xref: /openbmc/linux/drivers/spi/spi-mem.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
12 
13 #include "internals.h"
14 
15 #define SPI_MEM_MAX_BUSWIDTH		8
16 
17 /**
18  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19  *					  memory operation
20  * @ctlr: the SPI controller requesting this dma_map()
21  * @op: the memory operation containing the buffer to map
22  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23  *	 function
24  *
25  * Some controllers might want to do DMA on the data buffer embedded in @op.
26  * This helper prepares everything for you and provides a ready-to-use
27  * sg_table. This function is not intended to be called from spi drivers.
28  * Only SPI controller drivers should use it.
29  * Note that the caller must ensure the memory region pointed by
30  * op->data.buf.{in,out} is DMA-able before calling this function.
31  *
32  * Return: 0 in case of success, a negative error code otherwise.
33  */
34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 				       const struct spi_mem_op *op,
36 				       struct sg_table *sgt)
37 {
38 	struct device *dmadev;
39 
40 	if (!op->data.nbytes)
41 		return -EINVAL;
42 
43 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 		dmadev = ctlr->dma_tx->device->dev;
45 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 		dmadev = ctlr->dma_rx->device->dev;
47 	else
48 		dmadev = ctlr->dev.parent;
49 
50 	if (!dmadev)
51 		return -EINVAL;
52 
53 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 			   op->data.dir == SPI_MEM_DATA_IN ?
55 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
56 }
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58 
59 /**
60  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61  *					    memory operation
62  * @ctlr: the SPI controller requesting this dma_unmap()
63  * @op: the memory operation containing the buffer to unmap
64  * @sgt: a pointer to an sg_table previously initialized by
65  *	 spi_controller_dma_map_mem_op_data()
66  *
67  * Some controllers might want to do DMA on the data buffer embedded in @op.
68  * This helper prepares things so that the CPU can access the
69  * op->data.buf.{in,out} buffer again.
70  *
71  * This function is not intended to be called from SPI drivers. Only SPI
72  * controller drivers should use it.
73  *
74  * This function should be called after the DMA operation has finished and is
75  * only valid if the previous spi_controller_dma_map_mem_op_data() call
76  * returned 0.
77  *
78  * Return: 0 in case of success, a negative error code otherwise.
79  */
80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 					  const struct spi_mem_op *op,
82 					  struct sg_table *sgt)
83 {
84 	struct device *dmadev;
85 
86 	if (!op->data.nbytes)
87 		return;
88 
89 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 		dmadev = ctlr->dma_tx->device->dev;
91 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 		dmadev = ctlr->dma_rx->device->dev;
93 	else
94 		dmadev = ctlr->dev.parent;
95 
96 	spi_unmap_buf(ctlr, dmadev, sgt,
97 		      op->data.dir == SPI_MEM_DATA_IN ?
98 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
99 }
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101 
102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103 {
104 	u32 mode = mem->spi->mode;
105 
106 	switch (buswidth) {
107 	case 1:
108 		return 0;
109 
110 	case 2:
111 		if ((tx &&
112 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
113 		    (!tx &&
114 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
115 			return 0;
116 
117 		break;
118 
119 	case 4:
120 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
121 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
122 			return 0;
123 
124 		break;
125 
126 	case 8:
127 		if ((tx && (mode & SPI_TX_OCTAL)) ||
128 		    (!tx && (mode & SPI_RX_OCTAL)))
129 			return 0;
130 
131 		break;
132 
133 	default:
134 		break;
135 	}
136 
137 	return -ENOTSUPP;
138 }
139 
140 bool spi_mem_default_supports_op(struct spi_mem *mem,
141 				 const struct spi_mem_op *op)
142 {
143 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
144 		return false;
145 
146 	if (op->addr.nbytes &&
147 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
148 		return false;
149 
150 	if (op->dummy.nbytes &&
151 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
152 		return false;
153 
154 	if (op->data.dir != SPI_MEM_NO_DATA &&
155 	    spi_check_buswidth_req(mem, op->data.buswidth,
156 				   op->data.dir == SPI_MEM_DATA_OUT))
157 		return false;
158 
159 	return true;
160 }
161 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
162 
163 static bool spi_mem_buswidth_is_valid(u8 buswidth)
164 {
165 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
166 		return false;
167 
168 	return true;
169 }
170 
171 static int spi_mem_check_op(const struct spi_mem_op *op)
172 {
173 	if (!op->cmd.buswidth)
174 		return -EINVAL;
175 
176 	if ((op->addr.nbytes && !op->addr.buswidth) ||
177 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
178 	    (op->data.nbytes && !op->data.buswidth))
179 		return -EINVAL;
180 
181 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
182 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
183 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
184 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
185 		return -EINVAL;
186 
187 	return 0;
188 }
189 
190 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
191 					 const struct spi_mem_op *op)
192 {
193 	struct spi_controller *ctlr = mem->spi->controller;
194 
195 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
196 		return ctlr->mem_ops->supports_op(mem, op);
197 
198 	return spi_mem_default_supports_op(mem, op);
199 }
200 
201 /**
202  * spi_mem_supports_op() - Check if a memory device and the controller it is
203  *			   connected to support a specific memory operation
204  * @mem: the SPI memory
205  * @op: the memory operation to check
206  *
207  * Some controllers are only supporting Single or Dual IOs, others might only
208  * support specific opcodes, or it can even be that the controller and device
209  * both support Quad IOs but the hardware prevents you from using it because
210  * only 2 IO lines are connected.
211  *
212  * This function checks whether a specific operation is supported.
213  *
214  * Return: true if @op is supported, false otherwise.
215  */
216 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
217 {
218 	if (spi_mem_check_op(op))
219 		return false;
220 
221 	return spi_mem_internal_supports_op(mem, op);
222 }
223 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
224 
225 static int spi_mem_access_start(struct spi_mem *mem)
226 {
227 	struct spi_controller *ctlr = mem->spi->controller;
228 
229 	/*
230 	 * Flush the message queue before executing our SPI memory
231 	 * operation to prevent preemption of regular SPI transfers.
232 	 */
233 	spi_flush_queue(ctlr);
234 
235 	if (ctlr->auto_runtime_pm) {
236 		int ret;
237 
238 		ret = pm_runtime_get_sync(ctlr->dev.parent);
239 		if (ret < 0) {
240 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
241 				ret);
242 			return ret;
243 		}
244 	}
245 
246 	mutex_lock(&ctlr->bus_lock_mutex);
247 	mutex_lock(&ctlr->io_mutex);
248 
249 	return 0;
250 }
251 
252 static void spi_mem_access_end(struct spi_mem *mem)
253 {
254 	struct spi_controller *ctlr = mem->spi->controller;
255 
256 	mutex_unlock(&ctlr->io_mutex);
257 	mutex_unlock(&ctlr->bus_lock_mutex);
258 
259 	if (ctlr->auto_runtime_pm)
260 		pm_runtime_put(ctlr->dev.parent);
261 }
262 
263 /**
264  * spi_mem_exec_op() - Execute a memory operation
265  * @mem: the SPI memory
266  * @op: the memory operation to execute
267  *
268  * Executes a memory operation.
269  *
270  * This function first checks that @op is supported and then tries to execute
271  * it.
272  *
273  * Return: 0 in case of success, a negative error code otherwise.
274  */
275 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
276 {
277 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
278 	struct spi_controller *ctlr = mem->spi->controller;
279 	struct spi_transfer xfers[4] = { };
280 	struct spi_message msg;
281 	u8 *tmpbuf;
282 	int ret;
283 
284 	ret = spi_mem_check_op(op);
285 	if (ret)
286 		return ret;
287 
288 	if (!spi_mem_internal_supports_op(mem, op))
289 		return -ENOTSUPP;
290 
291 	if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
292 		ret = spi_mem_access_start(mem);
293 		if (ret)
294 			return ret;
295 
296 		ret = ctlr->mem_ops->exec_op(mem, op);
297 
298 		spi_mem_access_end(mem);
299 
300 		/*
301 		 * Some controllers only optimize specific paths (typically the
302 		 * read path) and expect the core to use the regular SPI
303 		 * interface in other cases.
304 		 */
305 		if (!ret || ret != -ENOTSUPP)
306 			return ret;
307 	}
308 
309 	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
310 		     op->dummy.nbytes;
311 
312 	/*
313 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
314 	 * we're guaranteed that this buffer is DMA-able, as required by the
315 	 * SPI layer.
316 	 */
317 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
318 	if (!tmpbuf)
319 		return -ENOMEM;
320 
321 	spi_message_init(&msg);
322 
323 	tmpbuf[0] = op->cmd.opcode;
324 	xfers[xferpos].tx_buf = tmpbuf;
325 	xfers[xferpos].len = sizeof(op->cmd.opcode);
326 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
327 	spi_message_add_tail(&xfers[xferpos], &msg);
328 	xferpos++;
329 	totalxferlen++;
330 
331 	if (op->addr.nbytes) {
332 		int i;
333 
334 		for (i = 0; i < op->addr.nbytes; i++)
335 			tmpbuf[i + 1] = op->addr.val >>
336 					(8 * (op->addr.nbytes - i - 1));
337 
338 		xfers[xferpos].tx_buf = tmpbuf + 1;
339 		xfers[xferpos].len = op->addr.nbytes;
340 		xfers[xferpos].tx_nbits = op->addr.buswidth;
341 		spi_message_add_tail(&xfers[xferpos], &msg);
342 		xferpos++;
343 		totalxferlen += op->addr.nbytes;
344 	}
345 
346 	if (op->dummy.nbytes) {
347 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
348 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
349 		xfers[xferpos].len = op->dummy.nbytes;
350 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
351 		spi_message_add_tail(&xfers[xferpos], &msg);
352 		xferpos++;
353 		totalxferlen += op->dummy.nbytes;
354 	}
355 
356 	if (op->data.nbytes) {
357 		if (op->data.dir == SPI_MEM_DATA_IN) {
358 			xfers[xferpos].rx_buf = op->data.buf.in;
359 			xfers[xferpos].rx_nbits = op->data.buswidth;
360 		} else {
361 			xfers[xferpos].tx_buf = op->data.buf.out;
362 			xfers[xferpos].tx_nbits = op->data.buswidth;
363 		}
364 
365 		xfers[xferpos].len = op->data.nbytes;
366 		spi_message_add_tail(&xfers[xferpos], &msg);
367 		xferpos++;
368 		totalxferlen += op->data.nbytes;
369 	}
370 
371 	ret = spi_sync(mem->spi, &msg);
372 
373 	kfree(tmpbuf);
374 
375 	if (ret)
376 		return ret;
377 
378 	if (msg.actual_length != totalxferlen)
379 		return -EIO;
380 
381 	return 0;
382 }
383 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
384 
385 /**
386  * spi_mem_get_name() - Return the SPI mem device name to be used by the
387  *			upper layer if necessary
388  * @mem: the SPI memory
389  *
390  * This function allows SPI mem users to retrieve the SPI mem device name.
391  * It is useful if the upper layer needs to expose a custom name for
392  * compatibility reasons.
393  *
394  * Return: a string containing the name of the memory device to be used
395  *	   by the SPI mem user
396  */
397 const char *spi_mem_get_name(struct spi_mem *mem)
398 {
399 	return mem->name;
400 }
401 EXPORT_SYMBOL_GPL(spi_mem_get_name);
402 
403 /**
404  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
405  *			      match controller limitations
406  * @mem: the SPI memory
407  * @op: the operation to adjust
408  *
409  * Some controllers have FIFO limitations and must split a data transfer
410  * operation into multiple ones, others require a specific alignment for
411  * optimized accesses. This function allows SPI mem drivers to split a single
412  * operation into multiple sub-operations when required.
413  *
414  * Return: a negative error code if the controller can't properly adjust @op,
415  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
416  *	   can't be handled in a single step.
417  */
418 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
419 {
420 	struct spi_controller *ctlr = mem->spi->controller;
421 	size_t len;
422 
423 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
424 		return ctlr->mem_ops->adjust_op_size(mem, op);
425 
426 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
427 		len = sizeof(op->cmd.opcode) + op->addr.nbytes +
428 		      op->dummy.nbytes;
429 
430 		if (len > spi_max_transfer_size(mem->spi))
431 			return -EINVAL;
432 
433 		op->data.nbytes = min3((size_t)op->data.nbytes,
434 				       spi_max_transfer_size(mem->spi),
435 				       spi_max_message_size(mem->spi) -
436 				       len);
437 		if (!op->data.nbytes)
438 			return -EINVAL;
439 	}
440 
441 	return 0;
442 }
443 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
444 
445 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
446 				      u64 offs, size_t len, void *buf)
447 {
448 	struct spi_mem_op op = desc->info.op_tmpl;
449 	int ret;
450 
451 	op.addr.val = desc->info.offset + offs;
452 	op.data.buf.in = buf;
453 	op.data.nbytes = len;
454 	ret = spi_mem_adjust_op_size(desc->mem, &op);
455 	if (ret)
456 		return ret;
457 
458 	ret = spi_mem_exec_op(desc->mem, &op);
459 	if (ret)
460 		return ret;
461 
462 	return op.data.nbytes;
463 }
464 
465 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
466 				       u64 offs, size_t len, const void *buf)
467 {
468 	struct spi_mem_op op = desc->info.op_tmpl;
469 	int ret;
470 
471 	op.addr.val = desc->info.offset + offs;
472 	op.data.buf.out = buf;
473 	op.data.nbytes = len;
474 	ret = spi_mem_adjust_op_size(desc->mem, &op);
475 	if (ret)
476 		return ret;
477 
478 	ret = spi_mem_exec_op(desc->mem, &op);
479 	if (ret)
480 		return ret;
481 
482 	return op.data.nbytes;
483 }
484 
485 /**
486  * spi_mem_dirmap_create() - Create a direct mapping descriptor
487  * @mem: SPI mem device this direct mapping should be created for
488  * @info: direct mapping information
489  *
490  * This function is creating a direct mapping descriptor which can then be used
491  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
492  * If the SPI controller driver does not support direct mapping, this function
493  * falls back to an implementation using spi_mem_exec_op(), so that the caller
494  * doesn't have to bother implementing a fallback on his own.
495  *
496  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
497  */
498 struct spi_mem_dirmap_desc *
499 spi_mem_dirmap_create(struct spi_mem *mem,
500 		      const struct spi_mem_dirmap_info *info)
501 {
502 	struct spi_controller *ctlr = mem->spi->controller;
503 	struct spi_mem_dirmap_desc *desc;
504 	int ret = -ENOTSUPP;
505 
506 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
507 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
508 		return ERR_PTR(-EINVAL);
509 
510 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
511 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
512 		return ERR_PTR(-EINVAL);
513 
514 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
515 	if (!desc)
516 		return ERR_PTR(-ENOMEM);
517 
518 	desc->mem = mem;
519 	desc->info = *info;
520 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
521 		ret = ctlr->mem_ops->dirmap_create(desc);
522 
523 	if (ret) {
524 		desc->nodirmap = true;
525 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
526 			ret = -ENOTSUPP;
527 		else
528 			ret = 0;
529 	}
530 
531 	if (ret) {
532 		kfree(desc);
533 		return ERR_PTR(ret);
534 	}
535 
536 	return desc;
537 }
538 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
539 
540 /**
541  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
542  * @desc: the direct mapping descriptor to destroy
543  *
544  * This function destroys a direct mapping descriptor previously created by
545  * spi_mem_dirmap_create().
546  */
547 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
548 {
549 	struct spi_controller *ctlr = desc->mem->spi->controller;
550 
551 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
552 		ctlr->mem_ops->dirmap_destroy(desc);
553 
554 	kfree(desc);
555 }
556 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
557 
558 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
559 {
560 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
561 
562 	spi_mem_dirmap_destroy(desc);
563 }
564 
565 /**
566  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
567  *				  it to a device
568  * @dev: device the dirmap desc will be attached to
569  * @mem: SPI mem device this direct mapping should be created for
570  * @info: direct mapping information
571  *
572  * devm_ variant of the spi_mem_dirmap_create() function. See
573  * spi_mem_dirmap_create() for more details.
574  *
575  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
576  */
577 struct spi_mem_dirmap_desc *
578 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
579 			   const struct spi_mem_dirmap_info *info)
580 {
581 	struct spi_mem_dirmap_desc **ptr, *desc;
582 
583 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
584 			   GFP_KERNEL);
585 	if (!ptr)
586 		return ERR_PTR(-ENOMEM);
587 
588 	desc = spi_mem_dirmap_create(mem, info);
589 	if (IS_ERR(desc)) {
590 		devres_free(ptr);
591 	} else {
592 		*ptr = desc;
593 		devres_add(dev, ptr);
594 	}
595 
596 	return desc;
597 }
598 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
599 
600 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
601 {
602         struct spi_mem_dirmap_desc **ptr = res;
603 
604         if (WARN_ON(!ptr || !*ptr))
605                 return 0;
606 
607 	return *ptr == data;
608 }
609 
610 /**
611  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
612  *				   to a device
613  * @dev: device the dirmap desc is attached to
614  * @desc: the direct mapping descriptor to destroy
615  *
616  * devm_ variant of the spi_mem_dirmap_destroy() function. See
617  * spi_mem_dirmap_destroy() for more details.
618  */
619 void devm_spi_mem_dirmap_destroy(struct device *dev,
620 				 struct spi_mem_dirmap_desc *desc)
621 {
622 	devres_release(dev, devm_spi_mem_dirmap_release,
623 		       devm_spi_mem_dirmap_match, desc);
624 }
625 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
626 
627 /**
628  * spi_mem_dirmap_read() - Read data through a direct mapping
629  * @desc: direct mapping descriptor
630  * @offs: offset to start reading from. Note that this is not an absolute
631  *	  offset, but the offset within the direct mapping which already has
632  *	  its own offset
633  * @len: length in bytes
634  * @buf: destination buffer. This buffer must be DMA-able
635  *
636  * This function reads data from a memory device using a direct mapping
637  * previously instantiated with spi_mem_dirmap_create().
638  *
639  * Return: the amount of data read from the memory device or a negative error
640  * code. Note that the returned size might be smaller than @len, and the caller
641  * is responsible for calling spi_mem_dirmap_read() again when that happens.
642  */
643 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
644 			    u64 offs, size_t len, void *buf)
645 {
646 	struct spi_controller *ctlr = desc->mem->spi->controller;
647 	ssize_t ret;
648 
649 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
650 		return -EINVAL;
651 
652 	if (!len)
653 		return 0;
654 
655 	if (desc->nodirmap) {
656 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
657 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
658 		ret = spi_mem_access_start(desc->mem);
659 		if (ret)
660 			return ret;
661 
662 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
663 
664 		spi_mem_access_end(desc->mem);
665 	} else {
666 		ret = -ENOTSUPP;
667 	}
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
672 
673 /**
674  * spi_mem_dirmap_write() - Write data through a direct mapping
675  * @desc: direct mapping descriptor
676  * @offs: offset to start writing from. Note that this is not an absolute
677  *	  offset, but the offset within the direct mapping which already has
678  *	  its own offset
679  * @len: length in bytes
680  * @buf: source buffer. This buffer must be DMA-able
681  *
682  * This function writes data to a memory device using a direct mapping
683  * previously instantiated with spi_mem_dirmap_create().
684  *
685  * Return: the amount of data written to the memory device or a negative error
686  * code. Note that the returned size might be smaller than @len, and the caller
687  * is responsible for calling spi_mem_dirmap_write() again when that happens.
688  */
689 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
690 			     u64 offs, size_t len, const void *buf)
691 {
692 	struct spi_controller *ctlr = desc->mem->spi->controller;
693 	ssize_t ret;
694 
695 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
696 		return -EINVAL;
697 
698 	if (!len)
699 		return 0;
700 
701 	if (desc->nodirmap) {
702 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
703 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
704 		ret = spi_mem_access_start(desc->mem);
705 		if (ret)
706 			return ret;
707 
708 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
709 
710 		spi_mem_access_end(desc->mem);
711 	} else {
712 		ret = -ENOTSUPP;
713 	}
714 
715 	return ret;
716 }
717 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
718 
719 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
720 {
721 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
722 }
723 
724 static int spi_mem_probe(struct spi_device *spi)
725 {
726 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
727 	struct spi_controller *ctlr = spi->controller;
728 	struct spi_mem *mem;
729 
730 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
731 	if (!mem)
732 		return -ENOMEM;
733 
734 	mem->spi = spi;
735 
736 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
737 		mem->name = ctlr->mem_ops->get_name(mem);
738 	else
739 		mem->name = dev_name(&spi->dev);
740 
741 	if (IS_ERR_OR_NULL(mem->name))
742 		return PTR_ERR(mem->name);
743 
744 	spi_set_drvdata(spi, mem);
745 
746 	return memdrv->probe(mem);
747 }
748 
749 static int spi_mem_remove(struct spi_device *spi)
750 {
751 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
752 	struct spi_mem *mem = spi_get_drvdata(spi);
753 
754 	if (memdrv->remove)
755 		return memdrv->remove(mem);
756 
757 	return 0;
758 }
759 
760 static void spi_mem_shutdown(struct spi_device *spi)
761 {
762 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
763 	struct spi_mem *mem = spi_get_drvdata(spi);
764 
765 	if (memdrv->shutdown)
766 		memdrv->shutdown(mem);
767 }
768 
769 /**
770  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
771  * @memdrv: the SPI memory driver to register
772  * @owner: the owner of this driver
773  *
774  * Registers a SPI memory driver.
775  *
776  * Return: 0 in case of success, a negative error core otherwise.
777  */
778 
779 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
780 				       struct module *owner)
781 {
782 	memdrv->spidrv.probe = spi_mem_probe;
783 	memdrv->spidrv.remove = spi_mem_remove;
784 	memdrv->spidrv.shutdown = spi_mem_shutdown;
785 
786 	return __spi_register_driver(owner, &memdrv->spidrv);
787 }
788 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
789 
790 /**
791  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
792  * @memdrv: the SPI memory driver to unregister
793  *
794  * Unregisters a SPI memory driver.
795  */
796 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
797 {
798 	spi_unregister_driver(&memdrv->spidrv);
799 }
800 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
801