xref: /openbmc/linux/drivers/spi/spi-mem.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
12 
13 #include "internals.h"
14 
15 #define SPI_MEM_MAX_BUSWIDTH		8
16 
17 /**
18  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19  *					  memory operation
20  * @ctlr: the SPI controller requesting this dma_map()
21  * @op: the memory operation containing the buffer to map
22  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23  *	 function
24  *
25  * Some controllers might want to do DMA on the data buffer embedded in @op.
26  * This helper prepares everything for you and provides a ready-to-use
27  * sg_table. This function is not intended to be called from spi drivers.
28  * Only SPI controller drivers should use it.
29  * Note that the caller must ensure the memory region pointed by
30  * op->data.buf.{in,out} is DMA-able before calling this function.
31  *
32  * Return: 0 in case of success, a negative error code otherwise.
33  */
34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 				       const struct spi_mem_op *op,
36 				       struct sg_table *sgt)
37 {
38 	struct device *dmadev;
39 
40 	if (!op->data.nbytes)
41 		return -EINVAL;
42 
43 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 		dmadev = ctlr->dma_tx->device->dev;
45 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 		dmadev = ctlr->dma_rx->device->dev;
47 	else
48 		dmadev = ctlr->dev.parent;
49 
50 	if (!dmadev)
51 		return -EINVAL;
52 
53 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 			   op->data.dir == SPI_MEM_DATA_IN ?
55 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
56 }
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58 
59 /**
60  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61  *					    memory operation
62  * @ctlr: the SPI controller requesting this dma_unmap()
63  * @op: the memory operation containing the buffer to unmap
64  * @sgt: a pointer to an sg_table previously initialized by
65  *	 spi_controller_dma_map_mem_op_data()
66  *
67  * Some controllers might want to do DMA on the data buffer embedded in @op.
68  * This helper prepares things so that the CPU can access the
69  * op->data.buf.{in,out} buffer again.
70  *
71  * This function is not intended to be called from SPI drivers. Only SPI
72  * controller drivers should use it.
73  *
74  * This function should be called after the DMA operation has finished and is
75  * only valid if the previous spi_controller_dma_map_mem_op_data() call
76  * returned 0.
77  *
78  * Return: 0 in case of success, a negative error code otherwise.
79  */
80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 					  const struct spi_mem_op *op,
82 					  struct sg_table *sgt)
83 {
84 	struct device *dmadev;
85 
86 	if (!op->data.nbytes)
87 		return;
88 
89 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 		dmadev = ctlr->dma_tx->device->dev;
91 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 		dmadev = ctlr->dma_rx->device->dev;
93 	else
94 		dmadev = ctlr->dev.parent;
95 
96 	spi_unmap_buf(ctlr, dmadev, sgt,
97 		      op->data.dir == SPI_MEM_DATA_IN ?
98 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
99 }
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101 
102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103 {
104 	u32 mode = mem->spi->mode;
105 
106 	switch (buswidth) {
107 	case 1:
108 		return 0;
109 
110 	case 2:
111 		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
112 		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
113 			return 0;
114 
115 		break;
116 
117 	case 4:
118 		if ((tx && (mode & SPI_TX_QUAD)) ||
119 		    (!tx && (mode & SPI_RX_QUAD)))
120 			return 0;
121 
122 		break;
123 
124 	case 8:
125 		if ((tx && (mode & SPI_TX_OCTAL)) ||
126 		    (!tx && (mode & SPI_RX_OCTAL)))
127 			return 0;
128 
129 		break;
130 
131 	default:
132 		break;
133 	}
134 
135 	return -ENOTSUPP;
136 }
137 
138 bool spi_mem_default_supports_op(struct spi_mem *mem,
139 				 const struct spi_mem_op *op)
140 {
141 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
142 		return false;
143 
144 	if (op->addr.nbytes &&
145 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
146 		return false;
147 
148 	if (op->dummy.nbytes &&
149 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
150 		return false;
151 
152 	if (op->data.dir != SPI_MEM_NO_DATA &&
153 	    spi_check_buswidth_req(mem, op->data.buswidth,
154 				   op->data.dir == SPI_MEM_DATA_OUT))
155 		return false;
156 
157 	return true;
158 }
159 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
160 
161 static bool spi_mem_buswidth_is_valid(u8 buswidth)
162 {
163 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
164 		return false;
165 
166 	return true;
167 }
168 
169 static int spi_mem_check_op(const struct spi_mem_op *op)
170 {
171 	if (!op->cmd.buswidth)
172 		return -EINVAL;
173 
174 	if ((op->addr.nbytes && !op->addr.buswidth) ||
175 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
176 	    (op->data.nbytes && !op->data.buswidth))
177 		return -EINVAL;
178 
179 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
180 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
181 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
182 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
183 		return -EINVAL;
184 
185 	return 0;
186 }
187 
188 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
189 					 const struct spi_mem_op *op)
190 {
191 	struct spi_controller *ctlr = mem->spi->controller;
192 
193 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
194 		return ctlr->mem_ops->supports_op(mem, op);
195 
196 	return spi_mem_default_supports_op(mem, op);
197 }
198 
199 /**
200  * spi_mem_supports_op() - Check if a memory device and the controller it is
201  *			   connected to support a specific memory operation
202  * @mem: the SPI memory
203  * @op: the memory operation to check
204  *
205  * Some controllers are only supporting Single or Dual IOs, others might only
206  * support specific opcodes, or it can even be that the controller and device
207  * both support Quad IOs but the hardware prevents you from using it because
208  * only 2 IO lines are connected.
209  *
210  * This function checks whether a specific operation is supported.
211  *
212  * Return: true if @op is supported, false otherwise.
213  */
214 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
215 {
216 	if (spi_mem_check_op(op))
217 		return false;
218 
219 	return spi_mem_internal_supports_op(mem, op);
220 }
221 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
222 
223 static int spi_mem_access_start(struct spi_mem *mem)
224 {
225 	struct spi_controller *ctlr = mem->spi->controller;
226 
227 	/*
228 	 * Flush the message queue before executing our SPI memory
229 	 * operation to prevent preemption of regular SPI transfers.
230 	 */
231 	spi_flush_queue(ctlr);
232 
233 	if (ctlr->auto_runtime_pm) {
234 		int ret;
235 
236 		ret = pm_runtime_get_sync(ctlr->dev.parent);
237 		if (ret < 0) {
238 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
239 				ret);
240 			return ret;
241 		}
242 	}
243 
244 	mutex_lock(&ctlr->bus_lock_mutex);
245 	mutex_lock(&ctlr->io_mutex);
246 
247 	return 0;
248 }
249 
250 static void spi_mem_access_end(struct spi_mem *mem)
251 {
252 	struct spi_controller *ctlr = mem->spi->controller;
253 
254 	mutex_unlock(&ctlr->io_mutex);
255 	mutex_unlock(&ctlr->bus_lock_mutex);
256 
257 	if (ctlr->auto_runtime_pm)
258 		pm_runtime_put(ctlr->dev.parent);
259 }
260 
261 /**
262  * spi_mem_exec_op() - Execute a memory operation
263  * @mem: the SPI memory
264  * @op: the memory operation to execute
265  *
266  * Executes a memory operation.
267  *
268  * This function first checks that @op is supported and then tries to execute
269  * it.
270  *
271  * Return: 0 in case of success, a negative error code otherwise.
272  */
273 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
274 {
275 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
276 	struct spi_controller *ctlr = mem->spi->controller;
277 	struct spi_transfer xfers[4] = { };
278 	struct spi_message msg;
279 	u8 *tmpbuf;
280 	int ret;
281 
282 	ret = spi_mem_check_op(op);
283 	if (ret)
284 		return ret;
285 
286 	if (!spi_mem_internal_supports_op(mem, op))
287 		return -ENOTSUPP;
288 
289 	if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
290 		ret = spi_mem_access_start(mem);
291 		if (ret)
292 			return ret;
293 
294 		ret = ctlr->mem_ops->exec_op(mem, op);
295 
296 		spi_mem_access_end(mem);
297 
298 		/*
299 		 * Some controllers only optimize specific paths (typically the
300 		 * read path) and expect the core to use the regular SPI
301 		 * interface in other cases.
302 		 */
303 		if (!ret || ret != -ENOTSUPP)
304 			return ret;
305 	}
306 
307 	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
308 		     op->dummy.nbytes;
309 
310 	/*
311 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
312 	 * we're guaranteed that this buffer is DMA-able, as required by the
313 	 * SPI layer.
314 	 */
315 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
316 	if (!tmpbuf)
317 		return -ENOMEM;
318 
319 	spi_message_init(&msg);
320 
321 	tmpbuf[0] = op->cmd.opcode;
322 	xfers[xferpos].tx_buf = tmpbuf;
323 	xfers[xferpos].len = sizeof(op->cmd.opcode);
324 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
325 	spi_message_add_tail(&xfers[xferpos], &msg);
326 	xferpos++;
327 	totalxferlen++;
328 
329 	if (op->addr.nbytes) {
330 		int i;
331 
332 		for (i = 0; i < op->addr.nbytes; i++)
333 			tmpbuf[i + 1] = op->addr.val >>
334 					(8 * (op->addr.nbytes - i - 1));
335 
336 		xfers[xferpos].tx_buf = tmpbuf + 1;
337 		xfers[xferpos].len = op->addr.nbytes;
338 		xfers[xferpos].tx_nbits = op->addr.buswidth;
339 		spi_message_add_tail(&xfers[xferpos], &msg);
340 		xferpos++;
341 		totalxferlen += op->addr.nbytes;
342 	}
343 
344 	if (op->dummy.nbytes) {
345 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
346 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
347 		xfers[xferpos].len = op->dummy.nbytes;
348 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
349 		spi_message_add_tail(&xfers[xferpos], &msg);
350 		xferpos++;
351 		totalxferlen += op->dummy.nbytes;
352 	}
353 
354 	if (op->data.nbytes) {
355 		if (op->data.dir == SPI_MEM_DATA_IN) {
356 			xfers[xferpos].rx_buf = op->data.buf.in;
357 			xfers[xferpos].rx_nbits = op->data.buswidth;
358 		} else {
359 			xfers[xferpos].tx_buf = op->data.buf.out;
360 			xfers[xferpos].tx_nbits = op->data.buswidth;
361 		}
362 
363 		xfers[xferpos].len = op->data.nbytes;
364 		spi_message_add_tail(&xfers[xferpos], &msg);
365 		xferpos++;
366 		totalxferlen += op->data.nbytes;
367 	}
368 
369 	ret = spi_sync(mem->spi, &msg);
370 
371 	kfree(tmpbuf);
372 
373 	if (ret)
374 		return ret;
375 
376 	if (msg.actual_length != totalxferlen)
377 		return -EIO;
378 
379 	return 0;
380 }
381 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
382 
383 /**
384  * spi_mem_get_name() - Return the SPI mem device name to be used by the
385  *			upper layer if necessary
386  * @mem: the SPI memory
387  *
388  * This function allows SPI mem users to retrieve the SPI mem device name.
389  * It is useful if the upper layer needs to expose a custom name for
390  * compatibility reasons.
391  *
392  * Return: a string containing the name of the memory device to be used
393  *	   by the SPI mem user
394  */
395 const char *spi_mem_get_name(struct spi_mem *mem)
396 {
397 	return mem->name;
398 }
399 EXPORT_SYMBOL_GPL(spi_mem_get_name);
400 
401 /**
402  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
403  *			      match controller limitations
404  * @mem: the SPI memory
405  * @op: the operation to adjust
406  *
407  * Some controllers have FIFO limitations and must split a data transfer
408  * operation into multiple ones, others require a specific alignment for
409  * optimized accesses. This function allows SPI mem drivers to split a single
410  * operation into multiple sub-operations when required.
411  *
412  * Return: a negative error code if the controller can't properly adjust @op,
413  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
414  *	   can't be handled in a single step.
415  */
416 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
417 {
418 	struct spi_controller *ctlr = mem->spi->controller;
419 	size_t len;
420 
421 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
422 		return ctlr->mem_ops->adjust_op_size(mem, op);
423 
424 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
425 		len = sizeof(op->cmd.opcode) + op->addr.nbytes +
426 		      op->dummy.nbytes;
427 
428 		if (len > spi_max_transfer_size(mem->spi))
429 			return -EINVAL;
430 
431 		op->data.nbytes = min3((size_t)op->data.nbytes,
432 				       spi_max_transfer_size(mem->spi),
433 				       spi_max_message_size(mem->spi) -
434 				       len);
435 		if (!op->data.nbytes)
436 			return -EINVAL;
437 	}
438 
439 	return 0;
440 }
441 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
442 
443 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
444 				      u64 offs, size_t len, void *buf)
445 {
446 	struct spi_mem_op op = desc->info.op_tmpl;
447 	int ret;
448 
449 	op.addr.val = desc->info.offset + offs;
450 	op.data.buf.in = buf;
451 	op.data.nbytes = len;
452 	ret = spi_mem_adjust_op_size(desc->mem, &op);
453 	if (ret)
454 		return ret;
455 
456 	ret = spi_mem_exec_op(desc->mem, &op);
457 	if (ret)
458 		return ret;
459 
460 	return op.data.nbytes;
461 }
462 
463 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
464 				       u64 offs, size_t len, const void *buf)
465 {
466 	struct spi_mem_op op = desc->info.op_tmpl;
467 	int ret;
468 
469 	op.addr.val = desc->info.offset + offs;
470 	op.data.buf.out = buf;
471 	op.data.nbytes = len;
472 	ret = spi_mem_adjust_op_size(desc->mem, &op);
473 	if (ret)
474 		return ret;
475 
476 	ret = spi_mem_exec_op(desc->mem, &op);
477 	if (ret)
478 		return ret;
479 
480 	return op.data.nbytes;
481 }
482 
483 /**
484  * spi_mem_dirmap_create() - Create a direct mapping descriptor
485  * @mem: SPI mem device this direct mapping should be created for
486  * @info: direct mapping information
487  *
488  * This function is creating a direct mapping descriptor which can then be used
489  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
490  * If the SPI controller driver does not support direct mapping, this function
491  * falls back to an implementation using spi_mem_exec_op(), so that the caller
492  * doesn't have to bother implementing a fallback on his own.
493  *
494  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
495  */
496 struct spi_mem_dirmap_desc *
497 spi_mem_dirmap_create(struct spi_mem *mem,
498 		      const struct spi_mem_dirmap_info *info)
499 {
500 	struct spi_controller *ctlr = mem->spi->controller;
501 	struct spi_mem_dirmap_desc *desc;
502 	int ret = -ENOTSUPP;
503 
504 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
505 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
506 		return ERR_PTR(-EINVAL);
507 
508 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
509 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
510 		return ERR_PTR(-EINVAL);
511 
512 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
513 	if (!desc)
514 		return ERR_PTR(-ENOMEM);
515 
516 	desc->mem = mem;
517 	desc->info = *info;
518 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
519 		ret = ctlr->mem_ops->dirmap_create(desc);
520 
521 	if (ret) {
522 		desc->nodirmap = true;
523 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
524 			ret = -ENOTSUPP;
525 		else
526 			ret = 0;
527 	}
528 
529 	if (ret) {
530 		kfree(desc);
531 		return ERR_PTR(ret);
532 	}
533 
534 	return desc;
535 }
536 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
537 
538 /**
539  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
540  * @desc: the direct mapping descriptor to destroy
541  *
542  * This function destroys a direct mapping descriptor previously created by
543  * spi_mem_dirmap_create().
544  */
545 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
546 {
547 	struct spi_controller *ctlr = desc->mem->spi->controller;
548 
549 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
550 		ctlr->mem_ops->dirmap_destroy(desc);
551 
552 	kfree(desc);
553 }
554 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
555 
556 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
557 {
558 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
559 
560 	spi_mem_dirmap_destroy(desc);
561 }
562 
563 /**
564  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
565  *				  it to a device
566  * @dev: device the dirmap desc will be attached to
567  * @mem: SPI mem device this direct mapping should be created for
568  * @info: direct mapping information
569  *
570  * devm_ variant of the spi_mem_dirmap_create() function. See
571  * spi_mem_dirmap_create() for more details.
572  *
573  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
574  */
575 struct spi_mem_dirmap_desc *
576 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
577 			   const struct spi_mem_dirmap_info *info)
578 {
579 	struct spi_mem_dirmap_desc **ptr, *desc;
580 
581 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
582 			   GFP_KERNEL);
583 	if (!ptr)
584 		return ERR_PTR(-ENOMEM);
585 
586 	desc = spi_mem_dirmap_create(mem, info);
587 	if (IS_ERR(desc)) {
588 		devres_free(ptr);
589 	} else {
590 		*ptr = desc;
591 		devres_add(dev, ptr);
592 	}
593 
594 	return desc;
595 }
596 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
597 
598 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
599 {
600         struct spi_mem_dirmap_desc **ptr = res;
601 
602         if (WARN_ON(!ptr || !*ptr))
603                 return 0;
604 
605 	return *ptr == data;
606 }
607 
608 /**
609  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
610  *				   to a device
611  * @dev: device the dirmap desc is attached to
612  * @desc: the direct mapping descriptor to destroy
613  *
614  * devm_ variant of the spi_mem_dirmap_destroy() function. See
615  * spi_mem_dirmap_destroy() for more details.
616  */
617 void devm_spi_mem_dirmap_destroy(struct device *dev,
618 				 struct spi_mem_dirmap_desc *desc)
619 {
620 	devres_release(dev, devm_spi_mem_dirmap_release,
621 		       devm_spi_mem_dirmap_match, desc);
622 }
623 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
624 
625 /**
626  * spi_mem_dirmap_read() - Read data through a direct mapping
627  * @desc: direct mapping descriptor
628  * @offs: offset to start reading from. Note that this is not an absolute
629  *	  offset, but the offset within the direct mapping which already has
630  *	  its own offset
631  * @len: length in bytes
632  * @buf: destination buffer. This buffer must be DMA-able
633  *
634  * This function reads data from a memory device using a direct mapping
635  * previously instantiated with spi_mem_dirmap_create().
636  *
637  * Return: the amount of data read from the memory device or a negative error
638  * code. Note that the returned size might be smaller than @len, and the caller
639  * is responsible for calling spi_mem_dirmap_read() again when that happens.
640  */
641 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
642 			    u64 offs, size_t len, void *buf)
643 {
644 	struct spi_controller *ctlr = desc->mem->spi->controller;
645 	ssize_t ret;
646 
647 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
648 		return -EINVAL;
649 
650 	if (!len)
651 		return 0;
652 
653 	if (desc->nodirmap) {
654 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
655 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
656 		ret = spi_mem_access_start(desc->mem);
657 		if (ret)
658 			return ret;
659 
660 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
661 
662 		spi_mem_access_end(desc->mem);
663 	} else {
664 		ret = -ENOTSUPP;
665 	}
666 
667 	return ret;
668 }
669 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
670 
671 /**
672  * spi_mem_dirmap_write() - Write data through a direct mapping
673  * @desc: direct mapping descriptor
674  * @offs: offset to start writing from. Note that this is not an absolute
675  *	  offset, but the offset within the direct mapping which already has
676  *	  its own offset
677  * @len: length in bytes
678  * @buf: source buffer. This buffer must be DMA-able
679  *
680  * This function writes data to a memory device using a direct mapping
681  * previously instantiated with spi_mem_dirmap_create().
682  *
683  * Return: the amount of data written to the memory device or a negative error
684  * code. Note that the returned size might be smaller than @len, and the caller
685  * is responsible for calling spi_mem_dirmap_write() again when that happens.
686  */
687 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
688 			     u64 offs, size_t len, const void *buf)
689 {
690 	struct spi_controller *ctlr = desc->mem->spi->controller;
691 	ssize_t ret;
692 
693 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
694 		return -EINVAL;
695 
696 	if (!len)
697 		return 0;
698 
699 	if (desc->nodirmap) {
700 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
701 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
702 		ret = spi_mem_access_start(desc->mem);
703 		if (ret)
704 			return ret;
705 
706 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
707 
708 		spi_mem_access_end(desc->mem);
709 	} else {
710 		ret = -ENOTSUPP;
711 	}
712 
713 	return ret;
714 }
715 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
716 
717 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
718 {
719 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
720 }
721 
722 static int spi_mem_probe(struct spi_device *spi)
723 {
724 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
725 	struct spi_controller *ctlr = spi->controller;
726 	struct spi_mem *mem;
727 
728 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
729 	if (!mem)
730 		return -ENOMEM;
731 
732 	mem->spi = spi;
733 
734 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
735 		mem->name = ctlr->mem_ops->get_name(mem);
736 	else
737 		mem->name = dev_name(&spi->dev);
738 
739 	if (IS_ERR_OR_NULL(mem->name))
740 		return PTR_ERR(mem->name);
741 
742 	spi_set_drvdata(spi, mem);
743 
744 	return memdrv->probe(mem);
745 }
746 
747 static int spi_mem_remove(struct spi_device *spi)
748 {
749 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
750 	struct spi_mem *mem = spi_get_drvdata(spi);
751 
752 	if (memdrv->remove)
753 		return memdrv->remove(mem);
754 
755 	return 0;
756 }
757 
758 static void spi_mem_shutdown(struct spi_device *spi)
759 {
760 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
761 	struct spi_mem *mem = spi_get_drvdata(spi);
762 
763 	if (memdrv->shutdown)
764 		memdrv->shutdown(mem);
765 }
766 
767 /**
768  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
769  * @memdrv: the SPI memory driver to register
770  * @owner: the owner of this driver
771  *
772  * Registers a SPI memory driver.
773  *
774  * Return: 0 in case of success, a negative error core otherwise.
775  */
776 
777 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
778 				       struct module *owner)
779 {
780 	memdrv->spidrv.probe = spi_mem_probe;
781 	memdrv->spidrv.remove = spi_mem_remove;
782 	memdrv->spidrv.shutdown = spi_mem_shutdown;
783 
784 	return __spi_register_driver(owner, &memdrv->spidrv);
785 }
786 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
787 
788 /**
789  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
790  * @memdrv: the SPI memory driver to unregister
791  *
792  * Unregisters a SPI memory driver.
793  */
794 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
795 {
796 	spi_unregister_driver(&memdrv->spidrv);
797 }
798 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
799