xref: /openbmc/linux/drivers/spi/spi-lantiq-ssc.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
4  * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/clk.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/sched.h>
15 #include <linux/completion.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/gpio.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/spi/spi.h>
21 
22 #ifdef CONFIG_LANTIQ
23 #include <lantiq_soc.h>
24 #endif
25 
26 #define LTQ_SPI_RX_IRQ_NAME	"spi_rx"
27 #define LTQ_SPI_TX_IRQ_NAME	"spi_tx"
28 #define LTQ_SPI_ERR_IRQ_NAME	"spi_err"
29 #define LTQ_SPI_FRM_IRQ_NAME	"spi_frm"
30 
31 #define LTQ_SPI_CLC		0x00
32 #define LTQ_SPI_PISEL		0x04
33 #define LTQ_SPI_ID		0x08
34 #define LTQ_SPI_CON		0x10
35 #define LTQ_SPI_STAT		0x14
36 #define LTQ_SPI_WHBSTATE	0x18
37 #define LTQ_SPI_TB		0x20
38 #define LTQ_SPI_RB		0x24
39 #define LTQ_SPI_RXFCON		0x30
40 #define LTQ_SPI_TXFCON		0x34
41 #define LTQ_SPI_FSTAT		0x38
42 #define LTQ_SPI_BRT		0x40
43 #define LTQ_SPI_BRSTAT		0x44
44 #define LTQ_SPI_SFCON		0x60
45 #define LTQ_SPI_SFSTAT		0x64
46 #define LTQ_SPI_GPOCON		0x70
47 #define LTQ_SPI_GPOSTAT		0x74
48 #define LTQ_SPI_FPGO		0x78
49 #define LTQ_SPI_RXREQ		0x80
50 #define LTQ_SPI_RXCNT		0x84
51 #define LTQ_SPI_DMACON		0xec
52 #define LTQ_SPI_IRNEN		0xf4
53 #define LTQ_SPI_IRNICR		0xf8
54 #define LTQ_SPI_IRNCR		0xfc
55 
56 #define LTQ_SPI_CLC_SMC_S	16	/* Clock divider for sleep mode */
57 #define LTQ_SPI_CLC_SMC_M	(0xFF << LTQ_SPI_CLC_SMC_S)
58 #define LTQ_SPI_CLC_RMC_S	8	/* Clock divider for normal run mode */
59 #define LTQ_SPI_CLC_RMC_M	(0xFF << LTQ_SPI_CLC_RMC_S)
60 #define LTQ_SPI_CLC_DISS	BIT(1)	/* Disable status bit */
61 #define LTQ_SPI_CLC_DISR	BIT(0)	/* Disable request bit */
62 
63 #define LTQ_SPI_ID_TXFS_S	24	/* Implemented TX FIFO size */
64 #define LTQ_SPI_ID_TXFS_M	(0x3F << LTQ_SPI_ID_TXFS_S)
65 #define LTQ_SPI_ID_RXFS_S	16	/* Implemented RX FIFO size */
66 #define LTQ_SPI_ID_RXFS_M	(0x3F << LTQ_SPI_ID_RXFS_S)
67 #define LTQ_SPI_ID_MOD_S	8	/* Module ID */
68 #define LTQ_SPI_ID_MOD_M	(0xff << LTQ_SPI_ID_MOD_S)
69 #define LTQ_SPI_ID_CFG_S	5	/* DMA interface support */
70 #define LTQ_SPI_ID_CFG_M	(1 << LTQ_SPI_ID_CFG_S)
71 #define LTQ_SPI_ID_REV_M	0x1F	/* Hardware revision number */
72 
73 #define LTQ_SPI_CON_BM_S	16	/* Data width selection */
74 #define LTQ_SPI_CON_BM_M	(0x1F << LTQ_SPI_CON_BM_S)
75 #define LTQ_SPI_CON_EM		BIT(24)	/* Echo mode */
76 #define LTQ_SPI_CON_IDLE	BIT(23)	/* Idle bit value */
77 #define LTQ_SPI_CON_ENBV	BIT(22)	/* Enable byte valid control */
78 #define LTQ_SPI_CON_RUEN	BIT(12)	/* Receive underflow error enable */
79 #define LTQ_SPI_CON_TUEN	BIT(11)	/* Transmit underflow error enable */
80 #define LTQ_SPI_CON_AEN		BIT(10)	/* Abort error enable */
81 #define LTQ_SPI_CON_REN		BIT(9)	/* Receive overflow error enable */
82 #define LTQ_SPI_CON_TEN		BIT(8)	/* Transmit overflow error enable */
83 #define LTQ_SPI_CON_LB		BIT(7)	/* Loopback control */
84 #define LTQ_SPI_CON_PO		BIT(6)	/* Clock polarity control */
85 #define LTQ_SPI_CON_PH		BIT(5)	/* Clock phase control */
86 #define LTQ_SPI_CON_HB		BIT(4)	/* Heading control */
87 #define LTQ_SPI_CON_RXOFF	BIT(1)	/* Switch receiver off */
88 #define LTQ_SPI_CON_TXOFF	BIT(0)	/* Switch transmitter off */
89 
90 #define LTQ_SPI_STAT_RXBV_S	28
91 #define LTQ_SPI_STAT_RXBV_M	(0x7 << LTQ_SPI_STAT_RXBV_S)
92 #define LTQ_SPI_STAT_BSY	BIT(13)	/* Busy flag */
93 #define LTQ_SPI_STAT_RUE	BIT(12)	/* Receive underflow error flag */
94 #define LTQ_SPI_STAT_TUE	BIT(11)	/* Transmit underflow error flag */
95 #define LTQ_SPI_STAT_AE		BIT(10)	/* Abort error flag */
96 #define LTQ_SPI_STAT_RE		BIT(9)	/* Receive error flag */
97 #define LTQ_SPI_STAT_TE		BIT(8)	/* Transmit error flag */
98 #define LTQ_SPI_STAT_ME		BIT(7)	/* Mode error flag */
99 #define LTQ_SPI_STAT_MS		BIT(1)	/* Master/slave select bit */
100 #define LTQ_SPI_STAT_EN		BIT(0)	/* Enable bit */
101 #define LTQ_SPI_STAT_ERRORS	(LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
102 				 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
103 				 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
104 
105 #define LTQ_SPI_WHBSTATE_SETTUE	BIT(15)	/* Set transmit underflow error flag */
106 #define LTQ_SPI_WHBSTATE_SETAE	BIT(14)	/* Set abort error flag */
107 #define LTQ_SPI_WHBSTATE_SETRE	BIT(13)	/* Set receive error flag */
108 #define LTQ_SPI_WHBSTATE_SETTE	BIT(12)	/* Set transmit error flag */
109 #define LTQ_SPI_WHBSTATE_CLRTUE	BIT(11)	/* Clear transmit underflow error flag */
110 #define LTQ_SPI_WHBSTATE_CLRAE	BIT(10)	/* Clear abort error flag */
111 #define LTQ_SPI_WHBSTATE_CLRRE	BIT(9)	/* Clear receive error flag */
112 #define LTQ_SPI_WHBSTATE_CLRTE	BIT(8)	/* Clear transmit error flag */
113 #define LTQ_SPI_WHBSTATE_SETME	BIT(7)	/* Set mode error flag */
114 #define LTQ_SPI_WHBSTATE_CLRME	BIT(6)	/* Clear mode error flag */
115 #define LTQ_SPI_WHBSTATE_SETRUE	BIT(5)	/* Set receive underflow error flag */
116 #define LTQ_SPI_WHBSTATE_CLRRUE	BIT(4)	/* Clear receive underflow error flag */
117 #define LTQ_SPI_WHBSTATE_SETMS	BIT(3)	/* Set master select bit */
118 #define LTQ_SPI_WHBSTATE_CLRMS	BIT(2)	/* Clear master select bit */
119 #define LTQ_SPI_WHBSTATE_SETEN	BIT(1)	/* Set enable bit (operational mode) */
120 #define LTQ_SPI_WHBSTATE_CLREN	BIT(0)	/* Clear enable bit (config mode */
121 #define LTQ_SPI_WHBSTATE_CLR_ERRORS	(LTQ_SPI_WHBSTATE_CLRRUE | \
122 					 LTQ_SPI_WHBSTATE_CLRME | \
123 					 LTQ_SPI_WHBSTATE_CLRTE | \
124 					 LTQ_SPI_WHBSTATE_CLRRE | \
125 					 LTQ_SPI_WHBSTATE_CLRAE | \
126 					 LTQ_SPI_WHBSTATE_CLRTUE)
127 
128 #define LTQ_SPI_RXFCON_RXFITL_S	8	/* FIFO interrupt trigger level */
129 #define LTQ_SPI_RXFCON_RXFITL_M	(0x3F << LTQ_SPI_RXFCON_RXFITL_S)
130 #define LTQ_SPI_RXFCON_RXFLU	BIT(1)	/* FIFO flush */
131 #define LTQ_SPI_RXFCON_RXFEN	BIT(0)	/* FIFO enable */
132 
133 #define LTQ_SPI_TXFCON_TXFITL_S	8	/* FIFO interrupt trigger level */
134 #define LTQ_SPI_TXFCON_TXFITL_M	(0x3F << LTQ_SPI_TXFCON_TXFITL_S)
135 #define LTQ_SPI_TXFCON_TXFLU	BIT(1)	/* FIFO flush */
136 #define LTQ_SPI_TXFCON_TXFEN	BIT(0)	/* FIFO enable */
137 
138 #define LTQ_SPI_FSTAT_RXFFL_S	0
139 #define LTQ_SPI_FSTAT_RXFFL_M	(0x3f << LTQ_SPI_FSTAT_RXFFL_S)
140 #define LTQ_SPI_FSTAT_TXFFL_S	8
141 #define LTQ_SPI_FSTAT_TXFFL_M	(0x3f << LTQ_SPI_FSTAT_TXFFL_S)
142 
143 #define LTQ_SPI_GPOCON_ISCSBN_S	8
144 #define LTQ_SPI_GPOCON_INVOUTN_S	0
145 
146 #define LTQ_SPI_FGPO_SETOUTN_S	8
147 #define LTQ_SPI_FGPO_CLROUTN_S	0
148 
149 #define LTQ_SPI_RXREQ_RXCNT_M	0xFFFF	/* Receive count value */
150 #define LTQ_SPI_RXCNT_TODO_M	0xFFFF	/* Recevie to-do value */
151 
152 #define LTQ_SPI_IRNEN_TFI	BIT(4)	/* TX finished interrupt */
153 #define LTQ_SPI_IRNEN_F		BIT(3)	/* Frame end interrupt request */
154 #define LTQ_SPI_IRNEN_E		BIT(2)	/* Error end interrupt request */
155 #define LTQ_SPI_IRNEN_T_XWAY	BIT(1)	/* Transmit end interrupt request */
156 #define LTQ_SPI_IRNEN_R_XWAY	BIT(0)	/* Receive end interrupt request */
157 #define LTQ_SPI_IRNEN_R_XRX	BIT(1)	/* Transmit end interrupt request */
158 #define LTQ_SPI_IRNEN_T_XRX	BIT(0)	/* Receive end interrupt request */
159 #define LTQ_SPI_IRNEN_ALL	0x1F
160 
161 struct lantiq_ssc_hwcfg {
162 	unsigned int irnen_r;
163 	unsigned int irnen_t;
164 };
165 
166 struct lantiq_ssc_spi {
167 	struct spi_master		*master;
168 	struct device			*dev;
169 	void __iomem			*regbase;
170 	struct clk			*spi_clk;
171 	struct clk			*fpi_clk;
172 	const struct lantiq_ssc_hwcfg	*hwcfg;
173 
174 	spinlock_t			lock;
175 	struct workqueue_struct		*wq;
176 	struct work_struct		work;
177 
178 	const u8			*tx;
179 	u8				*rx;
180 	unsigned int			tx_todo;
181 	unsigned int			rx_todo;
182 	unsigned int			bits_per_word;
183 	unsigned int			speed_hz;
184 	unsigned int			tx_fifo_size;
185 	unsigned int			rx_fifo_size;
186 	unsigned int			base_cs;
187 };
188 
189 static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
190 {
191 	return __raw_readl(spi->regbase + reg);
192 }
193 
194 static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
195 			      u32 reg)
196 {
197 	__raw_writel(val, spi->regbase + reg);
198 }
199 
200 static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
201 			     u32 set, u32 reg)
202 {
203 	u32 val = __raw_readl(spi->regbase + reg);
204 
205 	val &= ~clr;
206 	val |= set;
207 	__raw_writel(val, spi->regbase + reg);
208 }
209 
210 static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
211 {
212 	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
213 
214 	return (fstat & LTQ_SPI_FSTAT_TXFFL_M) >> LTQ_SPI_FSTAT_TXFFL_S;
215 }
216 
217 static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
218 {
219 	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
220 
221 	return fstat & LTQ_SPI_FSTAT_RXFFL_M;
222 }
223 
224 static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
225 {
226 	return spi->tx_fifo_size - tx_fifo_level(spi);
227 }
228 
229 static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
230 {
231 	u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
232 
233 	val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
234 	lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
235 }
236 
237 static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
238 {
239 	u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
240 
241 	val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
242 	lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
243 }
244 
245 static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
246 {
247 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
248 }
249 
250 static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
251 {
252 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
253 }
254 
255 static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
256 {
257 	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
258 }
259 
260 static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
261 {
262 	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
263 }
264 
265 static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
266 			      unsigned int max_speed_hz)
267 {
268 	u32 spi_clk, brt;
269 
270 	/*
271 	 * SPI module clock is derived from FPI bus clock dependent on
272 	 * divider value in CLC.RMS which is always set to 1.
273 	 *
274 	 *                 f_SPI
275 	 * baudrate = --------------
276 	 *             2 * (BR + 1)
277 	 */
278 	spi_clk = clk_get_rate(spi->fpi_clk) / 2;
279 
280 	if (max_speed_hz > spi_clk)
281 		brt = 0;
282 	else
283 		brt = spi_clk / max_speed_hz - 1;
284 
285 	if (brt > 0xFFFF)
286 		brt = 0xFFFF;
287 
288 	dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
289 		spi_clk, max_speed_hz, brt);
290 
291 	lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
292 }
293 
294 static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
295 				   unsigned int bits_per_word)
296 {
297 	u32 bm;
298 
299 	/* CON.BM value = bits_per_word - 1 */
300 	bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
301 
302 	lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
303 }
304 
305 static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
306 				unsigned int mode)
307 {
308 	u32 con_set = 0, con_clr = 0;
309 
310 	/*
311 	 * SPI mode mapping in CON register:
312 	 * Mode CPOL CPHA CON.PO CON.PH
313 	 *  0    0    0      0      1
314 	 *  1    0    1      0      0
315 	 *  2    1    0      1      1
316 	 *  3    1    1      1      0
317 	 */
318 	if (mode & SPI_CPHA)
319 		con_clr |= LTQ_SPI_CON_PH;
320 	else
321 		con_set |= LTQ_SPI_CON_PH;
322 
323 	if (mode & SPI_CPOL)
324 		con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
325 	else
326 		con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
327 
328 	/* Set heading control */
329 	if (mode & SPI_LSB_FIRST)
330 		con_clr |= LTQ_SPI_CON_HB;
331 	else
332 		con_set |= LTQ_SPI_CON_HB;
333 
334 	/* Set loopback mode */
335 	if (mode & SPI_LOOP)
336 		con_set |= LTQ_SPI_CON_LB;
337 	else
338 		con_clr |= LTQ_SPI_CON_LB;
339 
340 	lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
341 }
342 
343 static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
344 {
345 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
346 
347 	/*
348 	 * Set clock divider for run mode to 1 to
349 	 * run at same frequency as FPI bus
350 	 */
351 	lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
352 
353 	/* Put controller into config mode */
354 	hw_enter_config_mode(spi);
355 
356 	/* Clear error flags */
357 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
358 
359 	/* Enable error checking, disable TX/RX */
360 	lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
361 		LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
362 		LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
363 
364 	/* Setup default SPI mode */
365 	hw_setup_bits_per_word(spi, spi->bits_per_word);
366 	hw_setup_clock_mode(spi, SPI_MODE_0);
367 
368 	/* Enable master mode and clear error flags */
369 	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
370 			       LTQ_SPI_WHBSTATE_CLR_ERRORS,
371 			       LTQ_SPI_WHBSTATE);
372 
373 	/* Reset GPIO/CS registers */
374 	lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
375 	lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
376 
377 	/* Enable and flush FIFOs */
378 	rx_fifo_reset(spi);
379 	tx_fifo_reset(spi);
380 
381 	/* Enable interrupts */
382 	lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
383 			  LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
384 }
385 
386 static int lantiq_ssc_setup(struct spi_device *spidev)
387 {
388 	struct spi_master *master = spidev->master;
389 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
390 	unsigned int cs = spidev->chip_select;
391 	u32 gpocon;
392 
393 	/* GPIOs are used for CS */
394 	if (gpio_is_valid(spidev->cs_gpio))
395 		return 0;
396 
397 	dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
398 
399 	if (cs < spi->base_cs) {
400 		dev_err(spi->dev,
401 			"chipselect %i too small (min %i)\n", cs, spi->base_cs);
402 		return -EINVAL;
403 	}
404 
405 	/* set GPO pin to CS mode */
406 	gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
407 
408 	/* invert GPO pin */
409 	if (spidev->mode & SPI_CS_HIGH)
410 		gpocon |= 1 << (cs - spi->base_cs);
411 
412 	lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
413 
414 	return 0;
415 }
416 
417 static int lantiq_ssc_prepare_message(struct spi_master *master,
418 				      struct spi_message *message)
419 {
420 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
421 
422 	hw_enter_config_mode(spi);
423 	hw_setup_clock_mode(spi, message->spi->mode);
424 	hw_enter_active_mode(spi);
425 
426 	return 0;
427 }
428 
429 static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
430 			      struct spi_device *spidev, struct spi_transfer *t)
431 {
432 	unsigned int speed_hz = t->speed_hz;
433 	unsigned int bits_per_word = t->bits_per_word;
434 	u32 con;
435 
436 	if (bits_per_word != spi->bits_per_word ||
437 		speed_hz != spi->speed_hz) {
438 		hw_enter_config_mode(spi);
439 		hw_setup_speed_hz(spi, speed_hz);
440 		hw_setup_bits_per_word(spi, bits_per_word);
441 		hw_enter_active_mode(spi);
442 
443 		spi->speed_hz = speed_hz;
444 		spi->bits_per_word = bits_per_word;
445 	}
446 
447 	/* Configure transmitter and receiver */
448 	con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
449 	if (t->tx_buf)
450 		con &= ~LTQ_SPI_CON_TXOFF;
451 	else
452 		con |= LTQ_SPI_CON_TXOFF;
453 
454 	if (t->rx_buf)
455 		con &= ~LTQ_SPI_CON_RXOFF;
456 	else
457 		con |= LTQ_SPI_CON_RXOFF;
458 
459 	lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
460 }
461 
462 static int lantiq_ssc_unprepare_message(struct spi_master *master,
463 					struct spi_message *message)
464 {
465 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
466 
467 	flush_workqueue(spi->wq);
468 
469 	/* Disable transmitter and receiver while idle */
470 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
471 			 LTQ_SPI_CON);
472 
473 	return 0;
474 }
475 
476 static void tx_fifo_write(struct lantiq_ssc_spi *spi)
477 {
478 	const u8 *tx8;
479 	const u16 *tx16;
480 	const u32 *tx32;
481 	u32 data;
482 	unsigned int tx_free = tx_fifo_free(spi);
483 
484 	while (spi->tx_todo && tx_free) {
485 		switch (spi->bits_per_word) {
486 		case 2 ... 8:
487 			tx8 = spi->tx;
488 			data = *tx8;
489 			spi->tx_todo--;
490 			spi->tx++;
491 			break;
492 		case 16:
493 			tx16 = (u16 *) spi->tx;
494 			data = *tx16;
495 			spi->tx_todo -= 2;
496 			spi->tx += 2;
497 			break;
498 		case 32:
499 			tx32 = (u32 *) spi->tx;
500 			data = *tx32;
501 			spi->tx_todo -= 4;
502 			spi->tx += 4;
503 			break;
504 		default:
505 			WARN_ON(1);
506 			data = 0;
507 			break;
508 		}
509 
510 		lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
511 		tx_free--;
512 	}
513 }
514 
515 static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
516 {
517 	u8 *rx8;
518 	u16 *rx16;
519 	u32 *rx32;
520 	u32 data;
521 	unsigned int rx_fill = rx_fifo_level(spi);
522 
523 	while (rx_fill) {
524 		data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
525 
526 		switch (spi->bits_per_word) {
527 		case 2 ... 8:
528 			rx8 = spi->rx;
529 			*rx8 = data;
530 			spi->rx_todo--;
531 			spi->rx++;
532 			break;
533 		case 16:
534 			rx16 = (u16 *) spi->rx;
535 			*rx16 = data;
536 			spi->rx_todo -= 2;
537 			spi->rx += 2;
538 			break;
539 		case 32:
540 			rx32 = (u32 *) spi->rx;
541 			*rx32 = data;
542 			spi->rx_todo -= 4;
543 			spi->rx += 4;
544 			break;
545 		default:
546 			WARN_ON(1);
547 			break;
548 		}
549 
550 		rx_fill--;
551 	}
552 }
553 
554 static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
555 {
556 	u32 data, *rx32;
557 	u8 *rx8;
558 	unsigned int rxbv, shift;
559 	unsigned int rx_fill = rx_fifo_level(spi);
560 
561 	/*
562 	 * In RX-only mode the bits per word value is ignored by HW. A value
563 	 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
564 	 * If remaining RX bytes are less than 4, the FIFO must be read
565 	 * differently. The amount of received and valid bytes is indicated
566 	 * by STAT.RXBV register value.
567 	 */
568 	while (rx_fill) {
569 		if (spi->rx_todo < 4)  {
570 			rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
571 				LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
572 			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
573 
574 			shift = (rxbv - 1) * 8;
575 			rx8 = spi->rx;
576 
577 			while (rxbv) {
578 				*rx8++ = (data >> shift) & 0xFF;
579 				rxbv--;
580 				shift -= 8;
581 				spi->rx_todo--;
582 				spi->rx++;
583 			}
584 		} else {
585 			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
586 			rx32 = (u32 *) spi->rx;
587 
588 			*rx32++ = data;
589 			spi->rx_todo -= 4;
590 			spi->rx += 4;
591 		}
592 		rx_fill--;
593 	}
594 }
595 
596 static void rx_request(struct lantiq_ssc_spi *spi)
597 {
598 	unsigned int rxreq, rxreq_max;
599 
600 	/*
601 	 * To avoid receive overflows at high clocks it is better to request
602 	 * only the amount of bytes that fits into all FIFOs. This value
603 	 * depends on the FIFO size implemented in hardware.
604 	 */
605 	rxreq = spi->rx_todo;
606 	rxreq_max = spi->rx_fifo_size * 4;
607 	if (rxreq > rxreq_max)
608 		rxreq = rxreq_max;
609 
610 	lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
611 }
612 
613 static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
614 {
615 	struct lantiq_ssc_spi *spi = data;
616 
617 	if (spi->tx) {
618 		if (spi->rx && spi->rx_todo)
619 			rx_fifo_read_full_duplex(spi);
620 
621 		if (spi->tx_todo)
622 			tx_fifo_write(spi);
623 		else if (!tx_fifo_level(spi))
624 			goto completed;
625 	} else if (spi->rx) {
626 		if (spi->rx_todo) {
627 			rx_fifo_read_half_duplex(spi);
628 
629 			if (spi->rx_todo)
630 				rx_request(spi);
631 			else
632 				goto completed;
633 		} else {
634 			goto completed;
635 		}
636 	}
637 
638 	return IRQ_HANDLED;
639 
640 completed:
641 	queue_work(spi->wq, &spi->work);
642 
643 	return IRQ_HANDLED;
644 }
645 
646 static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
647 {
648 	struct lantiq_ssc_spi *spi = data;
649 	u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
650 
651 	if (!(stat & LTQ_SPI_STAT_ERRORS))
652 		return IRQ_NONE;
653 
654 	if (stat & LTQ_SPI_STAT_RUE)
655 		dev_err(spi->dev, "receive underflow error\n");
656 	if (stat & LTQ_SPI_STAT_TUE)
657 		dev_err(spi->dev, "transmit underflow error\n");
658 	if (stat & LTQ_SPI_STAT_AE)
659 		dev_err(spi->dev, "abort error\n");
660 	if (stat & LTQ_SPI_STAT_RE)
661 		dev_err(spi->dev, "receive overflow error\n");
662 	if (stat & LTQ_SPI_STAT_TE)
663 		dev_err(spi->dev, "transmit overflow error\n");
664 	if (stat & LTQ_SPI_STAT_ME)
665 		dev_err(spi->dev, "mode error\n");
666 
667 	/* Clear error flags */
668 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
669 
670 	/* set bad status so it can be retried */
671 	if (spi->master->cur_msg)
672 		spi->master->cur_msg->status = -EIO;
673 	queue_work(spi->wq, &spi->work);
674 
675 	return IRQ_HANDLED;
676 }
677 
678 static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
679 			  struct spi_transfer *t)
680 {
681 	unsigned long flags;
682 
683 	spin_lock_irqsave(&spi->lock, flags);
684 
685 	spi->tx = t->tx_buf;
686 	spi->rx = t->rx_buf;
687 
688 	if (t->tx_buf) {
689 		spi->tx_todo = t->len;
690 
691 		/* initially fill TX FIFO */
692 		tx_fifo_write(spi);
693 	}
694 
695 	if (spi->rx) {
696 		spi->rx_todo = t->len;
697 
698 		/* start shift clock in RX-only mode */
699 		if (!spi->tx)
700 			rx_request(spi);
701 	}
702 
703 	spin_unlock_irqrestore(&spi->lock, flags);
704 
705 	return t->len;
706 }
707 
708 /*
709  * The driver only gets an interrupt when the FIFO is empty, but there
710  * is an additional shift register from which the data is written to
711  * the wire. We get the last interrupt when the controller starts to
712  * write the last word to the wire, not when it is finished. Do busy
713  * waiting till it finishes.
714  */
715 static void lantiq_ssc_bussy_work(struct work_struct *work)
716 {
717 	struct lantiq_ssc_spi *spi;
718 	unsigned long long timeout = 8LL * 1000LL;
719 	unsigned long end;
720 
721 	spi = container_of(work, typeof(*spi), work);
722 
723 	do_div(timeout, spi->speed_hz);
724 	timeout += timeout + 100; /* some tolerance */
725 
726 	end = jiffies + msecs_to_jiffies(timeout);
727 	do {
728 		u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
729 
730 		if (!(stat & LTQ_SPI_STAT_BSY)) {
731 			spi_finalize_current_transfer(spi->master);
732 			return;
733 		}
734 
735 		cond_resched();
736 	} while (!time_after_eq(jiffies, end));
737 
738 	if (spi->master->cur_msg)
739 		spi->master->cur_msg->status = -EIO;
740 	spi_finalize_current_transfer(spi->master);
741 }
742 
743 static void lantiq_ssc_handle_err(struct spi_master *master,
744 				  struct spi_message *message)
745 {
746 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
747 
748 	/* flush FIFOs on timeout */
749 	rx_fifo_flush(spi);
750 	tx_fifo_flush(spi);
751 }
752 
753 static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
754 {
755 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
756 	unsigned int cs = spidev->chip_select;
757 	u32 fgpo;
758 
759 	if (!!(spidev->mode & SPI_CS_HIGH) == enable)
760 		fgpo = (1 << (cs - spi->base_cs));
761 	else
762 		fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
763 
764 	lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
765 }
766 
767 static int lantiq_ssc_transfer_one(struct spi_master *master,
768 				   struct spi_device *spidev,
769 				   struct spi_transfer *t)
770 {
771 	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
772 
773 	hw_setup_transfer(spi, spidev, t);
774 
775 	return transfer_start(spi, spidev, t);
776 }
777 
778 static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
779 	.irnen_r = LTQ_SPI_IRNEN_R_XWAY,
780 	.irnen_t = LTQ_SPI_IRNEN_T_XWAY,
781 };
782 
783 static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
784 	.irnen_r = LTQ_SPI_IRNEN_R_XRX,
785 	.irnen_t = LTQ_SPI_IRNEN_T_XRX,
786 };
787 
788 static const struct of_device_id lantiq_ssc_match[] = {
789 	{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
790 	{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
791 	{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
792 	{},
793 };
794 MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
795 
796 static int lantiq_ssc_probe(struct platform_device *pdev)
797 {
798 	struct device *dev = &pdev->dev;
799 	struct spi_master *master;
800 	struct resource *res;
801 	struct lantiq_ssc_spi *spi;
802 	const struct lantiq_ssc_hwcfg *hwcfg;
803 	const struct of_device_id *match;
804 	int err, rx_irq, tx_irq, err_irq;
805 	u32 id, supports_dma, revision;
806 	unsigned int num_cs;
807 
808 	match = of_match_device(lantiq_ssc_match, dev);
809 	if (!match) {
810 		dev_err(dev, "no device match\n");
811 		return -EINVAL;
812 	}
813 	hwcfg = match->data;
814 
815 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
816 	if (!res) {
817 		dev_err(dev, "failed to get resources\n");
818 		return -ENXIO;
819 	}
820 
821 	rx_irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
822 	if (rx_irq < 0) {
823 		dev_err(dev, "failed to get %s\n", LTQ_SPI_RX_IRQ_NAME);
824 		return -ENXIO;
825 	}
826 
827 	tx_irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
828 	if (tx_irq < 0) {
829 		dev_err(dev, "failed to get %s\n", LTQ_SPI_TX_IRQ_NAME);
830 		return -ENXIO;
831 	}
832 
833 	err_irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
834 	if (err_irq < 0) {
835 		dev_err(dev, "failed to get %s\n", LTQ_SPI_ERR_IRQ_NAME);
836 		return -ENXIO;
837 	}
838 
839 	master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
840 	if (!master)
841 		return -ENOMEM;
842 
843 	spi = spi_master_get_devdata(master);
844 	spi->master = master;
845 	spi->dev = dev;
846 	spi->hwcfg = hwcfg;
847 	platform_set_drvdata(pdev, spi);
848 
849 	spi->regbase = devm_ioremap_resource(dev, res);
850 	if (IS_ERR(spi->regbase)) {
851 		err = PTR_ERR(spi->regbase);
852 		goto err_master_put;
853 	}
854 
855 	err = devm_request_irq(dev, rx_irq, lantiq_ssc_xmit_interrupt,
856 			       0, LTQ_SPI_RX_IRQ_NAME, spi);
857 	if (err)
858 		goto err_master_put;
859 
860 	err = devm_request_irq(dev, tx_irq, lantiq_ssc_xmit_interrupt,
861 			       0, LTQ_SPI_TX_IRQ_NAME, spi);
862 	if (err)
863 		goto err_master_put;
864 
865 	err = devm_request_irq(dev, err_irq, lantiq_ssc_err_interrupt,
866 			       0, LTQ_SPI_ERR_IRQ_NAME, spi);
867 	if (err)
868 		goto err_master_put;
869 
870 	spi->spi_clk = devm_clk_get(dev, "gate");
871 	if (IS_ERR(spi->spi_clk)) {
872 		err = PTR_ERR(spi->spi_clk);
873 		goto err_master_put;
874 	}
875 	err = clk_prepare_enable(spi->spi_clk);
876 	if (err)
877 		goto err_master_put;
878 
879 	/*
880 	 * Use the old clk_get_fpi() function on Lantiq platform, till it
881 	 * supports common clk.
882 	 */
883 #if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
884 	spi->fpi_clk = clk_get_fpi();
885 #else
886 	spi->fpi_clk = clk_get(dev, "freq");
887 #endif
888 	if (IS_ERR(spi->fpi_clk)) {
889 		err = PTR_ERR(spi->fpi_clk);
890 		goto err_clk_disable;
891 	}
892 
893 	num_cs = 8;
894 	of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
895 
896 	spi->base_cs = 1;
897 	of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
898 
899 	spin_lock_init(&spi->lock);
900 	spi->bits_per_word = 8;
901 	spi->speed_hz = 0;
902 
903 	master->dev.of_node = pdev->dev.of_node;
904 	master->num_chipselect = num_cs;
905 	master->setup = lantiq_ssc_setup;
906 	master->set_cs = lantiq_ssc_set_cs;
907 	master->handle_err = lantiq_ssc_handle_err;
908 	master->prepare_message = lantiq_ssc_prepare_message;
909 	master->unprepare_message = lantiq_ssc_unprepare_message;
910 	master->transfer_one = lantiq_ssc_transfer_one;
911 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
912 				SPI_LOOP;
913 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
914 				     SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
915 
916 	spi->wq = alloc_ordered_workqueue(dev_name(dev), 0);
917 	if (!spi->wq) {
918 		err = -ENOMEM;
919 		goto err_clk_put;
920 	}
921 	INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
922 
923 	id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
924 	spi->tx_fifo_size = (id & LTQ_SPI_ID_TXFS_M) >> LTQ_SPI_ID_TXFS_S;
925 	spi->rx_fifo_size = (id & LTQ_SPI_ID_RXFS_M) >> LTQ_SPI_ID_RXFS_S;
926 	supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
927 	revision = id & LTQ_SPI_ID_REV_M;
928 
929 	lantiq_ssc_hw_init(spi);
930 
931 	dev_info(dev,
932 		"Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
933 		revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
934 
935 	err = devm_spi_register_master(dev, master);
936 	if (err) {
937 		dev_err(dev, "failed to register spi_master\n");
938 		goto err_wq_destroy;
939 	}
940 
941 	return 0;
942 
943 err_wq_destroy:
944 	destroy_workqueue(spi->wq);
945 err_clk_put:
946 	clk_put(spi->fpi_clk);
947 err_clk_disable:
948 	clk_disable_unprepare(spi->spi_clk);
949 err_master_put:
950 	spi_master_put(master);
951 
952 	return err;
953 }
954 
955 static int lantiq_ssc_remove(struct platform_device *pdev)
956 {
957 	struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
958 
959 	lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
960 	lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
961 	rx_fifo_flush(spi);
962 	tx_fifo_flush(spi);
963 	hw_enter_config_mode(spi);
964 
965 	destroy_workqueue(spi->wq);
966 	clk_disable_unprepare(spi->spi_clk);
967 	clk_put(spi->fpi_clk);
968 
969 	return 0;
970 }
971 
972 static struct platform_driver lantiq_ssc_driver = {
973 	.probe = lantiq_ssc_probe,
974 	.remove = lantiq_ssc_remove,
975 	.driver = {
976 		.name = "spi-lantiq-ssc",
977 		.of_match_table = lantiq_ssc_match,
978 	},
979 };
980 module_platform_driver(lantiq_ssc_driver);
981 
982 MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
983 MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
984 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
985 MODULE_LICENSE("GPL");
986 MODULE_ALIAS("platform:spi-lantiq-ssc");
987