xref: /openbmc/linux/drivers/spi/spi-mxic.c (revision 63705da3)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright (C) 2018 Macronix International Co., Ltd.
4 //
5 // Authors:
6 //	Mason Yang <masonccyang@mxic.com.tw>
7 //	zhengxunli <zhengxunli@mxic.com.tw>
8 //	Boris Brezillon <boris.brezillon@bootlin.com>
9 //
10 
11 #include <linux/clk.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 
20 #define HC_CFG			0x0
21 #define HC_CFG_IF_CFG(x)	((x) << 27)
22 #define HC_CFG_DUAL_SLAVE	BIT(31)
23 #define HC_CFG_INDIVIDUAL	BIT(30)
24 #define HC_CFG_NIO(x)		(((x) / 4) << 27)
25 #define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
26 #define HC_CFG_TYPE_SPI_NOR	0
27 #define HC_CFG_TYPE_SPI_NAND	1
28 #define HC_CFG_TYPE_SPI_RAM	2
29 #define HC_CFG_TYPE_RAW_NAND	3
30 #define HC_CFG_SLV_ACT(x)	((x) << 21)
31 #define HC_CFG_CLK_PH_EN	BIT(20)
32 #define HC_CFG_CLK_POL_INV	BIT(19)
33 #define HC_CFG_BIG_ENDIAN	BIT(18)
34 #define HC_CFG_DATA_PASS	BIT(17)
35 #define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
36 #define HC_CFG_MAN_START_EN	BIT(3)
37 #define HC_CFG_MAN_START	BIT(2)
38 #define HC_CFG_MAN_CS_EN	BIT(1)
39 #define HC_CFG_MAN_CS_ASSERT	BIT(0)
40 
41 #define INT_STS			0x4
42 #define INT_STS_EN		0x8
43 #define INT_SIG_EN		0xc
44 #define INT_STS_ALL		GENMASK(31, 0)
45 #define INT_RDY_PIN		BIT(26)
46 #define INT_RDY_SR		BIT(25)
47 #define INT_LNR_SUSP		BIT(24)
48 #define INT_ECC_ERR		BIT(17)
49 #define INT_CRC_ERR		BIT(16)
50 #define INT_LWR_DIS		BIT(12)
51 #define INT_LRD_DIS		BIT(11)
52 #define INT_SDMA_INT		BIT(10)
53 #define INT_DMA_FINISH		BIT(9)
54 #define INT_RX_NOT_FULL		BIT(3)
55 #define INT_RX_NOT_EMPTY	BIT(2)
56 #define INT_TX_NOT_FULL		BIT(1)
57 #define INT_TX_EMPTY		BIT(0)
58 
59 #define HC_EN			0x10
60 #define HC_EN_BIT		BIT(0)
61 
62 #define TXD(x)			(0x14 + ((x) * 4))
63 #define RXD			0x24
64 
65 #define SS_CTRL(s)		(0x30 + ((s) * 4))
66 #define LRD_CFG			0x44
67 #define LWR_CFG			0x80
68 #define RWW_CFG			0x70
69 #define OP_READ			BIT(23)
70 #define OP_DUMMY_CYC(x)		((x) << 17)
71 #define OP_ADDR_BYTES(x)	((x) << 14)
72 #define OP_CMD_BYTES(x)		(((x) - 1) << 13)
73 #define OP_OCTA_CRC_EN		BIT(12)
74 #define OP_DQS_EN		BIT(11)
75 #define OP_ENHC_EN		BIT(10)
76 #define OP_PREAMBLE_EN		BIT(9)
77 #define OP_DATA_DDR		BIT(8)
78 #define OP_DATA_BUSW(x)		((x) << 6)
79 #define OP_ADDR_DDR		BIT(5)
80 #define OP_ADDR_BUSW(x)		((x) << 3)
81 #define OP_CMD_DDR		BIT(2)
82 #define OP_CMD_BUSW(x)		(x)
83 #define OP_BUSW_1		0
84 #define OP_BUSW_2		1
85 #define OP_BUSW_4		2
86 #define OP_BUSW_8		3
87 
88 #define OCTA_CRC		0x38
89 #define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
90 #define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
91 #define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))
92 
93 #define ONFI_DIN_CNT(s)		(0x3c + (s))
94 
95 #define LRD_CTRL		0x48
96 #define RWW_CTRL		0x74
97 #define LWR_CTRL		0x84
98 #define LMODE_EN		BIT(31)
99 #define LMODE_SLV_ACT(x)	((x) << 21)
100 #define LMODE_CMD1(x)		((x) << 8)
101 #define LMODE_CMD0(x)		(x)
102 
103 #define LRD_ADDR		0x4c
104 #define LWR_ADDR		0x88
105 #define LRD_RANGE		0x50
106 #define LWR_RANGE		0x8c
107 
108 #define AXI_SLV_ADDR		0x54
109 
110 #define DMAC_RD_CFG		0x58
111 #define DMAC_WR_CFG		0x94
112 #define DMAC_CFG_PERIPH_EN	BIT(31)
113 #define DMAC_CFG_ALLFLUSH_EN	BIT(30)
114 #define DMAC_CFG_LASTFLUSH_EN	BIT(29)
115 #define DMAC_CFG_QE(x)		(((x) + 1) << 16)
116 #define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
117 #define DMAC_CFG_BURST_SZ(x)	((x) << 8)
118 #define DMAC_CFG_DIR_READ	BIT(1)
119 #define DMAC_CFG_START		BIT(0)
120 
121 #define DMAC_RD_CNT		0x5c
122 #define DMAC_WR_CNT		0x98
123 
124 #define SDMA_ADDR		0x60
125 
126 #define DMAM_CFG		0x64
127 #define DMAM_CFG_START		BIT(31)
128 #define DMAM_CFG_CONT		BIT(30)
129 #define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
130 #define DMAM_CFG_DIR_READ	BIT(1)
131 #define DMAM_CFG_EN		BIT(0)
132 
133 #define DMAM_CNT		0x68
134 
135 #define LNR_TIMER_TH		0x6c
136 
137 #define RDM_CFG0		0x78
138 #define RDM_CFG0_POLY(x)	(x)
139 
140 #define RDM_CFG1		0x7c
141 #define RDM_CFG1_RDM_EN		BIT(31)
142 #define RDM_CFG1_SEED(x)	(x)
143 
144 #define LWR_SUSP_CTRL		0x90
145 #define LWR_SUSP_CTRL_EN	BIT(31)
146 
147 #define DMAS_CTRL		0x9c
148 #define DMAS_CTRL_EN		BIT(31)
149 #define DMAS_CTRL_DIR_READ	BIT(30)
150 
151 #define DATA_STROB		0xa0
152 #define DATA_STROB_EDO_EN	BIT(2)
153 #define DATA_STROB_INV_POL	BIT(1)
154 #define DATA_STROB_DELAY_2CYC	BIT(0)
155 
156 #define IDLY_CODE(x)		(0xa4 + ((x) * 4))
157 #define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))
158 
159 #define GPIO			0xc4
160 #define GPIO_PT(x)		BIT(3 + ((x) * 16))
161 #define GPIO_RESET(x)		BIT(2 + ((x) * 16))
162 #define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
163 #define GPIO_WPB(x)		BIT((x) * 16)
164 
165 #define HC_VER			0xd0
166 
167 #define HW_TEST(x)		(0xe0 + ((x) * 4))
168 
169 struct mxic_spi {
170 	struct clk *ps_clk;
171 	struct clk *send_clk;
172 	struct clk *send_dly_clk;
173 	void __iomem *regs;
174 	u32 cur_speed_hz;
175 };
176 
177 static int mxic_spi_clk_enable(struct mxic_spi *mxic)
178 {
179 	int ret;
180 
181 	ret = clk_prepare_enable(mxic->send_clk);
182 	if (ret)
183 		return ret;
184 
185 	ret = clk_prepare_enable(mxic->send_dly_clk);
186 	if (ret)
187 		goto err_send_dly_clk;
188 
189 	return ret;
190 
191 err_send_dly_clk:
192 	clk_disable_unprepare(mxic->send_clk);
193 
194 	return ret;
195 }
196 
197 static void mxic_spi_clk_disable(struct mxic_spi *mxic)
198 {
199 	clk_disable_unprepare(mxic->send_clk);
200 	clk_disable_unprepare(mxic->send_dly_clk);
201 }
202 
203 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
204 {
205 	writel(IDLY_CODE_VAL(0, idly_code) |
206 	       IDLY_CODE_VAL(1, idly_code) |
207 	       IDLY_CODE_VAL(2, idly_code) |
208 	       IDLY_CODE_VAL(3, idly_code),
209 	       mxic->regs + IDLY_CODE(0));
210 	writel(IDLY_CODE_VAL(4, idly_code) |
211 	       IDLY_CODE_VAL(5, idly_code) |
212 	       IDLY_CODE_VAL(6, idly_code) |
213 	       IDLY_CODE_VAL(7, idly_code),
214 	       mxic->regs + IDLY_CODE(1));
215 }
216 
217 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
218 {
219 	int ret;
220 
221 	ret = clk_set_rate(mxic->send_clk, freq);
222 	if (ret)
223 		return ret;
224 
225 	ret = clk_set_rate(mxic->send_dly_clk, freq);
226 	if (ret)
227 		return ret;
228 
229 	/*
230 	 * A constant delay range from 0x0 ~ 0x1F for input delay,
231 	 * the unit is 78 ps, the max input delay is 2.418 ns.
232 	 */
233 	mxic_spi_set_input_delay_dqs(mxic, 0xf);
234 
235 	/*
236 	 * Phase degree = 360 * freq * output-delay
237 	 * where output-delay is a constant value 1 ns in FPGA.
238 	 *
239 	 * Get Phase degree = 360 * freq * 1 ns
240 	 *                  = 360 * freq * 1 sec / 1000000000
241 	 *                  = 9 * freq / 25000000
242 	 */
243 	ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
244 	if (ret)
245 		return ret;
246 
247 	return 0;
248 }
249 
250 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
251 {
252 	int ret;
253 
254 	if (mxic->cur_speed_hz == freq)
255 		return 0;
256 
257 	mxic_spi_clk_disable(mxic);
258 	ret = mxic_spi_clk_setup(mxic, freq);
259 	if (ret)
260 		return ret;
261 
262 	ret = mxic_spi_clk_enable(mxic);
263 	if (ret)
264 		return ret;
265 
266 	mxic->cur_speed_hz = freq;
267 
268 	return 0;
269 }
270 
271 static void mxic_spi_hw_init(struct mxic_spi *mxic)
272 {
273 	writel(0, mxic->regs + DATA_STROB);
274 	writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
275 	writel(0, mxic->regs + HC_EN);
276 	writel(0, mxic->regs + LRD_CFG);
277 	writel(0, mxic->regs + LRD_CTRL);
278 	writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
279 	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
280 	       mxic->regs + HC_CFG);
281 }
282 
283 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
284 			      void *rxbuf, unsigned int len)
285 {
286 	unsigned int pos = 0;
287 
288 	while (pos < len) {
289 		unsigned int nbytes = len - pos;
290 		u32 data = 0xffffffff;
291 		u32 sts;
292 		int ret;
293 
294 		if (nbytes > 4)
295 			nbytes = 4;
296 
297 		if (txbuf)
298 			memcpy(&data, txbuf + pos, nbytes);
299 
300 		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
301 					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
302 		if (ret)
303 			return ret;
304 
305 		writel(data, mxic->regs + TXD(nbytes % 4));
306 
307 		if (rxbuf) {
308 			ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
309 						 sts & INT_TX_EMPTY, 0,
310 						 USEC_PER_SEC);
311 			if (ret)
312 				return ret;
313 
314 			ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
315 						 sts & INT_RX_NOT_EMPTY, 0,
316 						 USEC_PER_SEC);
317 			if (ret)
318 				return ret;
319 
320 			data = readl(mxic->regs + RXD);
321 			data >>= (8 * (4 - nbytes));
322 			memcpy(rxbuf + pos, &data, nbytes);
323 			WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
324 		} else {
325 			readl(mxic->regs + RXD);
326 		}
327 		WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
328 
329 		pos += nbytes;
330 	}
331 
332 	return 0;
333 }
334 
335 static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
336 				     const struct spi_mem_op *op)
337 {
338 	bool all_false;
339 
340 	if (op->data.buswidth > 8 || op->addr.buswidth > 8 ||
341 	    op->dummy.buswidth > 8 || op->cmd.buswidth > 8)
342 		return false;
343 
344 	if (op->data.nbytes && op->dummy.nbytes &&
345 	    op->data.buswidth != op->dummy.buswidth)
346 		return false;
347 
348 	if (op->addr.nbytes > 7)
349 		return false;
350 
351 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
352 		    !op->data.dtr;
353 
354 	if (all_false)
355 		return spi_mem_default_supports_op(mem, op);
356 	else
357 		return spi_mem_dtr_supports_op(mem, op);
358 }
359 
360 static int mxic_spi_mem_exec_op(struct spi_mem *mem,
361 				const struct spi_mem_op *op)
362 {
363 	struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master);
364 	int nio = 1, i, ret;
365 	u32 ss_ctrl;
366 	u8 addr[8], cmd[2];
367 
368 	ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
369 	if (ret)
370 		return ret;
371 
372 	if (mem->spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL))
373 		nio = 8;
374 	else if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
375 		nio = 4;
376 	else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
377 		nio = 2;
378 
379 	writel(HC_CFG_NIO(nio) |
380 	       HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) |
381 	       HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) |
382 	       HC_CFG_MAN_CS_EN,
383 	       mxic->regs + HC_CFG);
384 	writel(HC_EN_BIT, mxic->regs + HC_EN);
385 
386 	ss_ctrl = OP_CMD_BYTES(op->cmd.nbytes) |
387 		  OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) |
388 		  (op->cmd.dtr ? OP_CMD_DDR : 0);
389 
390 	if (op->addr.nbytes)
391 		ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
392 			   OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) |
393 			   (op->addr.dtr ? OP_ADDR_DDR : 0);
394 
395 	if (op->dummy.nbytes)
396 		ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes);
397 
398 	if (op->data.nbytes) {
399 		ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) |
400 			   (op->data.dtr ? OP_DATA_DDR : 0);
401 		if (op->data.dir == SPI_MEM_DATA_IN) {
402 			ss_ctrl |= OP_READ;
403 			if (op->data.dtr)
404 				ss_ctrl |= OP_DQS_EN;
405 		}
406 	}
407 
408 	writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select));
409 
410 	writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
411 	       mxic->regs + HC_CFG);
412 
413 	for (i = 0; i < op->cmd.nbytes; i++)
414 		cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1));
415 
416 	ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes);
417 	if (ret)
418 		goto out;
419 
420 	for (i = 0; i < op->addr.nbytes; i++)
421 		addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
422 
423 	ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
424 	if (ret)
425 		goto out;
426 
427 	ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
428 	if (ret)
429 		goto out;
430 
431 	ret = mxic_spi_data_xfer(mxic,
432 				 op->data.dir == SPI_MEM_DATA_OUT ?
433 				 op->data.buf.out : NULL,
434 				 op->data.dir == SPI_MEM_DATA_IN ?
435 				 op->data.buf.in : NULL,
436 				 op->data.nbytes);
437 
438 out:
439 	writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
440 	       mxic->regs + HC_CFG);
441 	writel(0, mxic->regs + HC_EN);
442 
443 	return ret;
444 }
445 
446 static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
447 	.supports_op = mxic_spi_mem_supports_op,
448 	.exec_op = mxic_spi_mem_exec_op,
449 };
450 
451 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
452 {
453 	struct mxic_spi *mxic = spi_master_get_devdata(spi->master);
454 
455 	if (!lvl) {
456 		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
457 		       mxic->regs + HC_CFG);
458 		writel(HC_EN_BIT, mxic->regs + HC_EN);
459 		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
460 		       mxic->regs + HC_CFG);
461 	} else {
462 		writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
463 		       mxic->regs + HC_CFG);
464 		writel(0, mxic->regs + HC_EN);
465 	}
466 }
467 
468 static int mxic_spi_transfer_one(struct spi_master *master,
469 				 struct spi_device *spi,
470 				 struct spi_transfer *t)
471 {
472 	struct mxic_spi *mxic = spi_master_get_devdata(master);
473 	unsigned int busw = OP_BUSW_1;
474 	int ret;
475 
476 	if (t->rx_buf && t->tx_buf) {
477 		if (((spi->mode & SPI_TX_QUAD) &&
478 		     !(spi->mode & SPI_RX_QUAD)) ||
479 		    ((spi->mode & SPI_TX_DUAL) &&
480 		     !(spi->mode & SPI_RX_DUAL)))
481 			return -ENOTSUPP;
482 	}
483 
484 	ret = mxic_spi_set_freq(mxic, t->speed_hz);
485 	if (ret)
486 		return ret;
487 
488 	if (t->tx_buf) {
489 		if (spi->mode & SPI_TX_QUAD)
490 			busw = OP_BUSW_4;
491 		else if (spi->mode & SPI_TX_DUAL)
492 			busw = OP_BUSW_2;
493 	} else if (t->rx_buf) {
494 		if (spi->mode & SPI_RX_QUAD)
495 			busw = OP_BUSW_4;
496 		else if (spi->mode & SPI_RX_DUAL)
497 			busw = OP_BUSW_2;
498 	}
499 
500 	writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
501 	       OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
502 	       mxic->regs + SS_CTRL(0));
503 
504 	ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
505 	if (ret)
506 		return ret;
507 
508 	spi_finalize_current_transfer(master);
509 
510 	return 0;
511 }
512 
513 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
514 {
515 	struct spi_master *master = dev_get_drvdata(dev);
516 	struct mxic_spi *mxic = spi_master_get_devdata(master);
517 
518 	mxic_spi_clk_disable(mxic);
519 	clk_disable_unprepare(mxic->ps_clk);
520 
521 	return 0;
522 }
523 
524 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
525 {
526 	struct spi_master *master = dev_get_drvdata(dev);
527 	struct mxic_spi *mxic = spi_master_get_devdata(master);
528 	int ret;
529 
530 	ret = clk_prepare_enable(mxic->ps_clk);
531 	if (ret) {
532 		dev_err(dev, "Cannot enable ps_clock.\n");
533 		return ret;
534 	}
535 
536 	return mxic_spi_clk_enable(mxic);
537 }
538 
539 static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
540 	SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
541 			   mxic_spi_runtime_resume, NULL)
542 };
543 
544 static int mxic_spi_probe(struct platform_device *pdev)
545 {
546 	struct spi_master *master;
547 	struct resource *res;
548 	struct mxic_spi *mxic;
549 	int ret;
550 
551 	master = devm_spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi));
552 	if (!master)
553 		return -ENOMEM;
554 
555 	platform_set_drvdata(pdev, master);
556 
557 	mxic = spi_master_get_devdata(master);
558 
559 	master->dev.of_node = pdev->dev.of_node;
560 
561 	mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
562 	if (IS_ERR(mxic->ps_clk))
563 		return PTR_ERR(mxic->ps_clk);
564 
565 	mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
566 	if (IS_ERR(mxic->send_clk))
567 		return PTR_ERR(mxic->send_clk);
568 
569 	mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
570 	if (IS_ERR(mxic->send_dly_clk))
571 		return PTR_ERR(mxic->send_dly_clk);
572 
573 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
574 	mxic->regs = devm_ioremap_resource(&pdev->dev, res);
575 	if (IS_ERR(mxic->regs))
576 		return PTR_ERR(mxic->regs);
577 
578 	pm_runtime_enable(&pdev->dev);
579 	master->auto_runtime_pm = true;
580 
581 	master->num_chipselect = 1;
582 	master->mem_ops = &mxic_spi_mem_ops;
583 
584 	master->set_cs = mxic_spi_set_cs;
585 	master->transfer_one = mxic_spi_transfer_one;
586 	master->bits_per_word_mask = SPI_BPW_MASK(8);
587 	master->mode_bits = SPI_CPOL | SPI_CPHA |
588 			SPI_RX_DUAL | SPI_TX_DUAL |
589 			SPI_RX_QUAD | SPI_TX_QUAD |
590 			SPI_RX_OCTAL | SPI_TX_OCTAL;
591 
592 	mxic_spi_hw_init(mxic);
593 
594 	ret = spi_register_master(master);
595 	if (ret) {
596 		dev_err(&pdev->dev, "spi_register_master failed\n");
597 		pm_runtime_disable(&pdev->dev);
598 	}
599 
600 	return ret;
601 }
602 
603 static int mxic_spi_remove(struct platform_device *pdev)
604 {
605 	struct spi_master *master = platform_get_drvdata(pdev);
606 
607 	pm_runtime_disable(&pdev->dev);
608 	spi_unregister_master(master);
609 
610 	return 0;
611 }
612 
613 static const struct of_device_id mxic_spi_of_ids[] = {
614 	{ .compatible = "mxicy,mx25f0a-spi", },
615 	{ /* sentinel */ }
616 };
617 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
618 
619 static struct platform_driver mxic_spi_driver = {
620 	.probe = mxic_spi_probe,
621 	.remove = mxic_spi_remove,
622 	.driver = {
623 		.name = "mxic-spi",
624 		.of_match_table = mxic_spi_of_ids,
625 		.pm = &mxic_spi_dev_pm_ops,
626 	},
627 };
628 module_platform_driver(mxic_spi_driver);
629 
630 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
631 MODULE_DESCRIPTION("MX25F0A SPI controller driver");
632 MODULE_LICENSE("GPL v2");
633