xref: /openbmc/linux/drivers/spi/spi-mtk-snfi.c (revision c059ee9d)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
4 //
5 // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
6 //
7 // This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
8 //
9 // Copyright (C) 2020 MediaTek Inc.
10 // Author: Weijie Gao <weijie.gao@mediatek.com>
11 //
12 // This controller organize the page data as several interleaved sectors
13 // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
14 // +---------+------+------+---------+------+------+-----+
15 // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
16 // +---------+------+------+---------+------+------+-----+
17 // With auto-format turned on, DMA only returns this part:
18 // +---------+---------+-----+
19 // | Sector1 | Sector2 | ... |
20 // +---------+---------+-----+
21 // The FDM data will be filled to the registers, and ECC parity data isn't
22 // accessible.
23 // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
24 // in it's original order shown in the first table. ECC can't be turned on when
25 // auto-format is off.
26 //
27 // However, Linux SPI-NAND driver expects the data returned as:
28 // +------+-----+
29 // | Page | OOB |
30 // +------+-----+
31 // where the page data is continuously stored instead of interleaved.
32 // So we assume all instructions matching the page_op template between ECC
33 // prepare_io_req and finish_io_req are for page cache r/w.
34 // Here's how this spi-mem driver operates when reading:
35 //  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
36 //  2. Perform page ops and let the controller fill the DMA bounce buffer with
37 //     de-interleaved sector data and set FDM registers.
38 //  3. Return the data as:
39 //     +---------+---------+-----+------+------+-----+
40 //     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
41 //     +---------+---------+-----+------+------+-----+
42 //  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
43 //     read the data with auto-format off into the bounce buffer and copy
44 //     needed data to the buffer specified in the request.
45 //
46 // Write requests operates in a similar manner.
47 // As a limitation of this strategy, we won't be able to access any ECC parity
48 // data at all in Linux.
49 //
50 // Here's the bad block mark situation on MTK chips:
51 // In older chips like mt7622, MTK uses the first FDM byte in the first sector
52 // as the bad block mark. After de-interleaving, this byte appears at [pagesize]
53 // in the returned data, which is the BBM position expected by kernel. However,
54 // the conventional bad block mark is the first byte of the OOB, which is part
55 // of the last sector data in the interleaved layout. Instead of fixing their
56 // hardware, MTK decided to address this inconsistency in software. On these
57 // later chips, the BootROM expects the following:
58 // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
59 //    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
60 // 2. The original byte stored at that position in the DMA buffer will be stored
61 //    as the first byte of the FDM section in the last sector.
62 // We can't disagree with the BootROM, so after de-interleaving, we need to
63 // perform the following swaps in read:
64 // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
65 //    which is the expected BBM position by kernel.
66 // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
67 //    [page_size - (nsectors - 1) * spare_size]
68 // Similarly, when writing, we need to perform swaps in the other direction.
69 
70 #include <linux/kernel.h>
71 #include <linux/module.h>
72 #include <linux/init.h>
73 #include <linux/device.h>
74 #include <linux/mutex.h>
75 #include <linux/clk.h>
76 #include <linux/interrupt.h>
77 #include <linux/dma-mapping.h>
78 #include <linux/iopoll.h>
79 #include <linux/of_platform.h>
80 #include <linux/mtd/nand-ecc-mtk.h>
81 #include <linux/spi/spi.h>
82 #include <linux/spi/spi-mem.h>
83 #include <linux/mtd/nand.h>
84 
85 // NFI registers
86 #define NFI_CNFG 0x000
87 #define CNFG_OP_MODE_S 12
88 #define CNFG_OP_MODE_CUST 6
89 #define CNFG_OP_MODE_PROGRAM 3
90 #define CNFG_AUTO_FMT_EN BIT(9)
91 #define CNFG_HW_ECC_EN BIT(8)
92 #define CNFG_DMA_BURST_EN BIT(2)
93 #define CNFG_READ_MODE BIT(1)
94 #define CNFG_DMA_MODE BIT(0)
95 
96 #define NFI_PAGEFMT 0x0004
97 #define NFI_SPARE_SIZE_LS_S 16
98 #define NFI_FDM_ECC_NUM_S 12
99 #define NFI_FDM_NUM_S 8
100 #define NFI_SPARE_SIZE_S 4
101 #define NFI_SEC_SEL_512 BIT(2)
102 #define NFI_PAGE_SIZE_S 0
103 #define NFI_PAGE_SIZE_512_2K 0
104 #define NFI_PAGE_SIZE_2K_4K 1
105 #define NFI_PAGE_SIZE_4K_8K 2
106 #define NFI_PAGE_SIZE_8K_16K 3
107 
108 #define NFI_CON 0x008
109 #define CON_SEC_NUM_S 12
110 #define CON_BWR BIT(9)
111 #define CON_BRD BIT(8)
112 #define CON_NFI_RST BIT(1)
113 #define CON_FIFO_FLUSH BIT(0)
114 
115 #define NFI_INTR_EN 0x010
116 #define NFI_INTR_STA 0x014
117 #define NFI_IRQ_INTR_EN BIT(31)
118 #define NFI_IRQ_CUS_READ BIT(8)
119 #define NFI_IRQ_CUS_PG BIT(7)
120 
121 #define NFI_CMD 0x020
122 #define NFI_CMD_DUMMY_READ 0x00
123 #define NFI_CMD_DUMMY_WRITE 0x80
124 
125 #define NFI_STRDATA 0x040
126 #define STR_DATA BIT(0)
127 
128 #define NFI_STA 0x060
129 #define NFI_NAND_FSM GENMASK(28, 24)
130 #define NFI_FSM GENMASK(19, 16)
131 #define READ_EMPTY BIT(12)
132 
133 #define NFI_FIFOSTA 0x064
134 #define FIFO_WR_REMAIN_S 8
135 #define FIFO_RD_REMAIN_S 0
136 
137 #define NFI_ADDRCNTR 0x070
138 #define SEC_CNTR GENMASK(16, 12)
139 #define SEC_CNTR_S 12
140 #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
141 
142 #define NFI_STRADDR 0x080
143 
144 #define NFI_BYTELEN 0x084
145 #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
146 
147 #define NFI_FDM0L 0x0a0
148 #define NFI_FDM0M 0x0a4
149 #define NFI_FDML(n) (NFI_FDM0L + (n)*8)
150 #define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
151 
152 #define NFI_DEBUG_CON1 0x220
153 #define WBUF_EN BIT(2)
154 
155 #define NFI_MASTERSTA 0x224
156 #define MAS_ADDR GENMASK(11, 9)
157 #define MAS_RD GENMASK(8, 6)
158 #define MAS_WR GENMASK(5, 3)
159 #define MAS_RDDLY GENMASK(2, 0)
160 #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
161 
162 // SNFI registers
163 #define SNF_MAC_CTL 0x500
164 #define MAC_XIO_SEL BIT(4)
165 #define SF_MAC_EN BIT(3)
166 #define SF_TRIG BIT(2)
167 #define WIP_READY BIT(1)
168 #define WIP BIT(0)
169 
170 #define SNF_MAC_OUTL 0x504
171 #define SNF_MAC_INL 0x508
172 
173 #define SNF_RD_CTL2 0x510
174 #define DATA_READ_DUMMY_S 8
175 #define DATA_READ_MAX_DUMMY 0xf
176 #define DATA_READ_CMD_S 0
177 
178 #define SNF_RD_CTL3 0x514
179 
180 #define SNF_PG_CTL1 0x524
181 #define PG_LOAD_CMD_S 8
182 
183 #define SNF_PG_CTL2 0x528
184 
185 #define SNF_MISC_CTL 0x538
186 #define SW_RST BIT(28)
187 #define FIFO_RD_LTC_S 25
188 #define PG_LOAD_X4_EN BIT(20)
189 #define DATA_READ_MODE_S 16
190 #define DATA_READ_MODE GENMASK(18, 16)
191 #define DATA_READ_MODE_X1 0
192 #define DATA_READ_MODE_X2 1
193 #define DATA_READ_MODE_X4 2
194 #define DATA_READ_MODE_DUAL 5
195 #define DATA_READ_MODE_QUAD 6
196 #define PG_LOAD_CUSTOM_EN BIT(7)
197 #define DATARD_CUSTOM_EN BIT(6)
198 #define CS_DESELECT_CYC_S 0
199 
200 #define SNF_MISC_CTL2 0x53c
201 #define PROGRAM_LOAD_BYTE_NUM_S 16
202 #define READ_DATA_BYTE_NUM_S 11
203 
204 #define SNF_DLY_CTL3 0x548
205 #define SFCK_SAM_DLY_S 0
206 
207 #define SNF_STA_CTL1 0x550
208 #define CUS_PG_DONE BIT(28)
209 #define CUS_READ_DONE BIT(27)
210 #define SPI_STATE_S 0
211 #define SPI_STATE GENMASK(3, 0)
212 
213 #define SNF_CFG 0x55c
214 #define SPI_MODE BIT(0)
215 
216 #define SNF_GPRAM 0x800
217 #define SNF_GPRAM_SIZE 0xa0
218 
219 #define SNFI_POLL_INTERVAL 1000000
220 
221 static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
222 
223 struct mtk_snand_caps {
224 	u16 sector_size;
225 	u16 max_sectors;
226 	u16 fdm_size;
227 	u16 fdm_ecc_size;
228 	u16 fifo_size;
229 
230 	bool bbm_swap;
231 	bool empty_page_check;
232 	u32 mastersta_mask;
233 
234 	const u8 *spare_sizes;
235 	u32 num_spare_size;
236 };
237 
238 static const struct mtk_snand_caps mt7622_snand_caps = {
239 	.sector_size = 512,
240 	.max_sectors = 8,
241 	.fdm_size = 8,
242 	.fdm_ecc_size = 1,
243 	.fifo_size = 32,
244 	.bbm_swap = false,
245 	.empty_page_check = false,
246 	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
247 	.spare_sizes = mt7622_spare_sizes,
248 	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
249 };
250 
251 static const struct mtk_snand_caps mt7629_snand_caps = {
252 	.sector_size = 512,
253 	.max_sectors = 8,
254 	.fdm_size = 8,
255 	.fdm_ecc_size = 1,
256 	.fifo_size = 32,
257 	.bbm_swap = true,
258 	.empty_page_check = false,
259 	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
260 	.spare_sizes = mt7622_spare_sizes,
261 	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
262 };
263 
264 struct mtk_snand_conf {
265 	size_t page_size;
266 	size_t oob_size;
267 	u8 nsectors;
268 	u8 spare_size;
269 };
270 
271 struct mtk_snand {
272 	struct spi_controller *ctlr;
273 	struct device *dev;
274 	struct clk *nfi_clk;
275 	struct clk *pad_clk;
276 	void __iomem *nfi_base;
277 	int irq;
278 	struct completion op_done;
279 	const struct mtk_snand_caps *caps;
280 	struct mtk_ecc_config *ecc_cfg;
281 	struct mtk_ecc *ecc;
282 	struct mtk_snand_conf nfi_cfg;
283 	struct mtk_ecc_stats ecc_stats;
284 	struct nand_ecc_engine ecc_eng;
285 	bool autofmt;
286 	u8 *buf;
287 	size_t buf_len;
288 };
289 
290 static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
291 {
292 	struct nand_ecc_engine *eng = nand->ecc.engine;
293 
294 	return container_of(eng, struct mtk_snand, ecc_eng);
295 }
296 
297 static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
298 {
299 	if (snf->buf_len >= size)
300 		return 0;
301 	kfree(snf->buf);
302 	snf->buf = kmalloc(size, GFP_KERNEL);
303 	if (!snf->buf)
304 		return -ENOMEM;
305 	snf->buf_len = size;
306 	memset(snf->buf, 0xff, snf->buf_len);
307 	return 0;
308 }
309 
310 static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
311 {
312 	return readl(snf->nfi_base + reg);
313 }
314 
315 static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
316 {
317 	writel(val, snf->nfi_base + reg);
318 }
319 
320 static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
321 {
322 	writew(val, snf->nfi_base + reg);
323 }
324 
325 static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
326 {
327 	u32 val;
328 
329 	val = readl(snf->nfi_base + reg);
330 	val &= ~clr;
331 	val |= set;
332 	writel(val, snf->nfi_base + reg);
333 }
334 
335 static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
336 {
337 	u32 i, val = 0, es = sizeof(u32);
338 
339 	for (i = reg; i < reg + len; i++) {
340 		if (i == reg || i % es == 0)
341 			val = nfi_read32(snf, i & ~(es - 1));
342 
343 		*data++ = (u8)(val >> (8 * (i % es)));
344 	}
345 }
346 
347 static int mtk_nfi_reset(struct mtk_snand *snf)
348 {
349 	u32 val, fifo_mask;
350 	int ret;
351 
352 	nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
353 
354 	ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
355 				 !(val & snf->caps->mastersta_mask), 0,
356 				 SNFI_POLL_INTERVAL);
357 	if (ret) {
358 		dev_err(snf->dev, "NFI master is still busy after reset\n");
359 		return ret;
360 	}
361 
362 	ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
363 				 !(val & (NFI_FSM | NFI_NAND_FSM)), 0,
364 				 SNFI_POLL_INTERVAL);
365 	if (ret) {
366 		dev_err(snf->dev, "Failed to reset NFI\n");
367 		return ret;
368 	}
369 
370 	fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
371 		    ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
372 	ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
373 				 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
374 	if (ret) {
375 		dev_err(snf->dev, "NFI FIFOs are not empty\n");
376 		return ret;
377 	}
378 
379 	return 0;
380 }
381 
382 static int mtk_snand_mac_reset(struct mtk_snand *snf)
383 {
384 	int ret;
385 	u32 val;
386 
387 	nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
388 
389 	ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
390 				 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
391 	if (ret)
392 		dev_err(snf->dev, "Failed to reset SNFI MAC\n");
393 
394 	nfi_write32(snf, SNF_MISC_CTL,
395 		    (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
396 
397 	return ret;
398 }
399 
400 static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
401 {
402 	int ret;
403 	u32 val;
404 
405 	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
406 	nfi_write32(snf, SNF_MAC_OUTL, outlen);
407 	nfi_write32(snf, SNF_MAC_INL, inlen);
408 
409 	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
410 
411 	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
412 				 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
413 	if (ret) {
414 		dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
415 		goto cleanup;
416 	}
417 
418 	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
419 				 0, SNFI_POLL_INTERVAL);
420 	if (ret)
421 		dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
422 
423 cleanup:
424 	nfi_write32(snf, SNF_MAC_CTL, 0);
425 
426 	return ret;
427 }
428 
429 static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
430 {
431 	u32 rx_len = 0;
432 	u32 reg_offs = 0;
433 	u32 val = 0;
434 	const u8 *tx_buf = NULL;
435 	u8 *rx_buf = NULL;
436 	int i, ret;
437 	u8 b;
438 
439 	if (op->data.dir == SPI_MEM_DATA_IN) {
440 		rx_len = op->data.nbytes;
441 		rx_buf = op->data.buf.in;
442 	} else {
443 		tx_buf = op->data.buf.out;
444 	}
445 
446 	mtk_snand_mac_reset(snf);
447 
448 	for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
449 		b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
450 		val |= b << (8 * (reg_offs % 4));
451 		if (reg_offs % 4 == 3) {
452 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
453 			val = 0;
454 		}
455 	}
456 
457 	for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
458 		b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
459 		val |= b << (8 * (reg_offs % 4));
460 		if (reg_offs % 4 == 3) {
461 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
462 			val = 0;
463 		}
464 	}
465 
466 	for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
467 		if (reg_offs % 4 == 3) {
468 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
469 			val = 0;
470 		}
471 	}
472 
473 	if (op->data.dir == SPI_MEM_DATA_OUT) {
474 		for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
475 			val |= tx_buf[i] << (8 * (reg_offs % 4));
476 			if (reg_offs % 4 == 3) {
477 				nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
478 				val = 0;
479 			}
480 		}
481 	}
482 
483 	if (reg_offs % 4)
484 		nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
485 
486 	for (i = 0; i < reg_offs; i += 4)
487 		dev_dbg(snf->dev, "%d: %08X", i,
488 			nfi_read32(snf, SNF_GPRAM + i));
489 
490 	dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
491 
492 	ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
493 	if (ret)
494 		return ret;
495 
496 	if (!rx_len)
497 		return 0;
498 
499 	nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
500 	return 0;
501 }
502 
503 static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
504 				   u32 oob_size)
505 {
506 	int spare_idx = -1;
507 	u32 spare_size, spare_size_shift, pagesize_idx;
508 	u32 sector_size_512;
509 	u8 nsectors;
510 	int i;
511 
512 	// skip if it's already configured as required.
513 	if (snf->nfi_cfg.page_size == page_size &&
514 	    snf->nfi_cfg.oob_size == oob_size)
515 		return 0;
516 
517 	nsectors = page_size / snf->caps->sector_size;
518 	if (nsectors > snf->caps->max_sectors) {
519 		dev_err(snf->dev, "too many sectors required.\n");
520 		goto err;
521 	}
522 
523 	if (snf->caps->sector_size == 512) {
524 		sector_size_512 = NFI_SEC_SEL_512;
525 		spare_size_shift = NFI_SPARE_SIZE_S;
526 	} else {
527 		sector_size_512 = 0;
528 		spare_size_shift = NFI_SPARE_SIZE_LS_S;
529 	}
530 
531 	switch (page_size) {
532 	case SZ_512:
533 		pagesize_idx = NFI_PAGE_SIZE_512_2K;
534 		break;
535 	case SZ_2K:
536 		if (snf->caps->sector_size == 512)
537 			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
538 		else
539 			pagesize_idx = NFI_PAGE_SIZE_512_2K;
540 		break;
541 	case SZ_4K:
542 		if (snf->caps->sector_size == 512)
543 			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
544 		else
545 			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
546 		break;
547 	case SZ_8K:
548 		if (snf->caps->sector_size == 512)
549 			pagesize_idx = NFI_PAGE_SIZE_8K_16K;
550 		else
551 			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
552 		break;
553 	case SZ_16K:
554 		pagesize_idx = NFI_PAGE_SIZE_8K_16K;
555 		break;
556 	default:
557 		dev_err(snf->dev, "unsupported page size.\n");
558 		goto err;
559 	}
560 
561 	spare_size = oob_size / nsectors;
562 	// If we're using the 1KB sector size, HW will automatically double the
563 	// spare size. We should only use half of the value in this case.
564 	if (snf->caps->sector_size == 1024)
565 		spare_size /= 2;
566 
567 	for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
568 		if (snf->caps->spare_sizes[i] <= spare_size) {
569 			spare_size = snf->caps->spare_sizes[i];
570 			if (snf->caps->sector_size == 1024)
571 				spare_size *= 2;
572 			spare_idx = i;
573 			break;
574 		}
575 	}
576 
577 	if (spare_idx < 0) {
578 		dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
579 		goto err;
580 	}
581 
582 	nfi_write32(snf, NFI_PAGEFMT,
583 		    (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
584 			    (snf->caps->fdm_size << NFI_FDM_NUM_S) |
585 			    (spare_idx << spare_size_shift) |
586 			    (pagesize_idx << NFI_PAGE_SIZE_S) |
587 			    sector_size_512);
588 
589 	snf->nfi_cfg.page_size = page_size;
590 	snf->nfi_cfg.oob_size = oob_size;
591 	snf->nfi_cfg.nsectors = nsectors;
592 	snf->nfi_cfg.spare_size = spare_size;
593 
594 	dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
595 		snf->caps->sector_size, spare_size, nsectors);
596 	return snand_prepare_bouncebuf(snf, page_size + oob_size);
597 err:
598 	dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
599 		oob_size);
600 	return -EOPNOTSUPP;
601 }
602 
603 static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
604 				   struct mtd_oob_region *oobecc)
605 {
606 	// ECC area is not accessible
607 	return -ERANGE;
608 }
609 
610 static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
611 				    struct mtd_oob_region *oobfree)
612 {
613 	struct nand_device *nand = mtd_to_nanddev(mtd);
614 	struct mtk_snand *ms = nand_to_mtk_snand(nand);
615 
616 	if (section >= ms->nfi_cfg.nsectors)
617 		return -ERANGE;
618 
619 	oobfree->length = ms->caps->fdm_size - 1;
620 	oobfree->offset = section * ms->caps->fdm_size + 1;
621 	return 0;
622 }
623 
624 static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
625 	.ecc = mtk_snand_ooblayout_ecc,
626 	.free = mtk_snand_ooblayout_free,
627 };
628 
629 static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
630 {
631 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
632 	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
633 	struct nand_ecc_props *reqs = &nand->ecc.requirements;
634 	struct nand_ecc_props *user = &nand->ecc.user_conf;
635 	struct mtd_info *mtd = nanddev_to_mtd(nand);
636 	int step_size = 0, strength = 0, desired_correction = 0, steps;
637 	bool ecc_user = false;
638 	int ret;
639 	u32 parity_bits, max_ecc_bytes;
640 	struct mtk_ecc_config *ecc_cfg;
641 
642 	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
643 				      nand->memorg.oobsize);
644 	if (ret)
645 		return ret;
646 
647 	ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
648 	if (!ecc_cfg)
649 		return -ENOMEM;
650 
651 	nand->ecc.ctx.priv = ecc_cfg;
652 
653 	if (user->step_size && user->strength) {
654 		step_size = user->step_size;
655 		strength = user->strength;
656 		ecc_user = true;
657 	} else if (reqs->step_size && reqs->strength) {
658 		step_size = reqs->step_size;
659 		strength = reqs->strength;
660 	}
661 
662 	if (step_size && strength) {
663 		steps = mtd->writesize / step_size;
664 		desired_correction = steps * strength;
665 		strength = desired_correction / snf->nfi_cfg.nsectors;
666 	}
667 
668 	ecc_cfg->mode = ECC_NFI_MODE;
669 	ecc_cfg->sectors = snf->nfi_cfg.nsectors;
670 	ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
671 
672 	// calculate the max possible strength under current page format
673 	parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
674 	max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
675 	ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
676 	mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
677 
678 	// if there's a user requested strength, find the minimum strength that
679 	// meets the requirement. Otherwise use the maximum strength which is
680 	// expected by BootROM.
681 	if (ecc_user && strength) {
682 		u32 s_next = ecc_cfg->strength - 1;
683 
684 		while (1) {
685 			mtk_ecc_adjust_strength(snf->ecc, &s_next);
686 			if (s_next >= ecc_cfg->strength)
687 				break;
688 			if (s_next < strength)
689 				break;
690 			s_next = ecc_cfg->strength - 1;
691 		}
692 	}
693 
694 	mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
695 
696 	conf->step_size = snf->caps->sector_size;
697 	conf->strength = ecc_cfg->strength;
698 
699 	if (ecc_cfg->strength < strength)
700 		dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
701 			 strength);
702 	dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
703 		 ecc_cfg->strength, snf->caps->sector_size);
704 
705 	return 0;
706 }
707 
708 static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
709 {
710 	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
711 
712 	kfree(ecc_cfg);
713 }
714 
715 static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
716 					struct nand_page_io_req *req)
717 {
718 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
719 	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
720 	int ret;
721 
722 	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
723 				      nand->memorg.oobsize);
724 	if (ret)
725 		return ret;
726 	snf->autofmt = true;
727 	snf->ecc_cfg = ecc_cfg;
728 	return 0;
729 }
730 
731 static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
732 				       struct nand_page_io_req *req)
733 {
734 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
735 	struct mtd_info *mtd = nanddev_to_mtd(nand);
736 
737 	snf->ecc_cfg = NULL;
738 	snf->autofmt = false;
739 	if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
740 		return 0;
741 
742 	if (snf->ecc_stats.failed)
743 		mtd->ecc_stats.failed += snf->ecc_stats.failed;
744 	mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
745 	return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
746 }
747 
748 static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
749 	.init_ctx = mtk_snand_ecc_init_ctx,
750 	.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
751 	.prepare_io_req = mtk_snand_ecc_prepare_io_req,
752 	.finish_io_req = mtk_snand_ecc_finish_io_req,
753 };
754 
755 static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
756 {
757 	u32 vall, valm;
758 	u8 *oobptr = buf;
759 	int i, j;
760 
761 	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
762 		vall = nfi_read32(snf, NFI_FDML(i));
763 		valm = nfi_read32(snf, NFI_FDMM(i));
764 
765 		for (j = 0; j < snf->caps->fdm_size; j++)
766 			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
767 
768 		oobptr += snf->caps->fdm_size;
769 	}
770 }
771 
772 static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
773 {
774 	u32 fdm_size = snf->caps->fdm_size;
775 	const u8 *oobptr = buf;
776 	u32 vall, valm;
777 	int i, j;
778 
779 	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
780 		vall = 0;
781 		valm = 0;
782 
783 		for (j = 0; j < 8; j++) {
784 			if (j < 4)
785 				vall |= (j < fdm_size ? oobptr[j] : 0xff)
786 					<< (j * 8);
787 			else
788 				valm |= (j < fdm_size ? oobptr[j] : 0xff)
789 					<< ((j - 4) * 8);
790 		}
791 
792 		nfi_write32(snf, NFI_FDML(i), vall);
793 		nfi_write32(snf, NFI_FDMM(i), valm);
794 
795 		oobptr += fdm_size;
796 	}
797 }
798 
799 static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
800 {
801 	u32 buf_bbm_pos, fdm_bbm_pos;
802 
803 	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
804 		return;
805 
806 	// swap [pagesize] byte on nand with the first fdm byte
807 	// in the last sector.
808 	buf_bbm_pos = snf->nfi_cfg.page_size -
809 		      (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
810 	fdm_bbm_pos = snf->nfi_cfg.page_size +
811 		      (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
812 
813 	swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
814 }
815 
816 static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
817 {
818 	u32 fdm_bbm_pos1, fdm_bbm_pos2;
819 
820 	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
821 		return;
822 
823 	// swap the first fdm byte in the first and the last sector.
824 	fdm_bbm_pos1 = snf->nfi_cfg.page_size;
825 	fdm_bbm_pos2 = snf->nfi_cfg.page_size +
826 		       (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
827 	swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
828 }
829 
830 static int mtk_snand_read_page_cache(struct mtk_snand *snf,
831 				     const struct spi_mem_op *op)
832 {
833 	u8 *buf = snf->buf;
834 	u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
835 	// the address part to be sent by the controller
836 	u32 op_addr = op->addr.val;
837 	// where to start copying data from bounce buffer
838 	u32 rd_offset = 0;
839 	u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
840 	u32 op_mode = 0;
841 	u32 dma_len = snf->buf_len;
842 	int ret = 0;
843 	u32 rd_mode, rd_bytes, val;
844 	dma_addr_t buf_dma;
845 
846 	if (snf->autofmt) {
847 		u32 last_bit;
848 		u32 mask;
849 
850 		dma_len = snf->nfi_cfg.page_size;
851 		op_mode = CNFG_AUTO_FMT_EN;
852 		if (op->data.ecc)
853 			op_mode |= CNFG_HW_ECC_EN;
854 		// extract the plane bit:
855 		// Find the highest bit set in (pagesize+oobsize).
856 		// Bits higher than that in op->addr are kept and sent over SPI
857 		// Lower bits are used as an offset for copying data from DMA
858 		// bounce buffer.
859 		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
860 		mask = (1 << last_bit) - 1;
861 		rd_offset = op_addr & mask;
862 		op_addr &= ~mask;
863 
864 		// check if we can dma to the caller memory
865 		if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
866 			buf = op->data.buf.in;
867 	}
868 	mtk_snand_mac_reset(snf);
869 	mtk_nfi_reset(snf);
870 
871 	// command and dummy cycles
872 	nfi_write32(snf, SNF_RD_CTL2,
873 		    (dummy_clk << DATA_READ_DUMMY_S) |
874 			    (op->cmd.opcode << DATA_READ_CMD_S));
875 
876 	// read address
877 	nfi_write32(snf, SNF_RD_CTL3, op_addr);
878 
879 	// Set read op_mode
880 	if (op->data.buswidth == 4)
881 		rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
882 						   DATA_READ_MODE_X4;
883 	else if (op->data.buswidth == 2)
884 		rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
885 						   DATA_READ_MODE_X2;
886 	else
887 		rd_mode = DATA_READ_MODE_X1;
888 	rd_mode <<= DATA_READ_MODE_S;
889 	nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
890 		  rd_mode | DATARD_CUSTOM_EN);
891 
892 	// Set bytes to read
893 	rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
894 		   snf->nfi_cfg.nsectors;
895 	nfi_write32(snf, SNF_MISC_CTL2,
896 		    (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
897 
898 	// NFI read prepare
899 	nfi_write16(snf, NFI_CNFG,
900 		    (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
901 			    CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
902 
903 	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
904 
905 	buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
906 	ret = dma_mapping_error(snf->dev, buf_dma);
907 	if (ret) {
908 		dev_err(snf->dev, "DMA mapping failed.\n");
909 		goto cleanup;
910 	}
911 	nfi_write32(snf, NFI_STRADDR, buf_dma);
912 	if (op->data.ecc) {
913 		snf->ecc_cfg->op = ECC_DECODE;
914 		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
915 		if (ret)
916 			goto cleanup_dma;
917 	}
918 	// Prepare for custom read interrupt
919 	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
920 	reinit_completion(&snf->op_done);
921 
922 	// Trigger NFI into custom mode
923 	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
924 
925 	// Start DMA read
926 	nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
927 	nfi_write16(snf, NFI_STRDATA, STR_DATA);
928 
929 	if (!wait_for_completion_timeout(
930 		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
931 		dev_err(snf->dev, "DMA timed out for reading from cache.\n");
932 		ret = -ETIMEDOUT;
933 		goto cleanup;
934 	}
935 
936 	// Wait for BUS_SEC_CNTR returning expected value
937 	ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
938 				 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
939 				 SNFI_POLL_INTERVAL);
940 	if (ret) {
941 		dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
942 		goto cleanup2;
943 	}
944 
945 	// Wait for bus becoming idle
946 	ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
947 				 !(val & snf->caps->mastersta_mask), 0,
948 				 SNFI_POLL_INTERVAL);
949 	if (ret) {
950 		dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
951 		goto cleanup2;
952 	}
953 
954 	if (op->data.ecc) {
955 		ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
956 		if (ret) {
957 			dev_err(snf->dev, "wait ecc done timeout\n");
958 			goto cleanup2;
959 		}
960 		// save status before disabling ecc
961 		mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
962 				  snf->nfi_cfg.nsectors);
963 	}
964 
965 	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
966 
967 	if (snf->autofmt) {
968 		mtk_snand_read_fdm(snf, buf_fdm);
969 		if (snf->caps->bbm_swap) {
970 			mtk_snand_bm_swap(snf, buf);
971 			mtk_snand_fdm_bm_swap(snf);
972 		}
973 	}
974 
975 	// copy data back
976 	if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
977 		memset(op->data.buf.in, 0xff, op->data.nbytes);
978 		snf->ecc_stats.bitflips = 0;
979 		snf->ecc_stats.failed = 0;
980 		snf->ecc_stats.corrected = 0;
981 	} else {
982 		if (buf == op->data.buf.in) {
983 			u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
984 			u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
985 
986 			if (req_left)
987 				memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
988 				       buf_fdm,
989 				       cap_len < req_left ? cap_len : req_left);
990 		} else if (rd_offset < snf->buf_len) {
991 			u32 cap_len = snf->buf_len - rd_offset;
992 
993 			if (op->data.nbytes < cap_len)
994 				cap_len = op->data.nbytes;
995 			memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
996 		}
997 	}
998 cleanup2:
999 	if (op->data.ecc)
1000 		mtk_ecc_disable(snf->ecc);
1001 cleanup_dma:
1002 	// unmap dma only if any error happens. (otherwise it's done before
1003 	// data copying)
1004 	if (ret)
1005 		dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1006 cleanup:
1007 	// Stop read
1008 	nfi_write32(snf, NFI_CON, 0);
1009 	nfi_write16(snf, NFI_CNFG, 0);
1010 
1011 	// Clear SNF done flag
1012 	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1013 	nfi_write32(snf, SNF_STA_CTL1, 0);
1014 
1015 	// Disable interrupt
1016 	nfi_read32(snf, NFI_INTR_STA);
1017 	nfi_write32(snf, NFI_INTR_EN, 0);
1018 
1019 	nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1020 	return ret;
1021 }
1022 
1023 static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1024 				      const struct spi_mem_op *op)
1025 {
1026 	// the address part to be sent by the controller
1027 	u32 op_addr = op->addr.val;
1028 	// where to start copying data from bounce buffer
1029 	u32 wr_offset = 0;
1030 	u32 op_mode = 0;
1031 	int ret = 0;
1032 	u32 wr_mode = 0;
1033 	u32 dma_len = snf->buf_len;
1034 	u32 wr_bytes, val;
1035 	size_t cap_len;
1036 	dma_addr_t buf_dma;
1037 
1038 	if (snf->autofmt) {
1039 		u32 last_bit;
1040 		u32 mask;
1041 
1042 		dma_len = snf->nfi_cfg.page_size;
1043 		op_mode = CNFG_AUTO_FMT_EN;
1044 		if (op->data.ecc)
1045 			op_mode |= CNFG_HW_ECC_EN;
1046 
1047 		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1048 		mask = (1 << last_bit) - 1;
1049 		wr_offset = op_addr & mask;
1050 		op_addr &= ~mask;
1051 	}
1052 	mtk_snand_mac_reset(snf);
1053 	mtk_nfi_reset(snf);
1054 
1055 	if (wr_offset)
1056 		memset(snf->buf, 0xff, wr_offset);
1057 
1058 	cap_len = snf->buf_len - wr_offset;
1059 	if (op->data.nbytes < cap_len)
1060 		cap_len = op->data.nbytes;
1061 	memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1062 	if (snf->autofmt) {
1063 		if (snf->caps->bbm_swap) {
1064 			mtk_snand_fdm_bm_swap(snf);
1065 			mtk_snand_bm_swap(snf, snf->buf);
1066 		}
1067 		mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1068 	}
1069 
1070 	// Command
1071 	nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1072 
1073 	// write address
1074 	nfi_write32(snf, SNF_PG_CTL2, op_addr);
1075 
1076 	// Set read op_mode
1077 	if (op->data.buswidth == 4)
1078 		wr_mode = PG_LOAD_X4_EN;
1079 
1080 	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1081 		  wr_mode | PG_LOAD_CUSTOM_EN);
1082 
1083 	// Set bytes to write
1084 	wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1085 		   snf->nfi_cfg.nsectors;
1086 	nfi_write32(snf, SNF_MISC_CTL2,
1087 		    (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1088 
1089 	// NFI write prepare
1090 	nfi_write16(snf, NFI_CNFG,
1091 		    (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1092 			    CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1093 
1094 	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1095 	buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
1096 	ret = dma_mapping_error(snf->dev, buf_dma);
1097 	if (ret) {
1098 		dev_err(snf->dev, "DMA mapping failed.\n");
1099 		goto cleanup;
1100 	}
1101 	nfi_write32(snf, NFI_STRADDR, buf_dma);
1102 	if (op->data.ecc) {
1103 		snf->ecc_cfg->op = ECC_ENCODE;
1104 		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1105 		if (ret)
1106 			goto cleanup_dma;
1107 	}
1108 	// Prepare for custom write interrupt
1109 	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1110 	reinit_completion(&snf->op_done);
1111 	;
1112 
1113 	// Trigger NFI into custom mode
1114 	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1115 
1116 	// Start DMA write
1117 	nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1118 	nfi_write16(snf, NFI_STRDATA, STR_DATA);
1119 
1120 	if (!wait_for_completion_timeout(
1121 		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1122 		dev_err(snf->dev, "DMA timed out for program load.\n");
1123 		ret = -ETIMEDOUT;
1124 		goto cleanup_ecc;
1125 	}
1126 
1127 	// Wait for NFI_SEC_CNTR returning expected value
1128 	ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1129 				 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1130 				 SNFI_POLL_INTERVAL);
1131 	if (ret)
1132 		dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1133 
1134 cleanup_ecc:
1135 	if (op->data.ecc)
1136 		mtk_ecc_disable(snf->ecc);
1137 cleanup_dma:
1138 	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1139 cleanup:
1140 	// Stop write
1141 	nfi_write32(snf, NFI_CON, 0);
1142 	nfi_write16(snf, NFI_CNFG, 0);
1143 
1144 	// Clear SNF done flag
1145 	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1146 	nfi_write32(snf, SNF_STA_CTL1, 0);
1147 
1148 	// Disable interrupt
1149 	nfi_read32(snf, NFI_INTR_STA);
1150 	nfi_write32(snf, NFI_INTR_EN, 0);
1151 
1152 	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1153 
1154 	return ret;
1155 }
1156 
1157 /**
1158  * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1159  * @op spi-mem op to check
1160  *
1161  * Check whether op can be executed with read_from_cache or program_load
1162  * mode in the controller.
1163  * This controller can execute typical Read From Cache and Program Load
1164  * instructions found on SPI-NAND with 2-byte address.
1165  * DTR and cmd buswidth & nbytes should be checked before calling this.
1166  *
1167  * Return: true if the op matches the instruction template
1168  */
1169 static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1170 {
1171 	if (op->addr.nbytes != 2)
1172 		return false;
1173 
1174 	if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1175 	    op->addr.buswidth != 4)
1176 		return false;
1177 
1178 	// match read from page instructions
1179 	if (op->data.dir == SPI_MEM_DATA_IN) {
1180 		// check dummy cycle first
1181 		if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1182 		    DATA_READ_MAX_DUMMY)
1183 			return false;
1184 		// quad io / quad out
1185 		if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1186 		    op->data.buswidth == 4)
1187 			return true;
1188 
1189 		// dual io / dual out
1190 		if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1191 		    op->data.buswidth == 2)
1192 			return true;
1193 
1194 		// standard spi
1195 		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1196 			return true;
1197 	} else if (op->data.dir == SPI_MEM_DATA_OUT) {
1198 		// check dummy cycle first
1199 		if (op->dummy.nbytes)
1200 			return false;
1201 		// program load quad out
1202 		if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1203 			return true;
1204 		// standard spi
1205 		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1206 			return true;
1207 	}
1208 	return false;
1209 }
1210 
1211 static bool mtk_snand_supports_op(struct spi_mem *mem,
1212 				  const struct spi_mem_op *op)
1213 {
1214 	if (!spi_mem_default_supports_op(mem, op))
1215 		return false;
1216 	if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1217 		return false;
1218 	if (mtk_snand_is_page_ops(op))
1219 		return true;
1220 	return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1221 		(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1222 		(op->data.nbytes == 0 || op->data.buswidth == 1));
1223 }
1224 
1225 static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1226 {
1227 	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1228 	// page ops transfer size must be exactly ((sector_size + spare_size) *
1229 	// nsectors). Limit the op size if the caller requests more than that.
1230 	// exec_op will read more than needed and discard the leftover if the
1231 	// caller requests less data.
1232 	if (mtk_snand_is_page_ops(op)) {
1233 		size_t l;
1234 		// skip adjust_op_size for page ops
1235 		if (ms->autofmt)
1236 			return 0;
1237 		l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1238 		l *= ms->nfi_cfg.nsectors;
1239 		if (op->data.nbytes > l)
1240 			op->data.nbytes = l;
1241 	} else {
1242 		size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1243 
1244 		if (hl >= SNF_GPRAM_SIZE)
1245 			return -EOPNOTSUPP;
1246 		if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1247 			op->data.nbytes = SNF_GPRAM_SIZE - hl;
1248 	}
1249 	return 0;
1250 }
1251 
1252 static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1253 {
1254 	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1255 
1256 	dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1257 		op->addr.val, op->addr.buswidth, op->addr.nbytes,
1258 		op->data.buswidth, op->data.nbytes);
1259 	if (mtk_snand_is_page_ops(op)) {
1260 		if (op->data.dir == SPI_MEM_DATA_IN)
1261 			return mtk_snand_read_page_cache(ms, op);
1262 		else
1263 			return mtk_snand_write_page_cache(ms, op);
1264 	} else {
1265 		return mtk_snand_mac_io(ms, op);
1266 	}
1267 }
1268 
1269 static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1270 	.adjust_op_size = mtk_snand_adjust_op_size,
1271 	.supports_op = mtk_snand_supports_op,
1272 	.exec_op = mtk_snand_exec_op,
1273 };
1274 
1275 static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1276 	.ecc = true,
1277 };
1278 
1279 static irqreturn_t mtk_snand_irq(int irq, void *id)
1280 {
1281 	struct mtk_snand *snf = id;
1282 	u32 sta, ien;
1283 
1284 	sta = nfi_read32(snf, NFI_INTR_STA);
1285 	ien = nfi_read32(snf, NFI_INTR_EN);
1286 
1287 	if (!(sta & ien))
1288 		return IRQ_NONE;
1289 
1290 	nfi_write32(snf, NFI_INTR_EN, 0);
1291 	complete(&snf->op_done);
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 static const struct of_device_id mtk_snand_ids[] = {
1296 	{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1297 	{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
1298 	{},
1299 };
1300 
1301 MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1302 
1303 static int mtk_snand_enable_clk(struct mtk_snand *ms)
1304 {
1305 	int ret;
1306 
1307 	ret = clk_prepare_enable(ms->nfi_clk);
1308 	if (ret) {
1309 		dev_err(ms->dev, "unable to enable nfi clk\n");
1310 		return ret;
1311 	}
1312 	ret = clk_prepare_enable(ms->pad_clk);
1313 	if (ret) {
1314 		dev_err(ms->dev, "unable to enable pad clk\n");
1315 		goto err1;
1316 	}
1317 	return 0;
1318 err1:
1319 	clk_disable_unprepare(ms->nfi_clk);
1320 	return ret;
1321 }
1322 
1323 static void mtk_snand_disable_clk(struct mtk_snand *ms)
1324 {
1325 	clk_disable_unprepare(ms->pad_clk);
1326 	clk_disable_unprepare(ms->nfi_clk);
1327 }
1328 
1329 static int mtk_snand_probe(struct platform_device *pdev)
1330 {
1331 	struct device_node *np = pdev->dev.of_node;
1332 	const struct of_device_id *dev_id;
1333 	struct spi_controller *ctlr;
1334 	struct mtk_snand *ms;
1335 	int ret;
1336 
1337 	dev_id = of_match_node(mtk_snand_ids, np);
1338 	if (!dev_id)
1339 		return -EINVAL;
1340 
1341 	ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
1342 	if (!ctlr)
1343 		return -ENOMEM;
1344 	platform_set_drvdata(pdev, ctlr);
1345 
1346 	ms = spi_controller_get_devdata(ctlr);
1347 
1348 	ms->ctlr = ctlr;
1349 	ms->caps = dev_id->data;
1350 
1351 	ms->ecc = of_mtk_ecc_get(np);
1352 	if (IS_ERR(ms->ecc))
1353 		return PTR_ERR(ms->ecc);
1354 	else if (!ms->ecc)
1355 		return -ENODEV;
1356 
1357 	ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1358 	if (IS_ERR(ms->nfi_base)) {
1359 		ret = PTR_ERR(ms->nfi_base);
1360 		goto release_ecc;
1361 	}
1362 
1363 	ms->dev = &pdev->dev;
1364 
1365 	ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
1366 	if (IS_ERR(ms->nfi_clk)) {
1367 		ret = PTR_ERR(ms->nfi_clk);
1368 		dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1369 		goto release_ecc;
1370 	}
1371 
1372 	ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
1373 	if (IS_ERR(ms->pad_clk)) {
1374 		ret = PTR_ERR(ms->pad_clk);
1375 		dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1376 		goto release_ecc;
1377 	}
1378 
1379 	ret = mtk_snand_enable_clk(ms);
1380 	if (ret)
1381 		goto release_ecc;
1382 
1383 	init_completion(&ms->op_done);
1384 
1385 	ms->irq = platform_get_irq(pdev, 0);
1386 	if (ms->irq < 0) {
1387 		ret = ms->irq;
1388 		goto disable_clk;
1389 	}
1390 	ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1391 			       "mtk-snand", ms);
1392 	if (ret) {
1393 		dev_err(ms->dev, "failed to request snfi irq\n");
1394 		goto disable_clk;
1395 	}
1396 
1397 	ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1398 	if (ret) {
1399 		dev_err(ms->dev, "failed to set dma mask\n");
1400 		goto disable_clk;
1401 	}
1402 
1403 	// switch to SNFI mode
1404 	nfi_write32(ms, SNF_CFG, SPI_MODE);
1405 
1406 	// setup an initial page format for ops matching page_cache_op template
1407 	// before ECC is called.
1408 	ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
1409 				      ms->caps->spare_sizes[0]);
1410 	if (ret) {
1411 		dev_err(ms->dev, "failed to set initial page format\n");
1412 		goto disable_clk;
1413 	}
1414 
1415 	// setup ECC engine
1416 	ms->ecc_eng.dev = &pdev->dev;
1417 	ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1418 	ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1419 	ms->ecc_eng.priv = ms;
1420 
1421 	ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1422 	if (ret) {
1423 		dev_err(&pdev->dev, "failed to register ecc engine.\n");
1424 		goto disable_clk;
1425 	}
1426 
1427 	ctlr->num_chipselect = 1;
1428 	ctlr->mem_ops = &mtk_snand_mem_ops;
1429 	ctlr->mem_caps = &mtk_snand_mem_caps;
1430 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1431 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1432 	ctlr->dev.of_node = pdev->dev.of_node;
1433 	ret = spi_register_controller(ctlr);
1434 	if (ret) {
1435 		dev_err(&pdev->dev, "spi_register_controller failed.\n");
1436 		goto disable_clk;
1437 	}
1438 
1439 	return 0;
1440 disable_clk:
1441 	mtk_snand_disable_clk(ms);
1442 release_ecc:
1443 	mtk_ecc_release(ms->ecc);
1444 	return ret;
1445 }
1446 
1447 static int mtk_snand_remove(struct platform_device *pdev)
1448 {
1449 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1450 	struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1451 
1452 	spi_unregister_controller(ctlr);
1453 	mtk_snand_disable_clk(ms);
1454 	mtk_ecc_release(ms->ecc);
1455 	kfree(ms->buf);
1456 	return 0;
1457 }
1458 
1459 static struct platform_driver mtk_snand_driver = {
1460 	.probe = mtk_snand_probe,
1461 	.remove = mtk_snand_remove,
1462 	.driver = {
1463 		.name = "mtk-snand",
1464 		.of_match_table = mtk_snand_ids,
1465 	},
1466 };
1467 
1468 module_platform_driver(mtk_snand_driver);
1469 
1470 MODULE_LICENSE("GPL");
1471 MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1472 MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
1473