1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Copyright (C) 2018 Macronix International Co., Ltd. 4 // 5 // Authors: 6 // Mason Yang <masonccyang@mxic.com.tw> 7 // zhengxunli <zhengxunli@mxic.com.tw> 8 // Boris Brezillon <boris.brezillon@bootlin.com> 9 // 10 11 #include <linux/clk.h> 12 #include <linux/io.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/platform_device.h> 16 #include <linux/pm_runtime.h> 17 #include <linux/spi/spi.h> 18 #include <linux/spi/spi-mem.h> 19 20 #define HC_CFG 0x0 21 #define HC_CFG_IF_CFG(x) ((x) << 27) 22 #define HC_CFG_DUAL_SLAVE BIT(31) 23 #define HC_CFG_INDIVIDUAL BIT(30) 24 #define HC_CFG_NIO(x) (((x) / 4) << 27) 25 #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2))) 26 #define HC_CFG_TYPE_SPI_NOR 0 27 #define HC_CFG_TYPE_SPI_NAND 1 28 #define HC_CFG_TYPE_SPI_RAM 2 29 #define HC_CFG_TYPE_RAW_NAND 3 30 #define HC_CFG_SLV_ACT(x) ((x) << 21) 31 #define HC_CFG_CLK_PH_EN BIT(20) 32 #define HC_CFG_CLK_POL_INV BIT(19) 33 #define HC_CFG_BIG_ENDIAN BIT(18) 34 #define HC_CFG_DATA_PASS BIT(17) 35 #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16) 36 #define HC_CFG_MAN_START_EN BIT(3) 37 #define HC_CFG_MAN_START BIT(2) 38 #define HC_CFG_MAN_CS_EN BIT(1) 39 #define HC_CFG_MAN_CS_ASSERT BIT(0) 40 41 #define INT_STS 0x4 42 #define INT_STS_EN 0x8 43 #define INT_SIG_EN 0xc 44 #define INT_STS_ALL GENMASK(31, 0) 45 #define INT_RDY_PIN BIT(26) 46 #define INT_RDY_SR BIT(25) 47 #define INT_LNR_SUSP BIT(24) 48 #define INT_ECC_ERR BIT(17) 49 #define INT_CRC_ERR BIT(16) 50 #define INT_LWR_DIS BIT(12) 51 #define INT_LRD_DIS BIT(11) 52 #define INT_SDMA_INT BIT(10) 53 #define INT_DMA_FINISH BIT(9) 54 #define INT_RX_NOT_FULL BIT(3) 55 #define INT_RX_NOT_EMPTY BIT(2) 56 #define INT_TX_NOT_FULL BIT(1) 57 #define INT_TX_EMPTY BIT(0) 58 59 #define HC_EN 0x10 60 #define HC_EN_BIT BIT(0) 61 62 #define TXD(x) (0x14 + ((x) * 4)) 63 #define RXD 0x24 64 65 #define SS_CTRL(s) (0x30 + ((s) * 4)) 66 #define LRD_CFG 0x44 67 #define LWR_CFG 0x80 68 #define RWW_CFG 0x70 69 #define OP_READ BIT(23) 70 #define OP_DUMMY_CYC(x) ((x) << 17) 71 #define OP_ADDR_BYTES(x) ((x) << 14) 72 #define OP_CMD_BYTES(x) (((x) - 1) << 13) 73 #define OP_OCTA_CRC_EN BIT(12) 74 #define OP_DQS_EN BIT(11) 75 #define OP_ENHC_EN BIT(10) 76 #define OP_PREAMBLE_EN BIT(9) 77 #define OP_DATA_DDR BIT(8) 78 #define OP_DATA_BUSW(x) ((x) << 6) 79 #define OP_ADDR_DDR BIT(5) 80 #define OP_ADDR_BUSW(x) ((x) << 3) 81 #define OP_CMD_DDR BIT(2) 82 #define OP_CMD_BUSW(x) (x) 83 #define OP_BUSW_1 0 84 #define OP_BUSW_2 1 85 #define OP_BUSW_4 2 86 #define OP_BUSW_8 3 87 88 #define OCTA_CRC 0x38 89 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16)) 90 #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16))) 91 #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16)) 92 93 #define ONFI_DIN_CNT(s) (0x3c + (s)) 94 95 #define LRD_CTRL 0x48 96 #define RWW_CTRL 0x74 97 #define LWR_CTRL 0x84 98 #define LMODE_EN BIT(31) 99 #define LMODE_SLV_ACT(x) ((x) << 21) 100 #define LMODE_CMD1(x) ((x) << 8) 101 #define LMODE_CMD0(x) (x) 102 103 #define LRD_ADDR 0x4c 104 #define LWR_ADDR 0x88 105 #define LRD_RANGE 0x50 106 #define LWR_RANGE 0x8c 107 108 #define AXI_SLV_ADDR 0x54 109 110 #define DMAC_RD_CFG 0x58 111 #define DMAC_WR_CFG 0x94 112 #define DMAC_CFG_PERIPH_EN BIT(31) 113 #define DMAC_CFG_ALLFLUSH_EN BIT(30) 114 #define DMAC_CFG_LASTFLUSH_EN BIT(29) 115 #define DMAC_CFG_QE(x) (((x) + 1) << 16) 116 #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12) 117 #define DMAC_CFG_BURST_SZ(x) ((x) << 8) 118 #define DMAC_CFG_DIR_READ BIT(1) 119 #define DMAC_CFG_START BIT(0) 120 121 #define DMAC_RD_CNT 0x5c 122 #define DMAC_WR_CNT 0x98 123 124 #define SDMA_ADDR 0x60 125 126 #define DMAM_CFG 0x64 127 #define DMAM_CFG_START BIT(31) 128 #define DMAM_CFG_CONT BIT(30) 129 #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2) 130 #define DMAM_CFG_DIR_READ BIT(1) 131 #define DMAM_CFG_EN BIT(0) 132 133 #define DMAM_CNT 0x68 134 135 #define LNR_TIMER_TH 0x6c 136 137 #define RDM_CFG0 0x78 138 #define RDM_CFG0_POLY(x) (x) 139 140 #define RDM_CFG1 0x7c 141 #define RDM_CFG1_RDM_EN BIT(31) 142 #define RDM_CFG1_SEED(x) (x) 143 144 #define LWR_SUSP_CTRL 0x90 145 #define LWR_SUSP_CTRL_EN BIT(31) 146 147 #define DMAS_CTRL 0x9c 148 #define DMAS_CTRL_EN BIT(31) 149 #define DMAS_CTRL_DIR_READ BIT(30) 150 151 #define DATA_STROB 0xa0 152 #define DATA_STROB_EDO_EN BIT(2) 153 #define DATA_STROB_INV_POL BIT(1) 154 #define DATA_STROB_DELAY_2CYC BIT(0) 155 156 #define IDLY_CODE(x) (0xa4 + ((x) * 4)) 157 #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8)) 158 159 #define GPIO 0xc4 160 #define GPIO_PT(x) BIT(3 + ((x) * 16)) 161 #define GPIO_RESET(x) BIT(2 + ((x) * 16)) 162 #define GPIO_HOLDB(x) BIT(1 + ((x) * 16)) 163 #define GPIO_WPB(x) BIT((x) * 16) 164 165 #define HC_VER 0xd0 166 167 #define HW_TEST(x) (0xe0 + ((x) * 4)) 168 169 struct mxic_spi { 170 struct clk *ps_clk; 171 struct clk *send_clk; 172 struct clk *send_dly_clk; 173 void __iomem *regs; 174 u32 cur_speed_hz; 175 }; 176 177 static int mxic_spi_clk_enable(struct mxic_spi *mxic) 178 { 179 int ret; 180 181 ret = clk_prepare_enable(mxic->send_clk); 182 if (ret) 183 return ret; 184 185 ret = clk_prepare_enable(mxic->send_dly_clk); 186 if (ret) 187 goto err_send_dly_clk; 188 189 return ret; 190 191 err_send_dly_clk: 192 clk_disable_unprepare(mxic->send_clk); 193 194 return ret; 195 } 196 197 static void mxic_spi_clk_disable(struct mxic_spi *mxic) 198 { 199 clk_disable_unprepare(mxic->send_clk); 200 clk_disable_unprepare(mxic->send_dly_clk); 201 } 202 203 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code) 204 { 205 writel(IDLY_CODE_VAL(0, idly_code) | 206 IDLY_CODE_VAL(1, idly_code) | 207 IDLY_CODE_VAL(2, idly_code) | 208 IDLY_CODE_VAL(3, idly_code), 209 mxic->regs + IDLY_CODE(0)); 210 writel(IDLY_CODE_VAL(4, idly_code) | 211 IDLY_CODE_VAL(5, idly_code) | 212 IDLY_CODE_VAL(6, idly_code) | 213 IDLY_CODE_VAL(7, idly_code), 214 mxic->regs + IDLY_CODE(1)); 215 } 216 217 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq) 218 { 219 int ret; 220 221 ret = clk_set_rate(mxic->send_clk, freq); 222 if (ret) 223 return ret; 224 225 ret = clk_set_rate(mxic->send_dly_clk, freq); 226 if (ret) 227 return ret; 228 229 /* 230 * A constant delay range from 0x0 ~ 0x1F for input delay, 231 * the unit is 78 ps, the max input delay is 2.418 ns. 232 */ 233 mxic_spi_set_input_delay_dqs(mxic, 0xf); 234 235 /* 236 * Phase degree = 360 * freq * output-delay 237 * where output-delay is a constant value 1 ns in FPGA. 238 * 239 * Get Phase degree = 360 * freq * 1 ns 240 * = 360 * freq * 1 sec / 1000000000 241 * = 9 * freq / 25000000 242 */ 243 ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000); 244 if (ret) 245 return ret; 246 247 return 0; 248 } 249 250 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq) 251 { 252 int ret; 253 254 if (mxic->cur_speed_hz == freq) 255 return 0; 256 257 mxic_spi_clk_disable(mxic); 258 ret = mxic_spi_clk_setup(mxic, freq); 259 if (ret) 260 return ret; 261 262 ret = mxic_spi_clk_enable(mxic); 263 if (ret) 264 return ret; 265 266 mxic->cur_speed_hz = freq; 267 268 return 0; 269 } 270 271 static void mxic_spi_hw_init(struct mxic_spi *mxic) 272 { 273 writel(0, mxic->regs + DATA_STROB); 274 writel(INT_STS_ALL, mxic->regs + INT_STS_EN); 275 writel(0, mxic->regs + HC_EN); 276 writel(0, mxic->regs + LRD_CFG); 277 writel(0, mxic->regs + LRD_CTRL); 278 writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) | 279 HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1), 280 mxic->regs + HC_CFG); 281 } 282 283 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf, 284 void *rxbuf, unsigned int len) 285 { 286 unsigned int pos = 0; 287 288 while (pos < len) { 289 unsigned int nbytes = len - pos; 290 u32 data = 0xffffffff; 291 u32 sts; 292 int ret; 293 294 if (nbytes > 4) 295 nbytes = 4; 296 297 if (txbuf) 298 memcpy(&data, txbuf + pos, nbytes); 299 300 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 301 sts & INT_TX_EMPTY, 0, USEC_PER_SEC); 302 if (ret) 303 return ret; 304 305 writel(data, mxic->regs + TXD(nbytes % 4)); 306 307 if (rxbuf) { 308 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 309 sts & INT_TX_EMPTY, 0, 310 USEC_PER_SEC); 311 if (ret) 312 return ret; 313 314 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 315 sts & INT_RX_NOT_EMPTY, 0, 316 USEC_PER_SEC); 317 if (ret) 318 return ret; 319 320 data = readl(mxic->regs + RXD); 321 data >>= (8 * (4 - nbytes)); 322 memcpy(rxbuf + pos, &data, nbytes); 323 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); 324 } else { 325 readl(mxic->regs + RXD); 326 } 327 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); 328 329 pos += nbytes; 330 } 331 332 return 0; 333 } 334 335 static bool mxic_spi_mem_supports_op(struct spi_mem *mem, 336 const struct spi_mem_op *op) 337 { 338 bool all_false; 339 340 if (op->data.buswidth > 8 || op->addr.buswidth > 8 || 341 op->dummy.buswidth > 8 || op->cmd.buswidth > 8) 342 return false; 343 344 if (op->data.nbytes && op->dummy.nbytes && 345 op->data.buswidth != op->dummy.buswidth) 346 return false; 347 348 if (op->addr.nbytes > 7) 349 return false; 350 351 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr && 352 !op->data.dtr; 353 354 if (all_false) 355 return spi_mem_default_supports_op(mem, op); 356 else 357 return spi_mem_dtr_supports_op(mem, op); 358 } 359 360 static int mxic_spi_mem_exec_op(struct spi_mem *mem, 361 const struct spi_mem_op *op) 362 { 363 struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master); 364 int nio = 1, i, ret; 365 u32 ss_ctrl; 366 u8 addr[8], cmd[2]; 367 368 ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz); 369 if (ret) 370 return ret; 371 372 if (mem->spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL)) 373 nio = 8; 374 else if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD)) 375 nio = 4; 376 else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL)) 377 nio = 2; 378 379 writel(HC_CFG_NIO(nio) | 380 HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) | 381 HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) | 382 HC_CFG_MAN_CS_EN, 383 mxic->regs + HC_CFG); 384 writel(HC_EN_BIT, mxic->regs + HC_EN); 385 386 ss_ctrl = OP_CMD_BYTES(op->cmd.nbytes) | 387 OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) | 388 (op->cmd.dtr ? OP_CMD_DDR : 0); 389 390 if (op->addr.nbytes) 391 ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) | 392 OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) | 393 (op->addr.dtr ? OP_ADDR_DDR : 0); 394 395 if (op->dummy.nbytes) 396 ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes); 397 398 if (op->data.nbytes) { 399 ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) | 400 (op->data.dtr ? OP_DATA_DDR : 0); 401 if (op->data.dir == SPI_MEM_DATA_IN) { 402 ss_ctrl |= OP_READ; 403 if (op->data.dtr) 404 ss_ctrl |= OP_DQS_EN; 405 } 406 } 407 408 writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select)); 409 410 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, 411 mxic->regs + HC_CFG); 412 413 for (i = 0; i < op->cmd.nbytes; i++) 414 cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1)); 415 416 ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes); 417 if (ret) 418 goto out; 419 420 for (i = 0; i < op->addr.nbytes; i++) 421 addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); 422 423 ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes); 424 if (ret) 425 goto out; 426 427 ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes); 428 if (ret) 429 goto out; 430 431 ret = mxic_spi_data_xfer(mxic, 432 op->data.dir == SPI_MEM_DATA_OUT ? 433 op->data.buf.out : NULL, 434 op->data.dir == SPI_MEM_DATA_IN ? 435 op->data.buf.in : NULL, 436 op->data.nbytes); 437 438 out: 439 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, 440 mxic->regs + HC_CFG); 441 writel(0, mxic->regs + HC_EN); 442 443 return ret; 444 } 445 446 static const struct spi_controller_mem_ops mxic_spi_mem_ops = { 447 .supports_op = mxic_spi_mem_supports_op, 448 .exec_op = mxic_spi_mem_exec_op, 449 }; 450 451 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl) 452 { 453 struct mxic_spi *mxic = spi_master_get_devdata(spi->master); 454 455 if (!lvl) { 456 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN, 457 mxic->regs + HC_CFG); 458 writel(HC_EN_BIT, mxic->regs + HC_EN); 459 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, 460 mxic->regs + HC_CFG); 461 } else { 462 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, 463 mxic->regs + HC_CFG); 464 writel(0, mxic->regs + HC_EN); 465 } 466 } 467 468 static int mxic_spi_transfer_one(struct spi_master *master, 469 struct spi_device *spi, 470 struct spi_transfer *t) 471 { 472 struct mxic_spi *mxic = spi_master_get_devdata(master); 473 unsigned int busw = OP_BUSW_1; 474 int ret; 475 476 if (t->rx_buf && t->tx_buf) { 477 if (((spi->mode & SPI_TX_QUAD) && 478 !(spi->mode & SPI_RX_QUAD)) || 479 ((spi->mode & SPI_TX_DUAL) && 480 !(spi->mode & SPI_RX_DUAL))) 481 return -ENOTSUPP; 482 } 483 484 ret = mxic_spi_set_freq(mxic, t->speed_hz); 485 if (ret) 486 return ret; 487 488 if (t->tx_buf) { 489 if (spi->mode & SPI_TX_QUAD) 490 busw = OP_BUSW_4; 491 else if (spi->mode & SPI_TX_DUAL) 492 busw = OP_BUSW_2; 493 } else if (t->rx_buf) { 494 if (spi->mode & SPI_RX_QUAD) 495 busw = OP_BUSW_4; 496 else if (spi->mode & SPI_RX_DUAL) 497 busw = OP_BUSW_2; 498 } 499 500 writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) | 501 OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0), 502 mxic->regs + SS_CTRL(0)); 503 504 ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len); 505 if (ret) 506 return ret; 507 508 spi_finalize_current_transfer(master); 509 510 return 0; 511 } 512 513 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev) 514 { 515 struct spi_master *master = dev_get_drvdata(dev); 516 struct mxic_spi *mxic = spi_master_get_devdata(master); 517 518 mxic_spi_clk_disable(mxic); 519 clk_disable_unprepare(mxic->ps_clk); 520 521 return 0; 522 } 523 524 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev) 525 { 526 struct spi_master *master = dev_get_drvdata(dev); 527 struct mxic_spi *mxic = spi_master_get_devdata(master); 528 int ret; 529 530 ret = clk_prepare_enable(mxic->ps_clk); 531 if (ret) { 532 dev_err(dev, "Cannot enable ps_clock.\n"); 533 return ret; 534 } 535 536 return mxic_spi_clk_enable(mxic); 537 } 538 539 static const struct dev_pm_ops mxic_spi_dev_pm_ops = { 540 SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend, 541 mxic_spi_runtime_resume, NULL) 542 }; 543 544 static int mxic_spi_probe(struct platform_device *pdev) 545 { 546 struct spi_master *master; 547 struct resource *res; 548 struct mxic_spi *mxic; 549 int ret; 550 551 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi)); 552 if (!master) 553 return -ENOMEM; 554 555 platform_set_drvdata(pdev, master); 556 557 mxic = spi_master_get_devdata(master); 558 559 master->dev.of_node = pdev->dev.of_node; 560 561 mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk"); 562 if (IS_ERR(mxic->ps_clk)) 563 return PTR_ERR(mxic->ps_clk); 564 565 mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk"); 566 if (IS_ERR(mxic->send_clk)) 567 return PTR_ERR(mxic->send_clk); 568 569 mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk"); 570 if (IS_ERR(mxic->send_dly_clk)) 571 return PTR_ERR(mxic->send_dly_clk); 572 573 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs"); 574 mxic->regs = devm_ioremap_resource(&pdev->dev, res); 575 if (IS_ERR(mxic->regs)) 576 return PTR_ERR(mxic->regs); 577 578 pm_runtime_enable(&pdev->dev); 579 master->auto_runtime_pm = true; 580 581 master->num_chipselect = 1; 582 master->mem_ops = &mxic_spi_mem_ops; 583 584 master->set_cs = mxic_spi_set_cs; 585 master->transfer_one = mxic_spi_transfer_one; 586 master->bits_per_word_mask = SPI_BPW_MASK(8); 587 master->mode_bits = SPI_CPOL | SPI_CPHA | 588 SPI_RX_DUAL | SPI_TX_DUAL | 589 SPI_RX_QUAD | SPI_TX_QUAD | 590 SPI_RX_OCTAL | SPI_TX_OCTAL; 591 592 mxic_spi_hw_init(mxic); 593 594 ret = spi_register_master(master); 595 if (ret) { 596 dev_err(&pdev->dev, "spi_register_master failed\n"); 597 pm_runtime_disable(&pdev->dev); 598 } 599 600 return ret; 601 } 602 603 static int mxic_spi_remove(struct platform_device *pdev) 604 { 605 struct spi_master *master = platform_get_drvdata(pdev); 606 607 pm_runtime_disable(&pdev->dev); 608 spi_unregister_master(master); 609 610 return 0; 611 } 612 613 static const struct of_device_id mxic_spi_of_ids[] = { 614 { .compatible = "mxicy,mx25f0a-spi", }, 615 { /* sentinel */ } 616 }; 617 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids); 618 619 static struct platform_driver mxic_spi_driver = { 620 .probe = mxic_spi_probe, 621 .remove = mxic_spi_remove, 622 .driver = { 623 .name = "mxic-spi", 624 .of_match_table = mxic_spi_of_ids, 625 .pm = &mxic_spi_dev_pm_ops, 626 }, 627 }; 628 module_platform_driver(mxic_spi_driver); 629 630 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>"); 631 MODULE_DESCRIPTION("MX25F0A SPI controller driver"); 632 MODULE_LICENSE("GPL v2"); 633