xref: /openbmc/linux/drivers/spi/spi-mem.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
12 
13 #include "internals.h"
14 
15 #define SPI_MEM_MAX_BUSWIDTH		8
16 
17 /**
18  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19  *					  memory operation
20  * @ctlr: the SPI controller requesting this dma_map()
21  * @op: the memory operation containing the buffer to map
22  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23  *	 function
24  *
25  * Some controllers might want to do DMA on the data buffer embedded in @op.
26  * This helper prepares everything for you and provides a ready-to-use
27  * sg_table. This function is not intended to be called from spi drivers.
28  * Only SPI controller drivers should use it.
29  * Note that the caller must ensure the memory region pointed by
30  * op->data.buf.{in,out} is DMA-able before calling this function.
31  *
32  * Return: 0 in case of success, a negative error code otherwise.
33  */
34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 				       const struct spi_mem_op *op,
36 				       struct sg_table *sgt)
37 {
38 	struct device *dmadev;
39 
40 	if (!op->data.nbytes)
41 		return -EINVAL;
42 
43 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 		dmadev = ctlr->dma_tx->device->dev;
45 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 		dmadev = ctlr->dma_rx->device->dev;
47 	else
48 		dmadev = ctlr->dev.parent;
49 
50 	if (!dmadev)
51 		return -EINVAL;
52 
53 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 			   op->data.dir == SPI_MEM_DATA_IN ?
55 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
56 }
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58 
59 /**
60  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61  *					    memory operation
62  * @ctlr: the SPI controller requesting this dma_unmap()
63  * @op: the memory operation containing the buffer to unmap
64  * @sgt: a pointer to an sg_table previously initialized by
65  *	 spi_controller_dma_map_mem_op_data()
66  *
67  * Some controllers might want to do DMA on the data buffer embedded in @op.
68  * This helper prepares things so that the CPU can access the
69  * op->data.buf.{in,out} buffer again.
70  *
71  * This function is not intended to be called from SPI drivers. Only SPI
72  * controller drivers should use it.
73  *
74  * This function should be called after the DMA operation has finished and is
75  * only valid if the previous spi_controller_dma_map_mem_op_data() call
76  * returned 0.
77  *
78  * Return: 0 in case of success, a negative error code otherwise.
79  */
80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 					  const struct spi_mem_op *op,
82 					  struct sg_table *sgt)
83 {
84 	struct device *dmadev;
85 
86 	if (!op->data.nbytes)
87 		return;
88 
89 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 		dmadev = ctlr->dma_tx->device->dev;
91 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 		dmadev = ctlr->dma_rx->device->dev;
93 	else
94 		dmadev = ctlr->dev.parent;
95 
96 	spi_unmap_buf(ctlr, dmadev, sgt,
97 		      op->data.dir == SPI_MEM_DATA_IN ?
98 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
99 }
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101 
102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103 {
104 	u32 mode = mem->spi->mode;
105 
106 	switch (buswidth) {
107 	case 1:
108 		return 0;
109 
110 	case 2:
111 		if ((tx &&
112 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
113 		    (!tx &&
114 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
115 			return 0;
116 
117 		break;
118 
119 	case 4:
120 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
121 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
122 			return 0;
123 
124 		break;
125 
126 	case 8:
127 		if ((tx && (mode & SPI_TX_OCTAL)) ||
128 		    (!tx && (mode & SPI_RX_OCTAL)))
129 			return 0;
130 
131 		break;
132 
133 	default:
134 		break;
135 	}
136 
137 	return -ENOTSUPP;
138 }
139 
140 static bool spi_mem_check_buswidth(struct spi_mem *mem,
141 				   const struct spi_mem_op *op)
142 {
143 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
144 		return false;
145 
146 	if (op->addr.nbytes &&
147 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
148 		return false;
149 
150 	if (op->dummy.nbytes &&
151 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
152 		return false;
153 
154 	if (op->data.dir != SPI_MEM_NO_DATA &&
155 	    spi_check_buswidth_req(mem, op->data.buswidth,
156 				   op->data.dir == SPI_MEM_DATA_OUT))
157 		return false;
158 
159 	return true;
160 }
161 
162 bool spi_mem_dtr_supports_op(struct spi_mem *mem,
163 			     const struct spi_mem_op *op)
164 {
165 	if (op->cmd.nbytes != 2)
166 		return false;
167 
168 	return spi_mem_check_buswidth(mem, op);
169 }
170 EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
171 
172 bool spi_mem_default_supports_op(struct spi_mem *mem,
173 				 const struct spi_mem_op *op)
174 {
175 	if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
176 		return false;
177 
178 	if (op->cmd.nbytes != 1)
179 		return false;
180 
181 	return spi_mem_check_buswidth(mem, op);
182 }
183 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
184 
185 static bool spi_mem_buswidth_is_valid(u8 buswidth)
186 {
187 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
188 		return false;
189 
190 	return true;
191 }
192 
193 static int spi_mem_check_op(const struct spi_mem_op *op)
194 {
195 	if (!op->cmd.buswidth || !op->cmd.nbytes)
196 		return -EINVAL;
197 
198 	if ((op->addr.nbytes && !op->addr.buswidth) ||
199 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
200 	    (op->data.nbytes && !op->data.buswidth))
201 		return -EINVAL;
202 
203 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
204 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
205 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
206 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
207 		return -EINVAL;
208 
209 	return 0;
210 }
211 
212 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
213 					 const struct spi_mem_op *op)
214 {
215 	struct spi_controller *ctlr = mem->spi->controller;
216 
217 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
218 		return ctlr->mem_ops->supports_op(mem, op);
219 
220 	return spi_mem_default_supports_op(mem, op);
221 }
222 
223 /**
224  * spi_mem_supports_op() - Check if a memory device and the controller it is
225  *			   connected to support a specific memory operation
226  * @mem: the SPI memory
227  * @op: the memory operation to check
228  *
229  * Some controllers are only supporting Single or Dual IOs, others might only
230  * support specific opcodes, or it can even be that the controller and device
231  * both support Quad IOs but the hardware prevents you from using it because
232  * only 2 IO lines are connected.
233  *
234  * This function checks whether a specific operation is supported.
235  *
236  * Return: true if @op is supported, false otherwise.
237  */
238 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
239 {
240 	if (spi_mem_check_op(op))
241 		return false;
242 
243 	return spi_mem_internal_supports_op(mem, op);
244 }
245 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
246 
247 static int spi_mem_access_start(struct spi_mem *mem)
248 {
249 	struct spi_controller *ctlr = mem->spi->controller;
250 
251 	/*
252 	 * Flush the message queue before executing our SPI memory
253 	 * operation to prevent preemption of regular SPI transfers.
254 	 */
255 	spi_flush_queue(ctlr);
256 
257 	if (ctlr->auto_runtime_pm) {
258 		int ret;
259 
260 		ret = pm_runtime_get_sync(ctlr->dev.parent);
261 		if (ret < 0) {
262 			pm_runtime_put_noidle(ctlr->dev.parent);
263 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
264 				ret);
265 			return ret;
266 		}
267 	}
268 
269 	mutex_lock(&ctlr->bus_lock_mutex);
270 	mutex_lock(&ctlr->io_mutex);
271 
272 	return 0;
273 }
274 
275 static void spi_mem_access_end(struct spi_mem *mem)
276 {
277 	struct spi_controller *ctlr = mem->spi->controller;
278 
279 	mutex_unlock(&ctlr->io_mutex);
280 	mutex_unlock(&ctlr->bus_lock_mutex);
281 
282 	if (ctlr->auto_runtime_pm)
283 		pm_runtime_put(ctlr->dev.parent);
284 }
285 
286 /**
287  * spi_mem_exec_op() - Execute a memory operation
288  * @mem: the SPI memory
289  * @op: the memory operation to execute
290  *
291  * Executes a memory operation.
292  *
293  * This function first checks that @op is supported and then tries to execute
294  * it.
295  *
296  * Return: 0 in case of success, a negative error code otherwise.
297  */
298 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
299 {
300 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
301 	struct spi_controller *ctlr = mem->spi->controller;
302 	struct spi_transfer xfers[4] = { };
303 	struct spi_message msg;
304 	u8 *tmpbuf;
305 	int ret;
306 
307 	ret = spi_mem_check_op(op);
308 	if (ret)
309 		return ret;
310 
311 	if (!spi_mem_internal_supports_op(mem, op))
312 		return -ENOTSUPP;
313 
314 	if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
315 		ret = spi_mem_access_start(mem);
316 		if (ret)
317 			return ret;
318 
319 		ret = ctlr->mem_ops->exec_op(mem, op);
320 
321 		spi_mem_access_end(mem);
322 
323 		/*
324 		 * Some controllers only optimize specific paths (typically the
325 		 * read path) and expect the core to use the regular SPI
326 		 * interface in other cases.
327 		 */
328 		if (!ret || ret != -ENOTSUPP)
329 			return ret;
330 	}
331 
332 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
333 
334 	/*
335 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
336 	 * we're guaranteed that this buffer is DMA-able, as required by the
337 	 * SPI layer.
338 	 */
339 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
340 	if (!tmpbuf)
341 		return -ENOMEM;
342 
343 	spi_message_init(&msg);
344 
345 	tmpbuf[0] = op->cmd.opcode;
346 	xfers[xferpos].tx_buf = tmpbuf;
347 	xfers[xferpos].len = op->cmd.nbytes;
348 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
349 	spi_message_add_tail(&xfers[xferpos], &msg);
350 	xferpos++;
351 	totalxferlen++;
352 
353 	if (op->addr.nbytes) {
354 		int i;
355 
356 		for (i = 0; i < op->addr.nbytes; i++)
357 			tmpbuf[i + 1] = op->addr.val >>
358 					(8 * (op->addr.nbytes - i - 1));
359 
360 		xfers[xferpos].tx_buf = tmpbuf + 1;
361 		xfers[xferpos].len = op->addr.nbytes;
362 		xfers[xferpos].tx_nbits = op->addr.buswidth;
363 		spi_message_add_tail(&xfers[xferpos], &msg);
364 		xferpos++;
365 		totalxferlen += op->addr.nbytes;
366 	}
367 
368 	if (op->dummy.nbytes) {
369 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
370 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
371 		xfers[xferpos].len = op->dummy.nbytes;
372 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
373 		xfers[xferpos].dummy_data = 1;
374 		spi_message_add_tail(&xfers[xferpos], &msg);
375 		xferpos++;
376 		totalxferlen += op->dummy.nbytes;
377 	}
378 
379 	if (op->data.nbytes) {
380 		if (op->data.dir == SPI_MEM_DATA_IN) {
381 			xfers[xferpos].rx_buf = op->data.buf.in;
382 			xfers[xferpos].rx_nbits = op->data.buswidth;
383 		} else {
384 			xfers[xferpos].tx_buf = op->data.buf.out;
385 			xfers[xferpos].tx_nbits = op->data.buswidth;
386 		}
387 
388 		xfers[xferpos].len = op->data.nbytes;
389 		spi_message_add_tail(&xfers[xferpos], &msg);
390 		xferpos++;
391 		totalxferlen += op->data.nbytes;
392 	}
393 
394 	ret = spi_sync(mem->spi, &msg);
395 
396 	kfree(tmpbuf);
397 
398 	if (ret)
399 		return ret;
400 
401 	if (msg.actual_length != totalxferlen)
402 		return -EIO;
403 
404 	return 0;
405 }
406 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
407 
408 /**
409  * spi_mem_get_name() - Return the SPI mem device name to be used by the
410  *			upper layer if necessary
411  * @mem: the SPI memory
412  *
413  * This function allows SPI mem users to retrieve the SPI mem device name.
414  * It is useful if the upper layer needs to expose a custom name for
415  * compatibility reasons.
416  *
417  * Return: a string containing the name of the memory device to be used
418  *	   by the SPI mem user
419  */
420 const char *spi_mem_get_name(struct spi_mem *mem)
421 {
422 	return mem->name;
423 }
424 EXPORT_SYMBOL_GPL(spi_mem_get_name);
425 
426 /**
427  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
428  *			      match controller limitations
429  * @mem: the SPI memory
430  * @op: the operation to adjust
431  *
432  * Some controllers have FIFO limitations and must split a data transfer
433  * operation into multiple ones, others require a specific alignment for
434  * optimized accesses. This function allows SPI mem drivers to split a single
435  * operation into multiple sub-operations when required.
436  *
437  * Return: a negative error code if the controller can't properly adjust @op,
438  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
439  *	   can't be handled in a single step.
440  */
441 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
442 {
443 	struct spi_controller *ctlr = mem->spi->controller;
444 	size_t len;
445 
446 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
447 		return ctlr->mem_ops->adjust_op_size(mem, op);
448 
449 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
450 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
451 
452 		if (len > spi_max_transfer_size(mem->spi))
453 			return -EINVAL;
454 
455 		op->data.nbytes = min3((size_t)op->data.nbytes,
456 				       spi_max_transfer_size(mem->spi),
457 				       spi_max_message_size(mem->spi) -
458 				       len);
459 		if (!op->data.nbytes)
460 			return -EINVAL;
461 	}
462 
463 	return 0;
464 }
465 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
466 
467 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
468 				      u64 offs, size_t len, void *buf)
469 {
470 	struct spi_mem_op op = desc->info.op_tmpl;
471 	int ret;
472 
473 	op.addr.val = desc->info.offset + offs;
474 	op.data.buf.in = buf;
475 	op.data.nbytes = len;
476 	ret = spi_mem_adjust_op_size(desc->mem, &op);
477 	if (ret)
478 		return ret;
479 
480 	ret = spi_mem_exec_op(desc->mem, &op);
481 	if (ret)
482 		return ret;
483 
484 	return op.data.nbytes;
485 }
486 
487 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
488 				       u64 offs, size_t len, const void *buf)
489 {
490 	struct spi_mem_op op = desc->info.op_tmpl;
491 	int ret;
492 
493 	op.addr.val = desc->info.offset + offs;
494 	op.data.buf.out = buf;
495 	op.data.nbytes = len;
496 	ret = spi_mem_adjust_op_size(desc->mem, &op);
497 	if (ret)
498 		return ret;
499 
500 	ret = spi_mem_exec_op(desc->mem, &op);
501 	if (ret)
502 		return ret;
503 
504 	return op.data.nbytes;
505 }
506 
507 /**
508  * spi_mem_dirmap_create() - Create a direct mapping descriptor
509  * @mem: SPI mem device this direct mapping should be created for
510  * @info: direct mapping information
511  *
512  * This function is creating a direct mapping descriptor which can then be used
513  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
514  * If the SPI controller driver does not support direct mapping, this function
515  * falls back to an implementation using spi_mem_exec_op(), so that the caller
516  * doesn't have to bother implementing a fallback on his own.
517  *
518  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
519  */
520 struct spi_mem_dirmap_desc *
521 spi_mem_dirmap_create(struct spi_mem *mem,
522 		      const struct spi_mem_dirmap_info *info)
523 {
524 	struct spi_controller *ctlr = mem->spi->controller;
525 	struct spi_mem_dirmap_desc *desc;
526 	int ret = -ENOTSUPP;
527 
528 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
529 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
530 		return ERR_PTR(-EINVAL);
531 
532 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
533 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
534 		return ERR_PTR(-EINVAL);
535 
536 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
537 	if (!desc)
538 		return ERR_PTR(-ENOMEM);
539 
540 	desc->mem = mem;
541 	desc->info = *info;
542 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
543 		ret = ctlr->mem_ops->dirmap_create(desc);
544 
545 	if (ret) {
546 		desc->nodirmap = true;
547 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
548 			ret = -ENOTSUPP;
549 		else
550 			ret = 0;
551 	}
552 
553 	if (ret) {
554 		kfree(desc);
555 		return ERR_PTR(ret);
556 	}
557 
558 	return desc;
559 }
560 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
561 
562 /**
563  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
564  * @desc: the direct mapping descriptor to destroy
565  *
566  * This function destroys a direct mapping descriptor previously created by
567  * spi_mem_dirmap_create().
568  */
569 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
570 {
571 	struct spi_controller *ctlr = desc->mem->spi->controller;
572 
573 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
574 		ctlr->mem_ops->dirmap_destroy(desc);
575 
576 	kfree(desc);
577 }
578 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
579 
580 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
581 {
582 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
583 
584 	spi_mem_dirmap_destroy(desc);
585 }
586 
587 /**
588  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
589  *				  it to a device
590  * @dev: device the dirmap desc will be attached to
591  * @mem: SPI mem device this direct mapping should be created for
592  * @info: direct mapping information
593  *
594  * devm_ variant of the spi_mem_dirmap_create() function. See
595  * spi_mem_dirmap_create() for more details.
596  *
597  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
598  */
599 struct spi_mem_dirmap_desc *
600 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
601 			   const struct spi_mem_dirmap_info *info)
602 {
603 	struct spi_mem_dirmap_desc **ptr, *desc;
604 
605 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
606 			   GFP_KERNEL);
607 	if (!ptr)
608 		return ERR_PTR(-ENOMEM);
609 
610 	desc = spi_mem_dirmap_create(mem, info);
611 	if (IS_ERR(desc)) {
612 		devres_free(ptr);
613 	} else {
614 		*ptr = desc;
615 		devres_add(dev, ptr);
616 	}
617 
618 	return desc;
619 }
620 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
621 
622 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
623 {
624 	struct spi_mem_dirmap_desc **ptr = res;
625 
626 	if (WARN_ON(!ptr || !*ptr))
627 		return 0;
628 
629 	return *ptr == data;
630 }
631 
632 /**
633  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
634  *				   to a device
635  * @dev: device the dirmap desc is attached to
636  * @desc: the direct mapping descriptor to destroy
637  *
638  * devm_ variant of the spi_mem_dirmap_destroy() function. See
639  * spi_mem_dirmap_destroy() for more details.
640  */
641 void devm_spi_mem_dirmap_destroy(struct device *dev,
642 				 struct spi_mem_dirmap_desc *desc)
643 {
644 	devres_release(dev, devm_spi_mem_dirmap_release,
645 		       devm_spi_mem_dirmap_match, desc);
646 }
647 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
648 
649 /**
650  * spi_mem_dirmap_read() - Read data through a direct mapping
651  * @desc: direct mapping descriptor
652  * @offs: offset to start reading from. Note that this is not an absolute
653  *	  offset, but the offset within the direct mapping which already has
654  *	  its own offset
655  * @len: length in bytes
656  * @buf: destination buffer. This buffer must be DMA-able
657  *
658  * This function reads data from a memory device using a direct mapping
659  * previously instantiated with spi_mem_dirmap_create().
660  *
661  * Return: the amount of data read from the memory device or a negative error
662  * code. Note that the returned size might be smaller than @len, and the caller
663  * is responsible for calling spi_mem_dirmap_read() again when that happens.
664  */
665 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
666 			    u64 offs, size_t len, void *buf)
667 {
668 	struct spi_controller *ctlr = desc->mem->spi->controller;
669 	ssize_t ret;
670 
671 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
672 		return -EINVAL;
673 
674 	if (!len)
675 		return 0;
676 
677 	if (desc->nodirmap) {
678 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
679 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
680 		ret = spi_mem_access_start(desc->mem);
681 		if (ret)
682 			return ret;
683 
684 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
685 
686 		spi_mem_access_end(desc->mem);
687 	} else {
688 		ret = -ENOTSUPP;
689 	}
690 
691 	return ret;
692 }
693 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
694 
695 /**
696  * spi_mem_dirmap_write() - Write data through a direct mapping
697  * @desc: direct mapping descriptor
698  * @offs: offset to start writing from. Note that this is not an absolute
699  *	  offset, but the offset within the direct mapping which already has
700  *	  its own offset
701  * @len: length in bytes
702  * @buf: source buffer. This buffer must be DMA-able
703  *
704  * This function writes data to a memory device using a direct mapping
705  * previously instantiated with spi_mem_dirmap_create().
706  *
707  * Return: the amount of data written to the memory device or a negative error
708  * code. Note that the returned size might be smaller than @len, and the caller
709  * is responsible for calling spi_mem_dirmap_write() again when that happens.
710  */
711 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
712 			     u64 offs, size_t len, const void *buf)
713 {
714 	struct spi_controller *ctlr = desc->mem->spi->controller;
715 	ssize_t ret;
716 
717 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
718 		return -EINVAL;
719 
720 	if (!len)
721 		return 0;
722 
723 	if (desc->nodirmap) {
724 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
725 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
726 		ret = spi_mem_access_start(desc->mem);
727 		if (ret)
728 			return ret;
729 
730 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
731 
732 		spi_mem_access_end(desc->mem);
733 	} else {
734 		ret = -ENOTSUPP;
735 	}
736 
737 	return ret;
738 }
739 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
740 
741 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
742 {
743 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
744 }
745 
746 static int spi_mem_probe(struct spi_device *spi)
747 {
748 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
749 	struct spi_controller *ctlr = spi->controller;
750 	struct spi_mem *mem;
751 
752 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
753 	if (!mem)
754 		return -ENOMEM;
755 
756 	mem->spi = spi;
757 
758 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
759 		mem->name = ctlr->mem_ops->get_name(mem);
760 	else
761 		mem->name = dev_name(&spi->dev);
762 
763 	if (IS_ERR_OR_NULL(mem->name))
764 		return PTR_ERR_OR_ZERO(mem->name);
765 
766 	spi_set_drvdata(spi, mem);
767 
768 	return memdrv->probe(mem);
769 }
770 
771 static int spi_mem_remove(struct spi_device *spi)
772 {
773 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
774 	struct spi_mem *mem = spi_get_drvdata(spi);
775 
776 	if (memdrv->remove)
777 		return memdrv->remove(mem);
778 
779 	return 0;
780 }
781 
782 static void spi_mem_shutdown(struct spi_device *spi)
783 {
784 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
785 	struct spi_mem *mem = spi_get_drvdata(spi);
786 
787 	if (memdrv->shutdown)
788 		memdrv->shutdown(mem);
789 }
790 
791 /**
792  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
793  * @memdrv: the SPI memory driver to register
794  * @owner: the owner of this driver
795  *
796  * Registers a SPI memory driver.
797  *
798  * Return: 0 in case of success, a negative error core otherwise.
799  */
800 
801 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
802 				       struct module *owner)
803 {
804 	memdrv->spidrv.probe = spi_mem_probe;
805 	memdrv->spidrv.remove = spi_mem_remove;
806 	memdrv->spidrv.shutdown = spi_mem_shutdown;
807 
808 	return __spi_register_driver(owner, &memdrv->spidrv);
809 }
810 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
811 
812 /**
813  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
814  * @memdrv: the SPI memory driver to unregister
815  *
816  * Unregisters a SPI memory driver.
817  */
818 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
819 {
820 	spi_unregister_driver(&memdrv->spidrv);
821 }
822 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
823