1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Exceet Electronics GmbH 4 * Copyright (C) 2018 Bootlin 5 * 6 * Author: Boris Brezillon <boris.brezillon@bootlin.com> 7 */ 8 #include <linux/dmaengine.h> 9 #include <linux/iopoll.h> 10 #include <linux/pm_runtime.h> 11 #include <linux/spi/spi.h> 12 #include <linux/spi/spi-mem.h> 13 14 #include "internals.h" 15 16 #define SPI_MEM_MAX_BUSWIDTH 8 17 18 /** 19 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a 20 * memory operation 21 * @ctlr: the SPI controller requesting this dma_map() 22 * @op: the memory operation containing the buffer to map 23 * @sgt: a pointer to a non-initialized sg_table that will be filled by this 24 * function 25 * 26 * Some controllers might want to do DMA on the data buffer embedded in @op. 27 * This helper prepares everything for you and provides a ready-to-use 28 * sg_table. This function is not intended to be called from spi drivers. 29 * Only SPI controller drivers should use it. 30 * Note that the caller must ensure the memory region pointed by 31 * op->data.buf.{in,out} is DMA-able before calling this function. 32 * 33 * Return: 0 in case of success, a negative error code otherwise. 34 */ 35 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 36 const struct spi_mem_op *op, 37 struct sg_table *sgt) 38 { 39 struct device *dmadev; 40 41 if (!op->data.nbytes) 42 return -EINVAL; 43 44 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 45 dmadev = ctlr->dma_tx->device->dev; 46 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 47 dmadev = ctlr->dma_rx->device->dev; 48 else 49 dmadev = ctlr->dev.parent; 50 51 if (!dmadev) 52 return -EINVAL; 53 54 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, 55 op->data.dir == SPI_MEM_DATA_IN ? 56 DMA_FROM_DEVICE : DMA_TO_DEVICE); 57 } 58 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); 59 60 /** 61 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a 62 * memory operation 63 * @ctlr: the SPI controller requesting this dma_unmap() 64 * @op: the memory operation containing the buffer to unmap 65 * @sgt: a pointer to an sg_table previously initialized by 66 * spi_controller_dma_map_mem_op_data() 67 * 68 * Some controllers might want to do DMA on the data buffer embedded in @op. 69 * This helper prepares things so that the CPU can access the 70 * op->data.buf.{in,out} buffer again. 71 * 72 * This function is not intended to be called from SPI drivers. Only SPI 73 * controller drivers should use it. 74 * 75 * This function should be called after the DMA operation has finished and is 76 * only valid if the previous spi_controller_dma_map_mem_op_data() call 77 * returned 0. 78 * 79 * Return: 0 in case of success, a negative error code otherwise. 80 */ 81 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 82 const struct spi_mem_op *op, 83 struct sg_table *sgt) 84 { 85 struct device *dmadev; 86 87 if (!op->data.nbytes) 88 return; 89 90 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 91 dmadev = ctlr->dma_tx->device->dev; 92 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 93 dmadev = ctlr->dma_rx->device->dev; 94 else 95 dmadev = ctlr->dev.parent; 96 97 spi_unmap_buf(ctlr, dmadev, sgt, 98 op->data.dir == SPI_MEM_DATA_IN ? 99 DMA_FROM_DEVICE : DMA_TO_DEVICE); 100 } 101 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); 102 103 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx) 104 { 105 u32 mode = mem->spi->mode; 106 107 switch (buswidth) { 108 case 1: 109 return 0; 110 111 case 2: 112 if ((tx && 113 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) || 114 (!tx && 115 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))) 116 return 0; 117 118 break; 119 120 case 4: 121 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) || 122 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL)))) 123 return 0; 124 125 break; 126 127 case 8: 128 if ((tx && (mode & SPI_TX_OCTAL)) || 129 (!tx && (mode & SPI_RX_OCTAL))) 130 return 0; 131 132 break; 133 134 default: 135 break; 136 } 137 138 return -ENOTSUPP; 139 } 140 141 static bool spi_mem_check_buswidth(struct spi_mem *mem, 142 const struct spi_mem_op *op) 143 { 144 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) 145 return false; 146 147 if (op->addr.nbytes && 148 spi_check_buswidth_req(mem, op->addr.buswidth, true)) 149 return false; 150 151 if (op->dummy.nbytes && 152 spi_check_buswidth_req(mem, op->dummy.buswidth, true)) 153 return false; 154 155 if (op->data.dir != SPI_MEM_NO_DATA && 156 spi_check_buswidth_req(mem, op->data.buswidth, 157 op->data.dir == SPI_MEM_DATA_OUT)) 158 return false; 159 160 return true; 161 } 162 163 bool spi_mem_dtr_supports_op(struct spi_mem *mem, 164 const struct spi_mem_op *op) 165 { 166 if (op->cmd.nbytes != 2) 167 return false; 168 169 return spi_mem_check_buswidth(mem, op); 170 } 171 EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op); 172 173 bool spi_mem_default_supports_op(struct spi_mem *mem, 174 const struct spi_mem_op *op) 175 { 176 if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) 177 return false; 178 179 if (op->cmd.nbytes != 1) 180 return false; 181 182 return spi_mem_check_buswidth(mem, op); 183 } 184 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); 185 186 static bool spi_mem_buswidth_is_valid(u8 buswidth) 187 { 188 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH) 189 return false; 190 191 return true; 192 } 193 194 static int spi_mem_check_op(const struct spi_mem_op *op) 195 { 196 if (!op->cmd.buswidth || !op->cmd.nbytes) 197 return -EINVAL; 198 199 if ((op->addr.nbytes && !op->addr.buswidth) || 200 (op->dummy.nbytes && !op->dummy.buswidth) || 201 (op->data.nbytes && !op->data.buswidth)) 202 return -EINVAL; 203 204 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) || 205 !spi_mem_buswidth_is_valid(op->addr.buswidth) || 206 !spi_mem_buswidth_is_valid(op->dummy.buswidth) || 207 !spi_mem_buswidth_is_valid(op->data.buswidth)) 208 return -EINVAL; 209 210 return 0; 211 } 212 213 static bool spi_mem_internal_supports_op(struct spi_mem *mem, 214 const struct spi_mem_op *op) 215 { 216 struct spi_controller *ctlr = mem->spi->controller; 217 218 if (ctlr->mem_ops && ctlr->mem_ops->supports_op) 219 return ctlr->mem_ops->supports_op(mem, op); 220 221 return spi_mem_default_supports_op(mem, op); 222 } 223 224 /** 225 * spi_mem_supports_op() - Check if a memory device and the controller it is 226 * connected to support a specific memory operation 227 * @mem: the SPI memory 228 * @op: the memory operation to check 229 * 230 * Some controllers are only supporting Single or Dual IOs, others might only 231 * support specific opcodes, or it can even be that the controller and device 232 * both support Quad IOs but the hardware prevents you from using it because 233 * only 2 IO lines are connected. 234 * 235 * This function checks whether a specific operation is supported. 236 * 237 * Return: true if @op is supported, false otherwise. 238 */ 239 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) 240 { 241 if (spi_mem_check_op(op)) 242 return false; 243 244 return spi_mem_internal_supports_op(mem, op); 245 } 246 EXPORT_SYMBOL_GPL(spi_mem_supports_op); 247 248 static int spi_mem_access_start(struct spi_mem *mem) 249 { 250 struct spi_controller *ctlr = mem->spi->controller; 251 252 /* 253 * Flush the message queue before executing our SPI memory 254 * operation to prevent preemption of regular SPI transfers. 255 */ 256 spi_flush_queue(ctlr); 257 258 if (ctlr->auto_runtime_pm) { 259 int ret; 260 261 ret = pm_runtime_get_sync(ctlr->dev.parent); 262 if (ret < 0) { 263 pm_runtime_put_noidle(ctlr->dev.parent); 264 dev_err(&ctlr->dev, "Failed to power device: %d\n", 265 ret); 266 return ret; 267 } 268 } 269 270 mutex_lock(&ctlr->bus_lock_mutex); 271 mutex_lock(&ctlr->io_mutex); 272 273 return 0; 274 } 275 276 static void spi_mem_access_end(struct spi_mem *mem) 277 { 278 struct spi_controller *ctlr = mem->spi->controller; 279 280 mutex_unlock(&ctlr->io_mutex); 281 mutex_unlock(&ctlr->bus_lock_mutex); 282 283 if (ctlr->auto_runtime_pm) 284 pm_runtime_put(ctlr->dev.parent); 285 } 286 287 /** 288 * spi_mem_exec_op() - Execute a memory operation 289 * @mem: the SPI memory 290 * @op: the memory operation to execute 291 * 292 * Executes a memory operation. 293 * 294 * This function first checks that @op is supported and then tries to execute 295 * it. 296 * 297 * Return: 0 in case of success, a negative error code otherwise. 298 */ 299 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 300 { 301 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0; 302 struct spi_controller *ctlr = mem->spi->controller; 303 struct spi_transfer xfers[4] = { }; 304 struct spi_message msg; 305 u8 *tmpbuf; 306 int ret; 307 308 ret = spi_mem_check_op(op); 309 if (ret) 310 return ret; 311 312 if (!spi_mem_internal_supports_op(mem, op)) 313 return -ENOTSUPP; 314 315 if (ctlr->mem_ops && !mem->spi->cs_gpiod) { 316 ret = spi_mem_access_start(mem); 317 if (ret) 318 return ret; 319 320 ret = ctlr->mem_ops->exec_op(mem, op); 321 322 spi_mem_access_end(mem); 323 324 /* 325 * Some controllers only optimize specific paths (typically the 326 * read path) and expect the core to use the regular SPI 327 * interface in other cases. 328 */ 329 if (!ret || ret != -ENOTSUPP) 330 return ret; 331 } 332 333 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 334 335 /* 336 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so 337 * we're guaranteed that this buffer is DMA-able, as required by the 338 * SPI layer. 339 */ 340 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); 341 if (!tmpbuf) 342 return -ENOMEM; 343 344 spi_message_init(&msg); 345 346 tmpbuf[0] = op->cmd.opcode; 347 xfers[xferpos].tx_buf = tmpbuf; 348 xfers[xferpos].len = op->cmd.nbytes; 349 xfers[xferpos].tx_nbits = op->cmd.buswidth; 350 spi_message_add_tail(&xfers[xferpos], &msg); 351 xferpos++; 352 totalxferlen++; 353 354 if (op->addr.nbytes) { 355 int i; 356 357 for (i = 0; i < op->addr.nbytes; i++) 358 tmpbuf[i + 1] = op->addr.val >> 359 (8 * (op->addr.nbytes - i - 1)); 360 361 xfers[xferpos].tx_buf = tmpbuf + 1; 362 xfers[xferpos].len = op->addr.nbytes; 363 xfers[xferpos].tx_nbits = op->addr.buswidth; 364 spi_message_add_tail(&xfers[xferpos], &msg); 365 xferpos++; 366 totalxferlen += op->addr.nbytes; 367 } 368 369 if (op->dummy.nbytes) { 370 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); 371 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; 372 xfers[xferpos].len = op->dummy.nbytes; 373 xfers[xferpos].tx_nbits = op->dummy.buswidth; 374 xfers[xferpos].dummy_data = 1; 375 spi_message_add_tail(&xfers[xferpos], &msg); 376 xferpos++; 377 totalxferlen += op->dummy.nbytes; 378 } 379 380 if (op->data.nbytes) { 381 if (op->data.dir == SPI_MEM_DATA_IN) { 382 xfers[xferpos].rx_buf = op->data.buf.in; 383 xfers[xferpos].rx_nbits = op->data.buswidth; 384 } else { 385 xfers[xferpos].tx_buf = op->data.buf.out; 386 xfers[xferpos].tx_nbits = op->data.buswidth; 387 } 388 389 xfers[xferpos].len = op->data.nbytes; 390 spi_message_add_tail(&xfers[xferpos], &msg); 391 xferpos++; 392 totalxferlen += op->data.nbytes; 393 } 394 395 ret = spi_sync(mem->spi, &msg); 396 397 kfree(tmpbuf); 398 399 if (ret) 400 return ret; 401 402 if (msg.actual_length != totalxferlen) 403 return -EIO; 404 405 return 0; 406 } 407 EXPORT_SYMBOL_GPL(spi_mem_exec_op); 408 409 /** 410 * spi_mem_get_name() - Return the SPI mem device name to be used by the 411 * upper layer if necessary 412 * @mem: the SPI memory 413 * 414 * This function allows SPI mem users to retrieve the SPI mem device name. 415 * It is useful if the upper layer needs to expose a custom name for 416 * compatibility reasons. 417 * 418 * Return: a string containing the name of the memory device to be used 419 * by the SPI mem user 420 */ 421 const char *spi_mem_get_name(struct spi_mem *mem) 422 { 423 return mem->name; 424 } 425 EXPORT_SYMBOL_GPL(spi_mem_get_name); 426 427 /** 428 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to 429 * match controller limitations 430 * @mem: the SPI memory 431 * @op: the operation to adjust 432 * 433 * Some controllers have FIFO limitations and must split a data transfer 434 * operation into multiple ones, others require a specific alignment for 435 * optimized accesses. This function allows SPI mem drivers to split a single 436 * operation into multiple sub-operations when required. 437 * 438 * Return: a negative error code if the controller can't properly adjust @op, 439 * 0 otherwise. Note that @op->data.nbytes will be updated if @op 440 * can't be handled in a single step. 441 */ 442 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 443 { 444 struct spi_controller *ctlr = mem->spi->controller; 445 size_t len; 446 447 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size) 448 return ctlr->mem_ops->adjust_op_size(mem, op); 449 450 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 451 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 452 453 if (len > spi_max_transfer_size(mem->spi)) 454 return -EINVAL; 455 456 op->data.nbytes = min3((size_t)op->data.nbytes, 457 spi_max_transfer_size(mem->spi), 458 spi_max_message_size(mem->spi) - 459 len); 460 if (!op->data.nbytes) 461 return -EINVAL; 462 } 463 464 return 0; 465 } 466 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); 467 468 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc, 469 u64 offs, size_t len, void *buf) 470 { 471 struct spi_mem_op op = desc->info.op_tmpl; 472 int ret; 473 474 op.addr.val = desc->info.offset + offs; 475 op.data.buf.in = buf; 476 op.data.nbytes = len; 477 ret = spi_mem_adjust_op_size(desc->mem, &op); 478 if (ret) 479 return ret; 480 481 ret = spi_mem_exec_op(desc->mem, &op); 482 if (ret) 483 return ret; 484 485 return op.data.nbytes; 486 } 487 488 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc, 489 u64 offs, size_t len, const void *buf) 490 { 491 struct spi_mem_op op = desc->info.op_tmpl; 492 int ret; 493 494 op.addr.val = desc->info.offset + offs; 495 op.data.buf.out = buf; 496 op.data.nbytes = len; 497 ret = spi_mem_adjust_op_size(desc->mem, &op); 498 if (ret) 499 return ret; 500 501 ret = spi_mem_exec_op(desc->mem, &op); 502 if (ret) 503 return ret; 504 505 return op.data.nbytes; 506 } 507 508 /** 509 * spi_mem_dirmap_create() - Create a direct mapping descriptor 510 * @mem: SPI mem device this direct mapping should be created for 511 * @info: direct mapping information 512 * 513 * This function is creating a direct mapping descriptor which can then be used 514 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write(). 515 * If the SPI controller driver does not support direct mapping, this function 516 * falls back to an implementation using spi_mem_exec_op(), so that the caller 517 * doesn't have to bother implementing a fallback on his own. 518 * 519 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 520 */ 521 struct spi_mem_dirmap_desc * 522 spi_mem_dirmap_create(struct spi_mem *mem, 523 const struct spi_mem_dirmap_info *info) 524 { 525 struct spi_controller *ctlr = mem->spi->controller; 526 struct spi_mem_dirmap_desc *desc; 527 int ret = -ENOTSUPP; 528 529 /* Make sure the number of address cycles is between 1 and 8 bytes. */ 530 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8) 531 return ERR_PTR(-EINVAL); 532 533 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */ 534 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA) 535 return ERR_PTR(-EINVAL); 536 537 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 538 if (!desc) 539 return ERR_PTR(-ENOMEM); 540 541 desc->mem = mem; 542 desc->info = *info; 543 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create) 544 ret = ctlr->mem_ops->dirmap_create(desc); 545 546 if (ret) { 547 desc->nodirmap = true; 548 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) 549 ret = -ENOTSUPP; 550 else 551 ret = 0; 552 } 553 554 if (ret) { 555 kfree(desc); 556 return ERR_PTR(ret); 557 } 558 559 return desc; 560 } 561 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create); 562 563 /** 564 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor 565 * @desc: the direct mapping descriptor to destroy 566 * 567 * This function destroys a direct mapping descriptor previously created by 568 * spi_mem_dirmap_create(). 569 */ 570 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc) 571 { 572 struct spi_controller *ctlr = desc->mem->spi->controller; 573 574 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy) 575 ctlr->mem_ops->dirmap_destroy(desc); 576 577 kfree(desc); 578 } 579 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy); 580 581 static void devm_spi_mem_dirmap_release(struct device *dev, void *res) 582 { 583 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res; 584 585 spi_mem_dirmap_destroy(desc); 586 } 587 588 /** 589 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach 590 * it to a device 591 * @dev: device the dirmap desc will be attached to 592 * @mem: SPI mem device this direct mapping should be created for 593 * @info: direct mapping information 594 * 595 * devm_ variant of the spi_mem_dirmap_create() function. See 596 * spi_mem_dirmap_create() for more details. 597 * 598 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 599 */ 600 struct spi_mem_dirmap_desc * 601 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, 602 const struct spi_mem_dirmap_info *info) 603 { 604 struct spi_mem_dirmap_desc **ptr, *desc; 605 606 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr), 607 GFP_KERNEL); 608 if (!ptr) 609 return ERR_PTR(-ENOMEM); 610 611 desc = spi_mem_dirmap_create(mem, info); 612 if (IS_ERR(desc)) { 613 devres_free(ptr); 614 } else { 615 *ptr = desc; 616 devres_add(dev, ptr); 617 } 618 619 return desc; 620 } 621 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create); 622 623 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data) 624 { 625 struct spi_mem_dirmap_desc **ptr = res; 626 627 if (WARN_ON(!ptr || !*ptr)) 628 return 0; 629 630 return *ptr == data; 631 } 632 633 /** 634 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached 635 * to a device 636 * @dev: device the dirmap desc is attached to 637 * @desc: the direct mapping descriptor to destroy 638 * 639 * devm_ variant of the spi_mem_dirmap_destroy() function. See 640 * spi_mem_dirmap_destroy() for more details. 641 */ 642 void devm_spi_mem_dirmap_destroy(struct device *dev, 643 struct spi_mem_dirmap_desc *desc) 644 { 645 devres_release(dev, devm_spi_mem_dirmap_release, 646 devm_spi_mem_dirmap_match, desc); 647 } 648 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy); 649 650 /** 651 * spi_mem_dirmap_read() - Read data through a direct mapping 652 * @desc: direct mapping descriptor 653 * @offs: offset to start reading from. Note that this is not an absolute 654 * offset, but the offset within the direct mapping which already has 655 * its own offset 656 * @len: length in bytes 657 * @buf: destination buffer. This buffer must be DMA-able 658 * 659 * This function reads data from a memory device using a direct mapping 660 * previously instantiated with spi_mem_dirmap_create(). 661 * 662 * Return: the amount of data read from the memory device or a negative error 663 * code. Note that the returned size might be smaller than @len, and the caller 664 * is responsible for calling spi_mem_dirmap_read() again when that happens. 665 */ 666 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 667 u64 offs, size_t len, void *buf) 668 { 669 struct spi_controller *ctlr = desc->mem->spi->controller; 670 ssize_t ret; 671 672 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) 673 return -EINVAL; 674 675 if (!len) 676 return 0; 677 678 if (desc->nodirmap) { 679 ret = spi_mem_no_dirmap_read(desc, offs, len, buf); 680 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) { 681 ret = spi_mem_access_start(desc->mem); 682 if (ret) 683 return ret; 684 685 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf); 686 687 spi_mem_access_end(desc->mem); 688 } else { 689 ret = -ENOTSUPP; 690 } 691 692 return ret; 693 } 694 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read); 695 696 /** 697 * spi_mem_dirmap_write() - Write data through a direct mapping 698 * @desc: direct mapping descriptor 699 * @offs: offset to start writing from. Note that this is not an absolute 700 * offset, but the offset within the direct mapping which already has 701 * its own offset 702 * @len: length in bytes 703 * @buf: source buffer. This buffer must be DMA-able 704 * 705 * This function writes data to a memory device using a direct mapping 706 * previously instantiated with spi_mem_dirmap_create(). 707 * 708 * Return: the amount of data written to the memory device or a negative error 709 * code. Note that the returned size might be smaller than @len, and the caller 710 * is responsible for calling spi_mem_dirmap_write() again when that happens. 711 */ 712 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 713 u64 offs, size_t len, const void *buf) 714 { 715 struct spi_controller *ctlr = desc->mem->spi->controller; 716 ssize_t ret; 717 718 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT) 719 return -EINVAL; 720 721 if (!len) 722 return 0; 723 724 if (desc->nodirmap) { 725 ret = spi_mem_no_dirmap_write(desc, offs, len, buf); 726 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) { 727 ret = spi_mem_access_start(desc->mem); 728 if (ret) 729 return ret; 730 731 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf); 732 733 spi_mem_access_end(desc->mem); 734 } else { 735 ret = -ENOTSUPP; 736 } 737 738 return ret; 739 } 740 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write); 741 742 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) 743 { 744 return container_of(drv, struct spi_mem_driver, spidrv.driver); 745 } 746 747 static int spi_mem_read_status(struct spi_mem *mem, 748 const struct spi_mem_op *op, 749 u16 *status) 750 { 751 const u8 *bytes = (u8 *)op->data.buf.in; 752 int ret; 753 754 ret = spi_mem_exec_op(mem, op); 755 if (ret) 756 return ret; 757 758 if (op->data.nbytes > 1) 759 *status = ((u16)bytes[0] << 8) | bytes[1]; 760 else 761 *status = bytes[0]; 762 763 return 0; 764 } 765 766 /** 767 * spi_mem_poll_status() - Poll memory device status 768 * @mem: SPI memory device 769 * @op: the memory operation to execute 770 * @mask: status bitmask to ckeck 771 * @match: (status & mask) expected value 772 * @initial_delay_us: delay in us before starting to poll 773 * @polling_delay_us: time to sleep between reads in us 774 * @timeout_ms: timeout in milliseconds 775 * 776 * This function polls a status register and returns when 777 * (status & mask) == match or when the timeout has expired. 778 * 779 * Return: 0 in case of success, -ETIMEDOUT in case of error, 780 * -EOPNOTSUPP if not supported. 781 */ 782 int spi_mem_poll_status(struct spi_mem *mem, 783 const struct spi_mem_op *op, 784 u16 mask, u16 match, 785 unsigned long initial_delay_us, 786 unsigned long polling_delay_us, 787 u16 timeout_ms) 788 { 789 struct spi_controller *ctlr = mem->spi->controller; 790 int ret = -EOPNOTSUPP; 791 int read_status_ret; 792 u16 status; 793 794 if (op->data.nbytes < 1 || op->data.nbytes > 2 || 795 op->data.dir != SPI_MEM_DATA_IN) 796 return -EINVAL; 797 798 if (ctlr->mem_ops && ctlr->mem_ops->poll_status) { 799 ret = spi_mem_access_start(mem); 800 if (ret) 801 return ret; 802 803 ret = ctlr->mem_ops->poll_status(mem, op, mask, match, 804 initial_delay_us, polling_delay_us, 805 timeout_ms); 806 807 spi_mem_access_end(mem); 808 } 809 810 if (ret == -EOPNOTSUPP) { 811 if (!spi_mem_supports_op(mem, op)) 812 return ret; 813 814 if (initial_delay_us < 10) 815 udelay(initial_delay_us); 816 else 817 usleep_range((initial_delay_us >> 2) + 1, 818 initial_delay_us); 819 820 ret = read_poll_timeout(spi_mem_read_status, read_status_ret, 821 (read_status_ret || ((status) & mask) == match), 822 polling_delay_us, timeout_ms * 1000, false, mem, 823 op, &status); 824 if (read_status_ret) 825 return read_status_ret; 826 } 827 828 return ret; 829 } 830 EXPORT_SYMBOL_GPL(spi_mem_poll_status); 831 832 static int spi_mem_probe(struct spi_device *spi) 833 { 834 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 835 struct spi_controller *ctlr = spi->controller; 836 struct spi_mem *mem; 837 838 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); 839 if (!mem) 840 return -ENOMEM; 841 842 mem->spi = spi; 843 844 if (ctlr->mem_ops && ctlr->mem_ops->get_name) 845 mem->name = ctlr->mem_ops->get_name(mem); 846 else 847 mem->name = dev_name(&spi->dev); 848 849 if (IS_ERR_OR_NULL(mem->name)) 850 return PTR_ERR_OR_ZERO(mem->name); 851 852 spi_set_drvdata(spi, mem); 853 854 return memdrv->probe(mem); 855 } 856 857 static int spi_mem_remove(struct spi_device *spi) 858 { 859 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 860 struct spi_mem *mem = spi_get_drvdata(spi); 861 862 if (memdrv->remove) 863 return memdrv->remove(mem); 864 865 return 0; 866 } 867 868 static void spi_mem_shutdown(struct spi_device *spi) 869 { 870 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 871 struct spi_mem *mem = spi_get_drvdata(spi); 872 873 if (memdrv->shutdown) 874 memdrv->shutdown(mem); 875 } 876 877 /** 878 * spi_mem_driver_register_with_owner() - Register a SPI memory driver 879 * @memdrv: the SPI memory driver to register 880 * @owner: the owner of this driver 881 * 882 * Registers a SPI memory driver. 883 * 884 * Return: 0 in case of success, a negative error core otherwise. 885 */ 886 887 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, 888 struct module *owner) 889 { 890 memdrv->spidrv.probe = spi_mem_probe; 891 memdrv->spidrv.remove = spi_mem_remove; 892 memdrv->spidrv.shutdown = spi_mem_shutdown; 893 894 return __spi_register_driver(owner, &memdrv->spidrv); 895 } 896 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); 897 898 /** 899 * spi_mem_driver_unregister() - Unregister a SPI memory driver 900 * @memdrv: the SPI memory driver to unregister 901 * 902 * Unregisters a SPI memory driver. 903 */ 904 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) 905 { 906 spi_unregister_driver(&memdrv->spidrv); 907 } 908 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); 909