writel(IDLY_CODE_VAL(4, idly_code) | 211 IDLY_CODE_VAL(5, idly_code) | 212 IDLY_CODE_VAL(6, idly_code) | 213 IDLY_CODE_VAL(7, idly_code), 214 mxic->regs + IDLY_CODE(1)); 215 } 216 217 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq) 218 { 219 int ret; 220 221 ret = clk_set_rate(mxic->send_clk, freq); 222 if (ret) 223 return ret; 224 225 ret = clk_set_rate(mxic->send_dly_clk, freq); 226 if (ret) 227 return ret; 228 229 /* 230 * A constant delay range from 0x0 ~ 0x1F for input delay, 231 * the unit is 78 ps, the max input delay is 2.418 ns. 232 */ 233 mxic_spi_set_input_delay_dqs(mxic, 0xf); 234 235 /* 236 * Phase degree = 360 * freq * output-delay 237 * where output-delay is a constant value 1 ns in FPGA. 238 * 239 * Get Phase degree = 360 * freq * 1 ns 240 * = 360 * freq * 1 sec / 1000000000 241 * = 9 * freq / 25000000 242 */ 243 ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000); 244 if (ret) 245 return ret; 246 247 return 0; 248 } 249 250 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq) 251 { 252 int ret; 253 254 if (mxic->cur_speed_hz == freq) 255 return 0; 256 257 mxic_spi_clk_disable(mxic); 258 ret = mxic_spi_clk_setup(mxic, freq); 259 if (ret) 260 return ret; 261 262 ret = mxic_spi_clk_enable(mxic); 263 if (ret) 264 return ret; 265 266 mxic->cur_speed_hz = freq; 267 268 return 0; 269 } 270 271 static void mxic_spi_hw_init(struct mxic_spi *mxic) 272 { 273 writel(0, mxic->regs + DATA_STROB); 274 writel(INT_STS_ALL, mxic->regs + INT_STS_EN); 275 writel(0, mxic->regs + HC_EN); 276 writel(0, mxic->regs + LRD_CFG); 277 writel(0, mxic->regs + LRD_CTRL); 278 writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NAND) | 279 HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1), 280 mxic->regs + HC_CFG); 281 } 282 283 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf, 284 void *rxbuf, unsigned int len) 285 { 286 unsigned int pos = 0; 287 288 while (pos < len) { 289 unsigned int nbytes = len - pos; 290 u32 data = 0xffffffff; 291 u32 sts; 292 int ret; 293 294 if (nbytes > 4) 295 nbytes = 4; 296 297 if (txbuf) 298 memcpy(&data, txbuf + pos, nbytes); 299 300 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 301 sts & INT_TX_EMPTY, 0, USEC_PER_SEC); 302 if (ret) 303 return ret; 304 305 writel(data, mxic->regs + TXD(nbytes % 4)); 306 307 if (rxbuf) { 308 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 309 sts & INT_TX_EMPTY, 0, 310 USEC_PER_SEC); 311 if (ret) 312 return ret; 313 314 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 315 sts & INT_RX_NOT_EMPTY, 0, 316 USEC_PER_SEC); 317 if (ret) 318 return ret; 319 320 data = readl(mxic->regs + RXD); 321 data >>= (8 * (4 - nbytes)); 322 memcpy(rxbuf + pos, &data, nbytes); 323 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); 324 } else { 325 readl(mxic->regs + RXD); 326 } 327 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); 328 329 pos += nbytes; 330 } 331 332 return 0; 333 } 334 335 static bool mxic_spi_mem_supports_op(struct spi_mem *mem, 336 const struct spi_mem_op *op) 337 { 338 if (op->data.buswidth > 4 || op->addr.buswidth > 4 || 339 op->dummy.buswidth > 4 || op->cmd.buswidth > 4) 340 return false; 341 342 if (op->data.nbytes && op->dummy.nbytes && 343 op->data.buswidth != op->dummy.buswidth) 344 return false; 345 346 if (op->addr.nbytes > 7) 347 return false; 348 349 return true; 350 } 351 352 static int mxic_spi_mem_exec_op(struct spi_mem *mem, 353 const struct spi_mem_op *op) 354 { 355 struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master); 356 int nio = 1, i, ret; 357 u32 ss_ctrl; 358 u8 addr[8]; 359 360 ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz); 361 if (ret) 362 return ret; 363 364 if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD)) 365 nio = 4; 366 else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL)) 367 nio = 2; 368 369 writel(HC_CFG_NIO(nio) | 370 HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) | 371 HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) | 372 HC_CFG_MAN_CS_EN, 373 mxic->regs + HC_CFG); 374 writel(HC_EN_BIT, mxic->regs + HC_EN); 375 376 ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1); 377 378 if (op->addr.nbytes) 379 ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) | 380 OP_ADDR_BUSW(fls(op->addr.buswidth) - 1); 381 382 if (op->dummy.nbytes) 383 ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes); 384 385 if (op->data.nbytes) { 386 ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1); 387 if (op->data.dir == SPI_MEM_DATA_IN) 388 ss_ctrl |= OP_READ; 389 } 390 391 writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select)); 392 393 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, 394 mxic->regs + HC_CFG); 395 396 ret = mxic_spi_data_xfer(mxic, &op->cmd.opcode, NULL, 1); 397 if (ret) 398 goto out; 399 400 for (i = 0; i < op->addr.nbytes; i++) 401 addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); 402 403 ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes); 404 if (ret) 405 goto out; 406 407 ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes); 408 if (ret) 409 goto out; 410 411 ret = mxic_spi_data_xfer(mxic, 412 op->data.dir == SPI_MEM_DATA_OUT ? 413 op->data.buf.out : NULL, 414 op->data.dir == SPI_MEM_DATA_IN ? 415 op->data.buf.in : NULL, 416 op->data.nbytes); 417 418 out: 419 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, 420 mxic->regs + HC_CFG); 421 writel(0, mxic->regs + HC_EN); 422 423 return ret; 424 } 425 426 static const struct spi_controller_mem_ops mxic_spi_mem_ops = { 427 .supports_op = mxic_spi_mem_supports_op, 428 .exec_op = mxic_spi_mem_exec_op, 429 }; 430 431 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl) 432 { 433 struct mxic_spi *mxic = spi_master_get_devdata(spi->master); 434 435 if (!lvl) { 436 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN, 437 mxic->regs + HC_CFG); 438 writel(HC_EN_BIT, mxic->regs + HC_EN); 439 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, 440 mxic->regs + HC_CFG); 441 } else { 442 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, 443 mxic->regs + HC_CFG); 444 writel(0, mxic->regs + HC_EN); 445 } 446 } 447 448 static int mxic_spi_transfer_one(struct spi_master *master, 449 struct spi_device *spi, 450 struct spi_transfer *t) 451 { 452 struct mxic_spi *mxic = spi_master_get_devdata(master); 453 unsigned int busw = OP_BUSW_1; 454 int ret; 455 456 if (t->rx_buf && t->tx_buf) { 457 if (((spi->mode & SPI_TX_QUAD) && 458 !(spi->mode & SPI_RX_QUAD)) || 459 ((spi->mode & SPI_TX_DUAL) && 460 !(spi->mode & SPI_RX_DUAL))) 461 return -ENOTSUPP; 462 } 463 464 ret = mxic_spi_set_freq(mxic, t->speed_hz); 465 if (ret) 466 return ret; 467 468 if (t->tx_buf) { 469 if (spi->mode & SPI_TX_QUAD) 470 busw = OP_BUSW_4; 471 else if (spi->mode & SPI_TX_DUAL) 472 busw = OP_BUSW_2; 473 } else if (t->rx_buf) { 474 if (spi->mode & SPI_RX_QUAD) 475 busw = OP_BUSW_4; 476 else if (spi->mode & SPI_RX_DUAL) 477 busw = OP_BUSW_2; 478 } 479 480 writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) | 481 OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0), 482 mxic->regs + SS_CTRL(0)); 483 484 ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len); 485 if (ret) 486 return ret; 487 488 spi_finalize_current_transfer(master); 489 490 return 0; 491 } 492 493 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev) 494 { 495 struct platform_device *pdev = to_platform_device(dev); 496 struct spi_master *master = platform_get_drvdata(pdev); 497 struct mxic_spi *mxic = spi_master_get_devdata(master); 498 499 mxic_spi_clk_disable(mxic); 500 clk_disable_unprepare(mxic->ps_clk); 501 502 return 0; 503 } 504 505 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev) 506 { 507 struct platform_device *pdev = to_platform_device(dev); 508 struct spi_master *master = platform_get_drvdata(pdev); 509 struct mxic_spi *mxic = spi_master_get_devdata(master); 510 int ret; 511 512 ret = clk_prepare_enable(mxic->ps_clk); 513 if (ret) { 514 dev_err(dev, "Cannot enable ps_clock.\n"); 515 return ret; 516 } 517 518 return mxic_spi_clk_enable(mxic); 519 } 520 521 static const struct dev_pm_ops mxic_spi_dev_pm_ops = { 522 SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend, 523 mxic_spi_runtime_resume, NULL) 524 }; 525 526 static int mxic_spi_probe(struct platform_device *pdev) 527 { 528 struct spi_master *master; 529 struct resource *res; 530 struct mxic_spi *mxic; 531 int ret; 532 533 master = spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi)); 534 if (!master) 535 return -ENOMEM; 536 537 platform_set_drvdata(pdev, master); 538 539 mxic = spi_master_get_devdata(master); 540 541 master->dev.of_node = pdev->dev.of_node; 542 543 mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk"); 544 if (IS_ERR(mxic->ps_clk)) 545 return PTR_ERR(mxic->ps_clk); 546 547 mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk"); 548 if (IS_ERR(mxic->send_clk)) 549 return PTR_ERR(mxic->send_clk); 550 551 mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk"); 552 if (IS_ERR(mxic->send_dly_clk)) 553 return PTR_ERR(mxic->send_dly_clk); 554 555 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs"); 556 mxic->regs = devm_ioremap_resource(&pdev->dev, res); 557 if (IS_ERR(mxic->regs)) 558 return PTR_ERR(mxic->regs); 559 560 pm_runtime_enable(&pdev->dev); 561 master->auto_runtime_pm = true; 562 563 master->num_chipselect = 1; 564 master->mem_ops = &mxic_spi_mem_ops; 565 566 master->set_cs = mxic_spi_set_cs; 567 master->transfer_one = mxic_spi_transfer_one; 568 master->bits_per_word_mask = SPI_BPW_MASK(8); 569 master->mode_bits = SPI_CPOL | SPI_CPHA | 570 SPI_RX_DUAL | SPI_TX_DUAL | 571 SPI_RX_QUAD | SPI_TX_QUAD; 572 573 mxic_spi_hw_init(mxic); 574 575 ret = spi_register_master(master); 576 if (ret) { 577 dev_err(&pdev->dev, "spi_register_master failed\n"); 578 goto err_put_master; 579 } 580 581 return 0; 582 583 err_put_master: 584 spi_master_put(master); 585 pm_runtime_disable(&pdev->dev); 586 587 return ret; 588 } 589 590 static int mxic_spi_remove(struct platform_device *pdev) 591 { 592 struct spi_master *master = platform_get_drvdata(pdev); 593 594 pm_runtime_disable(&pdev->dev); 595 spi_unregister_master(master); 596 597 return 0; 598 } 599 600 static const struct of_device_id mxic_spi_of_ids[] = { 601 { .compatible = "mxicy,mx25f0a-spi", }, 602 { /* sentinel */ } 603 }; 604 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids); 605 606 static struct platform_driver mxic_spi_driver = { 607 .probe = mxic_spi_probe, 608 .remove = mxic_spi_remove, 609 .driver = { 610 .name = "mxic-spi", 611 .of_match_table = mxic_spi_of_ids, 612 .pm = &mxic_spi_dev_pm_ops, 613 }, 614 }; 615 module_platform_driver(mxic_spi_driver); 616 617 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>"); 618 MODULE_DESCRIPTION("MX25F0A SPI controller driver"); 619 MODULE_LICENSE("GPL v2"); 620