xref: /openbmc/linux/drivers/spi/spi-intel.c (revision f73f6bd2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel PCH/PCU SPI flash driver.
4  *
5  * Copyright (C) 2016 - 2022, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8 
9 #include <linux/iopoll.h>
10 #include <linux/module.h>
11 
12 #include <linux/mtd/partitions.h>
13 #include <linux/mtd/spi-nor.h>
14 
15 #include <linux/spi/flash.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 
19 #include "spi-intel.h"
20 
21 /* Offsets are from @ispi->base */
22 #define BFPREG				0x00
23 
24 #define HSFSTS_CTL			0x04
25 #define HSFSTS_CTL_FSMIE		BIT(31)
26 #define HSFSTS_CTL_FDBC_SHIFT		24
27 #define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT)
28 
29 #define HSFSTS_CTL_FCYCLE_SHIFT		17
30 #define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31 /* HW sequencer opcodes */
32 #define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
39 
40 #define HSFSTS_CTL_FGO			BIT(16)
41 #define HSFSTS_CTL_FLOCKDN		BIT(15)
42 #define HSFSTS_CTL_FDV			BIT(14)
43 #define HSFSTS_CTL_SCIP			BIT(5)
44 #define HSFSTS_CTL_AEL			BIT(2)
45 #define HSFSTS_CTL_FCERR		BIT(1)
46 #define HSFSTS_CTL_FDONE		BIT(0)
47 
48 #define FADDR				0x08
49 #define DLOCK				0x0c
50 #define FDATA(n)			(0x10 + ((n) * 4))
51 
52 #define FRACC				0x50
53 
54 #define FREG(n)				(0x54 + ((n) * 4))
55 #define FREG_BASE_MASK			0x3fff
56 #define FREG_LIMIT_SHIFT		16
57 #define FREG_LIMIT_MASK			(0x03fff << FREG_LIMIT_SHIFT)
58 
59 /* Offset is from @ispi->pregs */
60 #define PR(n)				((n) * 4)
61 #define PR_WPE				BIT(31)
62 #define PR_LIMIT_SHIFT			16
63 #define PR_LIMIT_MASK			(0x3fff << PR_LIMIT_SHIFT)
64 #define PR_RPE				BIT(15)
65 #define PR_BASE_MASK			0x3fff
66 
67 /* Offsets are from @ispi->sregs */
68 #define SSFSTS_CTL			0x00
69 #define SSFSTS_CTL_FSMIE		BIT(23)
70 #define SSFSTS_CTL_DS			BIT(22)
71 #define SSFSTS_CTL_DBC_SHIFT		16
72 #define SSFSTS_CTL_SPOP			BIT(11)
73 #define SSFSTS_CTL_ACS			BIT(10)
74 #define SSFSTS_CTL_SCGO			BIT(9)
75 #define SSFSTS_CTL_COP_SHIFT		12
76 #define SSFSTS_CTL_FRS			BIT(7)
77 #define SSFSTS_CTL_DOFRS		BIT(6)
78 #define SSFSTS_CTL_AEL			BIT(4)
79 #define SSFSTS_CTL_FCERR		BIT(3)
80 #define SSFSTS_CTL_FDONE		BIT(2)
81 #define SSFSTS_CTL_SCIP			BIT(0)
82 
83 #define PREOP_OPTYPE			0x04
84 #define OPMENU0				0x08
85 #define OPMENU1				0x0c
86 
87 #define OPTYPE_READ_NO_ADDR		0
88 #define OPTYPE_WRITE_NO_ADDR		1
89 #define OPTYPE_READ_WITH_ADDR		2
90 #define OPTYPE_WRITE_WITH_ADDR		3
91 
92 /* CPU specifics */
93 #define BYT_PR				0x74
94 #define BYT_SSFSTS_CTL			0x90
95 #define BYT_FREG_NUM			5
96 #define BYT_PR_NUM			5
97 
98 #define LPT_PR				0x74
99 #define LPT_SSFSTS_CTL			0x90
100 #define LPT_FREG_NUM			5
101 #define LPT_PR_NUM			5
102 
103 #define BXT_PR				0x84
104 #define BXT_SSFSTS_CTL			0xa0
105 #define BXT_FREG_NUM			12
106 #define BXT_PR_NUM			6
107 
108 #define CNL_PR				0x84
109 #define CNL_FREG_NUM			6
110 #define CNL_PR_NUM			5
111 
112 #define LVSCC				0xc4
113 #define UVSCC				0xc8
114 #define ERASE_OPCODE_SHIFT		8
115 #define ERASE_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
116 #define ERASE_64K_OPCODE_SHIFT		16
117 #define ERASE_64K_OPCODE_MASK		(0xff << ERASE_64K_OPCODE_SHIFT)
118 
119 /* Flash descriptor fields */
120 #define FLVALSIG_MAGIC			0x0ff0a55a
121 #define FLMAP0_NC_MASK			GENMASK(9, 8)
122 #define FLMAP0_NC_SHIFT			8
123 #define FLMAP0_FCBA_MASK		GENMASK(7, 0)
124 
125 #define FLCOMP_C0DEN_MASK		GENMASK(3, 0)
126 #define FLCOMP_C0DEN_512K		0x00
127 #define FLCOMP_C0DEN_1M			0x01
128 #define FLCOMP_C0DEN_2M			0x02
129 #define FLCOMP_C0DEN_4M			0x03
130 #define FLCOMP_C0DEN_8M			0x04
131 #define FLCOMP_C0DEN_16M		0x05
132 #define FLCOMP_C0DEN_32M		0x06
133 #define FLCOMP_C0DEN_64M		0x07
134 
135 #define INTEL_SPI_TIMEOUT		5000 /* ms */
136 #define INTEL_SPI_FIFO_SZ		64
137 
138 /**
139  * struct intel_spi - Driver private data
140  * @dev: Device pointer
141  * @info: Pointer to board specific info
142  * @base: Beginning of MMIO space
143  * @pregs: Start of protection registers
144  * @sregs: Start of software sequencer registers
145  * @master: Pointer to the SPI controller structure
146  * @nregions: Maximum number of regions
147  * @pr_num: Maximum number of protected range registers
148  * @chip0_size: Size of the first flash chip in bytes
149  * @locked: Is SPI setting locked
150  * @swseq_reg: Use SW sequencer in register reads/writes
151  * @swseq_erase: Use SW sequencer in erase operation
152  * @atomic_preopcode: Holds preopcode when atomic sequence is requested
153  * @opcodes: Opcodes which are supported. This are programmed by BIOS
154  *           before it locks down the controller.
155  * @mem_ops: Pointer to SPI MEM ops supported by the controller
156  */
157 struct intel_spi {
158 	struct device *dev;
159 	const struct intel_spi_boardinfo *info;
160 	void __iomem *base;
161 	void __iomem *pregs;
162 	void __iomem *sregs;
163 	struct spi_controller *master;
164 	size_t nregions;
165 	size_t pr_num;
166 	size_t chip0_size;
167 	bool locked;
168 	bool swseq_reg;
169 	bool swseq_erase;
170 	u8 atomic_preopcode;
171 	u8 opcodes[8];
172 	const struct intel_spi_mem_op *mem_ops;
173 };
174 
175 struct intel_spi_mem_op {
176 	struct spi_mem_op mem_op;
177 	u32 replacement_op;
178 	int (*exec_op)(struct intel_spi *ispi,
179 		       const struct spi_mem *mem,
180 		       const struct intel_spi_mem_op *iop,
181 		       const struct spi_mem_op *op);
182 };
183 
184 static bool writeable;
185 module_param(writeable, bool, 0);
186 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
187 
188 static void intel_spi_dump_regs(struct intel_spi *ispi)
189 {
190 	u32 value;
191 	int i;
192 
193 	dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
194 
195 	value = readl(ispi->base + HSFSTS_CTL);
196 	dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
197 	if (value & HSFSTS_CTL_FLOCKDN)
198 		dev_dbg(ispi->dev, "-> Locked\n");
199 
200 	dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
201 	dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
202 
203 	for (i = 0; i < 16; i++)
204 		dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
205 			i, readl(ispi->base + FDATA(i)));
206 
207 	dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
208 
209 	for (i = 0; i < ispi->nregions; i++)
210 		dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
211 			readl(ispi->base + FREG(i)));
212 	for (i = 0; i < ispi->pr_num; i++)
213 		dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
214 			readl(ispi->pregs + PR(i)));
215 
216 	if (ispi->sregs) {
217 		value = readl(ispi->sregs + SSFSTS_CTL);
218 		dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
219 		dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
220 			readl(ispi->sregs + PREOP_OPTYPE));
221 		dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
222 			readl(ispi->sregs + OPMENU0));
223 		dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
224 			readl(ispi->sregs + OPMENU1));
225 	}
226 
227 	dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
228 	dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
229 
230 	dev_dbg(ispi->dev, "Protected regions:\n");
231 	for (i = 0; i < ispi->pr_num; i++) {
232 		u32 base, limit;
233 
234 		value = readl(ispi->pregs + PR(i));
235 		if (!(value & (PR_WPE | PR_RPE)))
236 			continue;
237 
238 		limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
239 		base = value & PR_BASE_MASK;
240 
241 		dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
242 			i, base << 12, (limit << 12) | 0xfff,
243 			value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
244 	}
245 
246 	dev_dbg(ispi->dev, "Flash regions:\n");
247 	for (i = 0; i < ispi->nregions; i++) {
248 		u32 region, base, limit;
249 
250 		region = readl(ispi->base + FREG(i));
251 		base = region & FREG_BASE_MASK;
252 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
253 
254 		if (base >= limit || (i > 0 && limit == 0))
255 			dev_dbg(ispi->dev, " %02d disabled\n", i);
256 		else
257 			dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
258 				i, base << 12, (limit << 12) | 0xfff);
259 	}
260 
261 	dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
262 		ispi->swseq_reg ? 'S' : 'H');
263 	dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
264 		ispi->swseq_erase ? 'S' : 'H');
265 }
266 
267 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
268 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
269 {
270 	size_t bytes;
271 	int i = 0;
272 
273 	if (size > INTEL_SPI_FIFO_SZ)
274 		return -EINVAL;
275 
276 	while (size > 0) {
277 		bytes = min_t(size_t, size, 4);
278 		memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
279 		size -= bytes;
280 		buf += bytes;
281 		i++;
282 	}
283 
284 	return 0;
285 }
286 
287 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
288 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
289 				 size_t size)
290 {
291 	size_t bytes;
292 	int i = 0;
293 
294 	if (size > INTEL_SPI_FIFO_SZ)
295 		return -EINVAL;
296 
297 	while (size > 0) {
298 		bytes = min_t(size_t, size, 4);
299 		memcpy_toio(ispi->base + FDATA(i), buf, bytes);
300 		size -= bytes;
301 		buf += bytes;
302 		i++;
303 	}
304 
305 	return 0;
306 }
307 
308 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
309 {
310 	u32 val;
311 
312 	return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
313 				  !(val & HSFSTS_CTL_SCIP), 0,
314 				  INTEL_SPI_TIMEOUT * 1000);
315 }
316 
317 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
318 {
319 	u32 val;
320 
321 	return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
322 				  !(val & SSFSTS_CTL_SCIP), 0,
323 				  INTEL_SPI_TIMEOUT * 1000);
324 }
325 
326 static bool intel_spi_set_writeable(struct intel_spi *ispi)
327 {
328 	if (!ispi->info->set_writeable)
329 		return false;
330 
331 	return ispi->info->set_writeable(ispi->base, ispi->info->data);
332 }
333 
334 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
335 {
336 	int i;
337 	int preop;
338 
339 	if (ispi->locked) {
340 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
341 			if (ispi->opcodes[i] == opcode)
342 				return i;
343 
344 		return -EINVAL;
345 	}
346 
347 	/* The lock is off, so just use index 0 */
348 	writel(opcode, ispi->sregs + OPMENU0);
349 	preop = readw(ispi->sregs + PREOP_OPTYPE);
350 	writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
351 
352 	return 0;
353 }
354 
355 static int intel_spi_hw_cycle(struct intel_spi *ispi,
356 			      const struct intel_spi_mem_op *iop, size_t len)
357 {
358 	u32 val, status;
359 	int ret;
360 
361 	if (!iop->replacement_op)
362 		return -EINVAL;
363 
364 	val = readl(ispi->base + HSFSTS_CTL);
365 	val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
366 
367 	if (len > INTEL_SPI_FIFO_SZ)
368 		return -EINVAL;
369 
370 	val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
371 	val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
372 	val |= HSFSTS_CTL_FGO;
373 	val |= iop->replacement_op;
374 	writel(val, ispi->base + HSFSTS_CTL);
375 
376 	ret = intel_spi_wait_hw_busy(ispi);
377 	if (ret)
378 		return ret;
379 
380 	status = readl(ispi->base + HSFSTS_CTL);
381 	if (status & HSFSTS_CTL_FCERR)
382 		return -EIO;
383 	else if (status & HSFSTS_CTL_AEL)
384 		return -EACCES;
385 
386 	return 0;
387 }
388 
389 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
390 			      int optype)
391 {
392 	u32 val = 0, status;
393 	u8 atomic_preopcode;
394 	int ret;
395 
396 	ret = intel_spi_opcode_index(ispi, opcode, optype);
397 	if (ret < 0)
398 		return ret;
399 
400 	if (len > INTEL_SPI_FIFO_SZ)
401 		return -EINVAL;
402 
403 	/*
404 	 * Always clear it after each SW sequencer operation regardless
405 	 * of whether it is successful or not.
406 	 */
407 	atomic_preopcode = ispi->atomic_preopcode;
408 	ispi->atomic_preopcode = 0;
409 
410 	/* Only mark 'Data Cycle' bit when there is data to be transferred */
411 	if (len > 0)
412 		val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
413 	val |= ret << SSFSTS_CTL_COP_SHIFT;
414 	val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
415 	val |= SSFSTS_CTL_SCGO;
416 	if (atomic_preopcode) {
417 		u16 preop;
418 
419 		switch (optype) {
420 		case OPTYPE_WRITE_NO_ADDR:
421 		case OPTYPE_WRITE_WITH_ADDR:
422 			/* Pick matching preopcode for the atomic sequence */
423 			preop = readw(ispi->sregs + PREOP_OPTYPE);
424 			if ((preop & 0xff) == atomic_preopcode)
425 				; /* Do nothing */
426 			else if ((preop >> 8) == atomic_preopcode)
427 				val |= SSFSTS_CTL_SPOP;
428 			else
429 				return -EINVAL;
430 
431 			/* Enable atomic sequence */
432 			val |= SSFSTS_CTL_ACS;
433 			break;
434 
435 		default:
436 			return -EINVAL;
437 		}
438 	}
439 	writel(val, ispi->sregs + SSFSTS_CTL);
440 
441 	ret = intel_spi_wait_sw_busy(ispi);
442 	if (ret)
443 		return ret;
444 
445 	status = readl(ispi->sregs + SSFSTS_CTL);
446 	if (status & SSFSTS_CTL_FCERR)
447 		return -EIO;
448 	else if (status & SSFSTS_CTL_AEL)
449 		return -EACCES;
450 
451 	return 0;
452 }
453 
454 static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
455 			       const struct spi_mem *mem)
456 {
457 	/* Pick up the correct start address */
458 	if (!mem)
459 		return 0;
460 	return mem->spi->chip_select == 1 ? ispi->chip0_size : 0;
461 }
462 
463 static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
464 			      const struct intel_spi_mem_op *iop,
465 			      const struct spi_mem_op *op)
466 {
467 	size_t nbytes = op->data.nbytes;
468 	u8 opcode = op->cmd.opcode;
469 	int ret;
470 
471 	writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR);
472 
473 	if (ispi->swseq_reg)
474 		ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
475 					 OPTYPE_READ_NO_ADDR);
476 	else
477 		ret = intel_spi_hw_cycle(ispi, iop, nbytes);
478 
479 	if (ret)
480 		return ret;
481 
482 	return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
483 }
484 
485 static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
486 			       const struct intel_spi_mem_op *iop,
487 			       const struct spi_mem_op *op)
488 {
489 	size_t nbytes = op->data.nbytes;
490 	u8 opcode = op->cmd.opcode;
491 	int ret;
492 
493 	/*
494 	 * This is handled with atomic operation and preop code in Intel
495 	 * controller so we only verify that it is available. If the
496 	 * controller is not locked, program the opcode to the PREOP
497 	 * register for later use.
498 	 *
499 	 * When hardware sequencer is used there is no need to program
500 	 * any opcodes (it handles them automatically as part of a command).
501 	 */
502 	if (opcode == SPINOR_OP_WREN) {
503 		u16 preop;
504 
505 		if (!ispi->swseq_reg)
506 			return 0;
507 
508 		preop = readw(ispi->sregs + PREOP_OPTYPE);
509 		if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
510 			if (ispi->locked)
511 				return -EINVAL;
512 			writel(opcode, ispi->sregs + PREOP_OPTYPE);
513 		}
514 
515 		/*
516 		 * This enables atomic sequence on next SW sycle. Will
517 		 * be cleared after next operation.
518 		 */
519 		ispi->atomic_preopcode = opcode;
520 		return 0;
521 	}
522 
523 	/*
524 	 * We hope that HW sequencer will do the right thing automatically and
525 	 * with the SW sequencer we cannot use preopcode anyway, so just ignore
526 	 * the Write Disable operation and pretend it was completed
527 	 * successfully.
528 	 */
529 	if (opcode == SPINOR_OP_WRDI)
530 		return 0;
531 
532 	writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR);
533 
534 	/* Write the value beforehand */
535 	ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
536 	if (ret)
537 		return ret;
538 
539 	if (ispi->swseq_reg)
540 		return intel_spi_sw_cycle(ispi, opcode, nbytes,
541 					  OPTYPE_WRITE_NO_ADDR);
542 	return intel_spi_hw_cycle(ispi, iop, nbytes);
543 }
544 
545 static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
546 			  const struct intel_spi_mem_op *iop,
547 			  const struct spi_mem_op *op)
548 {
549 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
550 	size_t block_size, nbytes = op->data.nbytes;
551 	void *read_buf = op->data.buf.in;
552 	u32 val, status;
553 	int ret;
554 
555 	/*
556 	 * Atomic sequence is not expected with HW sequencer reads. Make
557 	 * sure it is cleared regardless.
558 	 */
559 	if (WARN_ON_ONCE(ispi->atomic_preopcode))
560 		ispi->atomic_preopcode = 0;
561 
562 	while (nbytes > 0) {
563 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
564 
565 		/* Read cannot cross 4K boundary */
566 		block_size = min_t(loff_t, addr + block_size,
567 				   round_up(addr + 1, SZ_4K)) - addr;
568 
569 		writel(addr, ispi->base + FADDR);
570 
571 		val = readl(ispi->base + HSFSTS_CTL);
572 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
573 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
574 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
575 		val |= HSFSTS_CTL_FCYCLE_READ;
576 		val |= HSFSTS_CTL_FGO;
577 		writel(val, ispi->base + HSFSTS_CTL);
578 
579 		ret = intel_spi_wait_hw_busy(ispi);
580 		if (ret)
581 			return ret;
582 
583 		status = readl(ispi->base + HSFSTS_CTL);
584 		if (status & HSFSTS_CTL_FCERR)
585 			ret = -EIO;
586 		else if (status & HSFSTS_CTL_AEL)
587 			ret = -EACCES;
588 
589 		if (ret < 0) {
590 			dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
591 			return ret;
592 		}
593 
594 		ret = intel_spi_read_block(ispi, read_buf, block_size);
595 		if (ret)
596 			return ret;
597 
598 		nbytes -= block_size;
599 		addr += block_size;
600 		read_buf += block_size;
601 	}
602 
603 	return 0;
604 }
605 
606 static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
607 			   const struct intel_spi_mem_op *iop,
608 			   const struct spi_mem_op *op)
609 {
610 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
611 	size_t block_size, nbytes = op->data.nbytes;
612 	const void *write_buf = op->data.buf.out;
613 	u32 val, status;
614 	int ret;
615 
616 	/* Not needed with HW sequencer write, make sure it is cleared */
617 	ispi->atomic_preopcode = 0;
618 
619 	while (nbytes > 0) {
620 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
621 
622 		/* Write cannot cross 4K boundary */
623 		block_size = min_t(loff_t, addr + block_size,
624 				   round_up(addr + 1, SZ_4K)) - addr;
625 
626 		writel(addr, ispi->base + FADDR);
627 
628 		val = readl(ispi->base + HSFSTS_CTL);
629 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
630 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
631 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
632 		val |= HSFSTS_CTL_FCYCLE_WRITE;
633 
634 		ret = intel_spi_write_block(ispi, write_buf, block_size);
635 		if (ret) {
636 			dev_err(ispi->dev, "failed to write block\n");
637 			return ret;
638 		}
639 
640 		/* Start the write now */
641 		val |= HSFSTS_CTL_FGO;
642 		writel(val, ispi->base + HSFSTS_CTL);
643 
644 		ret = intel_spi_wait_hw_busy(ispi);
645 		if (ret) {
646 			dev_err(ispi->dev, "timeout\n");
647 			return ret;
648 		}
649 
650 		status = readl(ispi->base + HSFSTS_CTL);
651 		if (status & HSFSTS_CTL_FCERR)
652 			ret = -EIO;
653 		else if (status & HSFSTS_CTL_AEL)
654 			ret = -EACCES;
655 
656 		if (ret < 0) {
657 			dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
658 			return ret;
659 		}
660 
661 		nbytes -= block_size;
662 		addr += block_size;
663 		write_buf += block_size;
664 	}
665 
666 	return 0;
667 }
668 
669 static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
670 			   const struct intel_spi_mem_op *iop,
671 			   const struct spi_mem_op *op)
672 {
673 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
674 	u8 opcode = op->cmd.opcode;
675 	u32 val, status;
676 	int ret;
677 
678 	writel(addr, ispi->base + FADDR);
679 
680 	if (ispi->swseq_erase)
681 		return intel_spi_sw_cycle(ispi, opcode, 0,
682 					  OPTYPE_WRITE_WITH_ADDR);
683 
684 	/* Not needed with HW sequencer erase, make sure it is cleared */
685 	ispi->atomic_preopcode = 0;
686 
687 	val = readl(ispi->base + HSFSTS_CTL);
688 	val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
689 	val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
690 	val |= HSFSTS_CTL_FGO;
691 	val |= iop->replacement_op;
692 	writel(val, ispi->base + HSFSTS_CTL);
693 
694 	ret = intel_spi_wait_hw_busy(ispi);
695 	if (ret)
696 		return ret;
697 
698 	status = readl(ispi->base + HSFSTS_CTL);
699 	if (status & HSFSTS_CTL_FCERR)
700 		return -EIO;
701 	if (status & HSFSTS_CTL_AEL)
702 		return -EACCES;
703 
704 	return 0;
705 }
706 
707 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
708 				 const struct spi_mem_op *op)
709 {
710 	if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
711 	    iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
712 	    iop->mem_op.cmd.dtr != op->cmd.dtr ||
713 	    iop->mem_op.cmd.opcode != op->cmd.opcode)
714 		return false;
715 
716 	if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
717 	    iop->mem_op.addr.dtr != op->addr.dtr)
718 		return false;
719 
720 	if (iop->mem_op.data.dir != op->data.dir ||
721 	    iop->mem_op.data.dtr != op->data.dtr)
722 		return false;
723 
724 	if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
725 		if (iop->mem_op.data.buswidth != op->data.buswidth)
726 			return false;
727 	}
728 
729 	return true;
730 }
731 
732 static const struct intel_spi_mem_op *
733 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
734 {
735 	const struct intel_spi_mem_op *iop;
736 
737 	for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
738 		if (intel_spi_cmp_mem_op(iop, op))
739 			break;
740 	}
741 
742 	return iop->mem_op.cmd.opcode ? iop : NULL;
743 }
744 
745 static bool intel_spi_supports_mem_op(struct spi_mem *mem,
746 				      const struct spi_mem_op *op)
747 {
748 	struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
749 	const struct intel_spi_mem_op *iop;
750 
751 	iop = intel_spi_match_mem_op(ispi, op);
752 	if (!iop) {
753 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
754 		return false;
755 	}
756 
757 	/*
758 	 * For software sequencer check that the opcode is actually
759 	 * present in the opmenu if it is locked.
760 	 */
761 	if (ispi->swseq_reg && ispi->locked) {
762 		int i;
763 
764 		/* Check if it is in the locked opcodes list */
765 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
766 			if (ispi->opcodes[i] == op->cmd.opcode)
767 				return true;
768 		}
769 
770 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
771 		return false;
772 	}
773 
774 	return true;
775 }
776 
777 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
778 {
779 	struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
780 	const struct intel_spi_mem_op *iop;
781 
782 	iop = intel_spi_match_mem_op(ispi, op);
783 	if (!iop)
784 		return -EOPNOTSUPP;
785 
786 	return iop->exec_op(ispi, mem, iop, op);
787 }
788 
789 static const char *intel_spi_get_name(struct spi_mem *mem)
790 {
791 	const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
792 
793 	/*
794 	 * Return name of the flash controller device to be compatible
795 	 * with the MTD version.
796 	 */
797 	return dev_name(ispi->dev);
798 }
799 
800 static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
801 {
802 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
803 	const struct intel_spi_mem_op *iop;
804 
805 	iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
806 	if (!iop)
807 		return -EOPNOTSUPP;
808 
809 	desc->priv = (void *)iop;
810 	return 0;
811 }
812 
813 static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
814 				     size_t len, void *buf)
815 {
816 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
817 	const struct intel_spi_mem_op *iop = desc->priv;
818 	struct spi_mem_op op = desc->info.op_tmpl;
819 	int ret;
820 
821 	/* Fill in the gaps */
822 	op.addr.val = offs;
823 	op.data.nbytes = len;
824 	op.data.buf.in = buf;
825 
826 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
827 	return ret ? ret : len;
828 }
829 
830 static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
831 				      size_t len, const void *buf)
832 {
833 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
834 	const struct intel_spi_mem_op *iop = desc->priv;
835 	struct spi_mem_op op = desc->info.op_tmpl;
836 	int ret;
837 
838 	op.addr.val = offs;
839 	op.data.nbytes = len;
840 	op.data.buf.out = buf;
841 
842 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
843 	return ret ? ret : len;
844 }
845 
846 static const struct spi_controller_mem_ops intel_spi_mem_ops = {
847 	.supports_op = intel_spi_supports_mem_op,
848 	.exec_op = intel_spi_exec_mem_op,
849 	.get_name = intel_spi_get_name,
850 	.dirmap_create = intel_spi_dirmap_create,
851 	.dirmap_read = intel_spi_dirmap_read,
852 	.dirmap_write = intel_spi_dirmap_write,
853 };
854 
855 #define INTEL_SPI_OP_ADDR(__nbytes)					\
856 	{								\
857 		.nbytes = __nbytes,					\
858 	}
859 
860 #define INTEL_SPI_OP_NO_DATA						\
861 	{								\
862 		.dir = SPI_MEM_NO_DATA,					\
863 	}
864 
865 #define INTEL_SPI_OP_DATA_IN(__buswidth)				\
866 	{								\
867 		.dir = SPI_MEM_DATA_IN,					\
868 		.buswidth = __buswidth,					\
869 	}
870 
871 #define INTEL_SPI_OP_DATA_OUT(__buswidth)				\
872 	{								\
873 		.dir = SPI_MEM_DATA_OUT,				\
874 		.buswidth = __buswidth,					\
875 	}
876 
877 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op)		\
878 	{								\
879 		.mem_op = {						\
880 			.cmd = __cmd,					\
881 			.addr = __addr,					\
882 			.data = __data,					\
883 		},							\
884 		.exec_op = __exec_op,					\
885 	}
886 
887 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl)	\
888 	{								\
889 		.mem_op = {						\
890 			.cmd = __cmd,					\
891 			.addr = __addr,					\
892 			.data = __data,					\
893 		},							\
894 		.exec_op = __exec_op,					\
895 		.replacement_op = __repl,				\
896 	}
897 
898 /*
899  * The controller handles pretty much everything internally based on the
900  * SFDP data but we want to make sure we only support the operations
901  * actually possible. Only check buswidth and transfer direction, the
902  * core validates data.
903  */
904 #define INTEL_SPI_GENERIC_OPS						\
905 	/* Status register operations */				\
906 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),	\
907 			      SPI_MEM_OP_NO_ADDR,			\
908 			      INTEL_SPI_OP_DATA_IN(1),			\
909 			      intel_spi_read_reg,			\
910 			      HSFSTS_CTL_FCYCLE_RDID),			\
911 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),	\
912 			      SPI_MEM_OP_NO_ADDR,			\
913 			      INTEL_SPI_OP_DATA_IN(1),			\
914 			      intel_spi_read_reg,			\
915 			      HSFSTS_CTL_FCYCLE_RDSR),			\
916 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),	\
917 			      SPI_MEM_OP_NO_ADDR,			\
918 			      INTEL_SPI_OP_DATA_OUT(1),			\
919 			      intel_spi_write_reg,			\
920 			      HSFSTS_CTL_FCYCLE_WRSR),			\
921 	/* Normal read */						\
922 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
923 			 INTEL_SPI_OP_ADDR(3),				\
924 			 INTEL_SPI_OP_DATA_IN(1),			\
925 			 intel_spi_read),				\
926 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
927 			 INTEL_SPI_OP_ADDR(3),				\
928 			 INTEL_SPI_OP_DATA_IN(2),			\
929 			 intel_spi_read),				\
930 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
931 			 INTEL_SPI_OP_ADDR(3),				\
932 			 INTEL_SPI_OP_DATA_IN(4),			\
933 			 intel_spi_read),				\
934 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
935 			 INTEL_SPI_OP_ADDR(4),				\
936 			 INTEL_SPI_OP_DATA_IN(1),			\
937 			 intel_spi_read),				\
938 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
939 			 INTEL_SPI_OP_ADDR(4),				\
940 			 INTEL_SPI_OP_DATA_IN(2),			\
941 			 intel_spi_read),				\
942 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
943 			 INTEL_SPI_OP_ADDR(4),				\
944 			 INTEL_SPI_OP_DATA_IN(4),			\
945 			 intel_spi_read),				\
946 	/* Fast read */							\
947 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
948 			 INTEL_SPI_OP_ADDR(3),				\
949 			 INTEL_SPI_OP_DATA_IN(1),			\
950 			 intel_spi_read),				\
951 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
952 			 INTEL_SPI_OP_ADDR(3),				\
953 			 INTEL_SPI_OP_DATA_IN(2),			\
954 			 intel_spi_read),				\
955 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
956 			 INTEL_SPI_OP_ADDR(3),				\
957 			 INTEL_SPI_OP_DATA_IN(4),			\
958 			 intel_spi_read),				\
959 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
960 			 INTEL_SPI_OP_ADDR(4),				\
961 			 INTEL_SPI_OP_DATA_IN(1),			\
962 			 intel_spi_read),				\
963 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
964 			 INTEL_SPI_OP_ADDR(4),				\
965 			 INTEL_SPI_OP_DATA_IN(2),			\
966 			 intel_spi_read),				\
967 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
968 			 INTEL_SPI_OP_ADDR(4),				\
969 			 INTEL_SPI_OP_DATA_IN(4),			\
970 			 intel_spi_read),				\
971 	/* Read with 4-byte address opcode */				\
972 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
973 			 INTEL_SPI_OP_ADDR(4),				\
974 			 INTEL_SPI_OP_DATA_IN(1),			\
975 			 intel_spi_read),				\
976 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
977 			 INTEL_SPI_OP_ADDR(4),				\
978 			 INTEL_SPI_OP_DATA_IN(2),			\
979 			 intel_spi_read),				\
980 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
981 			 INTEL_SPI_OP_ADDR(4),				\
982 			 INTEL_SPI_OP_DATA_IN(4),			\
983 			 intel_spi_read),				\
984 	/* Fast read with 4-byte address opcode */			\
985 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
986 			 INTEL_SPI_OP_ADDR(4),				\
987 			 INTEL_SPI_OP_DATA_IN(1),			\
988 			 intel_spi_read),				\
989 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
990 			 INTEL_SPI_OP_ADDR(4),				\
991 			 INTEL_SPI_OP_DATA_IN(2),			\
992 			 intel_spi_read),				\
993 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
994 			 INTEL_SPI_OP_ADDR(4),				\
995 			 INTEL_SPI_OP_DATA_IN(4),			\
996 			 intel_spi_read),				\
997 	/* Write operations */						\
998 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
999 			 INTEL_SPI_OP_ADDR(3),				\
1000 			 INTEL_SPI_OP_DATA_OUT(1),			\
1001 			 intel_spi_write),				\
1002 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1003 			 INTEL_SPI_OP_ADDR(4),				\
1004 			 INTEL_SPI_OP_DATA_OUT(1),			\
1005 			 intel_spi_write),				\
1006 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1),		\
1007 			 INTEL_SPI_OP_ADDR(4),				\
1008 			 INTEL_SPI_OP_DATA_OUT(1),			\
1009 			 intel_spi_write),				\
1010 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),		\
1011 			 SPI_MEM_OP_NO_ADDR,				\
1012 			 SPI_MEM_OP_NO_DATA,				\
1013 			 intel_spi_write_reg),				\
1014 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),		\
1015 			 SPI_MEM_OP_NO_ADDR,				\
1016 			 SPI_MEM_OP_NO_DATA,				\
1017 			 intel_spi_write_reg),				\
1018 	/* Erase operations */						\
1019 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1020 			      INTEL_SPI_OP_ADDR(3),			\
1021 			      SPI_MEM_OP_NO_DATA,			\
1022 			      intel_spi_erase,				\
1023 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1024 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1025 			      INTEL_SPI_OP_ADDR(4),			\
1026 			      SPI_MEM_OP_NO_DATA,			\
1027 			      intel_spi_erase,				\
1028 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1029 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1),	\
1030 			      INTEL_SPI_OP_ADDR(4),			\
1031 			      SPI_MEM_OP_NO_DATA,			\
1032 			      intel_spi_erase,				\
1033 			      HSFSTS_CTL_FCYCLE_ERASE)			\
1034 
1035 static const struct intel_spi_mem_op generic_mem_ops[] = {
1036 	INTEL_SPI_GENERIC_OPS,
1037 	{ },
1038 };
1039 
1040 static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
1041 	INTEL_SPI_GENERIC_OPS,
1042 	/* 64k sector erase operations */
1043 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1044 			      INTEL_SPI_OP_ADDR(3),
1045 			      SPI_MEM_OP_NO_DATA,
1046 			      intel_spi_erase,
1047 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1048 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1049 			      INTEL_SPI_OP_ADDR(4),
1050 			      SPI_MEM_OP_NO_DATA,
1051 			      intel_spi_erase,
1052 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1053 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
1054 			      INTEL_SPI_OP_ADDR(4),
1055 			      SPI_MEM_OP_NO_DATA,
1056 			      intel_spi_erase,
1057 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1058 	{ },
1059 };
1060 
1061 static int intel_spi_init(struct intel_spi *ispi)
1062 {
1063 	u32 opmenu0, opmenu1, lvscc, uvscc, val;
1064 	bool erase_64k = false;
1065 	int i;
1066 
1067 	switch (ispi->info->type) {
1068 	case INTEL_SPI_BYT:
1069 		ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1070 		ispi->pregs = ispi->base + BYT_PR;
1071 		ispi->nregions = BYT_FREG_NUM;
1072 		ispi->pr_num = BYT_PR_NUM;
1073 		ispi->swseq_reg = true;
1074 		break;
1075 
1076 	case INTEL_SPI_LPT:
1077 		ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1078 		ispi->pregs = ispi->base + LPT_PR;
1079 		ispi->nregions = LPT_FREG_NUM;
1080 		ispi->pr_num = LPT_PR_NUM;
1081 		ispi->swseq_reg = true;
1082 		break;
1083 
1084 	case INTEL_SPI_BXT:
1085 		ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1086 		ispi->pregs = ispi->base + BXT_PR;
1087 		ispi->nregions = BXT_FREG_NUM;
1088 		ispi->pr_num = BXT_PR_NUM;
1089 		erase_64k = true;
1090 		break;
1091 
1092 	case INTEL_SPI_CNL:
1093 		ispi->sregs = NULL;
1094 		ispi->pregs = ispi->base + CNL_PR;
1095 		ispi->nregions = CNL_FREG_NUM;
1096 		ispi->pr_num = CNL_PR_NUM;
1097 		erase_64k = true;
1098 		break;
1099 
1100 	default:
1101 		return -EINVAL;
1102 	}
1103 
1104 	/* Try to disable write protection if user asked to do so */
1105 	if (writeable && !intel_spi_set_writeable(ispi)) {
1106 		dev_warn(ispi->dev, "can't disable chip write protection\n");
1107 		writeable = false;
1108 	}
1109 
1110 	/* Disable #SMI generation from HW sequencer */
1111 	val = readl(ispi->base + HSFSTS_CTL);
1112 	val &= ~HSFSTS_CTL_FSMIE;
1113 	writel(val, ispi->base + HSFSTS_CTL);
1114 
1115 	/*
1116 	 * Determine whether erase operation should use HW or SW sequencer.
1117 	 *
1118 	 * The HW sequencer has a predefined list of opcodes, with only the
1119 	 * erase opcode being programmable in LVSCC and UVSCC registers.
1120 	 * If these registers don't contain a valid erase opcode, erase
1121 	 * cannot be done using HW sequencer.
1122 	 */
1123 	lvscc = readl(ispi->base + LVSCC);
1124 	uvscc = readl(ispi->base + UVSCC);
1125 	if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1126 		ispi->swseq_erase = true;
1127 	/* SPI controller on Intel BXT supports 64K erase opcode */
1128 	if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1129 		if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1130 		    !(uvscc & ERASE_64K_OPCODE_MASK))
1131 			erase_64k = false;
1132 
1133 	if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1134 		dev_err(ispi->dev, "software sequencer not supported, but required\n");
1135 		return -EINVAL;
1136 	}
1137 
1138 	/*
1139 	 * Some controllers can only do basic operations using hardware
1140 	 * sequencer. All other operations are supposed to be carried out
1141 	 * using software sequencer.
1142 	 */
1143 	if (ispi->swseq_reg) {
1144 		/* Disable #SMI generation from SW sequencer */
1145 		val = readl(ispi->sregs + SSFSTS_CTL);
1146 		val &= ~SSFSTS_CTL_FSMIE;
1147 		writel(val, ispi->sregs + SSFSTS_CTL);
1148 	}
1149 
1150 	/* Check controller's lock status */
1151 	val = readl(ispi->base + HSFSTS_CTL);
1152 	ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1153 
1154 	if (ispi->locked && ispi->sregs) {
1155 		/*
1156 		 * BIOS programs allowed opcodes and then locks down the
1157 		 * register. So read back what opcodes it decided to support.
1158 		 * That's the set we are going to support as well.
1159 		 */
1160 		opmenu0 = readl(ispi->sregs + OPMENU0);
1161 		opmenu1 = readl(ispi->sregs + OPMENU1);
1162 
1163 		if (opmenu0 && opmenu1) {
1164 			for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1165 				ispi->opcodes[i] = opmenu0 >> i * 8;
1166 				ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1167 			}
1168 		}
1169 	}
1170 
1171 	if (erase_64k) {
1172 		dev_dbg(ispi->dev, "Using erase_64k memory operations");
1173 		ispi->mem_ops = erase_64k_mem_ops;
1174 	} else {
1175 		dev_dbg(ispi->dev, "Using generic memory operations");
1176 		ispi->mem_ops = generic_mem_ops;
1177 	}
1178 
1179 	intel_spi_dump_regs(ispi);
1180 	return 0;
1181 }
1182 
1183 static bool intel_spi_is_protected(const struct intel_spi *ispi,
1184 				   unsigned int base, unsigned int limit)
1185 {
1186 	int i;
1187 
1188 	for (i = 0; i < ispi->pr_num; i++) {
1189 		u32 pr_base, pr_limit, pr_value;
1190 
1191 		pr_value = readl(ispi->pregs + PR(i));
1192 		if (!(pr_value & (PR_WPE | PR_RPE)))
1193 			continue;
1194 
1195 		pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1196 		pr_base = pr_value & PR_BASE_MASK;
1197 
1198 		if (pr_base >= base && pr_limit <= limit)
1199 			return true;
1200 	}
1201 
1202 	return false;
1203 }
1204 
1205 /*
1206  * There will be a single partition holding all enabled flash regions. We
1207  * call this "BIOS".
1208  */
1209 static void intel_spi_fill_partition(struct intel_spi *ispi,
1210 				     struct mtd_partition *part)
1211 {
1212 	u64 end;
1213 	int i;
1214 
1215 	memset(part, 0, sizeof(*part));
1216 
1217 	/* Start from the mandatory descriptor region */
1218 	part->size = 4096;
1219 	part->name = "BIOS";
1220 
1221 	/*
1222 	 * Now try to find where this partition ends based on the flash
1223 	 * region registers.
1224 	 */
1225 	for (i = 1; i < ispi->nregions; i++) {
1226 		u32 region, base, limit;
1227 
1228 		region = readl(ispi->base + FREG(i));
1229 		base = region & FREG_BASE_MASK;
1230 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1231 
1232 		if (base >= limit || limit == 0)
1233 			continue;
1234 
1235 		/*
1236 		 * If any of the regions have protection bits set, make the
1237 		 * whole partition read-only to be on the safe side.
1238 		 *
1239 		 * Also if the user did not ask the chip to be writeable
1240 		 * mask the bit too.
1241 		 */
1242 		if (!writeable || intel_spi_is_protected(ispi, base, limit))
1243 			part->mask_flags |= MTD_WRITEABLE;
1244 
1245 		end = (limit << 12) + 4096;
1246 		if (end > part->size)
1247 			part->size = end;
1248 	}
1249 }
1250 
1251 static int intel_spi_read_desc(struct intel_spi *ispi)
1252 {
1253 	struct spi_mem_op op =
1254 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
1255 			   SPI_MEM_OP_ADDR(3, 0, 0),
1256 			   SPI_MEM_OP_NO_DUMMY,
1257 			   SPI_MEM_OP_DATA_IN(0, NULL, 0));
1258 	u32 buf[2], nc, fcba, flcomp;
1259 	ssize_t ret;
1260 
1261 	op.addr.val = 0x10;
1262 	op.data.buf.in = buf;
1263 	op.data.nbytes = sizeof(buf);
1264 
1265 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1266 	if (ret) {
1267 		dev_warn(ispi->dev, "failed to read descriptor\n");
1268 		return ret;
1269 	}
1270 
1271 	dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
1272 	dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
1273 
1274 	if (buf[0] != FLVALSIG_MAGIC) {
1275 		dev_warn(ispi->dev, "descriptor signature not valid\n");
1276 		return -ENODEV;
1277 	}
1278 
1279 	fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
1280 	dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
1281 
1282 	op.addr.val = fcba;
1283 	op.data.buf.in = &flcomp;
1284 	op.data.nbytes = sizeof(flcomp);
1285 
1286 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1287 	if (ret) {
1288 		dev_warn(ispi->dev, "failed to read FLCOMP\n");
1289 		return -ENODEV;
1290 	}
1291 
1292 	dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
1293 
1294 	switch (flcomp & FLCOMP_C0DEN_MASK) {
1295 	case FLCOMP_C0DEN_512K:
1296 		ispi->chip0_size = SZ_512K;
1297 		break;
1298 	case FLCOMP_C0DEN_1M:
1299 		ispi->chip0_size = SZ_1M;
1300 		break;
1301 	case FLCOMP_C0DEN_2M:
1302 		ispi->chip0_size = SZ_2M;
1303 		break;
1304 	case FLCOMP_C0DEN_4M:
1305 		ispi->chip0_size = SZ_4M;
1306 		break;
1307 	case FLCOMP_C0DEN_8M:
1308 		ispi->chip0_size = SZ_8M;
1309 		break;
1310 	case FLCOMP_C0DEN_16M:
1311 		ispi->chip0_size = SZ_16M;
1312 		break;
1313 	case FLCOMP_C0DEN_32M:
1314 		ispi->chip0_size = SZ_32M;
1315 		break;
1316 	case FLCOMP_C0DEN_64M:
1317 		ispi->chip0_size = SZ_64M;
1318 		break;
1319 	default:
1320 		return -EINVAL;
1321 	}
1322 
1323 	dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
1324 
1325 	nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
1326 	if (!nc)
1327 		ispi->master->num_chipselect = 1;
1328 	else if (nc == 1)
1329 		ispi->master->num_chipselect = 2;
1330 	else
1331 		return -EINVAL;
1332 
1333 	dev_dbg(ispi->dev, "%u flash components found\n",
1334 		ispi->master->num_chipselect);
1335 	return 0;
1336 }
1337 
1338 static int intel_spi_populate_chip(struct intel_spi *ispi)
1339 {
1340 	struct flash_platform_data *pdata;
1341 	struct spi_board_info chip;
1342 	int ret;
1343 
1344 	pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1345 	if (!pdata)
1346 		return -ENOMEM;
1347 
1348 	pdata->nr_parts = 1;
1349 	pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
1350 				    sizeof(*pdata->parts), GFP_KERNEL);
1351 	if (!pdata->parts)
1352 		return -ENOMEM;
1353 
1354 	intel_spi_fill_partition(ispi, pdata->parts);
1355 
1356 	memset(&chip, 0, sizeof(chip));
1357 	snprintf(chip.modalias, 8, "spi-nor");
1358 	chip.platform_data = pdata;
1359 
1360 	if (!spi_new_device(ispi->master, &chip))
1361 		return -ENODEV;
1362 
1363 	/* Add the second chip if present */
1364 	if (ispi->master->num_chipselect < 2)
1365 		return 0;
1366 
1367 	ret = intel_spi_read_desc(ispi);
1368 	if (ret)
1369 		return ret;
1370 
1371 	chip.platform_data = NULL;
1372 	chip.chip_select = 1;
1373 
1374 	if (!spi_new_device(ispi->master, &chip))
1375 		return -ENODEV;
1376 	return 0;
1377 }
1378 
1379 /**
1380  * intel_spi_probe() - Probe the Intel SPI flash controller
1381  * @dev: Pointer to the parent device
1382  * @mem: MMIO resource
1383  * @info: Platform specific information
1384  *
1385  * Probes Intel SPI flash controller and creates the flash chip device.
1386  * Returns %0 on success and negative errno in case of failure.
1387  */
1388 int intel_spi_probe(struct device *dev, struct resource *mem,
1389 		    const struct intel_spi_boardinfo *info)
1390 {
1391 	struct spi_controller *master;
1392 	struct intel_spi *ispi;
1393 	int ret;
1394 
1395 	master = devm_spi_alloc_master(dev, sizeof(*ispi));
1396 	if (!master)
1397 		return -ENOMEM;
1398 
1399 	master->mem_ops = &intel_spi_mem_ops;
1400 
1401 	ispi = spi_master_get_devdata(master);
1402 
1403 	ispi->base = devm_ioremap_resource(dev, mem);
1404 	if (IS_ERR(ispi->base))
1405 		return PTR_ERR(ispi->base);
1406 
1407 	ispi->dev = dev;
1408 	ispi->master = master;
1409 	ispi->info = info;
1410 
1411 	ret = intel_spi_init(ispi);
1412 	if (ret)
1413 		return ret;
1414 
1415 	ret = devm_spi_register_master(dev, master);
1416 	if (ret)
1417 		return ret;
1418 
1419 	return intel_spi_populate_chip(ispi);
1420 }
1421 EXPORT_SYMBOL_GPL(intel_spi_probe);
1422 
1423 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1424 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1425 MODULE_LICENSE("GPL v2");
1426