xref: /openbmc/linux/drivers/spi/spi-mem.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
12 
13 #include "internals.h"
14 
15 #define SPI_MEM_MAX_BUSWIDTH		4
16 
17 /**
18  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19  *					  memory operation
20  * @ctlr: the SPI controller requesting this dma_map()
21  * @op: the memory operation containing the buffer to map
22  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23  *	 function
24  *
25  * Some controllers might want to do DMA on the data buffer embedded in @op.
26  * This helper prepares everything for you and provides a ready-to-use
27  * sg_table. This function is not intended to be called from spi drivers.
28  * Only SPI controller drivers should use it.
29  * Note that the caller must ensure the memory region pointed by
30  * op->data.buf.{in,out} is DMA-able before calling this function.
31  *
32  * Return: 0 in case of success, a negative error code otherwise.
33  */
34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 				       const struct spi_mem_op *op,
36 				       struct sg_table *sgt)
37 {
38 	struct device *dmadev;
39 
40 	if (!op->data.nbytes)
41 		return -EINVAL;
42 
43 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 		dmadev = ctlr->dma_tx->device->dev;
45 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 		dmadev = ctlr->dma_rx->device->dev;
47 	else
48 		dmadev = ctlr->dev.parent;
49 
50 	if (!dmadev)
51 		return -EINVAL;
52 
53 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 			   op->data.dir == SPI_MEM_DATA_IN ?
55 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
56 }
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58 
59 /**
60  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61  *					    memory operation
62  * @ctlr: the SPI controller requesting this dma_unmap()
63  * @op: the memory operation containing the buffer to unmap
64  * @sgt: a pointer to an sg_table previously initialized by
65  *	 spi_controller_dma_map_mem_op_data()
66  *
67  * Some controllers might want to do DMA on the data buffer embedded in @op.
68  * This helper prepares things so that the CPU can access the
69  * op->data.buf.{in,out} buffer again.
70  *
71  * This function is not intended to be called from SPI drivers. Only SPI
72  * controller drivers should use it.
73  *
74  * This function should be called after the DMA operation has finished and is
75  * only valid if the previous spi_controller_dma_map_mem_op_data() call
76  * returned 0.
77  *
78  * Return: 0 in case of success, a negative error code otherwise.
79  */
80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 					  const struct spi_mem_op *op,
82 					  struct sg_table *sgt)
83 {
84 	struct device *dmadev;
85 
86 	if (!op->data.nbytes)
87 		return;
88 
89 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 		dmadev = ctlr->dma_tx->device->dev;
91 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 		dmadev = ctlr->dma_rx->device->dev;
93 	else
94 		dmadev = ctlr->dev.parent;
95 
96 	spi_unmap_buf(ctlr, dmadev, sgt,
97 		      op->data.dir == SPI_MEM_DATA_IN ?
98 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
99 }
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101 
102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103 {
104 	u32 mode = mem->spi->mode;
105 
106 	switch (buswidth) {
107 	case 1:
108 		return 0;
109 
110 	case 2:
111 		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
112 		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
113 			return 0;
114 
115 		break;
116 
117 	case 4:
118 		if ((tx && (mode & SPI_TX_QUAD)) ||
119 		    (!tx && (mode & SPI_RX_QUAD)))
120 			return 0;
121 
122 		break;
123 
124 	default:
125 		break;
126 	}
127 
128 	return -ENOTSUPP;
129 }
130 
131 static bool spi_mem_default_supports_op(struct spi_mem *mem,
132 					const struct spi_mem_op *op)
133 {
134 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
135 		return false;
136 
137 	if (op->addr.nbytes &&
138 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
139 		return false;
140 
141 	if (op->dummy.nbytes &&
142 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
143 		return false;
144 
145 	if (op->data.nbytes &&
146 	    spi_check_buswidth_req(mem, op->data.buswidth,
147 				   op->data.dir == SPI_MEM_DATA_OUT))
148 		return false;
149 
150 	return true;
151 }
152 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
153 
154 static bool spi_mem_buswidth_is_valid(u8 buswidth)
155 {
156 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
157 		return false;
158 
159 	return true;
160 }
161 
162 static int spi_mem_check_op(const struct spi_mem_op *op)
163 {
164 	if (!op->cmd.buswidth)
165 		return -EINVAL;
166 
167 	if ((op->addr.nbytes && !op->addr.buswidth) ||
168 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
169 	    (op->data.nbytes && !op->data.buswidth))
170 		return -EINVAL;
171 
172 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
173 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
174 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
175 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 
181 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
182 					 const struct spi_mem_op *op)
183 {
184 	struct spi_controller *ctlr = mem->spi->controller;
185 
186 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
187 		return ctlr->mem_ops->supports_op(mem, op);
188 
189 	return spi_mem_default_supports_op(mem, op);
190 }
191 
192 /**
193  * spi_mem_supports_op() - Check if a memory device and the controller it is
194  *			   connected to support a specific memory operation
195  * @mem: the SPI memory
196  * @op: the memory operation to check
197  *
198  * Some controllers are only supporting Single or Dual IOs, others might only
199  * support specific opcodes, or it can even be that the controller and device
200  * both support Quad IOs but the hardware prevents you from using it because
201  * only 2 IO lines are connected.
202  *
203  * This function checks whether a specific operation is supported.
204  *
205  * Return: true if @op is supported, false otherwise.
206  */
207 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
208 {
209 	if (spi_mem_check_op(op))
210 		return false;
211 
212 	return spi_mem_internal_supports_op(mem, op);
213 }
214 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
215 
216 /**
217  * spi_mem_exec_op() - Execute a memory operation
218  * @mem: the SPI memory
219  * @op: the memory operation to execute
220  *
221  * Executes a memory operation.
222  *
223  * This function first checks that @op is supported and then tries to execute
224  * it.
225  *
226  * Return: 0 in case of success, a negative error code otherwise.
227  */
228 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
229 {
230 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
231 	struct spi_controller *ctlr = mem->spi->controller;
232 	struct spi_transfer xfers[4] = { };
233 	struct spi_message msg;
234 	u8 *tmpbuf;
235 	int ret;
236 
237 	ret = spi_mem_check_op(op);
238 	if (ret)
239 		return ret;
240 
241 	if (!spi_mem_internal_supports_op(mem, op))
242 		return -ENOTSUPP;
243 
244 	if (ctlr->mem_ops) {
245 		/*
246 		 * Flush the message queue before executing our SPI memory
247 		 * operation to prevent preemption of regular SPI transfers.
248 		 */
249 		spi_flush_queue(ctlr);
250 
251 		if (ctlr->auto_runtime_pm) {
252 			ret = pm_runtime_get_sync(ctlr->dev.parent);
253 			if (ret < 0) {
254 				dev_err(&ctlr->dev,
255 					"Failed to power device: %d\n",
256 					ret);
257 				return ret;
258 			}
259 		}
260 
261 		mutex_lock(&ctlr->bus_lock_mutex);
262 		mutex_lock(&ctlr->io_mutex);
263 		ret = ctlr->mem_ops->exec_op(mem, op);
264 		mutex_unlock(&ctlr->io_mutex);
265 		mutex_unlock(&ctlr->bus_lock_mutex);
266 
267 		if (ctlr->auto_runtime_pm)
268 			pm_runtime_put(ctlr->dev.parent);
269 
270 		/*
271 		 * Some controllers only optimize specific paths (typically the
272 		 * read path) and expect the core to use the regular SPI
273 		 * interface in other cases.
274 		 */
275 		if (!ret || ret != -ENOTSUPP)
276 			return ret;
277 	}
278 
279 	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
280 		     op->dummy.nbytes;
281 
282 	/*
283 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
284 	 * we're guaranteed that this buffer is DMA-able, as required by the
285 	 * SPI layer.
286 	 */
287 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
288 	if (!tmpbuf)
289 		return -ENOMEM;
290 
291 	spi_message_init(&msg);
292 
293 	tmpbuf[0] = op->cmd.opcode;
294 	xfers[xferpos].tx_buf = tmpbuf;
295 	xfers[xferpos].len = sizeof(op->cmd.opcode);
296 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
297 	spi_message_add_tail(&xfers[xferpos], &msg);
298 	xferpos++;
299 	totalxferlen++;
300 
301 	if (op->addr.nbytes) {
302 		int i;
303 
304 		for (i = 0; i < op->addr.nbytes; i++)
305 			tmpbuf[i + 1] = op->addr.val >>
306 					(8 * (op->addr.nbytes - i - 1));
307 
308 		xfers[xferpos].tx_buf = tmpbuf + 1;
309 		xfers[xferpos].len = op->addr.nbytes;
310 		xfers[xferpos].tx_nbits = op->addr.buswidth;
311 		spi_message_add_tail(&xfers[xferpos], &msg);
312 		xferpos++;
313 		totalxferlen += op->addr.nbytes;
314 	}
315 
316 	if (op->dummy.nbytes) {
317 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
318 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
319 		xfers[xferpos].len = op->dummy.nbytes;
320 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
321 		spi_message_add_tail(&xfers[xferpos], &msg);
322 		xferpos++;
323 		totalxferlen += op->dummy.nbytes;
324 	}
325 
326 	if (op->data.nbytes) {
327 		if (op->data.dir == SPI_MEM_DATA_IN) {
328 			xfers[xferpos].rx_buf = op->data.buf.in;
329 			xfers[xferpos].rx_nbits = op->data.buswidth;
330 		} else {
331 			xfers[xferpos].tx_buf = op->data.buf.out;
332 			xfers[xferpos].tx_nbits = op->data.buswidth;
333 		}
334 
335 		xfers[xferpos].len = op->data.nbytes;
336 		spi_message_add_tail(&xfers[xferpos], &msg);
337 		xferpos++;
338 		totalxferlen += op->data.nbytes;
339 	}
340 
341 	ret = spi_sync(mem->spi, &msg);
342 
343 	kfree(tmpbuf);
344 
345 	if (ret)
346 		return ret;
347 
348 	if (msg.actual_length != totalxferlen)
349 		return -EIO;
350 
351 	return 0;
352 }
353 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
354 
355 /**
356  * spi_mem_get_name() - Return the SPI mem device name to be used by the
357  *			upper layer if necessary
358  * @mem: the SPI memory
359  *
360  * This function allows SPI mem users to retrieve the SPI mem device name.
361  * It is useful if the upper layer needs to expose a custom name for
362  * compatibility reasons.
363  *
364  * Return: a string containing the name of the memory device to be used
365  *	   by the SPI mem user
366  */
367 const char *spi_mem_get_name(struct spi_mem *mem)
368 {
369 	return mem->name;
370 }
371 EXPORT_SYMBOL_GPL(spi_mem_get_name);
372 
373 /**
374  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
375  *			      match controller limitations
376  * @mem: the SPI memory
377  * @op: the operation to adjust
378  *
379  * Some controllers have FIFO limitations and must split a data transfer
380  * operation into multiple ones, others require a specific alignment for
381  * optimized accesses. This function allows SPI mem drivers to split a single
382  * operation into multiple sub-operations when required.
383  *
384  * Return: a negative error code if the controller can't properly adjust @op,
385  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
386  *	   can't be handled in a single step.
387  */
388 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
389 {
390 	struct spi_controller *ctlr = mem->spi->controller;
391 	size_t len;
392 
393 	len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
394 
395 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
396 		return ctlr->mem_ops->adjust_op_size(mem, op);
397 
398 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
399 		if (len > spi_max_transfer_size(mem->spi))
400 			return -EINVAL;
401 
402 		op->data.nbytes = min3((size_t)op->data.nbytes,
403 				       spi_max_transfer_size(mem->spi),
404 				       spi_max_message_size(mem->spi) -
405 				       len);
406 		if (!op->data.nbytes)
407 			return -EINVAL;
408 	}
409 
410 	return 0;
411 }
412 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
413 
414 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
415 {
416 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
417 }
418 
419 static int spi_mem_probe(struct spi_device *spi)
420 {
421 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
422 	struct spi_controller *ctlr = spi->controller;
423 	struct spi_mem *mem;
424 
425 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
426 	if (!mem)
427 		return -ENOMEM;
428 
429 	mem->spi = spi;
430 
431 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
432 		mem->name = ctlr->mem_ops->get_name(mem);
433 	else
434 		mem->name = dev_name(&spi->dev);
435 
436 	if (IS_ERR_OR_NULL(mem->name))
437 		return PTR_ERR(mem->name);
438 
439 	spi_set_drvdata(spi, mem);
440 
441 	return memdrv->probe(mem);
442 }
443 
444 static int spi_mem_remove(struct spi_device *spi)
445 {
446 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
447 	struct spi_mem *mem = spi_get_drvdata(spi);
448 
449 	if (memdrv->remove)
450 		return memdrv->remove(mem);
451 
452 	return 0;
453 }
454 
455 static void spi_mem_shutdown(struct spi_device *spi)
456 {
457 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
458 	struct spi_mem *mem = spi_get_drvdata(spi);
459 
460 	if (memdrv->shutdown)
461 		memdrv->shutdown(mem);
462 }
463 
464 /**
465  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
466  * @memdrv: the SPI memory driver to register
467  * @owner: the owner of this driver
468  *
469  * Registers a SPI memory driver.
470  *
471  * Return: 0 in case of success, a negative error core otherwise.
472  */
473 
474 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
475 				       struct module *owner)
476 {
477 	memdrv->spidrv.probe = spi_mem_probe;
478 	memdrv->spidrv.remove = spi_mem_remove;
479 	memdrv->spidrv.shutdown = spi_mem_shutdown;
480 
481 	return __spi_register_driver(owner, &memdrv->spidrv);
482 }
483 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
484 
485 /**
486  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
487  * @memdrv: the SPI memory driver to unregister
488  *
489  * Unregisters a SPI memory driver.
490  */
491 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
492 {
493 	spi_unregister_driver(&memdrv->spidrv);
494 }
495 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
496