xref: /openbmc/linux/drivers/spi/spi-mt65xx.c (revision c0605cd6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author: Leilk Liu <leilk.liu@mediatek.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ioport.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/platform_data/spi-mt65xx.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/dma-mapping.h>
22 
23 #define SPI_CFG0_REG			0x0000
24 #define SPI_CFG1_REG			0x0004
25 #define SPI_TX_SRC_REG			0x0008
26 #define SPI_RX_DST_REG			0x000c
27 #define SPI_TX_DATA_REG			0x0010
28 #define SPI_RX_DATA_REG			0x0014
29 #define SPI_CMD_REG			0x0018
30 #define SPI_STATUS0_REG			0x001c
31 #define SPI_PAD_SEL_REG			0x0024
32 #define SPI_CFG2_REG			0x0028
33 #define SPI_TX_SRC_REG_64		0x002c
34 #define SPI_RX_DST_REG_64		0x0030
35 #define SPI_CFG3_IPM_REG		0x0040
36 
37 #define SPI_CFG0_SCK_HIGH_OFFSET	0
38 #define SPI_CFG0_SCK_LOW_OFFSET		8
39 #define SPI_CFG0_CS_HOLD_OFFSET		16
40 #define SPI_CFG0_CS_SETUP_OFFSET	24
41 #define SPI_ADJUST_CFG0_CS_HOLD_OFFSET	0
42 #define SPI_ADJUST_CFG0_CS_SETUP_OFFSET	16
43 
44 #define SPI_CFG1_CS_IDLE_OFFSET		0
45 #define SPI_CFG1_PACKET_LOOP_OFFSET	8
46 #define SPI_CFG1_PACKET_LENGTH_OFFSET	16
47 #define SPI_CFG1_GET_TICK_DLY_OFFSET	29
48 #define SPI_CFG1_GET_TICK_DLY_OFFSET_V1	30
49 
50 #define SPI_CFG1_GET_TICK_DLY_MASK	0xe0000000
51 #define SPI_CFG1_GET_TICK_DLY_MASK_V1	0xc0000000
52 
53 #define SPI_CFG1_CS_IDLE_MASK		0xff
54 #define SPI_CFG1_PACKET_LOOP_MASK	0xff00
55 #define SPI_CFG1_PACKET_LENGTH_MASK	0x3ff0000
56 #define SPI_CFG1_IPM_PACKET_LENGTH_MASK	GENMASK(31, 16)
57 #define SPI_CFG2_SCK_HIGH_OFFSET	0
58 #define SPI_CFG2_SCK_LOW_OFFSET		16
59 
60 #define SPI_CMD_ACT			BIT(0)
61 #define SPI_CMD_RESUME			BIT(1)
62 #define SPI_CMD_RST			BIT(2)
63 #define SPI_CMD_PAUSE_EN		BIT(4)
64 #define SPI_CMD_DEASSERT		BIT(5)
65 #define SPI_CMD_SAMPLE_SEL		BIT(6)
66 #define SPI_CMD_CS_POL			BIT(7)
67 #define SPI_CMD_CPHA			BIT(8)
68 #define SPI_CMD_CPOL			BIT(9)
69 #define SPI_CMD_RX_DMA			BIT(10)
70 #define SPI_CMD_TX_DMA			BIT(11)
71 #define SPI_CMD_TXMSBF			BIT(12)
72 #define SPI_CMD_RXMSBF			BIT(13)
73 #define SPI_CMD_RX_ENDIAN		BIT(14)
74 #define SPI_CMD_TX_ENDIAN		BIT(15)
75 #define SPI_CMD_FINISH_IE		BIT(16)
76 #define SPI_CMD_PAUSE_IE		BIT(17)
77 #define SPI_CMD_IPM_NONIDLE_MODE	BIT(19)
78 #define SPI_CMD_IPM_SPIM_LOOP		BIT(21)
79 #define SPI_CMD_IPM_GET_TICKDLY_OFFSET	22
80 
81 #define SPI_CMD_IPM_GET_TICKDLY_MASK	GENMASK(24, 22)
82 
83 #define PIN_MODE_CFG(x)	((x) / 2)
84 
85 #define SPI_CFG3_IPM_HALF_DUPLEX_DIR	BIT(2)
86 #define SPI_CFG3_IPM_HALF_DUPLEX_EN	BIT(3)
87 #define SPI_CFG3_IPM_XMODE_EN		BIT(4)
88 #define SPI_CFG3_IPM_NODATA_FLAG	BIT(5)
89 #define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET	8
90 #define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12
91 
92 #define SPI_CFG3_IPM_CMD_PIN_MODE_MASK	GENMASK(1, 0)
93 #define SPI_CFG3_IPM_CMD_BYTELEN_MASK	GENMASK(11, 8)
94 #define SPI_CFG3_IPM_ADDR_BYTELEN_MASK	GENMASK(15, 12)
95 
96 #define MT8173_SPI_MAX_PAD_SEL		3
97 
98 #define MTK_SPI_PAUSE_INT_STATUS	0x2
99 
100 #define MTK_SPI_MAX_FIFO_SIZE		32U
101 #define MTK_SPI_PACKET_SIZE		1024
102 #define MTK_SPI_IPM_PACKET_SIZE		SZ_64K
103 #define MTK_SPI_IPM_PACKET_LOOP		SZ_256
104 
105 #define MTK_SPI_IDLE			0
106 #define MTK_SPI_PAUSED			1
107 
108 #define MTK_SPI_32BITS_MASK		(0xffffffff)
109 
110 #define DMA_ADDR_EXT_BITS		(36)
111 #define DMA_ADDR_DEF_BITS		(32)
112 
113 /**
114  * struct mtk_spi_compatible - device data structure
115  * @need_pad_sel:	Enable pad (pins) selection in SPI controller
116  * @must_tx:		Must explicitly send dummy TX bytes to do RX only transfer
117  * @enhance_timing:	Enable adjusting cfg register to enhance time accuracy
118  * @dma_ext:		DMA address extension supported
119  * @no_need_unprepare:	Don't unprepare the SPI clk during runtime
120  * @ipm_design:		Adjust/extend registers to support IPM design IP features
121  */
122 struct mtk_spi_compatible {
123 	bool need_pad_sel;
124 	bool must_tx;
125 	bool enhance_timing;
126 	bool dma_ext;
127 	bool no_need_unprepare;
128 	bool ipm_design;
129 };
130 
131 /**
132  * struct mtk_spi - SPI driver instance
133  * @base:		Start address of the SPI controller registers
134  * @state:		SPI controller state
135  * @pad_num:		Number of pad_sel entries
136  * @pad_sel:		Groups of pins to select
137  * @parent_clk:		Parent of sel_clk
138  * @sel_clk:		SPI master mux clock
139  * @spi_clk:		Peripheral clock
140  * @spi_hclk:		AHB bus clock
141  * @cur_transfer:	Currently processed SPI transfer
142  * @xfer_len:		Number of bytes to transfer
143  * @num_xfered:		Number of transferred bytes
144  * @tx_sgl:		TX transfer scatterlist
145  * @rx_sgl:		RX transfer scatterlist
146  * @tx_sgl_len:		Size of TX DMA transfer
147  * @rx_sgl_len:		Size of RX DMA transfer
148  * @dev_comp:		Device data structure
149  * @spi_clk_hz:		Current SPI clock in Hz
150  * @spimem_done:	SPI-MEM operation completion
151  * @use_spimem:		Enables SPI-MEM
152  * @dev:		Device pointer
153  * @tx_dma:		DMA start for SPI-MEM TX
154  * @rx_dma:		DMA start for SPI-MEM RX
155  */
156 struct mtk_spi {
157 	void __iomem *base;
158 	u32 state;
159 	int pad_num;
160 	u32 *pad_sel;
161 	struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk;
162 	struct spi_transfer *cur_transfer;
163 	u32 xfer_len;
164 	u32 num_xfered;
165 	struct scatterlist *tx_sgl, *rx_sgl;
166 	u32 tx_sgl_len, rx_sgl_len;
167 	const struct mtk_spi_compatible *dev_comp;
168 	u32 spi_clk_hz;
169 	struct completion spimem_done;
170 	bool use_spimem;
171 	struct device *dev;
172 	dma_addr_t tx_dma;
173 	dma_addr_t rx_dma;
174 };
175 
176 static const struct mtk_spi_compatible mtk_common_compat;
177 
178 static const struct mtk_spi_compatible mt2712_compat = {
179 	.must_tx = true,
180 };
181 
182 static const struct mtk_spi_compatible mtk_ipm_compat = {
183 	.enhance_timing = true,
184 	.dma_ext = true,
185 	.ipm_design = true,
186 };
187 
188 static const struct mtk_spi_compatible mt6765_compat = {
189 	.need_pad_sel = true,
190 	.must_tx = true,
191 	.enhance_timing = true,
192 	.dma_ext = true,
193 };
194 
195 static const struct mtk_spi_compatible mt7622_compat = {
196 	.must_tx = true,
197 	.enhance_timing = true,
198 };
199 
200 static const struct mtk_spi_compatible mt8173_compat = {
201 	.need_pad_sel = true,
202 	.must_tx = true,
203 };
204 
205 static const struct mtk_spi_compatible mt8183_compat = {
206 	.need_pad_sel = true,
207 	.must_tx = true,
208 	.enhance_timing = true,
209 };
210 
211 static const struct mtk_spi_compatible mt6893_compat = {
212 	.need_pad_sel = true,
213 	.must_tx = true,
214 	.enhance_timing = true,
215 	.dma_ext = true,
216 	.no_need_unprepare = true,
217 };
218 
219 /*
220  * A piece of default chip info unless the platform
221  * supplies it.
222  */
223 static const struct mtk_chip_config mtk_default_chip_info = {
224 	.sample_sel = 0,
225 	.tick_delay = 0,
226 };
227 
228 static const struct of_device_id mtk_spi_of_match[] = {
229 	{ .compatible = "mediatek,spi-ipm",
230 		.data = (void *)&mtk_ipm_compat,
231 	},
232 	{ .compatible = "mediatek,mt2701-spi",
233 		.data = (void *)&mtk_common_compat,
234 	},
235 	{ .compatible = "mediatek,mt2712-spi",
236 		.data = (void *)&mt2712_compat,
237 	},
238 	{ .compatible = "mediatek,mt6589-spi",
239 		.data = (void *)&mtk_common_compat,
240 	},
241 	{ .compatible = "mediatek,mt6765-spi",
242 		.data = (void *)&mt6765_compat,
243 	},
244 	{ .compatible = "mediatek,mt7622-spi",
245 		.data = (void *)&mt7622_compat,
246 	},
247 	{ .compatible = "mediatek,mt7629-spi",
248 		.data = (void *)&mt7622_compat,
249 	},
250 	{ .compatible = "mediatek,mt8135-spi",
251 		.data = (void *)&mtk_common_compat,
252 	},
253 	{ .compatible = "mediatek,mt8173-spi",
254 		.data = (void *)&mt8173_compat,
255 	},
256 	{ .compatible = "mediatek,mt8183-spi",
257 		.data = (void *)&mt8183_compat,
258 	},
259 	{ .compatible = "mediatek,mt8192-spi",
260 		.data = (void *)&mt6765_compat,
261 	},
262 	{ .compatible = "mediatek,mt6893-spi",
263 		.data = (void *)&mt6893_compat,
264 	},
265 	{}
266 };
267 MODULE_DEVICE_TABLE(of, mtk_spi_of_match);
268 
269 static void mtk_spi_reset(struct mtk_spi *mdata)
270 {
271 	u32 reg_val;
272 
273 	/* set the software reset bit in SPI_CMD_REG. */
274 	reg_val = readl(mdata->base + SPI_CMD_REG);
275 	reg_val |= SPI_CMD_RST;
276 	writel(reg_val, mdata->base + SPI_CMD_REG);
277 
278 	reg_val = readl(mdata->base + SPI_CMD_REG);
279 	reg_val &= ~SPI_CMD_RST;
280 	writel(reg_val, mdata->base + SPI_CMD_REG);
281 }
282 
283 static int mtk_spi_set_hw_cs_timing(struct spi_device *spi)
284 {
285 	struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
286 	struct spi_delay *cs_setup = &spi->cs_setup;
287 	struct spi_delay *cs_hold = &spi->cs_hold;
288 	struct spi_delay *cs_inactive = &spi->cs_inactive;
289 	u32 setup, hold, inactive;
290 	u32 reg_val;
291 	int delay;
292 
293 	delay = spi_delay_to_ns(cs_setup, NULL);
294 	if (delay < 0)
295 		return delay;
296 	setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
297 
298 	delay = spi_delay_to_ns(cs_hold, NULL);
299 	if (delay < 0)
300 		return delay;
301 	hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
302 
303 	delay = spi_delay_to_ns(cs_inactive, NULL);
304 	if (delay < 0)
305 		return delay;
306 	inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
307 
308 	if (hold || setup) {
309 		reg_val = readl(mdata->base + SPI_CFG0_REG);
310 		if (mdata->dev_comp->enhance_timing) {
311 			if (hold) {
312 				hold = min_t(u32, hold, 0x10000);
313 				reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
314 				reg_val |= (((hold - 1) & 0xffff)
315 					<< SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
316 			}
317 			if (setup) {
318 				setup = min_t(u32, setup, 0x10000);
319 				reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
320 				reg_val |= (((setup - 1) & 0xffff)
321 					<< SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
322 			}
323 		} else {
324 			if (hold) {
325 				hold = min_t(u32, hold, 0x100);
326 				reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET);
327 				reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
328 			}
329 			if (setup) {
330 				setup = min_t(u32, setup, 0x100);
331 				reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET);
332 				reg_val |= (((setup - 1) & 0xff)
333 					<< SPI_CFG0_CS_SETUP_OFFSET);
334 			}
335 		}
336 		writel(reg_val, mdata->base + SPI_CFG0_REG);
337 	}
338 
339 	if (inactive) {
340 		inactive = min_t(u32, inactive, 0x100);
341 		reg_val = readl(mdata->base + SPI_CFG1_REG);
342 		reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
343 		reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
344 		writel(reg_val, mdata->base + SPI_CFG1_REG);
345 	}
346 
347 	return 0;
348 }
349 
350 static int mtk_spi_hw_init(struct spi_master *master,
351 			   struct spi_device *spi)
352 {
353 	u16 cpha, cpol;
354 	u32 reg_val;
355 	struct mtk_chip_config *chip_config = spi->controller_data;
356 	struct mtk_spi *mdata = spi_master_get_devdata(master);
357 
358 	cpha = spi->mode & SPI_CPHA ? 1 : 0;
359 	cpol = spi->mode & SPI_CPOL ? 1 : 0;
360 
361 	reg_val = readl(mdata->base + SPI_CMD_REG);
362 	if (mdata->dev_comp->ipm_design) {
363 		/* SPI transfer without idle time until packet length done */
364 		reg_val |= SPI_CMD_IPM_NONIDLE_MODE;
365 		if (spi->mode & SPI_LOOP)
366 			reg_val |= SPI_CMD_IPM_SPIM_LOOP;
367 		else
368 			reg_val &= ~SPI_CMD_IPM_SPIM_LOOP;
369 	}
370 
371 	if (cpha)
372 		reg_val |= SPI_CMD_CPHA;
373 	else
374 		reg_val &= ~SPI_CMD_CPHA;
375 	if (cpol)
376 		reg_val |= SPI_CMD_CPOL;
377 	else
378 		reg_val &= ~SPI_CMD_CPOL;
379 
380 	/* set the mlsbx and mlsbtx */
381 	if (spi->mode & SPI_LSB_FIRST) {
382 		reg_val &= ~SPI_CMD_TXMSBF;
383 		reg_val &= ~SPI_CMD_RXMSBF;
384 	} else {
385 		reg_val |= SPI_CMD_TXMSBF;
386 		reg_val |= SPI_CMD_RXMSBF;
387 	}
388 
389 	/* set the tx/rx endian */
390 #ifdef __LITTLE_ENDIAN
391 	reg_val &= ~SPI_CMD_TX_ENDIAN;
392 	reg_val &= ~SPI_CMD_RX_ENDIAN;
393 #else
394 	reg_val |= SPI_CMD_TX_ENDIAN;
395 	reg_val |= SPI_CMD_RX_ENDIAN;
396 #endif
397 
398 	if (mdata->dev_comp->enhance_timing) {
399 		/* set CS polarity */
400 		if (spi->mode & SPI_CS_HIGH)
401 			reg_val |= SPI_CMD_CS_POL;
402 		else
403 			reg_val &= ~SPI_CMD_CS_POL;
404 
405 		if (chip_config->sample_sel)
406 			reg_val |= SPI_CMD_SAMPLE_SEL;
407 		else
408 			reg_val &= ~SPI_CMD_SAMPLE_SEL;
409 	}
410 
411 	/* set finish and pause interrupt always enable */
412 	reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE;
413 
414 	/* disable dma mode */
415 	reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA);
416 
417 	/* disable deassert mode */
418 	reg_val &= ~SPI_CMD_DEASSERT;
419 
420 	writel(reg_val, mdata->base + SPI_CMD_REG);
421 
422 	/* pad select */
423 	if (mdata->dev_comp->need_pad_sel)
424 		writel(mdata->pad_sel[spi->chip_select],
425 		       mdata->base + SPI_PAD_SEL_REG);
426 
427 	/* tick delay */
428 	if (mdata->dev_comp->enhance_timing) {
429 		if (mdata->dev_comp->ipm_design) {
430 			reg_val = readl(mdata->base + SPI_CMD_REG);
431 			reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK;
432 			reg_val |= ((chip_config->tick_delay & 0x7)
433 				    << SPI_CMD_IPM_GET_TICKDLY_OFFSET);
434 			writel(reg_val, mdata->base + SPI_CMD_REG);
435 		} else {
436 			reg_val = readl(mdata->base + SPI_CFG1_REG);
437 			reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK;
438 			reg_val |= ((chip_config->tick_delay & 0x7)
439 				    << SPI_CFG1_GET_TICK_DLY_OFFSET);
440 			writel(reg_val, mdata->base + SPI_CFG1_REG);
441 		}
442 	} else {
443 		reg_val = readl(mdata->base + SPI_CFG1_REG);
444 		reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1;
445 		reg_val |= ((chip_config->tick_delay & 0x3)
446 			    << SPI_CFG1_GET_TICK_DLY_OFFSET_V1);
447 		writel(reg_val, mdata->base + SPI_CFG1_REG);
448 	}
449 
450 	/* set hw cs timing */
451 	mtk_spi_set_hw_cs_timing(spi);
452 	return 0;
453 }
454 
455 static int mtk_spi_prepare_message(struct spi_master *master,
456 				   struct spi_message *msg)
457 {
458 	return mtk_spi_hw_init(master, msg->spi);
459 }
460 
461 static void mtk_spi_set_cs(struct spi_device *spi, bool enable)
462 {
463 	u32 reg_val;
464 	struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
465 
466 	if (spi->mode & SPI_CS_HIGH)
467 		enable = !enable;
468 
469 	reg_val = readl(mdata->base + SPI_CMD_REG);
470 	if (!enable) {
471 		reg_val |= SPI_CMD_PAUSE_EN;
472 		writel(reg_val, mdata->base + SPI_CMD_REG);
473 	} else {
474 		reg_val &= ~SPI_CMD_PAUSE_EN;
475 		writel(reg_val, mdata->base + SPI_CMD_REG);
476 		mdata->state = MTK_SPI_IDLE;
477 		mtk_spi_reset(mdata);
478 	}
479 }
480 
481 static void mtk_spi_prepare_transfer(struct spi_master *master,
482 				     u32 speed_hz)
483 {
484 	u32 div, sck_time, reg_val;
485 	struct mtk_spi *mdata = spi_master_get_devdata(master);
486 
487 	if (speed_hz < mdata->spi_clk_hz / 2)
488 		div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz);
489 	else
490 		div = 1;
491 
492 	sck_time = (div + 1) / 2;
493 
494 	if (mdata->dev_comp->enhance_timing) {
495 		reg_val = readl(mdata->base + SPI_CFG2_REG);
496 		reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET);
497 		reg_val |= (((sck_time - 1) & 0xffff)
498 			   << SPI_CFG2_SCK_HIGH_OFFSET);
499 		reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET);
500 		reg_val |= (((sck_time - 1) & 0xffff)
501 			   << SPI_CFG2_SCK_LOW_OFFSET);
502 		writel(reg_val, mdata->base + SPI_CFG2_REG);
503 	} else {
504 		reg_val = readl(mdata->base + SPI_CFG0_REG);
505 		reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET);
506 		reg_val |= (((sck_time - 1) & 0xff)
507 			   << SPI_CFG0_SCK_HIGH_OFFSET);
508 		reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET);
509 		reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET);
510 		writel(reg_val, mdata->base + SPI_CFG0_REG);
511 	}
512 }
513 
514 static void mtk_spi_setup_packet(struct spi_master *master)
515 {
516 	u32 packet_size, packet_loop, reg_val;
517 	struct mtk_spi *mdata = spi_master_get_devdata(master);
518 
519 	if (mdata->dev_comp->ipm_design)
520 		packet_size = min_t(u32,
521 				    mdata->xfer_len,
522 				    MTK_SPI_IPM_PACKET_SIZE);
523 	else
524 		packet_size = min_t(u32,
525 				    mdata->xfer_len,
526 				    MTK_SPI_PACKET_SIZE);
527 
528 	packet_loop = mdata->xfer_len / packet_size;
529 
530 	reg_val = readl(mdata->base + SPI_CFG1_REG);
531 	if (mdata->dev_comp->ipm_design)
532 		reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK;
533 	else
534 		reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK;
535 	reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET;
536 	reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK;
537 	reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET;
538 	writel(reg_val, mdata->base + SPI_CFG1_REG);
539 }
540 
541 static void mtk_spi_enable_transfer(struct spi_master *master)
542 {
543 	u32 cmd;
544 	struct mtk_spi *mdata = spi_master_get_devdata(master);
545 
546 	cmd = readl(mdata->base + SPI_CMD_REG);
547 	if (mdata->state == MTK_SPI_IDLE)
548 		cmd |= SPI_CMD_ACT;
549 	else
550 		cmd |= SPI_CMD_RESUME;
551 	writel(cmd, mdata->base + SPI_CMD_REG);
552 }
553 
554 static int mtk_spi_get_mult_delta(u32 xfer_len)
555 {
556 	u32 mult_delta;
557 
558 	if (xfer_len > MTK_SPI_PACKET_SIZE)
559 		mult_delta = xfer_len % MTK_SPI_PACKET_SIZE;
560 	else
561 		mult_delta = 0;
562 
563 	return mult_delta;
564 }
565 
566 static void mtk_spi_update_mdata_len(struct spi_master *master)
567 {
568 	int mult_delta;
569 	struct mtk_spi *mdata = spi_master_get_devdata(master);
570 
571 	if (mdata->tx_sgl_len && mdata->rx_sgl_len) {
572 		if (mdata->tx_sgl_len > mdata->rx_sgl_len) {
573 			mult_delta = mtk_spi_get_mult_delta(mdata->rx_sgl_len);
574 			mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
575 			mdata->rx_sgl_len = mult_delta;
576 			mdata->tx_sgl_len -= mdata->xfer_len;
577 		} else {
578 			mult_delta = mtk_spi_get_mult_delta(mdata->tx_sgl_len);
579 			mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
580 			mdata->tx_sgl_len = mult_delta;
581 			mdata->rx_sgl_len -= mdata->xfer_len;
582 		}
583 	} else if (mdata->tx_sgl_len) {
584 		mult_delta = mtk_spi_get_mult_delta(mdata->tx_sgl_len);
585 		mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
586 		mdata->tx_sgl_len = mult_delta;
587 	} else if (mdata->rx_sgl_len) {
588 		mult_delta = mtk_spi_get_mult_delta(mdata->rx_sgl_len);
589 		mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
590 		mdata->rx_sgl_len = mult_delta;
591 	}
592 }
593 
594 static void mtk_spi_setup_dma_addr(struct spi_master *master,
595 				   struct spi_transfer *xfer)
596 {
597 	struct mtk_spi *mdata = spi_master_get_devdata(master);
598 
599 	if (mdata->tx_sgl) {
600 		writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK),
601 		       mdata->base + SPI_TX_SRC_REG);
602 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
603 		if (mdata->dev_comp->dma_ext)
604 			writel((u32)(xfer->tx_dma >> 32),
605 			       mdata->base + SPI_TX_SRC_REG_64);
606 #endif
607 	}
608 
609 	if (mdata->rx_sgl) {
610 		writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK),
611 		       mdata->base + SPI_RX_DST_REG);
612 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
613 		if (mdata->dev_comp->dma_ext)
614 			writel((u32)(xfer->rx_dma >> 32),
615 			       mdata->base + SPI_RX_DST_REG_64);
616 #endif
617 	}
618 }
619 
620 static int mtk_spi_fifo_transfer(struct spi_master *master,
621 				 struct spi_device *spi,
622 				 struct spi_transfer *xfer)
623 {
624 	int cnt, remainder;
625 	u32 reg_val;
626 	struct mtk_spi *mdata = spi_master_get_devdata(master);
627 
628 	mdata->cur_transfer = xfer;
629 	mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len);
630 	mdata->num_xfered = 0;
631 	mtk_spi_prepare_transfer(master, xfer->speed_hz);
632 	mtk_spi_setup_packet(master);
633 
634 	if (xfer->tx_buf) {
635 		cnt = xfer->len / 4;
636 		iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt);
637 		remainder = xfer->len % 4;
638 		if (remainder > 0) {
639 			reg_val = 0;
640 			memcpy(&reg_val, xfer->tx_buf + (cnt * 4), remainder);
641 			writel(reg_val, mdata->base + SPI_TX_DATA_REG);
642 		}
643 	}
644 
645 	mtk_spi_enable_transfer(master);
646 
647 	return 1;
648 }
649 
650 static int mtk_spi_dma_transfer(struct spi_master *master,
651 				struct spi_device *spi,
652 				struct spi_transfer *xfer)
653 {
654 	int cmd;
655 	struct mtk_spi *mdata = spi_master_get_devdata(master);
656 
657 	mdata->tx_sgl = NULL;
658 	mdata->rx_sgl = NULL;
659 	mdata->tx_sgl_len = 0;
660 	mdata->rx_sgl_len = 0;
661 	mdata->cur_transfer = xfer;
662 	mdata->num_xfered = 0;
663 
664 	mtk_spi_prepare_transfer(master, xfer->speed_hz);
665 
666 	cmd = readl(mdata->base + SPI_CMD_REG);
667 	if (xfer->tx_buf)
668 		cmd |= SPI_CMD_TX_DMA;
669 	if (xfer->rx_buf)
670 		cmd |= SPI_CMD_RX_DMA;
671 	writel(cmd, mdata->base + SPI_CMD_REG);
672 
673 	if (xfer->tx_buf)
674 		mdata->tx_sgl = xfer->tx_sg.sgl;
675 	if (xfer->rx_buf)
676 		mdata->rx_sgl = xfer->rx_sg.sgl;
677 
678 	if (mdata->tx_sgl) {
679 		xfer->tx_dma = sg_dma_address(mdata->tx_sgl);
680 		mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
681 	}
682 	if (mdata->rx_sgl) {
683 		xfer->rx_dma = sg_dma_address(mdata->rx_sgl);
684 		mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
685 	}
686 
687 	mtk_spi_update_mdata_len(master);
688 	mtk_spi_setup_packet(master);
689 	mtk_spi_setup_dma_addr(master, xfer);
690 	mtk_spi_enable_transfer(master);
691 
692 	return 1;
693 }
694 
695 static int mtk_spi_transfer_one(struct spi_master *master,
696 				struct spi_device *spi,
697 				struct spi_transfer *xfer)
698 {
699 	struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
700 	u32 reg_val = 0;
701 
702 	/* prepare xfer direction and duplex mode */
703 	if (mdata->dev_comp->ipm_design) {
704 		if (!xfer->tx_buf || !xfer->rx_buf) {
705 			reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
706 			if (xfer->rx_buf)
707 				reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
708 		}
709 		writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
710 	}
711 
712 	if (master->can_dma(master, spi, xfer))
713 		return mtk_spi_dma_transfer(master, spi, xfer);
714 	else
715 		return mtk_spi_fifo_transfer(master, spi, xfer);
716 }
717 
718 static bool mtk_spi_can_dma(struct spi_master *master,
719 			    struct spi_device *spi,
720 			    struct spi_transfer *xfer)
721 {
722 	/* Buffers for DMA transactions must be 4-byte aligned */
723 	return (xfer->len > MTK_SPI_MAX_FIFO_SIZE &&
724 		(unsigned long)xfer->tx_buf % 4 == 0 &&
725 		(unsigned long)xfer->rx_buf % 4 == 0);
726 }
727 
728 static int mtk_spi_setup(struct spi_device *spi)
729 {
730 	struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
731 
732 	if (!spi->controller_data)
733 		spi->controller_data = (void *)&mtk_default_chip_info;
734 
735 	if (mdata->dev_comp->need_pad_sel && spi->cs_gpiod)
736 		/* CS de-asserted, gpiolib will handle inversion */
737 		gpiod_direction_output(spi->cs_gpiod, 0);
738 
739 	return 0;
740 }
741 
742 static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id)
743 {
744 	u32 cmd, reg_val, cnt, remainder, len;
745 	struct spi_master *master = dev_id;
746 	struct mtk_spi *mdata = spi_master_get_devdata(master);
747 	struct spi_transfer *trans = mdata->cur_transfer;
748 
749 	reg_val = readl(mdata->base + SPI_STATUS0_REG);
750 	if (reg_val & MTK_SPI_PAUSE_INT_STATUS)
751 		mdata->state = MTK_SPI_PAUSED;
752 	else
753 		mdata->state = MTK_SPI_IDLE;
754 
755 	/* SPI-MEM ops */
756 	if (mdata->use_spimem) {
757 		complete(&mdata->spimem_done);
758 		return IRQ_HANDLED;
759 	}
760 
761 	if (!master->can_dma(master, NULL, trans)) {
762 		if (trans->rx_buf) {
763 			cnt = mdata->xfer_len / 4;
764 			ioread32_rep(mdata->base + SPI_RX_DATA_REG,
765 				     trans->rx_buf + mdata->num_xfered, cnt);
766 			remainder = mdata->xfer_len % 4;
767 			if (remainder > 0) {
768 				reg_val = readl(mdata->base + SPI_RX_DATA_REG);
769 				memcpy(trans->rx_buf +
770 					mdata->num_xfered +
771 					(cnt * 4),
772 					&reg_val,
773 					remainder);
774 			}
775 		}
776 
777 		mdata->num_xfered += mdata->xfer_len;
778 		if (mdata->num_xfered == trans->len) {
779 			spi_finalize_current_transfer(master);
780 			return IRQ_HANDLED;
781 		}
782 
783 		len = trans->len - mdata->num_xfered;
784 		mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len);
785 		mtk_spi_setup_packet(master);
786 
787 		cnt = mdata->xfer_len / 4;
788 		iowrite32_rep(mdata->base + SPI_TX_DATA_REG,
789 				trans->tx_buf + mdata->num_xfered, cnt);
790 
791 		remainder = mdata->xfer_len % 4;
792 		if (remainder > 0) {
793 			reg_val = 0;
794 			memcpy(&reg_val,
795 				trans->tx_buf + (cnt * 4) + mdata->num_xfered,
796 				remainder);
797 			writel(reg_val, mdata->base + SPI_TX_DATA_REG);
798 		}
799 
800 		mtk_spi_enable_transfer(master);
801 
802 		return IRQ_HANDLED;
803 	}
804 
805 	if (mdata->tx_sgl)
806 		trans->tx_dma += mdata->xfer_len;
807 	if (mdata->rx_sgl)
808 		trans->rx_dma += mdata->xfer_len;
809 
810 	if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) {
811 		mdata->tx_sgl = sg_next(mdata->tx_sgl);
812 		if (mdata->tx_sgl) {
813 			trans->tx_dma = sg_dma_address(mdata->tx_sgl);
814 			mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
815 		}
816 	}
817 	if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) {
818 		mdata->rx_sgl = sg_next(mdata->rx_sgl);
819 		if (mdata->rx_sgl) {
820 			trans->rx_dma = sg_dma_address(mdata->rx_sgl);
821 			mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
822 		}
823 	}
824 
825 	if (!mdata->tx_sgl && !mdata->rx_sgl) {
826 		/* spi disable dma */
827 		cmd = readl(mdata->base + SPI_CMD_REG);
828 		cmd &= ~SPI_CMD_TX_DMA;
829 		cmd &= ~SPI_CMD_RX_DMA;
830 		writel(cmd, mdata->base + SPI_CMD_REG);
831 
832 		spi_finalize_current_transfer(master);
833 		return IRQ_HANDLED;
834 	}
835 
836 	mtk_spi_update_mdata_len(master);
837 	mtk_spi_setup_packet(master);
838 	mtk_spi_setup_dma_addr(master, trans);
839 	mtk_spi_enable_transfer(master);
840 
841 	return IRQ_HANDLED;
842 }
843 
844 static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem,
845 				      struct spi_mem_op *op)
846 {
847 	int opcode_len;
848 
849 	if (op->data.dir != SPI_MEM_NO_DATA) {
850 		opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes;
851 		if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
852 			op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len;
853 			/* force data buffer dma-aligned. */
854 			op->data.nbytes -= op->data.nbytes % 4;
855 		}
856 	}
857 
858 	return 0;
859 }
860 
861 static bool mtk_spi_mem_supports_op(struct spi_mem *mem,
862 				    const struct spi_mem_op *op)
863 {
864 	if (!spi_mem_default_supports_op(mem, op))
865 		return false;
866 
867 	if (op->addr.nbytes && op->dummy.nbytes &&
868 	    op->addr.buswidth != op->dummy.buswidth)
869 		return false;
870 
871 	if (op->addr.nbytes + op->dummy.nbytes > 16)
872 		return false;
873 
874 	if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
875 		if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE >
876 		    MTK_SPI_IPM_PACKET_LOOP ||
877 		    op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0)
878 			return false;
879 	}
880 
881 	return true;
882 }
883 
884 static void mtk_spi_mem_setup_dma_xfer(struct spi_master *master,
885 				       const struct spi_mem_op *op)
886 {
887 	struct mtk_spi *mdata = spi_master_get_devdata(master);
888 
889 	writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK),
890 	       mdata->base + SPI_TX_SRC_REG);
891 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
892 	if (mdata->dev_comp->dma_ext)
893 		writel((u32)(mdata->tx_dma >> 32),
894 		       mdata->base + SPI_TX_SRC_REG_64);
895 #endif
896 
897 	if (op->data.dir == SPI_MEM_DATA_IN) {
898 		writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK),
899 		       mdata->base + SPI_RX_DST_REG);
900 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
901 		if (mdata->dev_comp->dma_ext)
902 			writel((u32)(mdata->rx_dma >> 32),
903 			       mdata->base + SPI_RX_DST_REG_64);
904 #endif
905 	}
906 }
907 
908 static int mtk_spi_transfer_wait(struct spi_mem *mem,
909 				 const struct spi_mem_op *op)
910 {
911 	struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
912 	/*
913 	 * For each byte we wait for 8 cycles of the SPI clock.
914 	 * Since speed is defined in Hz and we want milliseconds,
915 	 * so it should be 8 * 1000.
916 	 */
917 	u64 ms = 8000LL;
918 
919 	if (op->data.dir == SPI_MEM_NO_DATA)
920 		ms *= 32; /* prevent we may get 0 for short transfers. */
921 	else
922 		ms *= op->data.nbytes;
923 	ms = div_u64(ms, mem->spi->max_speed_hz);
924 	ms += ms + 1000; /* 1s tolerance */
925 
926 	if (ms > UINT_MAX)
927 		ms = UINT_MAX;
928 
929 	if (!wait_for_completion_timeout(&mdata->spimem_done,
930 					 msecs_to_jiffies(ms))) {
931 		dev_err(mdata->dev, "spi-mem transfer timeout\n");
932 		return -ETIMEDOUT;
933 	}
934 
935 	return 0;
936 }
937 
938 static int mtk_spi_mem_exec_op(struct spi_mem *mem,
939 			       const struct spi_mem_op *op)
940 {
941 	struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
942 	u32 reg_val, nio, tx_size;
943 	char *tx_tmp_buf, *rx_tmp_buf;
944 	int ret = 0;
945 
946 	mdata->use_spimem = true;
947 	reinit_completion(&mdata->spimem_done);
948 
949 	mtk_spi_reset(mdata);
950 	mtk_spi_hw_init(mem->spi->master, mem->spi);
951 	mtk_spi_prepare_transfer(mem->spi->master, mem->spi->max_speed_hz);
952 
953 	reg_val = readl(mdata->base + SPI_CFG3_IPM_REG);
954 	/* opcode byte len */
955 	reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK;
956 	reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET;
957 
958 	/* addr & dummy byte len */
959 	reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK;
960 	if (op->addr.nbytes || op->dummy.nbytes)
961 		reg_val |= (op->addr.nbytes + op->dummy.nbytes) <<
962 			    SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET;
963 
964 	/* data byte len */
965 	if (op->data.dir == SPI_MEM_NO_DATA) {
966 		reg_val |= SPI_CFG3_IPM_NODATA_FLAG;
967 		writel(0, mdata->base + SPI_CFG1_REG);
968 	} else {
969 		reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG;
970 		mdata->xfer_len = op->data.nbytes;
971 		mtk_spi_setup_packet(mem->spi->master);
972 	}
973 
974 	if (op->addr.nbytes || op->dummy.nbytes) {
975 		if (op->addr.buswidth == 1 || op->dummy.buswidth == 1)
976 			reg_val |= SPI_CFG3_IPM_XMODE_EN;
977 		else
978 			reg_val &= ~SPI_CFG3_IPM_XMODE_EN;
979 	}
980 
981 	if (op->addr.buswidth == 2 ||
982 	    op->dummy.buswidth == 2 ||
983 	    op->data.buswidth == 2)
984 		nio = 2;
985 	else if (op->addr.buswidth == 4 ||
986 		 op->dummy.buswidth == 4 ||
987 		 op->data.buswidth == 4)
988 		nio = 4;
989 	else
990 		nio = 1;
991 
992 	reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK;
993 	reg_val |= PIN_MODE_CFG(nio);
994 
995 	reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
996 	if (op->data.dir == SPI_MEM_DATA_IN)
997 		reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
998 	else
999 		reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR;
1000 	writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
1001 
1002 	tx_size = 1 + op->addr.nbytes + op->dummy.nbytes;
1003 	if (op->data.dir == SPI_MEM_DATA_OUT)
1004 		tx_size += op->data.nbytes;
1005 
1006 	tx_size = max_t(u32, tx_size, 32);
1007 
1008 	tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA);
1009 	if (!tx_tmp_buf) {
1010 		mdata->use_spimem = false;
1011 		return -ENOMEM;
1012 	}
1013 
1014 	tx_tmp_buf[0] = op->cmd.opcode;
1015 
1016 	if (op->addr.nbytes) {
1017 		int i;
1018 
1019 		for (i = 0; i < op->addr.nbytes; i++)
1020 			tx_tmp_buf[i + 1] = op->addr.val >>
1021 					(8 * (op->addr.nbytes - i - 1));
1022 	}
1023 
1024 	if (op->dummy.nbytes)
1025 		memset(tx_tmp_buf + op->addr.nbytes + 1,
1026 		       0xff,
1027 		       op->dummy.nbytes);
1028 
1029 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
1030 		memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1,
1031 		       op->data.buf.out,
1032 		       op->data.nbytes);
1033 
1034 	mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf,
1035 				       tx_size, DMA_TO_DEVICE);
1036 	if (dma_mapping_error(mdata->dev, mdata->tx_dma)) {
1037 		ret = -ENOMEM;
1038 		goto err_exit;
1039 	}
1040 
1041 	if (op->data.dir == SPI_MEM_DATA_IN) {
1042 		if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) {
1043 			rx_tmp_buf = kzalloc(op->data.nbytes,
1044 					     GFP_KERNEL | GFP_DMA);
1045 			if (!rx_tmp_buf) {
1046 				ret = -ENOMEM;
1047 				goto unmap_tx_dma;
1048 			}
1049 		} else {
1050 			rx_tmp_buf = op->data.buf.in;
1051 		}
1052 
1053 		mdata->rx_dma = dma_map_single(mdata->dev,
1054 					       rx_tmp_buf,
1055 					       op->data.nbytes,
1056 					       DMA_FROM_DEVICE);
1057 		if (dma_mapping_error(mdata->dev, mdata->rx_dma)) {
1058 			ret = -ENOMEM;
1059 			goto kfree_rx_tmp_buf;
1060 		}
1061 	}
1062 
1063 	reg_val = readl(mdata->base + SPI_CMD_REG);
1064 	reg_val |= SPI_CMD_TX_DMA;
1065 	if (op->data.dir == SPI_MEM_DATA_IN)
1066 		reg_val |= SPI_CMD_RX_DMA;
1067 	writel(reg_val, mdata->base + SPI_CMD_REG);
1068 
1069 	mtk_spi_mem_setup_dma_xfer(mem->spi->master, op);
1070 
1071 	mtk_spi_enable_transfer(mem->spi->master);
1072 
1073 	/* Wait for the interrupt. */
1074 	ret = mtk_spi_transfer_wait(mem, op);
1075 	if (ret)
1076 		goto unmap_rx_dma;
1077 
1078 	/* spi disable dma */
1079 	reg_val = readl(mdata->base + SPI_CMD_REG);
1080 	reg_val &= ~SPI_CMD_TX_DMA;
1081 	if (op->data.dir == SPI_MEM_DATA_IN)
1082 		reg_val &= ~SPI_CMD_RX_DMA;
1083 	writel(reg_val, mdata->base + SPI_CMD_REG);
1084 
1085 unmap_rx_dma:
1086 	if (op->data.dir == SPI_MEM_DATA_IN) {
1087 		dma_unmap_single(mdata->dev, mdata->rx_dma,
1088 				 op->data.nbytes, DMA_FROM_DEVICE);
1089 		if (!IS_ALIGNED((size_t)op->data.buf.in, 4))
1090 			memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes);
1091 	}
1092 kfree_rx_tmp_buf:
1093 	if (op->data.dir == SPI_MEM_DATA_IN &&
1094 	    !IS_ALIGNED((size_t)op->data.buf.in, 4))
1095 		kfree(rx_tmp_buf);
1096 unmap_tx_dma:
1097 	dma_unmap_single(mdata->dev, mdata->tx_dma,
1098 			 tx_size, DMA_TO_DEVICE);
1099 err_exit:
1100 	kfree(tx_tmp_buf);
1101 	mdata->use_spimem = false;
1102 
1103 	return ret;
1104 }
1105 
1106 static const struct spi_controller_mem_ops mtk_spi_mem_ops = {
1107 	.adjust_op_size = mtk_spi_mem_adjust_op_size,
1108 	.supports_op = mtk_spi_mem_supports_op,
1109 	.exec_op = mtk_spi_mem_exec_op,
1110 };
1111 
1112 static int mtk_spi_probe(struct platform_device *pdev)
1113 {
1114 	struct device *dev = &pdev->dev;
1115 	struct spi_master *master;
1116 	struct mtk_spi *mdata;
1117 	int i, irq, ret, addr_bits;
1118 
1119 	master = devm_spi_alloc_master(dev, sizeof(*mdata));
1120 	if (!master)
1121 		return dev_err_probe(dev, -ENOMEM, "failed to alloc spi master\n");
1122 
1123 	master->auto_runtime_pm = true;
1124 	master->dev.of_node = dev->of_node;
1125 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1126 
1127 	master->set_cs = mtk_spi_set_cs;
1128 	master->prepare_message = mtk_spi_prepare_message;
1129 	master->transfer_one = mtk_spi_transfer_one;
1130 	master->can_dma = mtk_spi_can_dma;
1131 	master->setup = mtk_spi_setup;
1132 	master->set_cs_timing = mtk_spi_set_hw_cs_timing;
1133 	master->use_gpio_descriptors = true;
1134 
1135 	mdata = spi_master_get_devdata(master);
1136 	mdata->dev_comp = device_get_match_data(dev);
1137 
1138 	if (mdata->dev_comp->enhance_timing)
1139 		master->mode_bits |= SPI_CS_HIGH;
1140 
1141 	if (mdata->dev_comp->must_tx)
1142 		master->flags = SPI_MASTER_MUST_TX;
1143 	if (mdata->dev_comp->ipm_design)
1144 		master->mode_bits |= SPI_LOOP;
1145 
1146 	if (mdata->dev_comp->ipm_design) {
1147 		mdata->dev = dev;
1148 		master->mem_ops = &mtk_spi_mem_ops;
1149 		init_completion(&mdata->spimem_done);
1150 	}
1151 
1152 	if (mdata->dev_comp->need_pad_sel) {
1153 		mdata->pad_num = of_property_count_u32_elems(dev->of_node,
1154 			"mediatek,pad-select");
1155 		if (mdata->pad_num < 0)
1156 			return dev_err_probe(dev, -EINVAL,
1157 				"No 'mediatek,pad-select' property\n");
1158 
1159 		mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num,
1160 						    sizeof(u32), GFP_KERNEL);
1161 		if (!mdata->pad_sel)
1162 			return -ENOMEM;
1163 
1164 		for (i = 0; i < mdata->pad_num; i++) {
1165 			of_property_read_u32_index(dev->of_node,
1166 						   "mediatek,pad-select",
1167 						   i, &mdata->pad_sel[i]);
1168 			if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL)
1169 				return dev_err_probe(dev, -EINVAL,
1170 						     "wrong pad-sel[%d]: %u\n",
1171 						     i, mdata->pad_sel[i]);
1172 		}
1173 	}
1174 
1175 	platform_set_drvdata(pdev, master);
1176 	mdata->base = devm_platform_ioremap_resource(pdev, 0);
1177 	if (IS_ERR(mdata->base))
1178 		return PTR_ERR(mdata->base);
1179 
1180 	irq = platform_get_irq(pdev, 0);
1181 	if (irq < 0)
1182 		return irq;
1183 
1184 	if (!dev->dma_mask)
1185 		dev->dma_mask = &dev->coherent_dma_mask;
1186 
1187 	if (mdata->dev_comp->ipm_design)
1188 		dma_set_max_seg_size(dev, SZ_16M);
1189 	else
1190 		dma_set_max_seg_size(dev, SZ_256K);
1191 
1192 	ret = devm_request_irq(dev, irq, mtk_spi_interrupt,
1193 			       IRQF_TRIGGER_NONE, dev_name(dev), master);
1194 	if (ret)
1195 		return dev_err_probe(dev, ret, "failed to register irq\n");
1196 
1197 	mdata->parent_clk = devm_clk_get(dev, "parent-clk");
1198 	if (IS_ERR(mdata->parent_clk))
1199 		return dev_err_probe(dev, PTR_ERR(mdata->parent_clk),
1200 				     "failed to get parent-clk\n");
1201 
1202 	mdata->sel_clk = devm_clk_get(dev, "sel-clk");
1203 	if (IS_ERR(mdata->sel_clk))
1204 		return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n");
1205 
1206 	mdata->spi_clk = devm_clk_get(dev, "spi-clk");
1207 	if (IS_ERR(mdata->spi_clk))
1208 		return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n");
1209 
1210 	mdata->spi_hclk = devm_clk_get_optional(dev, "hclk");
1211 	if (IS_ERR(mdata->spi_hclk))
1212 		return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n");
1213 
1214 	ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk);
1215 	if (ret < 0)
1216 		return dev_err_probe(dev, ret, "failed to clk_set_parent\n");
1217 
1218 	ret = clk_prepare_enable(mdata->spi_hclk);
1219 	if (ret < 0)
1220 		return dev_err_probe(dev, ret, "failed to enable hclk\n");
1221 
1222 	ret = clk_prepare_enable(mdata->spi_clk);
1223 	if (ret < 0) {
1224 		clk_disable_unprepare(mdata->spi_hclk);
1225 		return dev_err_probe(dev, ret, "failed to enable spi_clk\n");
1226 	}
1227 
1228 	mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk);
1229 
1230 	if (mdata->dev_comp->no_need_unprepare) {
1231 		clk_disable(mdata->spi_clk);
1232 		clk_disable(mdata->spi_hclk);
1233 	} else {
1234 		clk_disable_unprepare(mdata->spi_clk);
1235 		clk_disable_unprepare(mdata->spi_hclk);
1236 	}
1237 
1238 	if (mdata->dev_comp->need_pad_sel) {
1239 		if (mdata->pad_num != master->num_chipselect)
1240 			return dev_err_probe(dev, -EINVAL,
1241 				"pad_num does not match num_chipselect(%d != %d)\n",
1242 				mdata->pad_num, master->num_chipselect);
1243 
1244 		if (!master->cs_gpiods && master->num_chipselect > 1)
1245 			return dev_err_probe(dev, -EINVAL,
1246 				"cs_gpios not specified and num_chipselect > 1\n");
1247 	}
1248 
1249 	if (mdata->dev_comp->dma_ext)
1250 		addr_bits = DMA_ADDR_EXT_BITS;
1251 	else
1252 		addr_bits = DMA_ADDR_DEF_BITS;
1253 	ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits));
1254 	if (ret)
1255 		dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n",
1256 			   addr_bits, ret);
1257 
1258 	pm_runtime_enable(dev);
1259 
1260 	ret = devm_spi_register_master(dev, master);
1261 	if (ret) {
1262 		pm_runtime_disable(dev);
1263 		return dev_err_probe(dev, ret, "failed to register master\n");
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static int mtk_spi_remove(struct platform_device *pdev)
1270 {
1271 	struct spi_master *master = platform_get_drvdata(pdev);
1272 	struct mtk_spi *mdata = spi_master_get_devdata(master);
1273 
1274 	pm_runtime_disable(&pdev->dev);
1275 
1276 	mtk_spi_reset(mdata);
1277 
1278 	if (mdata->dev_comp->no_need_unprepare) {
1279 		clk_unprepare(mdata->spi_clk);
1280 		clk_unprepare(mdata->spi_hclk);
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 #ifdef CONFIG_PM_SLEEP
1287 static int mtk_spi_suspend(struct device *dev)
1288 {
1289 	int ret;
1290 	struct spi_master *master = dev_get_drvdata(dev);
1291 	struct mtk_spi *mdata = spi_master_get_devdata(master);
1292 
1293 	ret = spi_master_suspend(master);
1294 	if (ret)
1295 		return ret;
1296 
1297 	if (!pm_runtime_suspended(dev)) {
1298 		clk_disable_unprepare(mdata->spi_clk);
1299 		clk_disable_unprepare(mdata->spi_hclk);
1300 	}
1301 
1302 	return ret;
1303 }
1304 
1305 static int mtk_spi_resume(struct device *dev)
1306 {
1307 	int ret;
1308 	struct spi_master *master = dev_get_drvdata(dev);
1309 	struct mtk_spi *mdata = spi_master_get_devdata(master);
1310 
1311 	if (!pm_runtime_suspended(dev)) {
1312 		ret = clk_prepare_enable(mdata->spi_clk);
1313 		if (ret < 0) {
1314 			dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1315 			return ret;
1316 		}
1317 
1318 		ret = clk_prepare_enable(mdata->spi_hclk);
1319 		if (ret < 0) {
1320 			dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1321 			clk_disable_unprepare(mdata->spi_clk);
1322 			return ret;
1323 		}
1324 	}
1325 
1326 	ret = spi_master_resume(master);
1327 	if (ret < 0) {
1328 		clk_disable_unprepare(mdata->spi_clk);
1329 		clk_disable_unprepare(mdata->spi_hclk);
1330 	}
1331 
1332 	return ret;
1333 }
1334 #endif /* CONFIG_PM_SLEEP */
1335 
1336 #ifdef CONFIG_PM
1337 static int mtk_spi_runtime_suspend(struct device *dev)
1338 {
1339 	struct spi_master *master = dev_get_drvdata(dev);
1340 	struct mtk_spi *mdata = spi_master_get_devdata(master);
1341 
1342 	if (mdata->dev_comp->no_need_unprepare) {
1343 		clk_disable(mdata->spi_clk);
1344 		clk_disable(mdata->spi_hclk);
1345 	} else {
1346 		clk_disable_unprepare(mdata->spi_clk);
1347 		clk_disable_unprepare(mdata->spi_hclk);
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static int mtk_spi_runtime_resume(struct device *dev)
1354 {
1355 	struct spi_master *master = dev_get_drvdata(dev);
1356 	struct mtk_spi *mdata = spi_master_get_devdata(master);
1357 	int ret;
1358 
1359 	if (mdata->dev_comp->no_need_unprepare) {
1360 		ret = clk_enable(mdata->spi_clk);
1361 		if (ret < 0) {
1362 			dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1363 			return ret;
1364 		}
1365 		ret = clk_enable(mdata->spi_hclk);
1366 		if (ret < 0) {
1367 			dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1368 			clk_disable(mdata->spi_clk);
1369 			return ret;
1370 		}
1371 	} else {
1372 		ret = clk_prepare_enable(mdata->spi_clk);
1373 		if (ret < 0) {
1374 			dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret);
1375 			return ret;
1376 		}
1377 
1378 		ret = clk_prepare_enable(mdata->spi_hclk);
1379 		if (ret < 0) {
1380 			dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret);
1381 			clk_disable_unprepare(mdata->spi_clk);
1382 			return ret;
1383 		}
1384 	}
1385 
1386 	return 0;
1387 }
1388 #endif /* CONFIG_PM */
1389 
1390 static const struct dev_pm_ops mtk_spi_pm = {
1391 	SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume)
1392 	SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend,
1393 			   mtk_spi_runtime_resume, NULL)
1394 };
1395 
1396 static struct platform_driver mtk_spi_driver = {
1397 	.driver = {
1398 		.name = "mtk-spi",
1399 		.pm	= &mtk_spi_pm,
1400 		.of_match_table = mtk_spi_of_match,
1401 	},
1402 	.probe = mtk_spi_probe,
1403 	.remove = mtk_spi_remove,
1404 };
1405 
1406 module_platform_driver(mtk_spi_driver);
1407 
1408 MODULE_DESCRIPTION("MTK SPI Controller driver");
1409 MODULE_AUTHOR("Leilk Liu <leilk.liu@mediatek.com>");
1410 MODULE_LICENSE("GPL v2");
1411 MODULE_ALIAS("platform:mtk-spi");
1412