xref: /openbmc/linux/drivers/spi/spi-mem.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
12 
13 #include "internals.h"
14 
15 #define SPI_MEM_MAX_BUSWIDTH		8
16 
17 /**
18  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19  *					  memory operation
20  * @ctlr: the SPI controller requesting this dma_map()
21  * @op: the memory operation containing the buffer to map
22  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23  *	 function
24  *
25  * Some controllers might want to do DMA on the data buffer embedded in @op.
26  * This helper prepares everything for you and provides a ready-to-use
27  * sg_table. This function is not intended to be called from spi drivers.
28  * Only SPI controller drivers should use it.
29  * Note that the caller must ensure the memory region pointed by
30  * op->data.buf.{in,out} is DMA-able before calling this function.
31  *
32  * Return: 0 in case of success, a negative error code otherwise.
33  */
34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 				       const struct spi_mem_op *op,
36 				       struct sg_table *sgt)
37 {
38 	struct device *dmadev;
39 
40 	if (!op->data.nbytes)
41 		return -EINVAL;
42 
43 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 		dmadev = ctlr->dma_tx->device->dev;
45 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 		dmadev = ctlr->dma_rx->device->dev;
47 	else
48 		dmadev = ctlr->dev.parent;
49 
50 	if (!dmadev)
51 		return -EINVAL;
52 
53 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 			   op->data.dir == SPI_MEM_DATA_IN ?
55 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
56 }
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58 
59 /**
60  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61  *					    memory operation
62  * @ctlr: the SPI controller requesting this dma_unmap()
63  * @op: the memory operation containing the buffer to unmap
64  * @sgt: a pointer to an sg_table previously initialized by
65  *	 spi_controller_dma_map_mem_op_data()
66  *
67  * Some controllers might want to do DMA on the data buffer embedded in @op.
68  * This helper prepares things so that the CPU can access the
69  * op->data.buf.{in,out} buffer again.
70  *
71  * This function is not intended to be called from SPI drivers. Only SPI
72  * controller drivers should use it.
73  *
74  * This function should be called after the DMA operation has finished and is
75  * only valid if the previous spi_controller_dma_map_mem_op_data() call
76  * returned 0.
77  *
78  * Return: 0 in case of success, a negative error code otherwise.
79  */
80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 					  const struct spi_mem_op *op,
82 					  struct sg_table *sgt)
83 {
84 	struct device *dmadev;
85 
86 	if (!op->data.nbytes)
87 		return;
88 
89 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 		dmadev = ctlr->dma_tx->device->dev;
91 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 		dmadev = ctlr->dma_rx->device->dev;
93 	else
94 		dmadev = ctlr->dev.parent;
95 
96 	spi_unmap_buf(ctlr, dmadev, sgt,
97 		      op->data.dir == SPI_MEM_DATA_IN ?
98 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
99 }
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101 
102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103 {
104 	u32 mode = mem->spi->mode;
105 
106 	switch (buswidth) {
107 	case 1:
108 		return 0;
109 
110 	case 2:
111 		if ((tx &&
112 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
113 		    (!tx &&
114 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
115 			return 0;
116 
117 		break;
118 
119 	case 4:
120 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
121 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
122 			return 0;
123 
124 		break;
125 
126 	case 8:
127 		if ((tx && (mode & SPI_TX_OCTAL)) ||
128 		    (!tx && (mode & SPI_RX_OCTAL)))
129 			return 0;
130 
131 		break;
132 
133 	default:
134 		break;
135 	}
136 
137 	return -ENOTSUPP;
138 }
139 
140 bool spi_mem_default_supports_op(struct spi_mem *mem,
141 				 const struct spi_mem_op *op)
142 {
143 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
144 		return false;
145 
146 	if (op->addr.nbytes &&
147 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
148 		return false;
149 
150 	if (op->dummy.nbytes &&
151 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
152 		return false;
153 
154 	if (op->data.dir != SPI_MEM_NO_DATA &&
155 	    spi_check_buswidth_req(mem, op->data.buswidth,
156 				   op->data.dir == SPI_MEM_DATA_OUT))
157 		return false;
158 
159 	if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
160 		return false;
161 
162 	if (op->cmd.nbytes != 1)
163 		return false;
164 
165 	return true;
166 }
167 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
168 
169 static bool spi_mem_buswidth_is_valid(u8 buswidth)
170 {
171 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
172 		return false;
173 
174 	return true;
175 }
176 
177 static int spi_mem_check_op(const struct spi_mem_op *op)
178 {
179 	if (!op->cmd.buswidth || !op->cmd.nbytes)
180 		return -EINVAL;
181 
182 	if ((op->addr.nbytes && !op->addr.buswidth) ||
183 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
184 	    (op->data.nbytes && !op->data.buswidth))
185 		return -EINVAL;
186 
187 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
188 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
189 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
190 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
197 					 const struct spi_mem_op *op)
198 {
199 	struct spi_controller *ctlr = mem->spi->controller;
200 
201 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
202 		return ctlr->mem_ops->supports_op(mem, op);
203 
204 	return spi_mem_default_supports_op(mem, op);
205 }
206 
207 /**
208  * spi_mem_supports_op() - Check if a memory device and the controller it is
209  *			   connected to support a specific memory operation
210  * @mem: the SPI memory
211  * @op: the memory operation to check
212  *
213  * Some controllers are only supporting Single or Dual IOs, others might only
214  * support specific opcodes, or it can even be that the controller and device
215  * both support Quad IOs but the hardware prevents you from using it because
216  * only 2 IO lines are connected.
217  *
218  * This function checks whether a specific operation is supported.
219  *
220  * Return: true if @op is supported, false otherwise.
221  */
222 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
223 {
224 	if (spi_mem_check_op(op))
225 		return false;
226 
227 	return spi_mem_internal_supports_op(mem, op);
228 }
229 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
230 
231 static int spi_mem_access_start(struct spi_mem *mem)
232 {
233 	struct spi_controller *ctlr = mem->spi->controller;
234 
235 	/*
236 	 * Flush the message queue before executing our SPI memory
237 	 * operation to prevent preemption of regular SPI transfers.
238 	 */
239 	spi_flush_queue(ctlr);
240 
241 	if (ctlr->auto_runtime_pm) {
242 		int ret;
243 
244 		ret = pm_runtime_get_sync(ctlr->dev.parent);
245 		if (ret < 0) {
246 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
247 				ret);
248 			return ret;
249 		}
250 	}
251 
252 	mutex_lock(&ctlr->bus_lock_mutex);
253 	mutex_lock(&ctlr->io_mutex);
254 
255 	return 0;
256 }
257 
258 static void spi_mem_access_end(struct spi_mem *mem)
259 {
260 	struct spi_controller *ctlr = mem->spi->controller;
261 
262 	mutex_unlock(&ctlr->io_mutex);
263 	mutex_unlock(&ctlr->bus_lock_mutex);
264 
265 	if (ctlr->auto_runtime_pm)
266 		pm_runtime_put(ctlr->dev.parent);
267 }
268 
269 /**
270  * spi_mem_exec_op() - Execute a memory operation
271  * @mem: the SPI memory
272  * @op: the memory operation to execute
273  *
274  * Executes a memory operation.
275  *
276  * This function first checks that @op is supported and then tries to execute
277  * it.
278  *
279  * Return: 0 in case of success, a negative error code otherwise.
280  */
281 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
282 {
283 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
284 	struct spi_controller *ctlr = mem->spi->controller;
285 	struct spi_transfer xfers[4] = { };
286 	struct spi_message msg;
287 	u8 *tmpbuf;
288 	int ret;
289 
290 	ret = spi_mem_check_op(op);
291 	if (ret)
292 		return ret;
293 
294 	if (!spi_mem_internal_supports_op(mem, op))
295 		return -ENOTSUPP;
296 
297 	if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
298 		ret = spi_mem_access_start(mem);
299 		if (ret)
300 			return ret;
301 
302 		ret = ctlr->mem_ops->exec_op(mem, op);
303 
304 		spi_mem_access_end(mem);
305 
306 		/*
307 		 * Some controllers only optimize specific paths (typically the
308 		 * read path) and expect the core to use the regular SPI
309 		 * interface in other cases.
310 		 */
311 		if (!ret || ret != -ENOTSUPP)
312 			return ret;
313 	}
314 
315 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
316 
317 	/*
318 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
319 	 * we're guaranteed that this buffer is DMA-able, as required by the
320 	 * SPI layer.
321 	 */
322 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
323 	if (!tmpbuf)
324 		return -ENOMEM;
325 
326 	spi_message_init(&msg);
327 
328 	tmpbuf[0] = op->cmd.opcode;
329 	xfers[xferpos].tx_buf = tmpbuf;
330 	xfers[xferpos].len = op->cmd.nbytes;
331 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
332 	spi_message_add_tail(&xfers[xferpos], &msg);
333 	xferpos++;
334 	totalxferlen++;
335 
336 	if (op->addr.nbytes) {
337 		int i;
338 
339 		for (i = 0; i < op->addr.nbytes; i++)
340 			tmpbuf[i + 1] = op->addr.val >>
341 					(8 * (op->addr.nbytes - i - 1));
342 
343 		xfers[xferpos].tx_buf = tmpbuf + 1;
344 		xfers[xferpos].len = op->addr.nbytes;
345 		xfers[xferpos].tx_nbits = op->addr.buswidth;
346 		spi_message_add_tail(&xfers[xferpos], &msg);
347 		xferpos++;
348 		totalxferlen += op->addr.nbytes;
349 	}
350 
351 	if (op->dummy.nbytes) {
352 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
353 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
354 		xfers[xferpos].len = op->dummy.nbytes;
355 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
356 		spi_message_add_tail(&xfers[xferpos], &msg);
357 		xferpos++;
358 		totalxferlen += op->dummy.nbytes;
359 	}
360 
361 	if (op->data.nbytes) {
362 		if (op->data.dir == SPI_MEM_DATA_IN) {
363 			xfers[xferpos].rx_buf = op->data.buf.in;
364 			xfers[xferpos].rx_nbits = op->data.buswidth;
365 		} else {
366 			xfers[xferpos].tx_buf = op->data.buf.out;
367 			xfers[xferpos].tx_nbits = op->data.buswidth;
368 		}
369 
370 		xfers[xferpos].len = op->data.nbytes;
371 		spi_message_add_tail(&xfers[xferpos], &msg);
372 		xferpos++;
373 		totalxferlen += op->data.nbytes;
374 	}
375 
376 	ret = spi_sync(mem->spi, &msg);
377 
378 	kfree(tmpbuf);
379 
380 	if (ret)
381 		return ret;
382 
383 	if (msg.actual_length != totalxferlen)
384 		return -EIO;
385 
386 	return 0;
387 }
388 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
389 
390 /**
391  * spi_mem_get_name() - Return the SPI mem device name to be used by the
392  *			upper layer if necessary
393  * @mem: the SPI memory
394  *
395  * This function allows SPI mem users to retrieve the SPI mem device name.
396  * It is useful if the upper layer needs to expose a custom name for
397  * compatibility reasons.
398  *
399  * Return: a string containing the name of the memory device to be used
400  *	   by the SPI mem user
401  */
402 const char *spi_mem_get_name(struct spi_mem *mem)
403 {
404 	return mem->name;
405 }
406 EXPORT_SYMBOL_GPL(spi_mem_get_name);
407 
408 /**
409  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
410  *			      match controller limitations
411  * @mem: the SPI memory
412  * @op: the operation to adjust
413  *
414  * Some controllers have FIFO limitations and must split a data transfer
415  * operation into multiple ones, others require a specific alignment for
416  * optimized accesses. This function allows SPI mem drivers to split a single
417  * operation into multiple sub-operations when required.
418  *
419  * Return: a negative error code if the controller can't properly adjust @op,
420  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
421  *	   can't be handled in a single step.
422  */
423 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
424 {
425 	struct spi_controller *ctlr = mem->spi->controller;
426 	size_t len;
427 
428 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
429 		return ctlr->mem_ops->adjust_op_size(mem, op);
430 
431 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
432 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
433 
434 		if (len > spi_max_transfer_size(mem->spi))
435 			return -EINVAL;
436 
437 		op->data.nbytes = min3((size_t)op->data.nbytes,
438 				       spi_max_transfer_size(mem->spi),
439 				       spi_max_message_size(mem->spi) -
440 				       len);
441 		if (!op->data.nbytes)
442 			return -EINVAL;
443 	}
444 
445 	return 0;
446 }
447 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
448 
449 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
450 				      u64 offs, size_t len, void *buf)
451 {
452 	struct spi_mem_op op = desc->info.op_tmpl;
453 	int ret;
454 
455 	op.addr.val = desc->info.offset + offs;
456 	op.data.buf.in = buf;
457 	op.data.nbytes = len;
458 	ret = spi_mem_adjust_op_size(desc->mem, &op);
459 	if (ret)
460 		return ret;
461 
462 	ret = spi_mem_exec_op(desc->mem, &op);
463 	if (ret)
464 		return ret;
465 
466 	return op.data.nbytes;
467 }
468 
469 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
470 				       u64 offs, size_t len, const void *buf)
471 {
472 	struct spi_mem_op op = desc->info.op_tmpl;
473 	int ret;
474 
475 	op.addr.val = desc->info.offset + offs;
476 	op.data.buf.out = buf;
477 	op.data.nbytes = len;
478 	ret = spi_mem_adjust_op_size(desc->mem, &op);
479 	if (ret)
480 		return ret;
481 
482 	ret = spi_mem_exec_op(desc->mem, &op);
483 	if (ret)
484 		return ret;
485 
486 	return op.data.nbytes;
487 }
488 
489 /**
490  * spi_mem_dirmap_create() - Create a direct mapping descriptor
491  * @mem: SPI mem device this direct mapping should be created for
492  * @info: direct mapping information
493  *
494  * This function is creating a direct mapping descriptor which can then be used
495  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
496  * If the SPI controller driver does not support direct mapping, this function
497  * falls back to an implementation using spi_mem_exec_op(), so that the caller
498  * doesn't have to bother implementing a fallback on his own.
499  *
500  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
501  */
502 struct spi_mem_dirmap_desc *
503 spi_mem_dirmap_create(struct spi_mem *mem,
504 		      const struct spi_mem_dirmap_info *info)
505 {
506 	struct spi_controller *ctlr = mem->spi->controller;
507 	struct spi_mem_dirmap_desc *desc;
508 	int ret = -ENOTSUPP;
509 
510 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
511 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
512 		return ERR_PTR(-EINVAL);
513 
514 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
515 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
516 		return ERR_PTR(-EINVAL);
517 
518 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
519 	if (!desc)
520 		return ERR_PTR(-ENOMEM);
521 
522 	desc->mem = mem;
523 	desc->info = *info;
524 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
525 		ret = ctlr->mem_ops->dirmap_create(desc);
526 
527 	if (ret) {
528 		desc->nodirmap = true;
529 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
530 			ret = -ENOTSUPP;
531 		else
532 			ret = 0;
533 	}
534 
535 	if (ret) {
536 		kfree(desc);
537 		return ERR_PTR(ret);
538 	}
539 
540 	return desc;
541 }
542 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
543 
544 /**
545  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
546  * @desc: the direct mapping descriptor to destroy
547  *
548  * This function destroys a direct mapping descriptor previously created by
549  * spi_mem_dirmap_create().
550  */
551 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
552 {
553 	struct spi_controller *ctlr = desc->mem->spi->controller;
554 
555 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
556 		ctlr->mem_ops->dirmap_destroy(desc);
557 
558 	kfree(desc);
559 }
560 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
561 
562 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
563 {
564 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
565 
566 	spi_mem_dirmap_destroy(desc);
567 }
568 
569 /**
570  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
571  *				  it to a device
572  * @dev: device the dirmap desc will be attached to
573  * @mem: SPI mem device this direct mapping should be created for
574  * @info: direct mapping information
575  *
576  * devm_ variant of the spi_mem_dirmap_create() function. See
577  * spi_mem_dirmap_create() for more details.
578  *
579  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
580  */
581 struct spi_mem_dirmap_desc *
582 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
583 			   const struct spi_mem_dirmap_info *info)
584 {
585 	struct spi_mem_dirmap_desc **ptr, *desc;
586 
587 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
588 			   GFP_KERNEL);
589 	if (!ptr)
590 		return ERR_PTR(-ENOMEM);
591 
592 	desc = spi_mem_dirmap_create(mem, info);
593 	if (IS_ERR(desc)) {
594 		devres_free(ptr);
595 	} else {
596 		*ptr = desc;
597 		devres_add(dev, ptr);
598 	}
599 
600 	return desc;
601 }
602 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
603 
604 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
605 {
606         struct spi_mem_dirmap_desc **ptr = res;
607 
608         if (WARN_ON(!ptr || !*ptr))
609                 return 0;
610 
611 	return *ptr == data;
612 }
613 
614 /**
615  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
616  *				   to a device
617  * @dev: device the dirmap desc is attached to
618  * @desc: the direct mapping descriptor to destroy
619  *
620  * devm_ variant of the spi_mem_dirmap_destroy() function. See
621  * spi_mem_dirmap_destroy() for more details.
622  */
623 void devm_spi_mem_dirmap_destroy(struct device *dev,
624 				 struct spi_mem_dirmap_desc *desc)
625 {
626 	devres_release(dev, devm_spi_mem_dirmap_release,
627 		       devm_spi_mem_dirmap_match, desc);
628 }
629 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
630 
631 /**
632  * spi_mem_dirmap_read() - Read data through a direct mapping
633  * @desc: direct mapping descriptor
634  * @offs: offset to start reading from. Note that this is not an absolute
635  *	  offset, but the offset within the direct mapping which already has
636  *	  its own offset
637  * @len: length in bytes
638  * @buf: destination buffer. This buffer must be DMA-able
639  *
640  * This function reads data from a memory device using a direct mapping
641  * previously instantiated with spi_mem_dirmap_create().
642  *
643  * Return: the amount of data read from the memory device or a negative error
644  * code. Note that the returned size might be smaller than @len, and the caller
645  * is responsible for calling spi_mem_dirmap_read() again when that happens.
646  */
647 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
648 			    u64 offs, size_t len, void *buf)
649 {
650 	struct spi_controller *ctlr = desc->mem->spi->controller;
651 	ssize_t ret;
652 
653 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
654 		return -EINVAL;
655 
656 	if (!len)
657 		return 0;
658 
659 	if (desc->nodirmap) {
660 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
661 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
662 		ret = spi_mem_access_start(desc->mem);
663 		if (ret)
664 			return ret;
665 
666 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
667 
668 		spi_mem_access_end(desc->mem);
669 	} else {
670 		ret = -ENOTSUPP;
671 	}
672 
673 	return ret;
674 }
675 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
676 
677 /**
678  * spi_mem_dirmap_write() - Write data through a direct mapping
679  * @desc: direct mapping descriptor
680  * @offs: offset to start writing from. Note that this is not an absolute
681  *	  offset, but the offset within the direct mapping which already has
682  *	  its own offset
683  * @len: length in bytes
684  * @buf: source buffer. This buffer must be DMA-able
685  *
686  * This function writes data to a memory device using a direct mapping
687  * previously instantiated with spi_mem_dirmap_create().
688  *
689  * Return: the amount of data written to the memory device or a negative error
690  * code. Note that the returned size might be smaller than @len, and the caller
691  * is responsible for calling spi_mem_dirmap_write() again when that happens.
692  */
693 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
694 			     u64 offs, size_t len, const void *buf)
695 {
696 	struct spi_controller *ctlr = desc->mem->spi->controller;
697 	ssize_t ret;
698 
699 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
700 		return -EINVAL;
701 
702 	if (!len)
703 		return 0;
704 
705 	if (desc->nodirmap) {
706 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
707 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
708 		ret = spi_mem_access_start(desc->mem);
709 		if (ret)
710 			return ret;
711 
712 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
713 
714 		spi_mem_access_end(desc->mem);
715 	} else {
716 		ret = -ENOTSUPP;
717 	}
718 
719 	return ret;
720 }
721 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
722 
723 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
724 {
725 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
726 }
727 
728 static int spi_mem_probe(struct spi_device *spi)
729 {
730 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
731 	struct spi_controller *ctlr = spi->controller;
732 	struct spi_mem *mem;
733 
734 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
735 	if (!mem)
736 		return -ENOMEM;
737 
738 	mem->spi = spi;
739 
740 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
741 		mem->name = ctlr->mem_ops->get_name(mem);
742 	else
743 		mem->name = dev_name(&spi->dev);
744 
745 	if (IS_ERR_OR_NULL(mem->name))
746 		return PTR_ERR(mem->name);
747 
748 	spi_set_drvdata(spi, mem);
749 
750 	return memdrv->probe(mem);
751 }
752 
753 static int spi_mem_remove(struct spi_device *spi)
754 {
755 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
756 	struct spi_mem *mem = spi_get_drvdata(spi);
757 
758 	if (memdrv->remove)
759 		return memdrv->remove(mem);
760 
761 	return 0;
762 }
763 
764 static void spi_mem_shutdown(struct spi_device *spi)
765 {
766 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
767 	struct spi_mem *mem = spi_get_drvdata(spi);
768 
769 	if (memdrv->shutdown)
770 		memdrv->shutdown(mem);
771 }
772 
773 /**
774  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
775  * @memdrv: the SPI memory driver to register
776  * @owner: the owner of this driver
777  *
778  * Registers a SPI memory driver.
779  *
780  * Return: 0 in case of success, a negative error core otherwise.
781  */
782 
783 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
784 				       struct module *owner)
785 {
786 	memdrv->spidrv.probe = spi_mem_probe;
787 	memdrv->spidrv.remove = spi_mem_remove;
788 	memdrv->spidrv.shutdown = spi_mem_shutdown;
789 
790 	return __spi_register_driver(owner, &memdrv->spidrv);
791 }
792 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
793 
794 /**
795  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
796  * @memdrv: the SPI memory driver to unregister
797  *
798  * Unregisters a SPI memory driver.
799  */
800 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
801 {
802 	spi_unregister_driver(&memdrv->spidrv);
803 }
804 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
805