1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Exceet Electronics GmbH 4 * Copyright (C) 2018 Bootlin 5 * 6 * Author: Boris Brezillon <boris.brezillon@bootlin.com> 7 */ 8 #include <linux/dmaengine.h> 9 #include <linux/pm_runtime.h> 10 #include <linux/spi/spi.h> 11 #include <linux/spi/spi-mem.h> 12 13 #include "internals.h" 14 15 #define SPI_MEM_MAX_BUSWIDTH 8 16 17 /** 18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a 19 * memory operation 20 * @ctlr: the SPI controller requesting this dma_map() 21 * @op: the memory operation containing the buffer to map 22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this 23 * function 24 * 25 * Some controllers might want to do DMA on the data buffer embedded in @op. 26 * This helper prepares everything for you and provides a ready-to-use 27 * sg_table. This function is not intended to be called from spi drivers. 28 * Only SPI controller drivers should use it. 29 * Note that the caller must ensure the memory region pointed by 30 * op->data.buf.{in,out} is DMA-able before calling this function. 31 * 32 * Return: 0 in case of success, a negative error code otherwise. 33 */ 34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 35 const struct spi_mem_op *op, 36 struct sg_table *sgt) 37 { 38 struct device *dmadev; 39 40 if (!op->data.nbytes) 41 return -EINVAL; 42 43 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 44 dmadev = ctlr->dma_tx->device->dev; 45 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 46 dmadev = ctlr->dma_rx->device->dev; 47 else 48 dmadev = ctlr->dev.parent; 49 50 if (!dmadev) 51 return -EINVAL; 52 53 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, 54 op->data.dir == SPI_MEM_DATA_IN ? 55 DMA_FROM_DEVICE : DMA_TO_DEVICE); 56 } 57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); 58 59 /** 60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a 61 * memory operation 62 * @ctlr: the SPI controller requesting this dma_unmap() 63 * @op: the memory operation containing the buffer to unmap 64 * @sgt: a pointer to an sg_table previously initialized by 65 * spi_controller_dma_map_mem_op_data() 66 * 67 * Some controllers might want to do DMA on the data buffer embedded in @op. 68 * This helper prepares things so that the CPU can access the 69 * op->data.buf.{in,out} buffer again. 70 * 71 * This function is not intended to be called from SPI drivers. Only SPI 72 * controller drivers should use it. 73 * 74 * This function should be called after the DMA operation has finished and is 75 * only valid if the previous spi_controller_dma_map_mem_op_data() call 76 * returned 0. 77 * 78 * Return: 0 in case of success, a negative error code otherwise. 79 */ 80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 81 const struct spi_mem_op *op, 82 struct sg_table *sgt) 83 { 84 struct device *dmadev; 85 86 if (!op->data.nbytes) 87 return; 88 89 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 90 dmadev = ctlr->dma_tx->device->dev; 91 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 92 dmadev = ctlr->dma_rx->device->dev; 93 else 94 dmadev = ctlr->dev.parent; 95 96 spi_unmap_buf(ctlr, dmadev, sgt, 97 op->data.dir == SPI_MEM_DATA_IN ? 98 DMA_FROM_DEVICE : DMA_TO_DEVICE); 99 } 100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); 101 102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx) 103 { 104 u32 mode = mem->spi->mode; 105 106 switch (buswidth) { 107 case 1: 108 return 0; 109 110 case 2: 111 if ((tx && 112 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) || 113 (!tx && 114 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))) 115 return 0; 116 117 break; 118 119 case 4: 120 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) || 121 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL)))) 122 return 0; 123 124 break; 125 126 case 8: 127 if ((tx && (mode & SPI_TX_OCTAL)) || 128 (!tx && (mode & SPI_RX_OCTAL))) 129 return 0; 130 131 break; 132 133 default: 134 break; 135 } 136 137 return -ENOTSUPP; 138 } 139 140 bool spi_mem_default_supports_op(struct spi_mem *mem, 141 const struct spi_mem_op *op) 142 { 143 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) 144 return false; 145 146 if (op->addr.nbytes && 147 spi_check_buswidth_req(mem, op->addr.buswidth, true)) 148 return false; 149 150 if (op->dummy.nbytes && 151 spi_check_buswidth_req(mem, op->dummy.buswidth, true)) 152 return false; 153 154 if (op->data.dir != SPI_MEM_NO_DATA && 155 spi_check_buswidth_req(mem, op->data.buswidth, 156 op->data.dir == SPI_MEM_DATA_OUT)) 157 return false; 158 159 if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) 160 return false; 161 162 if (op->cmd.nbytes != 1) 163 return false; 164 165 return true; 166 } 167 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); 168 169 static bool spi_mem_buswidth_is_valid(u8 buswidth) 170 { 171 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH) 172 return false; 173 174 return true; 175 } 176 177 static int spi_mem_check_op(const struct spi_mem_op *op) 178 { 179 if (!op->cmd.buswidth || !op->cmd.nbytes) 180 return -EINVAL; 181 182 if ((op->addr.nbytes && !op->addr.buswidth) || 183 (op->dummy.nbytes && !op->dummy.buswidth) || 184 (op->data.nbytes && !op->data.buswidth)) 185 return -EINVAL; 186 187 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) || 188 !spi_mem_buswidth_is_valid(op->addr.buswidth) || 189 !spi_mem_buswidth_is_valid(op->dummy.buswidth) || 190 !spi_mem_buswidth_is_valid(op->data.buswidth)) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 static bool spi_mem_internal_supports_op(struct spi_mem *mem, 197 const struct spi_mem_op *op) 198 { 199 struct spi_controller *ctlr = mem->spi->controller; 200 201 if (ctlr->mem_ops && ctlr->mem_ops->supports_op) 202 return ctlr->mem_ops->supports_op(mem, op); 203 204 return spi_mem_default_supports_op(mem, op); 205 } 206 207 /** 208 * spi_mem_supports_op() - Check if a memory device and the controller it is 209 * connected to support a specific memory operation 210 * @mem: the SPI memory 211 * @op: the memory operation to check 212 * 213 * Some controllers are only supporting Single or Dual IOs, others might only 214 * support specific opcodes, or it can even be that the controller and device 215 * both support Quad IOs but the hardware prevents you from using it because 216 * only 2 IO lines are connected. 217 * 218 * This function checks whether a specific operation is supported. 219 * 220 * Return: true if @op is supported, false otherwise. 221 */ 222 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) 223 { 224 if (spi_mem_check_op(op)) 225 return false; 226 227 return spi_mem_internal_supports_op(mem, op); 228 } 229 EXPORT_SYMBOL_GPL(spi_mem_supports_op); 230 231 static int spi_mem_access_start(struct spi_mem *mem) 232 { 233 struct spi_controller *ctlr = mem->spi->controller; 234 235 /* 236 * Flush the message queue before executing our SPI memory 237 * operation to prevent preemption of regular SPI transfers. 238 */ 239 spi_flush_queue(ctlr); 240 241 if (ctlr->auto_runtime_pm) { 242 int ret; 243 244 ret = pm_runtime_get_sync(ctlr->dev.parent); 245 if (ret < 0) { 246 dev_err(&ctlr->dev, "Failed to power device: %d\n", 247 ret); 248 return ret; 249 } 250 } 251 252 mutex_lock(&ctlr->bus_lock_mutex); 253 mutex_lock(&ctlr->io_mutex); 254 255 return 0; 256 } 257 258 static void spi_mem_access_end(struct spi_mem *mem) 259 { 260 struct spi_controller *ctlr = mem->spi->controller; 261 262 mutex_unlock(&ctlr->io_mutex); 263 mutex_unlock(&ctlr->bus_lock_mutex); 264 265 if (ctlr->auto_runtime_pm) 266 pm_runtime_put(ctlr->dev.parent); 267 } 268 269 /** 270 * spi_mem_exec_op() - Execute a memory operation 271 * @mem: the SPI memory 272 * @op: the memory operation to execute 273 * 274 * Executes a memory operation. 275 * 276 * This function first checks that @op is supported and then tries to execute 277 * it. 278 * 279 * Return: 0 in case of success, a negative error code otherwise. 280 */ 281 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 282 { 283 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0; 284 struct spi_controller *ctlr = mem->spi->controller; 285 struct spi_transfer xfers[4] = { }; 286 struct spi_message msg; 287 u8 *tmpbuf; 288 int ret; 289 290 ret = spi_mem_check_op(op); 291 if (ret) 292 return ret; 293 294 if (!spi_mem_internal_supports_op(mem, op)) 295 return -ENOTSUPP; 296 297 if (ctlr->mem_ops && !mem->spi->cs_gpiod) { 298 ret = spi_mem_access_start(mem); 299 if (ret) 300 return ret; 301 302 ret = ctlr->mem_ops->exec_op(mem, op); 303 304 spi_mem_access_end(mem); 305 306 /* 307 * Some controllers only optimize specific paths (typically the 308 * read path) and expect the core to use the regular SPI 309 * interface in other cases. 310 */ 311 if (!ret || ret != -ENOTSUPP) 312 return ret; 313 } 314 315 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 316 317 /* 318 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so 319 * we're guaranteed that this buffer is DMA-able, as required by the 320 * SPI layer. 321 */ 322 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); 323 if (!tmpbuf) 324 return -ENOMEM; 325 326 spi_message_init(&msg); 327 328 tmpbuf[0] = op->cmd.opcode; 329 xfers[xferpos].tx_buf = tmpbuf; 330 xfers[xferpos].len = op->cmd.nbytes; 331 xfers[xferpos].tx_nbits = op->cmd.buswidth; 332 spi_message_add_tail(&xfers[xferpos], &msg); 333 xferpos++; 334 totalxferlen++; 335 336 if (op->addr.nbytes) { 337 int i; 338 339 for (i = 0; i < op->addr.nbytes; i++) 340 tmpbuf[i + 1] = op->addr.val >> 341 (8 * (op->addr.nbytes - i - 1)); 342 343 xfers[xferpos].tx_buf = tmpbuf + 1; 344 xfers[xferpos].len = op->addr.nbytes; 345 xfers[xferpos].tx_nbits = op->addr.buswidth; 346 spi_message_add_tail(&xfers[xferpos], &msg); 347 xferpos++; 348 totalxferlen += op->addr.nbytes; 349 } 350 351 if (op->dummy.nbytes) { 352 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); 353 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; 354 xfers[xferpos].len = op->dummy.nbytes; 355 xfers[xferpos].tx_nbits = op->dummy.buswidth; 356 spi_message_add_tail(&xfers[xferpos], &msg); 357 xferpos++; 358 totalxferlen += op->dummy.nbytes; 359 } 360 361 if (op->data.nbytes) { 362 if (op->data.dir == SPI_MEM_DATA_IN) { 363 xfers[xferpos].rx_buf = op->data.buf.in; 364 xfers[xferpos].rx_nbits = op->data.buswidth; 365 } else { 366 xfers[xferpos].tx_buf = op->data.buf.out; 367 xfers[xferpos].tx_nbits = op->data.buswidth; 368 } 369 370 xfers[xferpos].len = op->data.nbytes; 371 spi_message_add_tail(&xfers[xferpos], &msg); 372 xferpos++; 373 totalxferlen += op->data.nbytes; 374 } 375 376 ret = spi_sync(mem->spi, &msg); 377 378 kfree(tmpbuf); 379 380 if (ret) 381 return ret; 382 383 if (msg.actual_length != totalxferlen) 384 return -EIO; 385 386 return 0; 387 } 388 EXPORT_SYMBOL_GPL(spi_mem_exec_op); 389 390 /** 391 * spi_mem_get_name() - Return the SPI mem device name to be used by the 392 * upper layer if necessary 393 * @mem: the SPI memory 394 * 395 * This function allows SPI mem users to retrieve the SPI mem device name. 396 * It is useful if the upper layer needs to expose a custom name for 397 * compatibility reasons. 398 * 399 * Return: a string containing the name of the memory device to be used 400 * by the SPI mem user 401 */ 402 const char *spi_mem_get_name(struct spi_mem *mem) 403 { 404 return mem->name; 405 } 406 EXPORT_SYMBOL_GPL(spi_mem_get_name); 407 408 /** 409 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to 410 * match controller limitations 411 * @mem: the SPI memory 412 * @op: the operation to adjust 413 * 414 * Some controllers have FIFO limitations and must split a data transfer 415 * operation into multiple ones, others require a specific alignment for 416 * optimized accesses. This function allows SPI mem drivers to split a single 417 * operation into multiple sub-operations when required. 418 * 419 * Return: a negative error code if the controller can't properly adjust @op, 420 * 0 otherwise. Note that @op->data.nbytes will be updated if @op 421 * can't be handled in a single step. 422 */ 423 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 424 { 425 struct spi_controller *ctlr = mem->spi->controller; 426 size_t len; 427 428 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size) 429 return ctlr->mem_ops->adjust_op_size(mem, op); 430 431 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 432 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 433 434 if (len > spi_max_transfer_size(mem->spi)) 435 return -EINVAL; 436 437 op->data.nbytes = min3((size_t)op->data.nbytes, 438 spi_max_transfer_size(mem->spi), 439 spi_max_message_size(mem->spi) - 440 len); 441 if (!op->data.nbytes) 442 return -EINVAL; 443 } 444 445 return 0; 446 } 447 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); 448 449 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc, 450 u64 offs, size_t len, void *buf) 451 { 452 struct spi_mem_op op = desc->info.op_tmpl; 453 int ret; 454 455 op.addr.val = desc->info.offset + offs; 456 op.data.buf.in = buf; 457 op.data.nbytes = len; 458 ret = spi_mem_adjust_op_size(desc->mem, &op); 459 if (ret) 460 return ret; 461 462 ret = spi_mem_exec_op(desc->mem, &op); 463 if (ret) 464 return ret; 465 466 return op.data.nbytes; 467 } 468 469 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc, 470 u64 offs, size_t len, const void *buf) 471 { 472 struct spi_mem_op op = desc->info.op_tmpl; 473 int ret; 474 475 op.addr.val = desc->info.offset + offs; 476 op.data.buf.out = buf; 477 op.data.nbytes = len; 478 ret = spi_mem_adjust_op_size(desc->mem, &op); 479 if (ret) 480 return ret; 481 482 ret = spi_mem_exec_op(desc->mem, &op); 483 if (ret) 484 return ret; 485 486 return op.data.nbytes; 487 } 488 489 /** 490 * spi_mem_dirmap_create() - Create a direct mapping descriptor 491 * @mem: SPI mem device this direct mapping should be created for 492 * @info: direct mapping information 493 * 494 * This function is creating a direct mapping descriptor which can then be used 495 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write(). 496 * If the SPI controller driver does not support direct mapping, this function 497 * falls back to an implementation using spi_mem_exec_op(), so that the caller 498 * doesn't have to bother implementing a fallback on his own. 499 * 500 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 501 */ 502 struct spi_mem_dirmap_desc * 503 spi_mem_dirmap_create(struct spi_mem *mem, 504 const struct spi_mem_dirmap_info *info) 505 { 506 struct spi_controller *ctlr = mem->spi->controller; 507 struct spi_mem_dirmap_desc *desc; 508 int ret = -ENOTSUPP; 509 510 /* Make sure the number of address cycles is between 1 and 8 bytes. */ 511 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8) 512 return ERR_PTR(-EINVAL); 513 514 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */ 515 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA) 516 return ERR_PTR(-EINVAL); 517 518 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 519 if (!desc) 520 return ERR_PTR(-ENOMEM); 521 522 desc->mem = mem; 523 desc->info = *info; 524 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create) 525 ret = ctlr->mem_ops->dirmap_create(desc); 526 527 if (ret) { 528 desc->nodirmap = true; 529 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) 530 ret = -ENOTSUPP; 531 else 532 ret = 0; 533 } 534 535 if (ret) { 536 kfree(desc); 537 return ERR_PTR(ret); 538 } 539 540 return desc; 541 } 542 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create); 543 544 /** 545 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor 546 * @desc: the direct mapping descriptor to destroy 547 * 548 * This function destroys a direct mapping descriptor previously created by 549 * spi_mem_dirmap_create(). 550 */ 551 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc) 552 { 553 struct spi_controller *ctlr = desc->mem->spi->controller; 554 555 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy) 556 ctlr->mem_ops->dirmap_destroy(desc); 557 558 kfree(desc); 559 } 560 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy); 561 562 static void devm_spi_mem_dirmap_release(struct device *dev, void *res) 563 { 564 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res; 565 566 spi_mem_dirmap_destroy(desc); 567 } 568 569 /** 570 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach 571 * it to a device 572 * @dev: device the dirmap desc will be attached to 573 * @mem: SPI mem device this direct mapping should be created for 574 * @info: direct mapping information 575 * 576 * devm_ variant of the spi_mem_dirmap_create() function. See 577 * spi_mem_dirmap_create() for more details. 578 * 579 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 580 */ 581 struct spi_mem_dirmap_desc * 582 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, 583 const struct spi_mem_dirmap_info *info) 584 { 585 struct spi_mem_dirmap_desc **ptr, *desc; 586 587 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr), 588 GFP_KERNEL); 589 if (!ptr) 590 return ERR_PTR(-ENOMEM); 591 592 desc = spi_mem_dirmap_create(mem, info); 593 if (IS_ERR(desc)) { 594 devres_free(ptr); 595 } else { 596 *ptr = desc; 597 devres_add(dev, ptr); 598 } 599 600 return desc; 601 } 602 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create); 603 604 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data) 605 { 606 struct spi_mem_dirmap_desc **ptr = res; 607 608 if (WARN_ON(!ptr || !*ptr)) 609 return 0; 610 611 return *ptr == data; 612 } 613 614 /** 615 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached 616 * to a device 617 * @dev: device the dirmap desc is attached to 618 * @desc: the direct mapping descriptor to destroy 619 * 620 * devm_ variant of the spi_mem_dirmap_destroy() function. See 621 * spi_mem_dirmap_destroy() for more details. 622 */ 623 void devm_spi_mem_dirmap_destroy(struct device *dev, 624 struct spi_mem_dirmap_desc *desc) 625 { 626 devres_release(dev, devm_spi_mem_dirmap_release, 627 devm_spi_mem_dirmap_match, desc); 628 } 629 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy); 630 631 /** 632 * spi_mem_dirmap_read() - Read data through a direct mapping 633 * @desc: direct mapping descriptor 634 * @offs: offset to start reading from. Note that this is not an absolute 635 * offset, but the offset within the direct mapping which already has 636 * its own offset 637 * @len: length in bytes 638 * @buf: destination buffer. This buffer must be DMA-able 639 * 640 * This function reads data from a memory device using a direct mapping 641 * previously instantiated with spi_mem_dirmap_create(). 642 * 643 * Return: the amount of data read from the memory device or a negative error 644 * code. Note that the returned size might be smaller than @len, and the caller 645 * is responsible for calling spi_mem_dirmap_read() again when that happens. 646 */ 647 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 648 u64 offs, size_t len, void *buf) 649 { 650 struct spi_controller *ctlr = desc->mem->spi->controller; 651 ssize_t ret; 652 653 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) 654 return -EINVAL; 655 656 if (!len) 657 return 0; 658 659 if (desc->nodirmap) { 660 ret = spi_mem_no_dirmap_read(desc, offs, len, buf); 661 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) { 662 ret = spi_mem_access_start(desc->mem); 663 if (ret) 664 return ret; 665 666 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf); 667 668 spi_mem_access_end(desc->mem); 669 } else { 670 ret = -ENOTSUPP; 671 } 672 673 return ret; 674 } 675 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read); 676 677 /** 678 * spi_mem_dirmap_write() - Write data through a direct mapping 679 * @desc: direct mapping descriptor 680 * @offs: offset to start writing from. Note that this is not an absolute 681 * offset, but the offset within the direct mapping which already has 682 * its own offset 683 * @len: length in bytes 684 * @buf: source buffer. This buffer must be DMA-able 685 * 686 * This function writes data to a memory device using a direct mapping 687 * previously instantiated with spi_mem_dirmap_create(). 688 * 689 * Return: the amount of data written to the memory device or a negative error 690 * code. Note that the returned size might be smaller than @len, and the caller 691 * is responsible for calling spi_mem_dirmap_write() again when that happens. 692 */ 693 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 694 u64 offs, size_t len, const void *buf) 695 { 696 struct spi_controller *ctlr = desc->mem->spi->controller; 697 ssize_t ret; 698 699 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT) 700 return -EINVAL; 701 702 if (!len) 703 return 0; 704 705 if (desc->nodirmap) { 706 ret = spi_mem_no_dirmap_write(desc, offs, len, buf); 707 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) { 708 ret = spi_mem_access_start(desc->mem); 709 if (ret) 710 return ret; 711 712 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf); 713 714 spi_mem_access_end(desc->mem); 715 } else { 716 ret = -ENOTSUPP; 717 } 718 719 return ret; 720 } 721 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write); 722 723 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) 724 { 725 return container_of(drv, struct spi_mem_driver, spidrv.driver); 726 } 727 728 static int spi_mem_probe(struct spi_device *spi) 729 { 730 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 731 struct spi_controller *ctlr = spi->controller; 732 struct spi_mem *mem; 733 734 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); 735 if (!mem) 736 return -ENOMEM; 737 738 mem->spi = spi; 739 740 if (ctlr->mem_ops && ctlr->mem_ops->get_name) 741 mem->name = ctlr->mem_ops->get_name(mem); 742 else 743 mem->name = dev_name(&spi->dev); 744 745 if (IS_ERR_OR_NULL(mem->name)) 746 return PTR_ERR(mem->name); 747 748 spi_set_drvdata(spi, mem); 749 750 return memdrv->probe(mem); 751 } 752 753 static int spi_mem_remove(struct spi_device *spi) 754 { 755 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 756 struct spi_mem *mem = spi_get_drvdata(spi); 757 758 if (memdrv->remove) 759 return memdrv->remove(mem); 760 761 return 0; 762 } 763 764 static void spi_mem_shutdown(struct spi_device *spi) 765 { 766 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 767 struct spi_mem *mem = spi_get_drvdata(spi); 768 769 if (memdrv->shutdown) 770 memdrv->shutdown(mem); 771 } 772 773 /** 774 * spi_mem_driver_register_with_owner() - Register a SPI memory driver 775 * @memdrv: the SPI memory driver to register 776 * @owner: the owner of this driver 777 * 778 * Registers a SPI memory driver. 779 * 780 * Return: 0 in case of success, a negative error core otherwise. 781 */ 782 783 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, 784 struct module *owner) 785 { 786 memdrv->spidrv.probe = spi_mem_probe; 787 memdrv->spidrv.remove = spi_mem_remove; 788 memdrv->spidrv.shutdown = spi_mem_shutdown; 789 790 return __spi_register_driver(owner, &memdrv->spidrv); 791 } 792 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); 793 794 /** 795 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver 796 * @memdrv: the SPI memory driver to unregister 797 * 798 * Unregisters a SPI memory driver. 799 */ 800 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) 801 { 802 spi_unregister_driver(&memdrv->spidrv); 803 } 804 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); 805