xref: /openbmc/linux/drivers/spi/spi-mtk-nor.c (revision 39f555fb)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Mediatek SPI NOR controller driver
4 //
5 // Copyright (C) 2020 Chuanhong Guo <gch981213@gmail.com>
6 
7 #include <linux/bits.h>
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/string.h>
22 
23 #define DRIVER_NAME "mtk-spi-nor"
24 
25 #define MTK_NOR_REG_CMD			0x00
26 #define MTK_NOR_CMD_WRITE		BIT(4)
27 #define MTK_NOR_CMD_PROGRAM		BIT(2)
28 #define MTK_NOR_CMD_READ		BIT(0)
29 #define MTK_NOR_CMD_MASK		GENMASK(5, 0)
30 
31 #define MTK_NOR_REG_PRG_CNT		0x04
32 #define MTK_NOR_PRG_CNT_MAX		56
33 #define MTK_NOR_REG_RDATA		0x0c
34 
35 #define MTK_NOR_REG_RADR0		0x10
36 #define MTK_NOR_REG_RADR(n)		(MTK_NOR_REG_RADR0 + 4 * (n))
37 #define MTK_NOR_REG_RADR3		0xc8
38 
39 #define MTK_NOR_REG_WDATA		0x1c
40 
41 #define MTK_NOR_REG_PRGDATA0		0x20
42 #define MTK_NOR_REG_PRGDATA(n)		(MTK_NOR_REG_PRGDATA0 + 4 * (n))
43 #define MTK_NOR_REG_PRGDATA_MAX		5
44 
45 #define MTK_NOR_REG_SHIFT0		0x38
46 #define MTK_NOR_REG_SHIFT(n)		(MTK_NOR_REG_SHIFT0 + 4 * (n))
47 #define MTK_NOR_REG_SHIFT_MAX		9
48 
49 #define MTK_NOR_REG_CFG1		0x60
50 #define MTK_NOR_FAST_READ		BIT(0)
51 
52 #define MTK_NOR_REG_CFG2		0x64
53 #define MTK_NOR_WR_CUSTOM_OP_EN		BIT(4)
54 #define MTK_NOR_WR_BUF_EN		BIT(0)
55 
56 #define MTK_NOR_REG_PP_DATA		0x98
57 
58 #define MTK_NOR_REG_IRQ_STAT		0xa8
59 #define MTK_NOR_REG_IRQ_EN		0xac
60 #define MTK_NOR_IRQ_DMA			BIT(7)
61 #define MTK_NOR_IRQ_MASK		GENMASK(7, 0)
62 
63 #define MTK_NOR_REG_CFG3		0xb4
64 #define MTK_NOR_DISABLE_WREN		BIT(7)
65 #define MTK_NOR_DISABLE_SR_POLL		BIT(5)
66 
67 #define MTK_NOR_REG_WP			0xc4
68 #define MTK_NOR_ENABLE_SF_CMD		0x30
69 
70 #define MTK_NOR_REG_BUSCFG		0xcc
71 #define MTK_NOR_4B_ADDR			BIT(4)
72 #define MTK_NOR_QUAD_ADDR		BIT(3)
73 #define MTK_NOR_QUAD_READ		BIT(2)
74 #define MTK_NOR_DUAL_ADDR		BIT(1)
75 #define MTK_NOR_DUAL_READ		BIT(0)
76 #define MTK_NOR_BUS_MODE_MASK		GENMASK(4, 0)
77 
78 #define MTK_NOR_REG_DMA_CTL		0x718
79 #define MTK_NOR_DMA_START		BIT(0)
80 
81 #define MTK_NOR_REG_DMA_FADR		0x71c
82 #define MTK_NOR_REG_DMA_DADR		0x720
83 #define MTK_NOR_REG_DMA_END_DADR	0x724
84 #define MTK_NOR_REG_CG_DIS		0x728
85 #define MTK_NOR_SFC_SW_RST		BIT(2)
86 
87 #define MTK_NOR_REG_DMA_DADR_HB		0x738
88 #define MTK_NOR_REG_DMA_END_DADR_HB	0x73c
89 
90 #define MTK_NOR_PRG_MAX_SIZE		6
91 // Reading DMA src/dst addresses have to be 16-byte aligned
92 #define MTK_NOR_DMA_ALIGN		16
93 #define MTK_NOR_DMA_ALIGN_MASK		(MTK_NOR_DMA_ALIGN - 1)
94 // and we allocate a bounce buffer if destination address isn't aligned.
95 #define MTK_NOR_BOUNCE_BUF_SIZE		PAGE_SIZE
96 
97 // Buffered page program can do one 128-byte transfer
98 #define MTK_NOR_PP_SIZE			128
99 
100 #define CLK_TO_US(sp, clkcnt)		DIV_ROUND_UP(clkcnt, sp->spi_freq / 1000000)
101 
102 struct mtk_nor_caps {
103 	u8 dma_bits;
104 
105 	/* extra_dummy_bit is adding for the IP of new SoCs.
106 	 * Some new SoCs modify the timing of fetching registers' values
107 	 * and IDs of nor flash, they need a extra_dummy_bit which can add
108 	 * more clock cycles for fetching data.
109 	 */
110 	u8 extra_dummy_bit;
111 };
112 
113 struct mtk_nor {
114 	struct spi_controller *ctlr;
115 	struct device *dev;
116 	void __iomem *base;
117 	u8 *buffer;
118 	dma_addr_t buffer_dma;
119 	struct clk *spi_clk;
120 	struct clk *ctlr_clk;
121 	struct clk *axi_clk;
122 	struct clk *axi_s_clk;
123 	unsigned int spi_freq;
124 	bool wbuf_en;
125 	bool has_irq;
126 	bool high_dma;
127 	struct completion op_done;
128 	const struct mtk_nor_caps *caps;
129 };
130 
131 static inline void mtk_nor_rmw(struct mtk_nor *sp, u32 reg, u32 set, u32 clr)
132 {
133 	u32 val = readl(sp->base + reg);
134 
135 	val &= ~clr;
136 	val |= set;
137 	writel(val, sp->base + reg);
138 }
139 
140 static inline int mtk_nor_cmd_exec(struct mtk_nor *sp, u32 cmd, ulong clk)
141 {
142 	ulong delay = CLK_TO_US(sp, clk);
143 	u32 reg;
144 	int ret;
145 
146 	writel(cmd, sp->base + MTK_NOR_REG_CMD);
147 	ret = readl_poll_timeout(sp->base + MTK_NOR_REG_CMD, reg, !(reg & cmd),
148 				 delay / 3, (delay + 1) * 200);
149 	if (ret < 0)
150 		dev_err(sp->dev, "command %u timeout.\n", cmd);
151 	return ret;
152 }
153 
154 static void mtk_nor_reset(struct mtk_nor *sp)
155 {
156 	mtk_nor_rmw(sp, MTK_NOR_REG_CG_DIS, 0, MTK_NOR_SFC_SW_RST);
157 	mb(); /* flush previous writes */
158 	mtk_nor_rmw(sp, MTK_NOR_REG_CG_DIS, MTK_NOR_SFC_SW_RST, 0);
159 	mb(); /* flush previous writes */
160 	writel(MTK_NOR_ENABLE_SF_CMD, sp->base + MTK_NOR_REG_WP);
161 }
162 
163 static void mtk_nor_set_addr(struct mtk_nor *sp, const struct spi_mem_op *op)
164 {
165 	u32 addr = op->addr.val;
166 	int i;
167 
168 	for (i = 0; i < 3; i++) {
169 		writeb(addr & 0xff, sp->base + MTK_NOR_REG_RADR(i));
170 		addr >>= 8;
171 	}
172 	if (op->addr.nbytes == 4) {
173 		writeb(addr & 0xff, sp->base + MTK_NOR_REG_RADR3);
174 		mtk_nor_rmw(sp, MTK_NOR_REG_BUSCFG, MTK_NOR_4B_ADDR, 0);
175 	} else {
176 		mtk_nor_rmw(sp, MTK_NOR_REG_BUSCFG, 0, MTK_NOR_4B_ADDR);
177 	}
178 }
179 
180 static bool need_bounce(struct mtk_nor *sp, const struct spi_mem_op *op)
181 {
182 	return ((uintptr_t)op->data.buf.in & MTK_NOR_DMA_ALIGN_MASK);
183 }
184 
185 static bool mtk_nor_match_read(const struct spi_mem_op *op)
186 {
187 	int dummy = 0;
188 
189 	if (op->dummy.nbytes)
190 		dummy = op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth;
191 
192 	if ((op->data.buswidth == 2) || (op->data.buswidth == 4)) {
193 		if (op->addr.buswidth == 1)
194 			return dummy == 8;
195 		else if (op->addr.buswidth == 2)
196 			return dummy == 4;
197 		else if (op->addr.buswidth == 4)
198 			return dummy == 6;
199 	} else if ((op->addr.buswidth == 1) && (op->data.buswidth == 1)) {
200 		if (op->cmd.opcode == 0x03)
201 			return dummy == 0;
202 		else if (op->cmd.opcode == 0x0b)
203 			return dummy == 8;
204 	}
205 	return false;
206 }
207 
208 static bool mtk_nor_match_prg(const struct spi_mem_op *op)
209 {
210 	int tx_len, rx_len, prg_len, prg_left;
211 
212 	// prg mode is spi-only.
213 	if ((op->cmd.buswidth > 1) || (op->addr.buswidth > 1) ||
214 	    (op->dummy.buswidth > 1) || (op->data.buswidth > 1))
215 		return false;
216 
217 	tx_len = op->cmd.nbytes + op->addr.nbytes;
218 
219 	if (op->data.dir == SPI_MEM_DATA_OUT) {
220 		// count dummy bytes only if we need to write data after it
221 		tx_len += op->dummy.nbytes;
222 
223 		// leave at least one byte for data
224 		if (tx_len > MTK_NOR_REG_PRGDATA_MAX)
225 			return false;
226 
227 		// if there's no addr, meaning adjust_op_size is impossible,
228 		// check data length as well.
229 		if ((!op->addr.nbytes) &&
230 		    (tx_len + op->data.nbytes > MTK_NOR_REG_PRGDATA_MAX + 1))
231 			return false;
232 	} else if (op->data.dir == SPI_MEM_DATA_IN) {
233 		if (tx_len > MTK_NOR_REG_PRGDATA_MAX + 1)
234 			return false;
235 
236 		rx_len = op->data.nbytes;
237 		prg_left = MTK_NOR_PRG_CNT_MAX / 8 - tx_len - op->dummy.nbytes;
238 		if (prg_left > MTK_NOR_REG_SHIFT_MAX + 1)
239 			prg_left = MTK_NOR_REG_SHIFT_MAX + 1;
240 		if (rx_len > prg_left) {
241 			if (!op->addr.nbytes)
242 				return false;
243 			rx_len = prg_left;
244 		}
245 
246 		prg_len = tx_len + op->dummy.nbytes + rx_len;
247 		if (prg_len > MTK_NOR_PRG_CNT_MAX / 8)
248 			return false;
249 	} else {
250 		prg_len = tx_len + op->dummy.nbytes;
251 		if (prg_len > MTK_NOR_PRG_CNT_MAX / 8)
252 			return false;
253 	}
254 	return true;
255 }
256 
257 static void mtk_nor_adj_prg_size(struct spi_mem_op *op)
258 {
259 	int tx_len, tx_left, prg_left;
260 
261 	tx_len = op->cmd.nbytes + op->addr.nbytes;
262 	if (op->data.dir == SPI_MEM_DATA_OUT) {
263 		tx_len += op->dummy.nbytes;
264 		tx_left = MTK_NOR_REG_PRGDATA_MAX + 1 - tx_len;
265 		if (op->data.nbytes > tx_left)
266 			op->data.nbytes = tx_left;
267 	} else if (op->data.dir == SPI_MEM_DATA_IN) {
268 		prg_left = MTK_NOR_PRG_CNT_MAX / 8 - tx_len - op->dummy.nbytes;
269 		if (prg_left > MTK_NOR_REG_SHIFT_MAX + 1)
270 			prg_left = MTK_NOR_REG_SHIFT_MAX + 1;
271 		if (op->data.nbytes > prg_left)
272 			op->data.nbytes = prg_left;
273 	}
274 }
275 
276 static int mtk_nor_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
277 {
278 	struct mtk_nor *sp = spi_controller_get_devdata(mem->spi->master);
279 
280 	if (!op->data.nbytes)
281 		return 0;
282 
283 	if ((op->addr.nbytes == 3) || (op->addr.nbytes == 4)) {
284 		if ((op->data.dir == SPI_MEM_DATA_IN) &&
285 		    mtk_nor_match_read(op)) {
286 			// limit size to prevent timeout calculation overflow
287 			if (op->data.nbytes > 0x400000)
288 				op->data.nbytes = 0x400000;
289 
290 			if ((op->addr.val & MTK_NOR_DMA_ALIGN_MASK) ||
291 			    (op->data.nbytes < MTK_NOR_DMA_ALIGN))
292 				op->data.nbytes = 1;
293 			else if (!need_bounce(sp, op))
294 				op->data.nbytes &= ~MTK_NOR_DMA_ALIGN_MASK;
295 			else if (op->data.nbytes > MTK_NOR_BOUNCE_BUF_SIZE)
296 				op->data.nbytes = MTK_NOR_BOUNCE_BUF_SIZE;
297 			return 0;
298 		} else if (op->data.dir == SPI_MEM_DATA_OUT) {
299 			if (op->data.nbytes >= MTK_NOR_PP_SIZE)
300 				op->data.nbytes = MTK_NOR_PP_SIZE;
301 			else
302 				op->data.nbytes = 1;
303 			return 0;
304 		}
305 	}
306 
307 	mtk_nor_adj_prg_size(op);
308 	return 0;
309 }
310 
311 static bool mtk_nor_supports_op(struct spi_mem *mem,
312 				const struct spi_mem_op *op)
313 {
314 	if (!spi_mem_default_supports_op(mem, op))
315 		return false;
316 
317 	if (op->cmd.buswidth != 1)
318 		return false;
319 
320 	if ((op->addr.nbytes == 3) || (op->addr.nbytes == 4)) {
321 		switch (op->data.dir) {
322 		case SPI_MEM_DATA_IN:
323 			if (mtk_nor_match_read(op))
324 				return true;
325 			break;
326 		case SPI_MEM_DATA_OUT:
327 			if ((op->addr.buswidth == 1) &&
328 			    (op->dummy.nbytes == 0) &&
329 			    (op->data.buswidth == 1))
330 				return true;
331 			break;
332 		default:
333 			break;
334 		}
335 	}
336 
337 	return mtk_nor_match_prg(op);
338 }
339 
340 static void mtk_nor_setup_bus(struct mtk_nor *sp, const struct spi_mem_op *op)
341 {
342 	u32 reg = 0;
343 
344 	if (op->addr.nbytes == 4)
345 		reg |= MTK_NOR_4B_ADDR;
346 
347 	if (op->data.buswidth == 4) {
348 		reg |= MTK_NOR_QUAD_READ;
349 		writeb(op->cmd.opcode, sp->base + MTK_NOR_REG_PRGDATA(4));
350 		if (op->addr.buswidth == 4)
351 			reg |= MTK_NOR_QUAD_ADDR;
352 	} else if (op->data.buswidth == 2) {
353 		reg |= MTK_NOR_DUAL_READ;
354 		writeb(op->cmd.opcode, sp->base + MTK_NOR_REG_PRGDATA(3));
355 		if (op->addr.buswidth == 2)
356 			reg |= MTK_NOR_DUAL_ADDR;
357 	} else {
358 		if (op->cmd.opcode == 0x0b)
359 			mtk_nor_rmw(sp, MTK_NOR_REG_CFG1, MTK_NOR_FAST_READ, 0);
360 		else
361 			mtk_nor_rmw(sp, MTK_NOR_REG_CFG1, 0, MTK_NOR_FAST_READ);
362 	}
363 	mtk_nor_rmw(sp, MTK_NOR_REG_BUSCFG, reg, MTK_NOR_BUS_MODE_MASK);
364 }
365 
366 static int mtk_nor_dma_exec(struct mtk_nor *sp, u32 from, unsigned int length,
367 			    dma_addr_t dma_addr)
368 {
369 	int ret = 0;
370 	u32 delay, timeout;
371 	u32 reg;
372 
373 	writel(from, sp->base + MTK_NOR_REG_DMA_FADR);
374 	writel(dma_addr, sp->base + MTK_NOR_REG_DMA_DADR);
375 	writel(dma_addr + length, sp->base + MTK_NOR_REG_DMA_END_DADR);
376 
377 	if (sp->high_dma) {
378 		writel(upper_32_bits(dma_addr),
379 		       sp->base + MTK_NOR_REG_DMA_DADR_HB);
380 		writel(upper_32_bits(dma_addr + length),
381 		       sp->base + MTK_NOR_REG_DMA_END_DADR_HB);
382 	}
383 
384 	if (sp->has_irq) {
385 		reinit_completion(&sp->op_done);
386 		mtk_nor_rmw(sp, MTK_NOR_REG_IRQ_EN, MTK_NOR_IRQ_DMA, 0);
387 	}
388 
389 	mtk_nor_rmw(sp, MTK_NOR_REG_DMA_CTL, MTK_NOR_DMA_START, 0);
390 
391 	delay = CLK_TO_US(sp, (length + 5) * BITS_PER_BYTE);
392 	timeout = (delay + 1) * 100;
393 
394 	if (sp->has_irq) {
395 		if (!wait_for_completion_timeout(&sp->op_done,
396 		    usecs_to_jiffies(max(timeout, 10000U))))
397 			ret = -ETIMEDOUT;
398 	} else {
399 		ret = readl_poll_timeout(sp->base + MTK_NOR_REG_DMA_CTL, reg,
400 					 !(reg & MTK_NOR_DMA_START), delay / 3,
401 					 timeout);
402 	}
403 
404 	if (ret < 0)
405 		dev_err(sp->dev, "dma read timeout.\n");
406 
407 	return ret;
408 }
409 
410 static int mtk_nor_read_bounce(struct mtk_nor *sp, const struct spi_mem_op *op)
411 {
412 	unsigned int rdlen;
413 	int ret;
414 
415 	if (op->data.nbytes & MTK_NOR_DMA_ALIGN_MASK)
416 		rdlen = (op->data.nbytes + MTK_NOR_DMA_ALIGN) & ~MTK_NOR_DMA_ALIGN_MASK;
417 	else
418 		rdlen = op->data.nbytes;
419 
420 	ret = mtk_nor_dma_exec(sp, op->addr.val, rdlen, sp->buffer_dma);
421 
422 	if (!ret)
423 		memcpy(op->data.buf.in, sp->buffer, op->data.nbytes);
424 
425 	return ret;
426 }
427 
428 static int mtk_nor_read_dma(struct mtk_nor *sp, const struct spi_mem_op *op)
429 {
430 	int ret;
431 	dma_addr_t dma_addr;
432 
433 	if (need_bounce(sp, op))
434 		return mtk_nor_read_bounce(sp, op);
435 
436 	dma_addr = dma_map_single(sp->dev, op->data.buf.in,
437 				  op->data.nbytes, DMA_FROM_DEVICE);
438 
439 	if (dma_mapping_error(sp->dev, dma_addr))
440 		return -EINVAL;
441 
442 	ret = mtk_nor_dma_exec(sp, op->addr.val, op->data.nbytes, dma_addr);
443 
444 	dma_unmap_single(sp->dev, dma_addr, op->data.nbytes, DMA_FROM_DEVICE);
445 
446 	return ret;
447 }
448 
449 static int mtk_nor_read_pio(struct mtk_nor *sp, const struct spi_mem_op *op)
450 {
451 	u8 *buf = op->data.buf.in;
452 	int ret;
453 
454 	ret = mtk_nor_cmd_exec(sp, MTK_NOR_CMD_READ, 6 * BITS_PER_BYTE);
455 	if (!ret)
456 		buf[0] = readb(sp->base + MTK_NOR_REG_RDATA);
457 	return ret;
458 }
459 
460 static int mtk_nor_setup_write_buffer(struct mtk_nor *sp, bool on)
461 {
462 	int ret;
463 	u32 val;
464 
465 	if (!(sp->wbuf_en ^ on))
466 		return 0;
467 
468 	val = readl(sp->base + MTK_NOR_REG_CFG2);
469 	if (on) {
470 		writel(val | MTK_NOR_WR_BUF_EN, sp->base + MTK_NOR_REG_CFG2);
471 		ret = readl_poll_timeout(sp->base + MTK_NOR_REG_CFG2, val,
472 					 val & MTK_NOR_WR_BUF_EN, 0, 10000);
473 	} else {
474 		writel(val & ~MTK_NOR_WR_BUF_EN, sp->base + MTK_NOR_REG_CFG2);
475 		ret = readl_poll_timeout(sp->base + MTK_NOR_REG_CFG2, val,
476 					 !(val & MTK_NOR_WR_BUF_EN), 0, 10000);
477 	}
478 
479 	if (!ret)
480 		sp->wbuf_en = on;
481 
482 	return ret;
483 }
484 
485 static int mtk_nor_pp_buffered(struct mtk_nor *sp, const struct spi_mem_op *op)
486 {
487 	const u8 *buf = op->data.buf.out;
488 	u32 val;
489 	int ret, i;
490 
491 	ret = mtk_nor_setup_write_buffer(sp, true);
492 	if (ret < 0)
493 		return ret;
494 
495 	for (i = 0; i < op->data.nbytes; i += 4) {
496 		val = buf[i + 3] << 24 | buf[i + 2] << 16 | buf[i + 1] << 8 |
497 		      buf[i];
498 		writel(val, sp->base + MTK_NOR_REG_PP_DATA);
499 	}
500 	return mtk_nor_cmd_exec(sp, MTK_NOR_CMD_WRITE,
501 				(op->data.nbytes + 5) * BITS_PER_BYTE);
502 }
503 
504 static int mtk_nor_pp_unbuffered(struct mtk_nor *sp,
505 				 const struct spi_mem_op *op)
506 {
507 	const u8 *buf = op->data.buf.out;
508 	int ret;
509 
510 	ret = mtk_nor_setup_write_buffer(sp, false);
511 	if (ret < 0)
512 		return ret;
513 	writeb(buf[0], sp->base + MTK_NOR_REG_WDATA);
514 	return mtk_nor_cmd_exec(sp, MTK_NOR_CMD_WRITE, 6 * BITS_PER_BYTE);
515 }
516 
517 static int mtk_nor_spi_mem_prg(struct mtk_nor *sp, const struct spi_mem_op *op)
518 {
519 	int rx_len = 0;
520 	int reg_offset = MTK_NOR_REG_PRGDATA_MAX;
521 	int tx_len, prg_len;
522 	int i, ret;
523 	void __iomem *reg;
524 	u8 bufbyte;
525 
526 	tx_len = op->cmd.nbytes + op->addr.nbytes;
527 
528 	// count dummy bytes only if we need to write data after it
529 	if (op->data.dir == SPI_MEM_DATA_OUT)
530 		tx_len += op->dummy.nbytes + op->data.nbytes;
531 	else if (op->data.dir == SPI_MEM_DATA_IN)
532 		rx_len = op->data.nbytes;
533 
534 	prg_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes +
535 		  op->data.nbytes;
536 
537 	// an invalid op may reach here if the caller calls exec_op without
538 	// adjust_op_size. return -EINVAL instead of -ENOTSUPP so that
539 	// spi-mem won't try this op again with generic spi transfers.
540 	if ((tx_len > MTK_NOR_REG_PRGDATA_MAX + 1) ||
541 	    (rx_len > MTK_NOR_REG_SHIFT_MAX + 1) ||
542 	    (prg_len > MTK_NOR_PRG_CNT_MAX / 8))
543 		return -EINVAL;
544 
545 	// fill tx data
546 	for (i = op->cmd.nbytes; i > 0; i--, reg_offset--) {
547 		reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
548 		bufbyte = (op->cmd.opcode >> ((i - 1) * BITS_PER_BYTE)) & 0xff;
549 		writeb(bufbyte, reg);
550 	}
551 
552 	for (i = op->addr.nbytes; i > 0; i--, reg_offset--) {
553 		reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
554 		bufbyte = (op->addr.val >> ((i - 1) * BITS_PER_BYTE)) & 0xff;
555 		writeb(bufbyte, reg);
556 	}
557 
558 	if (op->data.dir == SPI_MEM_DATA_OUT) {
559 		for (i = 0; i < op->dummy.nbytes; i++, reg_offset--) {
560 			reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
561 			writeb(0, reg);
562 		}
563 
564 		for (i = 0; i < op->data.nbytes; i++, reg_offset--) {
565 			reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
566 			writeb(((const u8 *)(op->data.buf.out))[i], reg);
567 		}
568 	}
569 
570 	for (; reg_offset >= 0; reg_offset--) {
571 		reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
572 		writeb(0, reg);
573 	}
574 
575 	// trigger op
576 	if (rx_len)
577 		writel(prg_len * BITS_PER_BYTE + sp->caps->extra_dummy_bit,
578 		       sp->base + MTK_NOR_REG_PRG_CNT);
579 	else
580 		writel(prg_len * BITS_PER_BYTE, sp->base + MTK_NOR_REG_PRG_CNT);
581 
582 	ret = mtk_nor_cmd_exec(sp, MTK_NOR_CMD_PROGRAM,
583 			       prg_len * BITS_PER_BYTE);
584 	if (ret)
585 		return ret;
586 
587 	// fetch read data
588 	reg_offset = 0;
589 	if (op->data.dir == SPI_MEM_DATA_IN) {
590 		for (i = op->data.nbytes - 1; i >= 0; i--, reg_offset++) {
591 			reg = sp->base + MTK_NOR_REG_SHIFT(reg_offset);
592 			((u8 *)(op->data.buf.in))[i] = readb(reg);
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 static int mtk_nor_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
600 {
601 	struct mtk_nor *sp = spi_controller_get_devdata(mem->spi->master);
602 	int ret;
603 
604 	if ((op->data.nbytes == 0) ||
605 	    ((op->addr.nbytes != 3) && (op->addr.nbytes != 4)))
606 		return mtk_nor_spi_mem_prg(sp, op);
607 
608 	if (op->data.dir == SPI_MEM_DATA_OUT) {
609 		mtk_nor_set_addr(sp, op);
610 		writeb(op->cmd.opcode, sp->base + MTK_NOR_REG_PRGDATA0);
611 		if (op->data.nbytes == MTK_NOR_PP_SIZE)
612 			return mtk_nor_pp_buffered(sp, op);
613 		return mtk_nor_pp_unbuffered(sp, op);
614 	}
615 
616 	if ((op->data.dir == SPI_MEM_DATA_IN) && mtk_nor_match_read(op)) {
617 		ret = mtk_nor_setup_write_buffer(sp, false);
618 		if (ret < 0)
619 			return ret;
620 		mtk_nor_setup_bus(sp, op);
621 		if (op->data.nbytes == 1) {
622 			mtk_nor_set_addr(sp, op);
623 			return mtk_nor_read_pio(sp, op);
624 		} else {
625 			ret = mtk_nor_read_dma(sp, op);
626 			if (unlikely(ret)) {
627 				/* Handle rare bus glitch */
628 				mtk_nor_reset(sp);
629 				mtk_nor_setup_bus(sp, op);
630 				return mtk_nor_read_dma(sp, op);
631 			}
632 
633 			return ret;
634 		}
635 	}
636 
637 	return mtk_nor_spi_mem_prg(sp, op);
638 }
639 
640 static int mtk_nor_setup(struct spi_device *spi)
641 {
642 	struct mtk_nor *sp = spi_controller_get_devdata(spi->master);
643 
644 	if (spi->max_speed_hz && (spi->max_speed_hz < sp->spi_freq)) {
645 		dev_err(&spi->dev, "spi clock should be %u Hz.\n",
646 			sp->spi_freq);
647 		return -EINVAL;
648 	}
649 	spi->max_speed_hz = sp->spi_freq;
650 
651 	return 0;
652 }
653 
654 static int mtk_nor_transfer_one_message(struct spi_controller *master,
655 					struct spi_message *m)
656 {
657 	struct mtk_nor *sp = spi_controller_get_devdata(master);
658 	struct spi_transfer *t = NULL;
659 	unsigned long trx_len = 0;
660 	int stat = 0;
661 	int reg_offset = MTK_NOR_REG_PRGDATA_MAX;
662 	void __iomem *reg;
663 	const u8 *txbuf;
664 	u8 *rxbuf;
665 	int i;
666 
667 	list_for_each_entry(t, &m->transfers, transfer_list) {
668 		txbuf = t->tx_buf;
669 		for (i = 0; i < t->len; i++, reg_offset--) {
670 			reg = sp->base + MTK_NOR_REG_PRGDATA(reg_offset);
671 			if (txbuf)
672 				writeb(txbuf[i], reg);
673 			else
674 				writeb(0, reg);
675 		}
676 		trx_len += t->len;
677 	}
678 
679 	writel(trx_len * BITS_PER_BYTE, sp->base + MTK_NOR_REG_PRG_CNT);
680 
681 	stat = mtk_nor_cmd_exec(sp, MTK_NOR_CMD_PROGRAM,
682 				trx_len * BITS_PER_BYTE);
683 	if (stat < 0)
684 		goto msg_done;
685 
686 	reg_offset = trx_len - 1;
687 	list_for_each_entry(t, &m->transfers, transfer_list) {
688 		rxbuf = t->rx_buf;
689 		for (i = 0; i < t->len; i++, reg_offset--) {
690 			reg = sp->base + MTK_NOR_REG_SHIFT(reg_offset);
691 			if (rxbuf)
692 				rxbuf[i] = readb(reg);
693 		}
694 	}
695 
696 	m->actual_length = trx_len;
697 msg_done:
698 	m->status = stat;
699 	spi_finalize_current_message(master);
700 
701 	return 0;
702 }
703 
704 static void mtk_nor_disable_clk(struct mtk_nor *sp)
705 {
706 	clk_disable_unprepare(sp->spi_clk);
707 	clk_disable_unprepare(sp->ctlr_clk);
708 	clk_disable_unprepare(sp->axi_clk);
709 	clk_disable_unprepare(sp->axi_s_clk);
710 }
711 
712 static int mtk_nor_enable_clk(struct mtk_nor *sp)
713 {
714 	int ret;
715 
716 	ret = clk_prepare_enable(sp->spi_clk);
717 	if (ret)
718 		return ret;
719 
720 	ret = clk_prepare_enable(sp->ctlr_clk);
721 	if (ret) {
722 		clk_disable_unprepare(sp->spi_clk);
723 		return ret;
724 	}
725 
726 	ret = clk_prepare_enable(sp->axi_clk);
727 	if (ret) {
728 		clk_disable_unprepare(sp->spi_clk);
729 		clk_disable_unprepare(sp->ctlr_clk);
730 		return ret;
731 	}
732 
733 	ret = clk_prepare_enable(sp->axi_s_clk);
734 	if (ret) {
735 		clk_disable_unprepare(sp->spi_clk);
736 		clk_disable_unprepare(sp->ctlr_clk);
737 		clk_disable_unprepare(sp->axi_clk);
738 		return ret;
739 	}
740 
741 	return 0;
742 }
743 
744 static void mtk_nor_init(struct mtk_nor *sp)
745 {
746 	writel(0, sp->base + MTK_NOR_REG_IRQ_EN);
747 	writel(MTK_NOR_IRQ_MASK, sp->base + MTK_NOR_REG_IRQ_STAT);
748 
749 	writel(MTK_NOR_ENABLE_SF_CMD, sp->base + MTK_NOR_REG_WP);
750 	mtk_nor_rmw(sp, MTK_NOR_REG_CFG2, MTK_NOR_WR_CUSTOM_OP_EN, 0);
751 	mtk_nor_rmw(sp, MTK_NOR_REG_CFG3,
752 		    MTK_NOR_DISABLE_WREN | MTK_NOR_DISABLE_SR_POLL, 0);
753 }
754 
755 static irqreturn_t mtk_nor_irq_handler(int irq, void *data)
756 {
757 	struct mtk_nor *sp = data;
758 	u32 irq_status, irq_enabled;
759 
760 	irq_status = readl(sp->base + MTK_NOR_REG_IRQ_STAT);
761 	irq_enabled = readl(sp->base + MTK_NOR_REG_IRQ_EN);
762 	// write status back to clear interrupt
763 	writel(irq_status, sp->base + MTK_NOR_REG_IRQ_STAT);
764 
765 	if (!(irq_status & irq_enabled))
766 		return IRQ_NONE;
767 
768 	if (irq_status & MTK_NOR_IRQ_DMA) {
769 		complete(&sp->op_done);
770 		writel(0, sp->base + MTK_NOR_REG_IRQ_EN);
771 	}
772 
773 	return IRQ_HANDLED;
774 }
775 
776 static size_t mtk_max_msg_size(struct spi_device *spi)
777 {
778 	return MTK_NOR_PRG_MAX_SIZE;
779 }
780 
781 static const struct spi_controller_mem_ops mtk_nor_mem_ops = {
782 	.adjust_op_size = mtk_nor_adjust_op_size,
783 	.supports_op = mtk_nor_supports_op,
784 	.exec_op = mtk_nor_exec_op
785 };
786 
787 static const struct mtk_nor_caps mtk_nor_caps_mt8173 = {
788 	.dma_bits = 32,
789 	.extra_dummy_bit = 0,
790 };
791 
792 static const struct mtk_nor_caps mtk_nor_caps_mt8186 = {
793 	.dma_bits = 32,
794 	.extra_dummy_bit = 1,
795 };
796 
797 static const struct mtk_nor_caps mtk_nor_caps_mt8192 = {
798 	.dma_bits = 36,
799 	.extra_dummy_bit = 0,
800 };
801 
802 static const struct of_device_id mtk_nor_match[] = {
803 	{ .compatible = "mediatek,mt8173-nor", .data = &mtk_nor_caps_mt8173 },
804 	{ .compatible = "mediatek,mt8186-nor", .data = &mtk_nor_caps_mt8186 },
805 	{ .compatible = "mediatek,mt8192-nor", .data = &mtk_nor_caps_mt8192 },
806 	{ /* sentinel */ }
807 };
808 MODULE_DEVICE_TABLE(of, mtk_nor_match);
809 
810 static int mtk_nor_probe(struct platform_device *pdev)
811 {
812 	struct spi_controller *ctlr;
813 	struct mtk_nor *sp;
814 	struct mtk_nor_caps *caps;
815 	void __iomem *base;
816 	struct clk *spi_clk, *ctlr_clk, *axi_clk, *axi_s_clk;
817 	int ret, irq;
818 
819 	base = devm_platform_ioremap_resource(pdev, 0);
820 	if (IS_ERR(base))
821 		return PTR_ERR(base);
822 
823 	spi_clk = devm_clk_get(&pdev->dev, "spi");
824 	if (IS_ERR(spi_clk))
825 		return PTR_ERR(spi_clk);
826 
827 	ctlr_clk = devm_clk_get(&pdev->dev, "sf");
828 	if (IS_ERR(ctlr_clk))
829 		return PTR_ERR(ctlr_clk);
830 
831 	axi_clk = devm_clk_get_optional(&pdev->dev, "axi");
832 	if (IS_ERR(axi_clk))
833 		return PTR_ERR(axi_clk);
834 
835 	axi_s_clk = devm_clk_get_optional(&pdev->dev, "axi_s");
836 	if (IS_ERR(axi_s_clk))
837 		return PTR_ERR(axi_s_clk);
838 
839 	caps = (struct mtk_nor_caps *)of_device_get_match_data(&pdev->dev);
840 
841 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(caps->dma_bits));
842 	if (ret) {
843 		dev_err(&pdev->dev, "failed to set dma mask(%u)\n", caps->dma_bits);
844 		return ret;
845 	}
846 
847 	ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*sp));
848 	if (!ctlr) {
849 		dev_err(&pdev->dev, "failed to allocate spi controller\n");
850 		return -ENOMEM;
851 	}
852 
853 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
854 	ctlr->dev.of_node = pdev->dev.of_node;
855 	ctlr->max_message_size = mtk_max_msg_size;
856 	ctlr->mem_ops = &mtk_nor_mem_ops;
857 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
858 	ctlr->num_chipselect = 1;
859 	ctlr->setup = mtk_nor_setup;
860 	ctlr->transfer_one_message = mtk_nor_transfer_one_message;
861 	ctlr->auto_runtime_pm = true;
862 
863 	dev_set_drvdata(&pdev->dev, ctlr);
864 
865 	sp = spi_controller_get_devdata(ctlr);
866 	sp->base = base;
867 	sp->has_irq = false;
868 	sp->wbuf_en = false;
869 	sp->ctlr = ctlr;
870 	sp->dev = &pdev->dev;
871 	sp->spi_clk = spi_clk;
872 	sp->ctlr_clk = ctlr_clk;
873 	sp->axi_clk = axi_clk;
874 	sp->axi_s_clk = axi_s_clk;
875 	sp->caps = caps;
876 	sp->high_dma = caps->dma_bits > 32;
877 	sp->buffer = dmam_alloc_coherent(&pdev->dev,
878 				MTK_NOR_BOUNCE_BUF_SIZE + MTK_NOR_DMA_ALIGN,
879 				&sp->buffer_dma, GFP_KERNEL);
880 	if (!sp->buffer)
881 		return -ENOMEM;
882 
883 	if ((uintptr_t)sp->buffer & MTK_NOR_DMA_ALIGN_MASK) {
884 		dev_err(sp->dev, "misaligned allocation of internal buffer.\n");
885 		return -ENOMEM;
886 	}
887 
888 	ret = mtk_nor_enable_clk(sp);
889 	if (ret < 0)
890 		return ret;
891 
892 	sp->spi_freq = clk_get_rate(sp->spi_clk);
893 
894 	mtk_nor_init(sp);
895 
896 	irq = platform_get_irq_optional(pdev, 0);
897 
898 	if (irq < 0) {
899 		dev_warn(sp->dev, "IRQ not available.");
900 	} else {
901 		ret = devm_request_irq(sp->dev, irq, mtk_nor_irq_handler, 0,
902 				       pdev->name, sp);
903 		if (ret < 0) {
904 			dev_warn(sp->dev, "failed to request IRQ.");
905 		} else {
906 			init_completion(&sp->op_done);
907 			sp->has_irq = true;
908 		}
909 	}
910 
911 	pm_runtime_set_autosuspend_delay(&pdev->dev, -1);
912 	pm_runtime_use_autosuspend(&pdev->dev);
913 	pm_runtime_set_active(&pdev->dev);
914 	pm_runtime_enable(&pdev->dev);
915 	pm_runtime_get_noresume(&pdev->dev);
916 
917 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
918 	if (ret < 0)
919 		goto err_probe;
920 
921 	pm_runtime_mark_last_busy(&pdev->dev);
922 	pm_runtime_put_autosuspend(&pdev->dev);
923 
924 	dev_info(&pdev->dev, "spi frequency: %d Hz\n", sp->spi_freq);
925 
926 	return 0;
927 
928 err_probe:
929 	pm_runtime_disable(&pdev->dev);
930 	pm_runtime_set_suspended(&pdev->dev);
931 	pm_runtime_dont_use_autosuspend(&pdev->dev);
932 
933 	mtk_nor_disable_clk(sp);
934 
935 	return ret;
936 }
937 
938 static void mtk_nor_remove(struct platform_device *pdev)
939 {
940 	struct spi_controller *ctlr = dev_get_drvdata(&pdev->dev);
941 	struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
942 
943 	pm_runtime_disable(&pdev->dev);
944 	pm_runtime_set_suspended(&pdev->dev);
945 	pm_runtime_dont_use_autosuspend(&pdev->dev);
946 
947 	mtk_nor_disable_clk(sp);
948 }
949 
950 static int __maybe_unused mtk_nor_runtime_suspend(struct device *dev)
951 {
952 	struct spi_controller *ctlr = dev_get_drvdata(dev);
953 	struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
954 
955 	mtk_nor_disable_clk(sp);
956 
957 	return 0;
958 }
959 
960 static int __maybe_unused mtk_nor_runtime_resume(struct device *dev)
961 {
962 	struct spi_controller *ctlr = dev_get_drvdata(dev);
963 	struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
964 
965 	return mtk_nor_enable_clk(sp);
966 }
967 
968 static int __maybe_unused mtk_nor_suspend(struct device *dev)
969 {
970 	return pm_runtime_force_suspend(dev);
971 }
972 
973 static int __maybe_unused mtk_nor_resume(struct device *dev)
974 {
975 	struct spi_controller *ctlr = dev_get_drvdata(dev);
976 	struct mtk_nor *sp = spi_controller_get_devdata(ctlr);
977 	int ret;
978 
979 	ret = pm_runtime_force_resume(dev);
980 	if (ret)
981 		return ret;
982 
983 	mtk_nor_init(sp);
984 
985 	return 0;
986 }
987 
988 static const struct dev_pm_ops mtk_nor_pm_ops = {
989 	SET_RUNTIME_PM_OPS(mtk_nor_runtime_suspend,
990 			   mtk_nor_runtime_resume, NULL)
991 	SET_SYSTEM_SLEEP_PM_OPS(mtk_nor_suspend, mtk_nor_resume)
992 };
993 
994 static struct platform_driver mtk_nor_driver = {
995 	.driver = {
996 		.name = DRIVER_NAME,
997 		.of_match_table = mtk_nor_match,
998 		.pm = &mtk_nor_pm_ops,
999 	},
1000 	.probe = mtk_nor_probe,
1001 	.remove_new = mtk_nor_remove,
1002 };
1003 
1004 module_platform_driver(mtk_nor_driver);
1005 
1006 MODULE_DESCRIPTION("Mediatek SPI NOR controller driver");
1007 MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1008 MODULE_LICENSE("GPL v2");
1009 MODULE_ALIAS("platform:" DRIVER_NAME);
1010