xref: /openbmc/linux/drivers/spi/spi-mxic.c (revision 33fce1d8)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright (C) 2018 Macronix International Co., Ltd.
4 //
5 // Authors:
6 //	Mason Yang <masonccyang@mxic.com.tw>
7 //	zhengxunli <zhengxunli@mxic.com.tw>
8 //	Boris Brezillon <boris.brezillon@bootlin.com>
9 //
10 
11 #include <linux/clk.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 
20 #define HC_CFG			0x0
21 #define HC_CFG_IF_CFG(x)	((x) << 27)
22 #define HC_CFG_DUAL_SLAVE	BIT(31)
23 #define HC_CFG_INDIVIDUAL	BIT(30)
24 #define HC_CFG_NIO(x)		(((x) / 4) << 27)
25 #define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
26 #define HC_CFG_TYPE_SPI_NOR	0
27 #define HC_CFG_TYPE_SPI_NAND	1
28 #define HC_CFG_TYPE_SPI_RAM	2
29 #define HC_CFG_TYPE_RAW_NAND	3
30 #define HC_CFG_SLV_ACT(x)	((x) << 21)
31 #define HC_CFG_CLK_PH_EN	BIT(20)
32 #define HC_CFG_CLK_POL_INV	BIT(19)
33 #define HC_CFG_BIG_ENDIAN	BIT(18)
34 #define HC_CFG_DATA_PASS	BIT(17)
35 #define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
36 #define HC_CFG_MAN_START_EN	BIT(3)
37 #define HC_CFG_MAN_START	BIT(2)
38 #define HC_CFG_MAN_CS_EN	BIT(1)
39 #define HC_CFG_MAN_CS_ASSERT	BIT(0)
40 
41 #define INT_STS			0x4
42 #define INT_STS_EN		0x8
43 #define INT_SIG_EN		0xc
44 #define INT_STS_ALL		GENMASK(31, 0)
45 #define INT_RDY_PIN		BIT(26)
46 #define INT_RDY_SR		BIT(25)
47 #define INT_LNR_SUSP		BIT(24)
48 #define INT_ECC_ERR		BIT(17)
49 #define INT_CRC_ERR		BIT(16)
50 #define INT_LWR_DIS		BIT(12)
51 #define INT_LRD_DIS		BIT(11)
52 #define INT_SDMA_INT		BIT(10)
53 #define INT_DMA_FINISH		BIT(9)
54 #define INT_RX_NOT_FULL		BIT(3)
55 #define INT_RX_NOT_EMPTY	BIT(2)
56 #define INT_TX_NOT_FULL		BIT(1)
57 #define INT_TX_EMPTY		BIT(0)
58 
59 #define HC_EN			0x10
60 #define HC_EN_BIT		BIT(0)
61 
62 #define TXD(x)			(0x14 + ((x) * 4))
63 #define RXD			0x24
64 
65 #define SS_CTRL(s)		(0x30 + ((s) * 4))
66 #define LRD_CFG			0x44
67 #define LWR_CFG			0x80
68 #define RWW_CFG			0x70
69 #define OP_READ			BIT(23)
70 #define OP_DUMMY_CYC(x)		((x) << 17)
71 #define OP_ADDR_BYTES(x)	((x) << 14)
72 #define OP_CMD_BYTES(x)		(((x) - 1) << 13)
73 #define OP_OCTA_CRC_EN		BIT(12)
74 #define OP_DQS_EN		BIT(11)
75 #define OP_ENHC_EN		BIT(10)
76 #define OP_PREAMBLE_EN		BIT(9)
77 #define OP_DATA_DDR		BIT(8)
78 #define OP_DATA_BUSW(x)		((x) << 6)
79 #define OP_ADDR_DDR		BIT(5)
80 #define OP_ADDR_BUSW(x)		((x) << 3)
81 #define OP_CMD_DDR		BIT(2)
82 #define OP_CMD_BUSW(x)		(x)
83 #define OP_BUSW_1		0
84 #define OP_BUSW_2		1
85 #define OP_BUSW_4		2
86 #define OP_BUSW_8		3
87 
88 #define OCTA_CRC		0x38
89 #define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
90 #define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
91 #define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))
92 
93 #define ONFI_DIN_CNT(s)		(0x3c + (s))
94 
95 #define LRD_CTRL		0x48
96 #define RWW_CTRL		0x74
97 #define LWR_CTRL		0x84
98 #define LMODE_EN		BIT(31)
99 #define LMODE_SLV_ACT(x)	((x) << 21)
100 #define LMODE_CMD1(x)		((x) << 8)
101 #define LMODE_CMD0(x)		(x)
102 
103 #define LRD_ADDR		0x4c
104 #define LWR_ADDR		0x88
105 #define LRD_RANGE		0x50
106 #define LWR_RANGE		0x8c
107 
108 #define AXI_SLV_ADDR		0x54
109 
110 #define DMAC_RD_CFG		0x58
111 #define DMAC_WR_CFG		0x94
112 #define DMAC_CFG_PERIPH_EN	BIT(31)
113 #define DMAC_CFG_ALLFLUSH_EN	BIT(30)
114 #define DMAC_CFG_LASTFLUSH_EN	BIT(29)
115 #define DMAC_CFG_QE(x)		(((x) + 1) << 16)
116 #define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
117 #define DMAC_CFG_BURST_SZ(x)	((x) << 8)
118 #define DMAC_CFG_DIR_READ	BIT(1)
119 #define DMAC_CFG_START		BIT(0)
120 
121 #define DMAC_RD_CNT		0x5c
122 #define DMAC_WR_CNT		0x98
123 
124 #define SDMA_ADDR		0x60
125 
126 #define DMAM_CFG		0x64
127 #define DMAM_CFG_START		BIT(31)
128 #define DMAM_CFG_CONT		BIT(30)
129 #define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
130 #define DMAM_CFG_DIR_READ	BIT(1)
131 #define DMAM_CFG_EN		BIT(0)
132 
133 #define DMAM_CNT		0x68
134 
135 #define LNR_TIMER_TH		0x6c
136 
137 #define RDM_CFG0		0x78
138 #define RDM_CFG0_POLY(x)	(x)
139 
140 #define RDM_CFG1		0x7c
141 #define RDM_CFG1_RDM_EN		BIT(31)
142 #define RDM_CFG1_SEED(x)	(x)
143 
144 #define LWR_SUSP_CTRL		0x90
145 #define LWR_SUSP_CTRL_EN	BIT(31)
146 
147 #define DMAS_CTRL		0x9c
148 #define DMAS_CTRL_EN		BIT(31)
149 #define DMAS_CTRL_DIR_READ	BIT(30)
150 
151 #define DATA_STROB		0xa0
152 #define DATA_STROB_EDO_EN	BIT(2)
153 #define DATA_STROB_INV_POL	BIT(1)
154 #define DATA_STROB_DELAY_2CYC	BIT(0)
155 
156 #define IDLY_CODE(x)		(0xa4 + ((x) * 4))
157 #define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))
158 
159 #define GPIO			0xc4
160 #define GPIO_PT(x)		BIT(3 + ((x) * 16))
161 #define GPIO_RESET(x)		BIT(2 + ((x) * 16))
162 #define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
163 #define GPIO_WPB(x)		BIT((x) * 16)
164 
165 #define HC_VER			0xd0
166 
167 #define HW_TEST(x)		(0xe0 + ((x) * 4))
168 
169 struct mxic_spi {
170 	struct clk *ps_clk;
171 	struct clk *send_clk;
172 	struct clk *send_dly_clk;
173 	void __iomem *regs;
174 	u32 cur_speed_hz;
175 	struct {
176 		void __iomem *map;
177 		dma_addr_t dma;
178 		size_t size;
179 	} linear;
180 };
181 
182 static int mxic_spi_clk_enable(struct mxic_spi *mxic)
183 {
184 	int ret;
185 
186 	ret = clk_prepare_enable(mxic->send_clk);
187 	if (ret)
188 		return ret;
189 
190 	ret = clk_prepare_enable(mxic->send_dly_clk);
191 	if (ret)
192 		goto err_send_dly_clk;
193 
194 	return ret;
195 
196 err_send_dly_clk:
197 	clk_disable_unprepare(mxic->send_clk);
198 
199 	return ret;
200 }
201 
202 static void mxic_spi_clk_disable(struct mxic_spi *mxic)
203 {
204 	clk_disable_unprepare(mxic->send_clk);
205 	clk_disable_unprepare(mxic->send_dly_clk);
206 }
207 
208 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
209 {
210 	writel(IDLY_CODE_VAL(0, idly_code) |
211 	       IDLY_CODE_VAL(1, idly_code) |
212 	       IDLY_CODE_VAL(2, idly_code) |
213 	       IDLY_CODE_VAL(3, idly_code),
214 	       mxic->regs + IDLY_CODE(0));
215 	writel(IDLY_CODE_VAL(4, idly_code) |
216 	       IDLY_CODE_VAL(5, idly_code) |
217 	       IDLY_CODE_VAL(6, idly_code) |
218 	       IDLY_CODE_VAL(7, idly_code),
219 	       mxic->regs + IDLY_CODE(1));
220 }
221 
222 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
223 {
224 	int ret;
225 
226 	ret = clk_set_rate(mxic->send_clk, freq);
227 	if (ret)
228 		return ret;
229 
230 	ret = clk_set_rate(mxic->send_dly_clk, freq);
231 	if (ret)
232 		return ret;
233 
234 	/*
235 	 * A constant delay range from 0x0 ~ 0x1F for input delay,
236 	 * the unit is 78 ps, the max input delay is 2.418 ns.
237 	 */
238 	mxic_spi_set_input_delay_dqs(mxic, 0xf);
239 
240 	/*
241 	 * Phase degree = 360 * freq * output-delay
242 	 * where output-delay is a constant value 1 ns in FPGA.
243 	 *
244 	 * Get Phase degree = 360 * freq * 1 ns
245 	 *                  = 360 * freq * 1 sec / 1000000000
246 	 *                  = 9 * freq / 25000000
247 	 */
248 	ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
249 	if (ret)
250 		return ret;
251 
252 	return 0;
253 }
254 
255 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
256 {
257 	int ret;
258 
259 	if (mxic->cur_speed_hz == freq)
260 		return 0;
261 
262 	mxic_spi_clk_disable(mxic);
263 	ret = mxic_spi_clk_setup(mxic, freq);
264 	if (ret)
265 		return ret;
266 
267 	ret = mxic_spi_clk_enable(mxic);
268 	if (ret)
269 		return ret;
270 
271 	mxic->cur_speed_hz = freq;
272 
273 	return 0;
274 }
275 
276 static void mxic_spi_hw_init(struct mxic_spi *mxic)
277 {
278 	writel(0, mxic->regs + DATA_STROB);
279 	writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
280 	writel(0, mxic->regs + HC_EN);
281 	writel(0, mxic->regs + LRD_CFG);
282 	writel(0, mxic->regs + LRD_CTRL);
283 	writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
284 	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
285 	       mxic->regs + HC_CFG);
286 }
287 
288 static u32 mxic_spi_prep_hc_cfg(struct spi_device *spi, u32 flags)
289 {
290 	int nio = 1;
291 
292 	if (spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL))
293 		nio = 8;
294 	else if (spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
295 		nio = 4;
296 	else if (spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
297 		nio = 2;
298 
299 	return flags | HC_CFG_NIO(nio) |
300 	       HC_CFG_TYPE(spi->chip_select, HC_CFG_TYPE_SPI_NOR) |
301 	       HC_CFG_SLV_ACT(spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1);
302 }
303 
304 static u32 mxic_spi_mem_prep_op_cfg(const struct spi_mem_op *op,
305 				    unsigned int data_len)
306 {
307 	u32 cfg = OP_CMD_BYTES(op->cmd.nbytes) |
308 		  OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) |
309 		  (op->cmd.dtr ? OP_CMD_DDR : 0);
310 
311 	if (op->addr.nbytes)
312 		cfg |= OP_ADDR_BYTES(op->addr.nbytes) |
313 		       OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) |
314 		       (op->addr.dtr ? OP_ADDR_DDR : 0);
315 
316 	if (op->dummy.nbytes)
317 		cfg |= OP_DUMMY_CYC(op->dummy.nbytes);
318 
319 	/* Direct mapping data.nbytes field is not populated */
320 	if (data_len) {
321 		cfg |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) |
322 		       (op->data.dtr ? OP_DATA_DDR : 0);
323 		if (op->data.dir == SPI_MEM_DATA_IN) {
324 			cfg |= OP_READ;
325 			if (op->data.dtr)
326 				cfg |= OP_DQS_EN;
327 		}
328 	}
329 
330 	return cfg;
331 }
332 
333 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
334 			      void *rxbuf, unsigned int len)
335 {
336 	unsigned int pos = 0;
337 
338 	while (pos < len) {
339 		unsigned int nbytes = len - pos;
340 		u32 data = 0xffffffff;
341 		u32 sts;
342 		int ret;
343 
344 		if (nbytes > 4)
345 			nbytes = 4;
346 
347 		if (txbuf)
348 			memcpy(&data, txbuf + pos, nbytes);
349 
350 		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
351 					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
352 		if (ret)
353 			return ret;
354 
355 		writel(data, mxic->regs + TXD(nbytes % 4));
356 
357 		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
358 					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
359 		if (ret)
360 			return ret;
361 
362 		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
363 					 sts & INT_RX_NOT_EMPTY, 0,
364 					 USEC_PER_SEC);
365 		if (ret)
366 			return ret;
367 
368 		data = readl(mxic->regs + RXD);
369 		if (rxbuf) {
370 			data >>= (8 * (4 - nbytes));
371 			memcpy(rxbuf + pos, &data, nbytes);
372 		}
373 		WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
374 
375 		pos += nbytes;
376 	}
377 
378 	return 0;
379 }
380 
381 static ssize_t mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
382 					u64 offs, size_t len, void *buf)
383 {
384 	struct mxic_spi *mxic = spi_master_get_devdata(desc->mem->spi->master);
385 	int ret;
386 	u32 sts;
387 
388 	if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
389 		return -EINVAL;
390 
391 	writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG);
392 
393 	writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
394 	       mxic->regs + LRD_CFG);
395 	writel(desc->info.offset + offs, mxic->regs + LRD_ADDR);
396 	len = min_t(size_t, len, mxic->linear.size);
397 	writel(len, mxic->regs + LRD_RANGE);
398 	writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
399 	       LMODE_SLV_ACT(desc->mem->spi->chip_select) |
400 	       LMODE_EN,
401 	       mxic->regs + LRD_CTRL);
402 
403 	memcpy_fromio(buf, mxic->linear.map, len);
404 
405 	writel(INT_LRD_DIS, mxic->regs + INT_STS);
406 	writel(0, mxic->regs + LRD_CTRL);
407 
408 	ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
409 				 sts & INT_LRD_DIS, 0, USEC_PER_SEC);
410 	if (ret)
411 		return ret;
412 
413 	return len;
414 }
415 
416 static ssize_t mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
417 					 u64 offs, size_t len,
418 					 const void *buf)
419 {
420 	struct mxic_spi *mxic = spi_master_get_devdata(desc->mem->spi->master);
421 	u32 sts;
422 	int ret;
423 
424 	if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
425 		return -EINVAL;
426 
427 	writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG);
428 
429 	writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
430 	       mxic->regs + LWR_CFG);
431 	writel(desc->info.offset + offs, mxic->regs + LWR_ADDR);
432 	len = min_t(size_t, len, mxic->linear.size);
433 	writel(len, mxic->regs + LWR_RANGE);
434 	writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
435 	       LMODE_SLV_ACT(desc->mem->spi->chip_select) |
436 	       LMODE_EN,
437 	       mxic->regs + LWR_CTRL);
438 
439 	memcpy_toio(mxic->linear.map, buf, len);
440 
441 	writel(INT_LWR_DIS, mxic->regs + INT_STS);
442 	writel(0, mxic->regs + LWR_CTRL);
443 
444 	ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
445 				 sts & INT_LWR_DIS, 0, USEC_PER_SEC);
446 	if (ret)
447 		return ret;
448 
449 	return len;
450 }
451 
452 static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
453 				     const struct spi_mem_op *op)
454 {
455 	if (op->data.buswidth > 8 || op->addr.buswidth > 8 ||
456 	    op->dummy.buswidth > 8 || op->cmd.buswidth > 8)
457 		return false;
458 
459 	if (op->data.nbytes && op->dummy.nbytes &&
460 	    op->data.buswidth != op->dummy.buswidth)
461 		return false;
462 
463 	if (op->addr.nbytes > 7)
464 		return false;
465 
466 	return spi_mem_default_supports_op(mem, op);
467 }
468 
469 static int mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc)
470 {
471 	struct mxic_spi *mxic = spi_master_get_devdata(desc->mem->spi->master);
472 
473 	if (!mxic->linear.map)
474 		return -EINVAL;
475 
476 	if (desc->info.offset + desc->info.length > U32_MAX)
477 		return -EINVAL;
478 
479 	if (!mxic_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
480 		return -EOPNOTSUPP;
481 
482 	return 0;
483 }
484 
485 static int mxic_spi_mem_exec_op(struct spi_mem *mem,
486 				const struct spi_mem_op *op)
487 {
488 	struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master);
489 	int i, ret;
490 	u8 addr[8], cmd[2];
491 
492 	ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
493 	if (ret)
494 		return ret;
495 
496 	writel(mxic_spi_prep_hc_cfg(mem->spi, HC_CFG_MAN_CS_EN),
497 	       mxic->regs + HC_CFG);
498 
499 	writel(HC_EN_BIT, mxic->regs + HC_EN);
500 
501 	writel(mxic_spi_mem_prep_op_cfg(op, op->data.nbytes),
502 	       mxic->regs + SS_CTRL(mem->spi->chip_select));
503 
504 	writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
505 	       mxic->regs + HC_CFG);
506 
507 	for (i = 0; i < op->cmd.nbytes; i++)
508 		cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1));
509 
510 	ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes);
511 	if (ret)
512 		goto out;
513 
514 	for (i = 0; i < op->addr.nbytes; i++)
515 		addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
516 
517 	ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
518 	if (ret)
519 		goto out;
520 
521 	ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
522 	if (ret)
523 		goto out;
524 
525 	ret = mxic_spi_data_xfer(mxic,
526 				 op->data.dir == SPI_MEM_DATA_OUT ?
527 				 op->data.buf.out : NULL,
528 				 op->data.dir == SPI_MEM_DATA_IN ?
529 				 op->data.buf.in : NULL,
530 				 op->data.nbytes);
531 
532 out:
533 	writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
534 	       mxic->regs + HC_CFG);
535 	writel(0, mxic->regs + HC_EN);
536 
537 	return ret;
538 }
539 
540 static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
541 	.supports_op = mxic_spi_mem_supports_op,
542 	.exec_op = mxic_spi_mem_exec_op,
543 	.dirmap_create = mxic_spi_mem_dirmap_create,
544 	.dirmap_read = mxic_spi_mem_dirmap_read,
545 	.dirmap_write = mxic_spi_mem_dirmap_write,
546 };
547 
548 static const struct spi_controller_mem_caps mxic_spi_mem_caps = {
549 	.dtr = true,
550 };
551 
552 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
553 {
554 	struct mxic_spi *mxic = spi_master_get_devdata(spi->master);
555 
556 	if (!lvl) {
557 		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
558 		       mxic->regs + HC_CFG);
559 		writel(HC_EN_BIT, mxic->regs + HC_EN);
560 		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
561 		       mxic->regs + HC_CFG);
562 	} else {
563 		writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
564 		       mxic->regs + HC_CFG);
565 		writel(0, mxic->regs + HC_EN);
566 	}
567 }
568 
569 static int mxic_spi_transfer_one(struct spi_master *master,
570 				 struct spi_device *spi,
571 				 struct spi_transfer *t)
572 {
573 	struct mxic_spi *mxic = spi_master_get_devdata(master);
574 	unsigned int busw = OP_BUSW_1;
575 	int ret;
576 
577 	if (t->rx_buf && t->tx_buf) {
578 		if (((spi->mode & SPI_TX_QUAD) &&
579 		     !(spi->mode & SPI_RX_QUAD)) ||
580 		    ((spi->mode & SPI_TX_DUAL) &&
581 		     !(spi->mode & SPI_RX_DUAL)))
582 			return -ENOTSUPP;
583 	}
584 
585 	ret = mxic_spi_set_freq(mxic, t->speed_hz);
586 	if (ret)
587 		return ret;
588 
589 	if (t->tx_buf) {
590 		if (spi->mode & SPI_TX_QUAD)
591 			busw = OP_BUSW_4;
592 		else if (spi->mode & SPI_TX_DUAL)
593 			busw = OP_BUSW_2;
594 	} else if (t->rx_buf) {
595 		if (spi->mode & SPI_RX_QUAD)
596 			busw = OP_BUSW_4;
597 		else if (spi->mode & SPI_RX_DUAL)
598 			busw = OP_BUSW_2;
599 	}
600 
601 	writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
602 	       OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
603 	       mxic->regs + SS_CTRL(0));
604 
605 	ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
606 	if (ret)
607 		return ret;
608 
609 	spi_finalize_current_transfer(master);
610 
611 	return 0;
612 }
613 
614 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
615 {
616 	struct spi_master *master = dev_get_drvdata(dev);
617 	struct mxic_spi *mxic = spi_master_get_devdata(master);
618 
619 	mxic_spi_clk_disable(mxic);
620 	clk_disable_unprepare(mxic->ps_clk);
621 
622 	return 0;
623 }
624 
625 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
626 {
627 	struct spi_master *master = dev_get_drvdata(dev);
628 	struct mxic_spi *mxic = spi_master_get_devdata(master);
629 	int ret;
630 
631 	ret = clk_prepare_enable(mxic->ps_clk);
632 	if (ret) {
633 		dev_err(dev, "Cannot enable ps_clock.\n");
634 		return ret;
635 	}
636 
637 	return mxic_spi_clk_enable(mxic);
638 }
639 
640 static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
641 	SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
642 			   mxic_spi_runtime_resume, NULL)
643 };
644 
645 static int mxic_spi_probe(struct platform_device *pdev)
646 {
647 	struct spi_master *master;
648 	struct resource *res;
649 	struct mxic_spi *mxic;
650 	int ret;
651 
652 	master = devm_spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi));
653 	if (!master)
654 		return -ENOMEM;
655 
656 	platform_set_drvdata(pdev, master);
657 
658 	mxic = spi_master_get_devdata(master);
659 
660 	master->dev.of_node = pdev->dev.of_node;
661 
662 	mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
663 	if (IS_ERR(mxic->ps_clk))
664 		return PTR_ERR(mxic->ps_clk);
665 
666 	mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
667 	if (IS_ERR(mxic->send_clk))
668 		return PTR_ERR(mxic->send_clk);
669 
670 	mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
671 	if (IS_ERR(mxic->send_dly_clk))
672 		return PTR_ERR(mxic->send_dly_clk);
673 
674 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
675 	mxic->regs = devm_ioremap_resource(&pdev->dev, res);
676 	if (IS_ERR(mxic->regs))
677 		return PTR_ERR(mxic->regs);
678 
679 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap");
680 	mxic->linear.map = devm_ioremap_resource(&pdev->dev, res);
681 	if (!IS_ERR(mxic->linear.map)) {
682 		mxic->linear.dma = res->start;
683 		mxic->linear.size = resource_size(res);
684 	} else {
685 		mxic->linear.map = NULL;
686 	}
687 
688 	pm_runtime_enable(&pdev->dev);
689 	master->auto_runtime_pm = true;
690 
691 	master->num_chipselect = 1;
692 	master->mem_ops = &mxic_spi_mem_ops;
693 	master->mem_caps = &mxic_spi_mem_caps;
694 
695 	master->set_cs = mxic_spi_set_cs;
696 	master->transfer_one = mxic_spi_transfer_one;
697 	master->bits_per_word_mask = SPI_BPW_MASK(8);
698 	master->mode_bits = SPI_CPOL | SPI_CPHA |
699 			SPI_RX_DUAL | SPI_TX_DUAL |
700 			SPI_RX_QUAD | SPI_TX_QUAD |
701 			SPI_RX_OCTAL | SPI_TX_OCTAL;
702 
703 	mxic_spi_hw_init(mxic);
704 
705 	ret = spi_register_master(master);
706 	if (ret) {
707 		dev_err(&pdev->dev, "spi_register_master failed\n");
708 		pm_runtime_disable(&pdev->dev);
709 	}
710 
711 	return ret;
712 }
713 
714 static int mxic_spi_remove(struct platform_device *pdev)
715 {
716 	struct spi_master *master = platform_get_drvdata(pdev);
717 
718 	pm_runtime_disable(&pdev->dev);
719 	spi_unregister_master(master);
720 
721 	return 0;
722 }
723 
724 static const struct of_device_id mxic_spi_of_ids[] = {
725 	{ .compatible = "mxicy,mx25f0a-spi", },
726 	{ /* sentinel */ }
727 };
728 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
729 
730 static struct platform_driver mxic_spi_driver = {
731 	.probe = mxic_spi_probe,
732 	.remove = mxic_spi_remove,
733 	.driver = {
734 		.name = "mxic-spi",
735 		.of_match_table = mxic_spi_of_ids,
736 		.pm = &mxic_spi_dev_pm_ops,
737 	},
738 };
739 module_platform_driver(mxic_spi_driver);
740 
741 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
742 MODULE_DESCRIPTION("MX25F0A SPI controller driver");
743 MODULE_LICENSE("GPL v2");
744