xref: /openbmc/linux/drivers/spi/spi-lantiq-ssc.c (revision 703e7713)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
4  * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/clk.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/sched.h>
15 #include <linux/completion.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/spi/spi.h>
20 
21 #ifdef CONFIG_LANTIQ
22 #include <lantiq_soc.h>
23 #endif
24 
25 #define LTQ_SPI_RX_IRQ_NAME	"spi_rx"
26 #define LTQ_SPI_TX_IRQ_NAME	"spi_tx"
27 #define LTQ_SPI_ERR_IRQ_NAME	"spi_err"
28 #define LTQ_SPI_FRM_IRQ_NAME	"spi_frm"
29 
30 #define LTQ_SPI_CLC		0x00
31 #define LTQ_SPI_PISEL		0x04
32 #define LTQ_SPI_ID		0x08
33 #define LTQ_SPI_CON		0x10
34 #define LTQ_SPI_STAT		0x14
35 #define LTQ_SPI_WHBSTATE	0x18
36 #define LTQ_SPI_TB		0x20
37 #define LTQ_SPI_RB		0x24
38 #define LTQ_SPI_RXFCON		0x30
39 #define LTQ_SPI_TXFCON		0x34
40 #define LTQ_SPI_FSTAT		0x38
41 #define LTQ_SPI_BRT		0x40
42 #define LTQ_SPI_BRSTAT		0x44
43 #define LTQ_SPI_SFCON		0x60
44 #define LTQ_SPI_SFSTAT		0x64
45 #define LTQ_SPI_GPOCON		0x70
46 #define LTQ_SPI_GPOSTAT		0x74
47 #define LTQ_SPI_FPGO		0x78
48 #define LTQ_SPI_RXREQ		0x80
49 #define LTQ_SPI_RXCNT		0x84
50 #define LTQ_SPI_DMACON		0xec
51 #define LTQ_SPI_IRNEN		0xf4
52 
53 #define LTQ_SPI_CLC_SMC_S	16	/* Clock divider for sleep mode */
54 #define LTQ_SPI_CLC_SMC_M	(0xFF << LTQ_SPI_CLC_SMC_S)
55 #define LTQ_SPI_CLC_RMC_S	8	/* Clock divider for normal run mode */
56 #define LTQ_SPI_CLC_RMC_M	(0xFF << LTQ_SPI_CLC_RMC_S)
57 #define LTQ_SPI_CLC_DISS	BIT(1)	/* Disable status bit */
58 #define LTQ_SPI_CLC_DISR	BIT(0)	/* Disable request bit */
59 
60 #define LTQ_SPI_ID_TXFS_S	24	/* Implemented TX FIFO size */
61 #define LTQ_SPI_ID_RXFS_S	16	/* Implemented RX FIFO size */
62 #define LTQ_SPI_ID_MOD_S	8	/* Module ID */
63 #define LTQ_SPI_ID_MOD_M	(0xff << LTQ_SPI_ID_MOD_S)
64 #define LTQ_SPI_ID_CFG_S	5	/* DMA interface support */
65 #define LTQ_SPI_ID_CFG_M	(1 << LTQ_SPI_ID_CFG_S)
66 #define LTQ_SPI_ID_REV_M	0x1F	/* Hardware revision number */
67 
68 #define LTQ_SPI_CON_BM_S	16	/* Data width selection */
69 #define LTQ_SPI_CON_BM_M	(0x1F << LTQ_SPI_CON_BM_S)
70 #define LTQ_SPI_CON_EM		BIT(24)	/* Echo mode */
71 #define LTQ_SPI_CON_IDLE	BIT(23)	/* Idle bit value */
72 #define LTQ_SPI_CON_ENBV	BIT(22)	/* Enable byte valid control */
73 #define LTQ_SPI_CON_RUEN	BIT(12)	/* Receive underflow error enable */
74 #define LTQ_SPI_CON_TUEN	BIT(11)	/* Transmit underflow error enable */
75 #define LTQ_SPI_CON_AEN		BIT(10)	/* Abort error enable */
76 #define LTQ_SPI_CON_REN		BIT(9)	/* Receive overflow error enable */
77 #define LTQ_SPI_CON_TEN		BIT(8)	/* Transmit overflow error enable */
78 #define LTQ_SPI_CON_LB		BIT(7)	/* Loopback control */
79 #define LTQ_SPI_CON_PO		BIT(6)	/* Clock polarity control */
80 #define LTQ_SPI_CON_PH		BIT(5)	/* Clock phase control */
81 #define LTQ_SPI_CON_HB		BIT(4)	/* Heading control */
82 #define LTQ_SPI_CON_RXOFF	BIT(1)	/* Switch receiver off */
83 #define LTQ_SPI_CON_TXOFF	BIT(0)	/* Switch transmitter off */
84 
85 #define LTQ_SPI_STAT_RXBV_S	28
86 #define LTQ_SPI_STAT_RXBV_M	(0x7 << LTQ_SPI_STAT_RXBV_S)
87 #define LTQ_SPI_STAT_BSY	BIT(13)	/* Busy flag */
88 #define LTQ_SPI_STAT_RUE	BIT(12)	/* Receive underflow error flag */
89 #define LTQ_SPI_STAT_TUE	BIT(11)	/* Transmit underflow error flag */
90 #define LTQ_SPI_STAT_AE		BIT(10)	/* Abort error flag */
91 #define LTQ_SPI_STAT_RE		BIT(9)	/* Receive error flag */
92 #define LTQ_SPI_STAT_TE		BIT(8)	/* Transmit error flag */
93 #define LTQ_SPI_STAT_ME		BIT(7)	/* Mode error flag */
94 #define LTQ_SPI_STAT_MS		BIT(1)	/* Master/slave select bit */
95 #define LTQ_SPI_STAT_EN		BIT(0)	/* Enable bit */
96 #define LTQ_SPI_STAT_ERRORS	(LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
97 				 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
98 				 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
99 
100 #define LTQ_SPI_WHBSTATE_SETTUE	BIT(15)	/* Set transmit underflow error flag */
101 #define LTQ_SPI_WHBSTATE_SETAE	BIT(14)	/* Set abort error flag */
102 #define LTQ_SPI_WHBSTATE_SETRE	BIT(13)	/* Set receive error flag */
103 #define LTQ_SPI_WHBSTATE_SETTE	BIT(12)	/* Set transmit error flag */
104 #define LTQ_SPI_WHBSTATE_CLRTUE	BIT(11)	/* Clear transmit underflow error flag */
105 #define LTQ_SPI_WHBSTATE_CLRAE	BIT(10)	/* Clear abort error flag */
106 #define LTQ_SPI_WHBSTATE_CLRRE	BIT(9)	/* Clear receive error flag */
107 #define LTQ_SPI_WHBSTATE_CLRTE	BIT(8)	/* Clear transmit error flag */
108 #define LTQ_SPI_WHBSTATE_SETME	BIT(7)	/* Set mode error flag */
109 #define LTQ_SPI_WHBSTATE_CLRME	BIT(6)	/* Clear mode error flag */
110 #define LTQ_SPI_WHBSTATE_SETRUE	BIT(5)	/* Set receive underflow error flag */
111 #define LTQ_SPI_WHBSTATE_CLRRUE	BIT(4)	/* Clear receive underflow error flag */
112 #define LTQ_SPI_WHBSTATE_SETMS	BIT(3)	/* Set master select bit */
113 #define LTQ_SPI_WHBSTATE_CLRMS	BIT(2)	/* Clear master select bit */
114 #define LTQ_SPI_WHBSTATE_SETEN	BIT(1)	/* Set enable bit (operational mode) */
115 #define LTQ_SPI_WHBSTATE_CLREN	BIT(0)	/* Clear enable bit (config mode */
116 #define LTQ_SPI_WHBSTATE_CLR_ERRORS	(LTQ_SPI_WHBSTATE_CLRRUE | \
117 					 LTQ_SPI_WHBSTATE_CLRME | \
118 					 LTQ_SPI_WHBSTATE_CLRTE | \
119 					 LTQ_SPI_WHBSTATE_CLRRE | \
120 					 LTQ_SPI_WHBSTATE_CLRAE | \
121 					 LTQ_SPI_WHBSTATE_CLRTUE)
122 
123 #define LTQ_SPI_RXFCON_RXFITL_S	8	/* FIFO interrupt trigger level */
124 #define LTQ_SPI_RXFCON_RXFLU	BIT(1)	/* FIFO flush */
125 #define LTQ_SPI_RXFCON_RXFEN	BIT(0)	/* FIFO enable */
126 
127 #define LTQ_SPI_TXFCON_TXFITL_S	8	/* FIFO interrupt trigger level */
128 #define LTQ_SPI_TXFCON_TXFLU	BIT(1)	/* FIFO flush */
129 #define LTQ_SPI_TXFCON_TXFEN	BIT(0)	/* FIFO enable */
130 
131 #define LTQ_SPI_FSTAT_RXFFL_S	0
132 #define LTQ_SPI_FSTAT_TXFFL_S	8
133 
134 #define LTQ_SPI_GPOCON_ISCSBN_S	8
135 #define LTQ_SPI_GPOCON_INVOUTN_S	0
136 
137 #define LTQ_SPI_FGPO_SETOUTN_S	8
138 #define LTQ_SPI_FGPO_CLROUTN_S	0
139 
140 #define LTQ_SPI_RXREQ_RXCNT_M	0xFFFF	/* Receive count value */
141 #define LTQ_SPI_RXCNT_TODO_M	0xFFFF	/* Recevie to-do value */
142 
143 #define LTQ_SPI_IRNEN_TFI	BIT(4)	/* TX finished interrupt */
144 #define LTQ_SPI_IRNEN_F		BIT(3)	/* Frame end interrupt request */
145 #define LTQ_SPI_IRNEN_E		BIT(2)	/* Error end interrupt request */
146 #define LTQ_SPI_IRNEN_T_XWAY	BIT(1)	/* Transmit end interrupt request */
147 #define LTQ_SPI_IRNEN_R_XWAY	BIT(0)	/* Receive end interrupt request */
148 #define LTQ_SPI_IRNEN_R_XRX	BIT(1)	/* Transmit end interrupt request */
149 #define LTQ_SPI_IRNEN_T_XRX	BIT(0)	/* Receive end interrupt request */
150 #define LTQ_SPI_IRNEN_ALL	0x1F
151 
152 struct lantiq_ssc_spi;
153 
154 struct lantiq_ssc_hwcfg {
155 	int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
156 	unsigned int	irnen_r;
157 	unsigned int	irnen_t;
158 	unsigned int	irncr;
159 	unsigned int	irnicr;
160 	bool		irq_ack;
161 	u32		fifo_size_mask;
162 };
163 
164 struct lantiq_ssc_spi {
165 	struct spi_master		*master;
166 	struct device			*dev;
167 	void __iomem			*regbase;
168 	struct clk			*spi_clk;
169 	struct clk			*fpi_clk;
170 	const struct lantiq_ssc_hwcfg	*hwcfg;
171 
172 	spinlock_t			lock;
173 	struct workqueue_struct		*wq;
174 	struct work_struct		work;
175 
176 	const u8			*tx;
177 	u8				*rx;
178 	unsigned int			tx_todo;
179 	unsigned int			rx_todo;
180 	unsigned int			bits_per_word;
181 	unsigned int			speed_hz;
182 	unsigned int			tx_fifo_size;
183 	unsigned int			rx_fifo_size;
184 	unsigned int			base_cs;
185 	unsigned int			fdx_tx_level;
186 };
187 
188 static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
189 {
190 	return __raw_readl(spi->regbase + reg);
191 }
192 
193 static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
194 			      u32 reg)
195 {
196 	__raw_writel(val, spi->regbase + reg);
197 }
198 
199 static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
200 			     u32 set, u32 reg)
201 {
202 	u32 val = __raw_readl(spi->regbase + reg);
203 
204 	val &= ~clr;
205 	val |= set;
206 	__raw_writel(val, spi->regbase + reg);
207 }
208 
209 static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
210 {
211 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
212 	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
213 
214 	return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
215 }
216 
217 static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
218 {
219 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
220 	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
221 
222 	return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
223 }
224 
225 static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
226 {
227 	return spi->tx_fifo_size - tx_fifo_level(spi);
228 }
229 
230 static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
231 {
232 	u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
233 
234 	val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
235 	lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
236 }
237 
238 static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
239 {
240 	u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
241 
242 	val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
243 	lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
244 }
245 
246 static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
247 {
248 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
249 }
250 
251 static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
252 {
253 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
254 }
255 
256 static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
257 {
258 	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
259 }
260 
261 static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
262 {
263 	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
264 }
265 
266 static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
267 			      unsigned int max_speed_hz)
268 {
269 	u32 spi_clk, brt;
270 
271 	/*
272 	 * SPI module clock is derived from FPI bus clock dependent on
273 	 * divider value in CLC.RMS which is always set to 1.
274 	 *
275 	 *                 f_SPI
276 	 * baudrate = --------------
277 	 *             2 * (BR + 1)
278 	 */
279 	spi_clk = clk_get_rate(spi->fpi_clk) / 2;
280 
281 	if (max_speed_hz > spi_clk)
282 		brt = 0;
283 	else
284 		brt = spi_clk / max_speed_hz - 1;
285 
286 	if (brt > 0xFFFF)
287 		brt = 0xFFFF;
288 
289 	dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
290 		spi_clk, max_speed_hz, brt);
291 
292 	lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
293 }
294 
295 static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
296 				   unsigned int bits_per_word)
297 {
298 	u32 bm;
299 
300 	/* CON.BM value = bits_per_word - 1 */
301 	bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
302 
303 	lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
304 }
305 
306 static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
307 				unsigned int mode)
308 {
309 	u32 con_set = 0, con_clr = 0;
310 
311 	/*
312 	 * SPI mode mapping in CON register:
313 	 * Mode CPOL CPHA CON.PO CON.PH
314 	 *  0    0    0      0      1
315 	 *  1    0    1      0      0
316 	 *  2    1    0      1      1
317 	 *  3    1    1      1      0
318 	 */
319 	if (mode & SPI_CPHA)
320 		con_clr |= LTQ_SPI_CON_PH;
321 	else
322 		con_set |= LTQ_SPI_CON_PH;
323 
324 	if (mode & SPI_CPOL)
325 		con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
326 	else
327 		con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
328 
329 	/* Set heading control */
330 	if (mode & SPI_LSB_FIRST)
331 		con_clr |= LTQ_SPI_CON_HB;
332 	else
333 		con_set |= LTQ_SPI_CON_HB;
334 
335 	/* Set loopback mode */
336 	if (mode & SPI_LOOP)
337 		con_set |= LTQ_SPI_CON_LB;
338 	else
339 		con_clr |= LTQ_SPI_CON_LB;
340 
341 	lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
342 }
343 
344 static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
345 {
346 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
347 
348 	/*
349 	 * Set clock divider for run mode to 1 to
350 	 * run at same frequency as FPI bus
351 	 */
352 	lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
353 
354 	/* Put controller into config mode */
355 	hw_enter_config_mode(spi);
356 
357 	/* Clear error flags */
358 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
359 
360 	/* Enable error checking, disable TX/RX */
361 	lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
362 		LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
363 		LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
364 
365 	/* Setup default SPI mode */
366 	hw_setup_bits_per_word(spi, spi->bits_per_word);
367 	hw_setup_clock_mode(spi, SPI_MODE_0);
368 
369 	/* Enable master mode and clear error flags */
370 	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
371 			       LTQ_SPI_WHBSTATE_CLR_ERRORS,
372 			       LTQ_SPI_WHBSTATE);
373 
374 	/* Reset GPIO/CS registers */
375 	lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
376 	lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
377 
378 	/* Enable and flush FIFOs */
379 	rx_fifo_reset(spi);
380 	tx_fifo_reset(spi);
381 
382 	/* Enable interrupts */
383 	lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
384 			  LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
385 }
386 
387 static int lantiq_ssc_setup(struct spi_device *spidev)
388 {
389 	struct spi_master *master = spidev->master;
390 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
391 	unsigned int cs = spi_get_chipselect(spidev, 0);
392 	u32 gpocon;
393 
394 	/* GPIOs are used for CS */
395 	if (spi_get_csgpiod(spidev, 0))
396 		return 0;
397 
398 	dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
399 
400 	if (cs < spi->base_cs) {
401 		dev_err(spi->dev,
402 			"chipselect %i too small (min %i)\n", cs, spi->base_cs);
403 		return -EINVAL;
404 	}
405 
406 	/* set GPO pin to CS mode */
407 	gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
408 
409 	/* invert GPO pin */
410 	if (spidev->mode & SPI_CS_HIGH)
411 		gpocon |= 1 << (cs - spi->base_cs);
412 
413 	lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
414 
415 	return 0;
416 }
417 
418 static int lantiq_ssc_prepare_message(struct spi_master *master,
419 				      struct spi_message *message)
420 {
421 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
422 
423 	hw_enter_config_mode(spi);
424 	hw_setup_clock_mode(spi, message->spi->mode);
425 	hw_enter_active_mode(spi);
426 
427 	return 0;
428 }
429 
430 static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
431 			      struct spi_device *spidev, struct spi_transfer *t)
432 {
433 	unsigned int speed_hz = t->speed_hz;
434 	unsigned int bits_per_word = t->bits_per_word;
435 	u32 con;
436 
437 	if (bits_per_word != spi->bits_per_word ||
438 		speed_hz != spi->speed_hz) {
439 		hw_enter_config_mode(spi);
440 		hw_setup_speed_hz(spi, speed_hz);
441 		hw_setup_bits_per_word(spi, bits_per_word);
442 		hw_enter_active_mode(spi);
443 
444 		spi->speed_hz = speed_hz;
445 		spi->bits_per_word = bits_per_word;
446 	}
447 
448 	/* Configure transmitter and receiver */
449 	con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
450 	if (t->tx_buf)
451 		con &= ~LTQ_SPI_CON_TXOFF;
452 	else
453 		con |= LTQ_SPI_CON_TXOFF;
454 
455 	if (t->rx_buf)
456 		con &= ~LTQ_SPI_CON_RXOFF;
457 	else
458 		con |= LTQ_SPI_CON_RXOFF;
459 
460 	lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
461 }
462 
463 static int lantiq_ssc_unprepare_message(struct spi_master *master,
464 					struct spi_message *message)
465 {
466 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
467 
468 	flush_workqueue(spi->wq);
469 
470 	/* Disable transmitter and receiver while idle */
471 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
472 			 LTQ_SPI_CON);
473 
474 	return 0;
475 }
476 
477 static void tx_fifo_write(struct lantiq_ssc_spi *spi)
478 {
479 	const u8 *tx8;
480 	const u16 *tx16;
481 	const u32 *tx32;
482 	u32 data;
483 	unsigned int tx_free = tx_fifo_free(spi);
484 
485 	spi->fdx_tx_level = 0;
486 	while (spi->tx_todo && tx_free) {
487 		switch (spi->bits_per_word) {
488 		case 2 ... 8:
489 			tx8 = spi->tx;
490 			data = *tx8;
491 			spi->tx_todo--;
492 			spi->tx++;
493 			break;
494 		case 16:
495 			tx16 = (u16 *) spi->tx;
496 			data = *tx16;
497 			spi->tx_todo -= 2;
498 			spi->tx += 2;
499 			break;
500 		case 32:
501 			tx32 = (u32 *) spi->tx;
502 			data = *tx32;
503 			spi->tx_todo -= 4;
504 			spi->tx += 4;
505 			break;
506 		default:
507 			WARN_ON(1);
508 			data = 0;
509 			break;
510 		}
511 
512 		lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
513 		tx_free--;
514 		spi->fdx_tx_level++;
515 	}
516 }
517 
518 static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
519 {
520 	u8 *rx8;
521 	u16 *rx16;
522 	u32 *rx32;
523 	u32 data;
524 	unsigned int rx_fill = rx_fifo_level(spi);
525 
526 	/*
527 	 * Wait until all expected data to be shifted in.
528 	 * Otherwise, rx overrun may occur.
529 	 */
530 	while (rx_fill != spi->fdx_tx_level)
531 		rx_fill = rx_fifo_level(spi);
532 
533 	while (rx_fill) {
534 		data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
535 
536 		switch (spi->bits_per_word) {
537 		case 2 ... 8:
538 			rx8 = spi->rx;
539 			*rx8 = data;
540 			spi->rx_todo--;
541 			spi->rx++;
542 			break;
543 		case 16:
544 			rx16 = (u16 *) spi->rx;
545 			*rx16 = data;
546 			spi->rx_todo -= 2;
547 			spi->rx += 2;
548 			break;
549 		case 32:
550 			rx32 = (u32 *) spi->rx;
551 			*rx32 = data;
552 			spi->rx_todo -= 4;
553 			spi->rx += 4;
554 			break;
555 		default:
556 			WARN_ON(1);
557 			break;
558 		}
559 
560 		rx_fill--;
561 	}
562 }
563 
564 static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
565 {
566 	u32 data, *rx32;
567 	u8 *rx8;
568 	unsigned int rxbv, shift;
569 	unsigned int rx_fill = rx_fifo_level(spi);
570 
571 	/*
572 	 * In RX-only mode the bits per word value is ignored by HW. A value
573 	 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
574 	 * If remaining RX bytes are less than 4, the FIFO must be read
575 	 * differently. The amount of received and valid bytes is indicated
576 	 * by STAT.RXBV register value.
577 	 */
578 	while (rx_fill) {
579 		if (spi->rx_todo < 4)  {
580 			rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
581 				LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
582 			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
583 
584 			shift = (rxbv - 1) * 8;
585 			rx8 = spi->rx;
586 
587 			while (rxbv) {
588 				*rx8++ = (data >> shift) & 0xFF;
589 				rxbv--;
590 				shift -= 8;
591 				spi->rx_todo--;
592 				spi->rx++;
593 			}
594 		} else {
595 			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
596 			rx32 = (u32 *) spi->rx;
597 
598 			*rx32++ = data;
599 			spi->rx_todo -= 4;
600 			spi->rx += 4;
601 		}
602 		rx_fill--;
603 	}
604 }
605 
606 static void rx_request(struct lantiq_ssc_spi *spi)
607 {
608 	unsigned int rxreq, rxreq_max;
609 
610 	/*
611 	 * To avoid receive overflows at high clocks it is better to request
612 	 * only the amount of bytes that fits into all FIFOs. This value
613 	 * depends on the FIFO size implemented in hardware.
614 	 */
615 	rxreq = spi->rx_todo;
616 	rxreq_max = spi->rx_fifo_size * 4;
617 	if (rxreq > rxreq_max)
618 		rxreq = rxreq_max;
619 
620 	lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
621 }
622 
623 static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
624 {
625 	struct lantiq_ssc_spi *spi = data;
626 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
627 	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
628 
629 	spin_lock(&spi->lock);
630 	if (hwcfg->irq_ack)
631 		lantiq_ssc_writel(spi, val, hwcfg->irncr);
632 
633 	if (spi->tx) {
634 		if (spi->rx && spi->rx_todo)
635 			rx_fifo_read_full_duplex(spi);
636 
637 		if (spi->tx_todo)
638 			tx_fifo_write(spi);
639 		else if (!tx_fifo_level(spi))
640 			goto completed;
641 	} else if (spi->rx) {
642 		if (spi->rx_todo) {
643 			rx_fifo_read_half_duplex(spi);
644 
645 			if (spi->rx_todo)
646 				rx_request(spi);
647 			else
648 				goto completed;
649 		} else {
650 			goto completed;
651 		}
652 	}
653 
654 	spin_unlock(&spi->lock);
655 	return IRQ_HANDLED;
656 
657 completed:
658 	queue_work(spi->wq, &spi->work);
659 	spin_unlock(&spi->lock);
660 
661 	return IRQ_HANDLED;
662 }
663 
664 static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
665 {
666 	struct lantiq_ssc_spi *spi = data;
667 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
668 	u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
669 	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
670 
671 	if (!(stat & LTQ_SPI_STAT_ERRORS))
672 		return IRQ_NONE;
673 
674 	spin_lock(&spi->lock);
675 	if (hwcfg->irq_ack)
676 		lantiq_ssc_writel(spi, val, hwcfg->irncr);
677 
678 	if (stat & LTQ_SPI_STAT_RUE)
679 		dev_err(spi->dev, "receive underflow error\n");
680 	if (stat & LTQ_SPI_STAT_TUE)
681 		dev_err(spi->dev, "transmit underflow error\n");
682 	if (stat & LTQ_SPI_STAT_AE)
683 		dev_err(spi->dev, "abort error\n");
684 	if (stat & LTQ_SPI_STAT_RE)
685 		dev_err(spi->dev, "receive overflow error\n");
686 	if (stat & LTQ_SPI_STAT_TE)
687 		dev_err(spi->dev, "transmit overflow error\n");
688 	if (stat & LTQ_SPI_STAT_ME)
689 		dev_err(spi->dev, "mode error\n");
690 
691 	/* Clear error flags */
692 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
693 
694 	/* set bad status so it can be retried */
695 	if (spi->master->cur_msg)
696 		spi->master->cur_msg->status = -EIO;
697 	queue_work(spi->wq, &spi->work);
698 	spin_unlock(&spi->lock);
699 
700 	return IRQ_HANDLED;
701 }
702 
703 static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
704 {
705 	struct lantiq_ssc_spi *spi = data;
706 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
707 	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
708 
709 	if (!(val & LTQ_SPI_IRNEN_ALL))
710 		return IRQ_NONE;
711 
712 	if (val & LTQ_SPI_IRNEN_E)
713 		return lantiq_ssc_err_interrupt(irq, data);
714 
715 	if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
716 		return lantiq_ssc_xmit_interrupt(irq, data);
717 
718 	return IRQ_HANDLED;
719 }
720 
721 static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
722 			  struct spi_transfer *t)
723 {
724 	unsigned long flags;
725 
726 	spin_lock_irqsave(&spi->lock, flags);
727 
728 	spi->tx = t->tx_buf;
729 	spi->rx = t->rx_buf;
730 
731 	if (t->tx_buf) {
732 		spi->tx_todo = t->len;
733 
734 		/* initially fill TX FIFO */
735 		tx_fifo_write(spi);
736 	}
737 
738 	if (spi->rx) {
739 		spi->rx_todo = t->len;
740 
741 		/* start shift clock in RX-only mode */
742 		if (!spi->tx)
743 			rx_request(spi);
744 	}
745 
746 	spin_unlock_irqrestore(&spi->lock, flags);
747 
748 	return t->len;
749 }
750 
751 /*
752  * The driver only gets an interrupt when the FIFO is empty, but there
753  * is an additional shift register from which the data is written to
754  * the wire. We get the last interrupt when the controller starts to
755  * write the last word to the wire, not when it is finished. Do busy
756  * waiting till it finishes.
757  */
758 static void lantiq_ssc_bussy_work(struct work_struct *work)
759 {
760 	struct lantiq_ssc_spi *spi;
761 	unsigned long long timeout = 8LL * 1000LL;
762 	unsigned long end;
763 
764 	spi = container_of(work, typeof(*spi), work);
765 
766 	do_div(timeout, spi->speed_hz);
767 	timeout += timeout + 100; /* some tolerance */
768 
769 	end = jiffies + msecs_to_jiffies(timeout);
770 	do {
771 		u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
772 
773 		if (!(stat & LTQ_SPI_STAT_BSY)) {
774 			spi_finalize_current_transfer(spi->master);
775 			return;
776 		}
777 
778 		cond_resched();
779 	} while (!time_after_eq(jiffies, end));
780 
781 	if (spi->master->cur_msg)
782 		spi->master->cur_msg->status = -EIO;
783 	spi_finalize_current_transfer(spi->master);
784 }
785 
786 static void lantiq_ssc_handle_err(struct spi_master *master,
787 				  struct spi_message *message)
788 {
789 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
790 
791 	/* flush FIFOs on timeout */
792 	rx_fifo_flush(spi);
793 	tx_fifo_flush(spi);
794 }
795 
796 static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
797 {
798 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
799 	unsigned int cs = spi_get_chipselect(spidev, 0);
800 	u32 fgpo;
801 
802 	if (!!(spidev->mode & SPI_CS_HIGH) == enable)
803 		fgpo = (1 << (cs - spi->base_cs));
804 	else
805 		fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
806 
807 	lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
808 }
809 
810 static int lantiq_ssc_transfer_one(struct spi_master *master,
811 				   struct spi_device *spidev,
812 				   struct spi_transfer *t)
813 {
814 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
815 
816 	hw_setup_transfer(spi, spidev, t);
817 
818 	return transfer_start(spi, spidev, t);
819 }
820 
821 static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
822 {
823 	int irq;
824 
825 	irq = platform_get_irq(pdev, 0);
826 	if (irq < 0)
827 		return irq;
828 
829 	return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
830 }
831 
832 static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
833 {
834 	int irq, err;
835 
836 	irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
837 	if (irq < 0)
838 		return irq;
839 
840 	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
841 			       0, LTQ_SPI_RX_IRQ_NAME, spi);
842 	if (err)
843 		return err;
844 
845 	irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
846 	if (irq < 0)
847 		return irq;
848 
849 	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
850 			       0, LTQ_SPI_TX_IRQ_NAME, spi);
851 
852 	if (err)
853 		return err;
854 
855 	irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
856 	if (irq < 0)
857 		return irq;
858 
859 	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
860 			       0, LTQ_SPI_ERR_IRQ_NAME, spi);
861 	return err;
862 }
863 
864 static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
865 	.cfg_irq	= lantiq_cfg_irq,
866 	.irnen_r	= LTQ_SPI_IRNEN_R_XWAY,
867 	.irnen_t	= LTQ_SPI_IRNEN_T_XWAY,
868 	.irnicr		= 0xF8,
869 	.irncr		= 0xFC,
870 	.fifo_size_mask	= GENMASK(5, 0),
871 	.irq_ack	= false,
872 };
873 
874 static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
875 	.cfg_irq	= lantiq_cfg_irq,
876 	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
877 	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
878 	.irnicr		= 0xF8,
879 	.irncr		= 0xFC,
880 	.fifo_size_mask	= GENMASK(5, 0),
881 	.irq_ack	= false,
882 };
883 
884 static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
885 	.cfg_irq	= intel_lgm_cfg_irq,
886 	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
887 	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
888 	.irnicr		= 0xFC,
889 	.irncr		= 0xF8,
890 	.fifo_size_mask	= GENMASK(7, 0),
891 	.irq_ack	= true,
892 };
893 
894 static const struct of_device_id lantiq_ssc_match[] = {
895 	{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
896 	{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
897 	{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
898 	{ .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
899 	{},
900 };
901 MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
902 
903 static int lantiq_ssc_probe(struct platform_device *pdev)
904 {
905 	struct device *dev = &pdev->dev;
906 	struct spi_master *master;
907 	struct lantiq_ssc_spi *spi;
908 	const struct lantiq_ssc_hwcfg *hwcfg;
909 	u32 id, supports_dma, revision;
910 	unsigned int num_cs;
911 	int err;
912 
913 	hwcfg = of_device_get_match_data(dev);
914 
915 	master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
916 	if (!master)
917 		return -ENOMEM;
918 
919 	spi = spi_master_get_devdata(master);
920 	spi->master = master;
921 	spi->dev = dev;
922 	spi->hwcfg = hwcfg;
923 	platform_set_drvdata(pdev, spi);
924 	spi->regbase = devm_platform_ioremap_resource(pdev, 0);
925 	if (IS_ERR(spi->regbase)) {
926 		err = PTR_ERR(spi->regbase);
927 		goto err_master_put;
928 	}
929 
930 	err = hwcfg->cfg_irq(pdev, spi);
931 	if (err)
932 		goto err_master_put;
933 
934 	spi->spi_clk = devm_clk_get(dev, "gate");
935 	if (IS_ERR(spi->spi_clk)) {
936 		err = PTR_ERR(spi->spi_clk);
937 		goto err_master_put;
938 	}
939 	err = clk_prepare_enable(spi->spi_clk);
940 	if (err)
941 		goto err_master_put;
942 
943 	/*
944 	 * Use the old clk_get_fpi() function on Lantiq platform, till it
945 	 * supports common clk.
946 	 */
947 #if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
948 	spi->fpi_clk = clk_get_fpi();
949 #else
950 	spi->fpi_clk = clk_get(dev, "freq");
951 #endif
952 	if (IS_ERR(spi->fpi_clk)) {
953 		err = PTR_ERR(spi->fpi_clk);
954 		goto err_clk_disable;
955 	}
956 
957 	num_cs = 8;
958 	of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
959 
960 	spi->base_cs = 1;
961 	of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
962 
963 	spin_lock_init(&spi->lock);
964 	spi->bits_per_word = 8;
965 	spi->speed_hz = 0;
966 
967 	master->dev.of_node = pdev->dev.of_node;
968 	master->num_chipselect = num_cs;
969 	master->use_gpio_descriptors = true;
970 	master->setup = lantiq_ssc_setup;
971 	master->set_cs = lantiq_ssc_set_cs;
972 	master->handle_err = lantiq_ssc_handle_err;
973 	master->prepare_message = lantiq_ssc_prepare_message;
974 	master->unprepare_message = lantiq_ssc_unprepare_message;
975 	master->transfer_one = lantiq_ssc_transfer_one;
976 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
977 				SPI_LOOP;
978 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
979 				     SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
980 
981 	spi->wq = alloc_ordered_workqueue(dev_name(dev), WQ_MEM_RECLAIM);
982 	if (!spi->wq) {
983 		err = -ENOMEM;
984 		goto err_clk_put;
985 	}
986 	INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
987 
988 	id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
989 	spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
990 	spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
991 	supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
992 	revision = id & LTQ_SPI_ID_REV_M;
993 
994 	lantiq_ssc_hw_init(spi);
995 
996 	dev_info(dev,
997 		"Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
998 		revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
999 
1000 	err = devm_spi_register_master(dev, master);
1001 	if (err) {
1002 		dev_err(dev, "failed to register spi_master\n");
1003 		goto err_wq_destroy;
1004 	}
1005 
1006 	return 0;
1007 
1008 err_wq_destroy:
1009 	destroy_workqueue(spi->wq);
1010 err_clk_put:
1011 	clk_put(spi->fpi_clk);
1012 err_clk_disable:
1013 	clk_disable_unprepare(spi->spi_clk);
1014 err_master_put:
1015 	spi_master_put(master);
1016 
1017 	return err;
1018 }
1019 
1020 static void lantiq_ssc_remove(struct platform_device *pdev)
1021 {
1022 	struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
1023 
1024 	lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
1025 	lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
1026 	rx_fifo_flush(spi);
1027 	tx_fifo_flush(spi);
1028 	hw_enter_config_mode(spi);
1029 
1030 	destroy_workqueue(spi->wq);
1031 	clk_disable_unprepare(spi->spi_clk);
1032 	clk_put(spi->fpi_clk);
1033 }
1034 
1035 static struct platform_driver lantiq_ssc_driver = {
1036 	.probe = lantiq_ssc_probe,
1037 	.remove_new = lantiq_ssc_remove,
1038 	.driver = {
1039 		.name = "spi-lantiq-ssc",
1040 		.of_match_table = lantiq_ssc_match,
1041 	},
1042 };
1043 module_platform_driver(lantiq_ssc_driver);
1044 
1045 MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
1046 MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
1047 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1048 MODULE_LICENSE("GPL");
1049 MODULE_ALIAS("platform:spi-lantiq-ssc");
1050