xref: /openbmc/linux/drivers/spi/spi-intel.c (revision 85250a24)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel PCH/PCU SPI flash driver.
4  *
5  * Copyright (C) 2016 - 2022, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8 
9 #include <linux/iopoll.h>
10 #include <linux/module.h>
11 
12 #include <linux/mtd/partitions.h>
13 #include <linux/mtd/spi-nor.h>
14 
15 #include <linux/spi/flash.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 
19 #include "spi-intel.h"
20 
21 /* Offsets are from @ispi->base */
22 #define BFPREG				0x00
23 
24 #define HSFSTS_CTL			0x04
25 #define HSFSTS_CTL_FSMIE		BIT(31)
26 #define HSFSTS_CTL_FDBC_SHIFT		24
27 #define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT)
28 
29 #define HSFSTS_CTL_FCYCLE_SHIFT		17
30 #define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31 /* HW sequencer opcodes */
32 #define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
39 
40 #define HSFSTS_CTL_FGO			BIT(16)
41 #define HSFSTS_CTL_FLOCKDN		BIT(15)
42 #define HSFSTS_CTL_FDV			BIT(14)
43 #define HSFSTS_CTL_SCIP			BIT(5)
44 #define HSFSTS_CTL_AEL			BIT(2)
45 #define HSFSTS_CTL_FCERR		BIT(1)
46 #define HSFSTS_CTL_FDONE		BIT(0)
47 
48 #define FADDR				0x08
49 #define DLOCK				0x0c
50 #define FDATA(n)			(0x10 + ((n) * 4))
51 
52 #define FRACC				0x50
53 
54 #define FREG(n)				(0x54 + ((n) * 4))
55 #define FREG_BASE_MASK			0x3fff
56 #define FREG_LIMIT_SHIFT		16
57 #define FREG_LIMIT_MASK			(0x03fff << FREG_LIMIT_SHIFT)
58 
59 /* Offset is from @ispi->pregs */
60 #define PR(n)				((n) * 4)
61 #define PR_WPE				BIT(31)
62 #define PR_LIMIT_SHIFT			16
63 #define PR_LIMIT_MASK			(0x3fff << PR_LIMIT_SHIFT)
64 #define PR_RPE				BIT(15)
65 #define PR_BASE_MASK			0x3fff
66 
67 /* Offsets are from @ispi->sregs */
68 #define SSFSTS_CTL			0x00
69 #define SSFSTS_CTL_FSMIE		BIT(23)
70 #define SSFSTS_CTL_DS			BIT(22)
71 #define SSFSTS_CTL_DBC_SHIFT		16
72 #define SSFSTS_CTL_SPOP			BIT(11)
73 #define SSFSTS_CTL_ACS			BIT(10)
74 #define SSFSTS_CTL_SCGO			BIT(9)
75 #define SSFSTS_CTL_COP_SHIFT		12
76 #define SSFSTS_CTL_FRS			BIT(7)
77 #define SSFSTS_CTL_DOFRS		BIT(6)
78 #define SSFSTS_CTL_AEL			BIT(4)
79 #define SSFSTS_CTL_FCERR		BIT(3)
80 #define SSFSTS_CTL_FDONE		BIT(2)
81 #define SSFSTS_CTL_SCIP			BIT(0)
82 
83 #define PREOP_OPTYPE			0x04
84 #define OPMENU0				0x08
85 #define OPMENU1				0x0c
86 
87 #define OPTYPE_READ_NO_ADDR		0
88 #define OPTYPE_WRITE_NO_ADDR		1
89 #define OPTYPE_READ_WITH_ADDR		2
90 #define OPTYPE_WRITE_WITH_ADDR		3
91 
92 /* CPU specifics */
93 #define BYT_PR				0x74
94 #define BYT_SSFSTS_CTL			0x90
95 #define BYT_FREG_NUM			5
96 #define BYT_PR_NUM			5
97 
98 #define LPT_PR				0x74
99 #define LPT_SSFSTS_CTL			0x90
100 #define LPT_FREG_NUM			5
101 #define LPT_PR_NUM			5
102 
103 #define BXT_PR				0x84
104 #define BXT_SSFSTS_CTL			0xa0
105 #define BXT_FREG_NUM			12
106 #define BXT_PR_NUM			6
107 
108 #define CNL_PR				0x84
109 #define CNL_FREG_NUM			6
110 #define CNL_PR_NUM			5
111 
112 #define LVSCC				0xc4
113 #define UVSCC				0xc8
114 #define ERASE_OPCODE_SHIFT		8
115 #define ERASE_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
116 #define ERASE_64K_OPCODE_SHIFT		16
117 #define ERASE_64K_OPCODE_MASK		(0xff << ERASE_64K_OPCODE_SHIFT)
118 
119 /* Flash descriptor fields */
120 #define FLVALSIG_MAGIC			0x0ff0a55a
121 #define FLMAP0_NC_MASK			GENMASK(9, 8)
122 #define FLMAP0_NC_SHIFT			8
123 #define FLMAP0_FCBA_MASK		GENMASK(7, 0)
124 
125 #define FLCOMP_C0DEN_MASK		GENMASK(3, 0)
126 #define FLCOMP_C0DEN_512K		0x00
127 #define FLCOMP_C0DEN_1M			0x01
128 #define FLCOMP_C0DEN_2M			0x02
129 #define FLCOMP_C0DEN_4M			0x03
130 #define FLCOMP_C0DEN_8M			0x04
131 #define FLCOMP_C0DEN_16M		0x05
132 #define FLCOMP_C0DEN_32M		0x06
133 #define FLCOMP_C0DEN_64M		0x07
134 
135 #define INTEL_SPI_TIMEOUT		5000 /* ms */
136 #define INTEL_SPI_FIFO_SZ		64
137 
138 /**
139  * struct intel_spi - Driver private data
140  * @dev: Device pointer
141  * @info: Pointer to board specific info
142  * @base: Beginning of MMIO space
143  * @pregs: Start of protection registers
144  * @sregs: Start of software sequencer registers
145  * @master: Pointer to the SPI controller structure
146  * @nregions: Maximum number of regions
147  * @pr_num: Maximum number of protected range registers
148  * @chip0_size: Size of the first flash chip in bytes
149  * @locked: Is SPI setting locked
150  * @swseq_reg: Use SW sequencer in register reads/writes
151  * @swseq_erase: Use SW sequencer in erase operation
152  * @atomic_preopcode: Holds preopcode when atomic sequence is requested
153  * @opcodes: Opcodes which are supported. This are programmed by BIOS
154  *           before it locks down the controller.
155  * @mem_ops: Pointer to SPI MEM ops supported by the controller
156  */
157 struct intel_spi {
158 	struct device *dev;
159 	const struct intel_spi_boardinfo *info;
160 	void __iomem *base;
161 	void __iomem *pregs;
162 	void __iomem *sregs;
163 	struct spi_controller *master;
164 	size_t nregions;
165 	size_t pr_num;
166 	size_t chip0_size;
167 	bool locked;
168 	bool swseq_reg;
169 	bool swseq_erase;
170 	u8 atomic_preopcode;
171 	u8 opcodes[8];
172 	const struct intel_spi_mem_op *mem_ops;
173 };
174 
175 struct intel_spi_mem_op {
176 	struct spi_mem_op mem_op;
177 	u32 replacement_op;
178 	int (*exec_op)(struct intel_spi *ispi,
179 		       const struct spi_mem *mem,
180 		       const struct intel_spi_mem_op *iop,
181 		       const struct spi_mem_op *op);
182 };
183 
184 static bool writeable;
185 module_param(writeable, bool, 0);
186 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
187 
188 static void intel_spi_dump_regs(struct intel_spi *ispi)
189 {
190 	u32 value;
191 	int i;
192 
193 	dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
194 
195 	value = readl(ispi->base + HSFSTS_CTL);
196 	dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
197 	if (value & HSFSTS_CTL_FLOCKDN)
198 		dev_dbg(ispi->dev, "-> Locked\n");
199 
200 	dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
201 	dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
202 
203 	for (i = 0; i < 16; i++)
204 		dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
205 			i, readl(ispi->base + FDATA(i)));
206 
207 	dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
208 
209 	for (i = 0; i < ispi->nregions; i++)
210 		dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
211 			readl(ispi->base + FREG(i)));
212 	for (i = 0; i < ispi->pr_num; i++)
213 		dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
214 			readl(ispi->pregs + PR(i)));
215 
216 	if (ispi->sregs) {
217 		value = readl(ispi->sregs + SSFSTS_CTL);
218 		dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
219 		dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
220 			readl(ispi->sregs + PREOP_OPTYPE));
221 		dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
222 			readl(ispi->sregs + OPMENU0));
223 		dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
224 			readl(ispi->sregs + OPMENU1));
225 	}
226 
227 	dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
228 	dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
229 
230 	dev_dbg(ispi->dev, "Protected regions:\n");
231 	for (i = 0; i < ispi->pr_num; i++) {
232 		u32 base, limit;
233 
234 		value = readl(ispi->pregs + PR(i));
235 		if (!(value & (PR_WPE | PR_RPE)))
236 			continue;
237 
238 		limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
239 		base = value & PR_BASE_MASK;
240 
241 		dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
242 			i, base << 12, (limit << 12) | 0xfff,
243 			value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
244 	}
245 
246 	dev_dbg(ispi->dev, "Flash regions:\n");
247 	for (i = 0; i < ispi->nregions; i++) {
248 		u32 region, base, limit;
249 
250 		region = readl(ispi->base + FREG(i));
251 		base = region & FREG_BASE_MASK;
252 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
253 
254 		if (base >= limit || (i > 0 && limit == 0))
255 			dev_dbg(ispi->dev, " %02d disabled\n", i);
256 		else
257 			dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
258 				i, base << 12, (limit << 12) | 0xfff);
259 	}
260 
261 	dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
262 		ispi->swseq_reg ? 'S' : 'H');
263 	dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
264 		ispi->swseq_erase ? 'S' : 'H');
265 }
266 
267 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
268 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
269 {
270 	size_t bytes;
271 	int i = 0;
272 
273 	if (size > INTEL_SPI_FIFO_SZ)
274 		return -EINVAL;
275 
276 	while (size > 0) {
277 		bytes = min_t(size_t, size, 4);
278 		memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
279 		size -= bytes;
280 		buf += bytes;
281 		i++;
282 	}
283 
284 	return 0;
285 }
286 
287 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
288 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
289 				 size_t size)
290 {
291 	size_t bytes;
292 	int i = 0;
293 
294 	if (size > INTEL_SPI_FIFO_SZ)
295 		return -EINVAL;
296 
297 	while (size > 0) {
298 		bytes = min_t(size_t, size, 4);
299 		memcpy_toio(ispi->base + FDATA(i), buf, bytes);
300 		size -= bytes;
301 		buf += bytes;
302 		i++;
303 	}
304 
305 	return 0;
306 }
307 
308 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
309 {
310 	u32 val;
311 
312 	return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
313 				  !(val & HSFSTS_CTL_SCIP), 0,
314 				  INTEL_SPI_TIMEOUT * 1000);
315 }
316 
317 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
318 {
319 	u32 val;
320 
321 	return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
322 				  !(val & SSFSTS_CTL_SCIP), 0,
323 				  INTEL_SPI_TIMEOUT * 1000);
324 }
325 
326 static bool intel_spi_set_writeable(struct intel_spi *ispi)
327 {
328 	if (!ispi->info->set_writeable)
329 		return false;
330 
331 	return ispi->info->set_writeable(ispi->base, ispi->info->data);
332 }
333 
334 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
335 {
336 	int i;
337 	int preop;
338 
339 	if (ispi->locked) {
340 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
341 			if (ispi->opcodes[i] == opcode)
342 				return i;
343 
344 		return -EINVAL;
345 	}
346 
347 	/* The lock is off, so just use index 0 */
348 	writel(opcode, ispi->sregs + OPMENU0);
349 	preop = readw(ispi->sregs + PREOP_OPTYPE);
350 	writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
351 
352 	return 0;
353 }
354 
355 static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
356 {
357 	u32 val, status;
358 	int ret;
359 
360 	val = readl(ispi->base + HSFSTS_CTL);
361 	val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
362 
363 	switch (opcode) {
364 	case SPINOR_OP_RDID:
365 		val |= HSFSTS_CTL_FCYCLE_RDID;
366 		break;
367 	case SPINOR_OP_WRSR:
368 		val |= HSFSTS_CTL_FCYCLE_WRSR;
369 		break;
370 	case SPINOR_OP_RDSR:
371 		val |= HSFSTS_CTL_FCYCLE_RDSR;
372 		break;
373 	default:
374 		return -EINVAL;
375 	}
376 
377 	if (len > INTEL_SPI_FIFO_SZ)
378 		return -EINVAL;
379 
380 	val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
381 	val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
382 	val |= HSFSTS_CTL_FGO;
383 	writel(val, ispi->base + HSFSTS_CTL);
384 
385 	ret = intel_spi_wait_hw_busy(ispi);
386 	if (ret)
387 		return ret;
388 
389 	status = readl(ispi->base + HSFSTS_CTL);
390 	if (status & HSFSTS_CTL_FCERR)
391 		return -EIO;
392 	else if (status & HSFSTS_CTL_AEL)
393 		return -EACCES;
394 
395 	return 0;
396 }
397 
398 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
399 			      int optype)
400 {
401 	u32 val = 0, status;
402 	u8 atomic_preopcode;
403 	int ret;
404 
405 	ret = intel_spi_opcode_index(ispi, opcode, optype);
406 	if (ret < 0)
407 		return ret;
408 
409 	if (len > INTEL_SPI_FIFO_SZ)
410 		return -EINVAL;
411 
412 	/*
413 	 * Always clear it after each SW sequencer operation regardless
414 	 * of whether it is successful or not.
415 	 */
416 	atomic_preopcode = ispi->atomic_preopcode;
417 	ispi->atomic_preopcode = 0;
418 
419 	/* Only mark 'Data Cycle' bit when there is data to be transferred */
420 	if (len > 0)
421 		val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
422 	val |= ret << SSFSTS_CTL_COP_SHIFT;
423 	val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
424 	val |= SSFSTS_CTL_SCGO;
425 	if (atomic_preopcode) {
426 		u16 preop;
427 
428 		switch (optype) {
429 		case OPTYPE_WRITE_NO_ADDR:
430 		case OPTYPE_WRITE_WITH_ADDR:
431 			/* Pick matching preopcode for the atomic sequence */
432 			preop = readw(ispi->sregs + PREOP_OPTYPE);
433 			if ((preop & 0xff) == atomic_preopcode)
434 				; /* Do nothing */
435 			else if ((preop >> 8) == atomic_preopcode)
436 				val |= SSFSTS_CTL_SPOP;
437 			else
438 				return -EINVAL;
439 
440 			/* Enable atomic sequence */
441 			val |= SSFSTS_CTL_ACS;
442 			break;
443 
444 		default:
445 			return -EINVAL;
446 		}
447 	}
448 	writel(val, ispi->sregs + SSFSTS_CTL);
449 
450 	ret = intel_spi_wait_sw_busy(ispi);
451 	if (ret)
452 		return ret;
453 
454 	status = readl(ispi->sregs + SSFSTS_CTL);
455 	if (status & SSFSTS_CTL_FCERR)
456 		return -EIO;
457 	else if (status & SSFSTS_CTL_AEL)
458 		return -EACCES;
459 
460 	return 0;
461 }
462 
463 static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
464 			       const struct spi_mem *mem)
465 {
466 	/* Pick up the correct start address */
467 	if (!mem)
468 		return 0;
469 	return mem->spi->chip_select == 1 ? ispi->chip0_size : 0;
470 }
471 
472 static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
473 			      const struct intel_spi_mem_op *iop,
474 			      const struct spi_mem_op *op)
475 {
476 	size_t nbytes = op->data.nbytes;
477 	u8 opcode = op->cmd.opcode;
478 	int ret;
479 
480 	writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR);
481 
482 	if (ispi->swseq_reg)
483 		ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
484 					 OPTYPE_READ_NO_ADDR);
485 	else
486 		ret = intel_spi_hw_cycle(ispi, opcode, nbytes);
487 
488 	if (ret)
489 		return ret;
490 
491 	return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
492 }
493 
494 static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
495 			       const struct intel_spi_mem_op *iop,
496 			       const struct spi_mem_op *op)
497 {
498 	size_t nbytes = op->data.nbytes;
499 	u8 opcode = op->cmd.opcode;
500 	int ret;
501 
502 	/*
503 	 * This is handled with atomic operation and preop code in Intel
504 	 * controller so we only verify that it is available. If the
505 	 * controller is not locked, program the opcode to the PREOP
506 	 * register for later use.
507 	 *
508 	 * When hardware sequencer is used there is no need to program
509 	 * any opcodes (it handles them automatically as part of a command).
510 	 */
511 	if (opcode == SPINOR_OP_WREN) {
512 		u16 preop;
513 
514 		if (!ispi->swseq_reg)
515 			return 0;
516 
517 		preop = readw(ispi->sregs + PREOP_OPTYPE);
518 		if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
519 			if (ispi->locked)
520 				return -EINVAL;
521 			writel(opcode, ispi->sregs + PREOP_OPTYPE);
522 		}
523 
524 		/*
525 		 * This enables atomic sequence on next SW sycle. Will
526 		 * be cleared after next operation.
527 		 */
528 		ispi->atomic_preopcode = opcode;
529 		return 0;
530 	}
531 
532 	/*
533 	 * We hope that HW sequencer will do the right thing automatically and
534 	 * with the SW sequencer we cannot use preopcode anyway, so just ignore
535 	 * the Write Disable operation and pretend it was completed
536 	 * successfully.
537 	 */
538 	if (opcode == SPINOR_OP_WRDI)
539 		return 0;
540 
541 	writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR);
542 
543 	/* Write the value beforehand */
544 	ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
545 	if (ret)
546 		return ret;
547 
548 	if (ispi->swseq_reg)
549 		return intel_spi_sw_cycle(ispi, opcode, nbytes,
550 					  OPTYPE_WRITE_NO_ADDR);
551 	return intel_spi_hw_cycle(ispi, opcode, nbytes);
552 }
553 
554 static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
555 			  const struct intel_spi_mem_op *iop,
556 			  const struct spi_mem_op *op)
557 {
558 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
559 	size_t block_size, nbytes = op->data.nbytes;
560 	void *read_buf = op->data.buf.in;
561 	u32 val, status;
562 	int ret;
563 
564 	/*
565 	 * Atomic sequence is not expected with HW sequencer reads. Make
566 	 * sure it is cleared regardless.
567 	 */
568 	if (WARN_ON_ONCE(ispi->atomic_preopcode))
569 		ispi->atomic_preopcode = 0;
570 
571 	while (nbytes > 0) {
572 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
573 
574 		/* Read cannot cross 4K boundary */
575 		block_size = min_t(loff_t, addr + block_size,
576 				   round_up(addr + 1, SZ_4K)) - addr;
577 
578 		writel(addr, ispi->base + FADDR);
579 
580 		val = readl(ispi->base + HSFSTS_CTL);
581 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
582 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
583 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
584 		val |= HSFSTS_CTL_FCYCLE_READ;
585 		val |= HSFSTS_CTL_FGO;
586 		writel(val, ispi->base + HSFSTS_CTL);
587 
588 		ret = intel_spi_wait_hw_busy(ispi);
589 		if (ret)
590 			return ret;
591 
592 		status = readl(ispi->base + HSFSTS_CTL);
593 		if (status & HSFSTS_CTL_FCERR)
594 			ret = -EIO;
595 		else if (status & HSFSTS_CTL_AEL)
596 			ret = -EACCES;
597 
598 		if (ret < 0) {
599 			dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
600 			return ret;
601 		}
602 
603 		ret = intel_spi_read_block(ispi, read_buf, block_size);
604 		if (ret)
605 			return ret;
606 
607 		nbytes -= block_size;
608 		addr += block_size;
609 		read_buf += block_size;
610 	}
611 
612 	return 0;
613 }
614 
615 static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
616 			   const struct intel_spi_mem_op *iop,
617 			   const struct spi_mem_op *op)
618 {
619 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
620 	size_t block_size, nbytes = op->data.nbytes;
621 	const void *write_buf = op->data.buf.out;
622 	u32 val, status;
623 	int ret;
624 
625 	/* Not needed with HW sequencer write, make sure it is cleared */
626 	ispi->atomic_preopcode = 0;
627 
628 	while (nbytes > 0) {
629 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
630 
631 		/* Write cannot cross 4K boundary */
632 		block_size = min_t(loff_t, addr + block_size,
633 				   round_up(addr + 1, SZ_4K)) - addr;
634 
635 		writel(addr, ispi->base + FADDR);
636 
637 		val = readl(ispi->base + HSFSTS_CTL);
638 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
639 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
640 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
641 		val |= HSFSTS_CTL_FCYCLE_WRITE;
642 
643 		ret = intel_spi_write_block(ispi, write_buf, block_size);
644 		if (ret) {
645 			dev_err(ispi->dev, "failed to write block\n");
646 			return ret;
647 		}
648 
649 		/* Start the write now */
650 		val |= HSFSTS_CTL_FGO;
651 		writel(val, ispi->base + HSFSTS_CTL);
652 
653 		ret = intel_spi_wait_hw_busy(ispi);
654 		if (ret) {
655 			dev_err(ispi->dev, "timeout\n");
656 			return ret;
657 		}
658 
659 		status = readl(ispi->base + HSFSTS_CTL);
660 		if (status & HSFSTS_CTL_FCERR)
661 			ret = -EIO;
662 		else if (status & HSFSTS_CTL_AEL)
663 			ret = -EACCES;
664 
665 		if (ret < 0) {
666 			dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
667 			return ret;
668 		}
669 
670 		nbytes -= block_size;
671 		addr += block_size;
672 		write_buf += block_size;
673 	}
674 
675 	return 0;
676 }
677 
678 static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
679 			   const struct intel_spi_mem_op *iop,
680 			   const struct spi_mem_op *op)
681 {
682 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
683 	u8 opcode = op->cmd.opcode;
684 	u32 val, status;
685 	int ret;
686 
687 	writel(addr, ispi->base + FADDR);
688 
689 	if (ispi->swseq_erase)
690 		return intel_spi_sw_cycle(ispi, opcode, 0,
691 					  OPTYPE_WRITE_WITH_ADDR);
692 
693 	/* Not needed with HW sequencer erase, make sure it is cleared */
694 	ispi->atomic_preopcode = 0;
695 
696 	val = readl(ispi->base + HSFSTS_CTL);
697 	val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
698 	val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
699 	val |= HSFSTS_CTL_FGO;
700 	val |= iop->replacement_op;
701 	writel(val, ispi->base + HSFSTS_CTL);
702 
703 	ret = intel_spi_wait_hw_busy(ispi);
704 	if (ret)
705 		return ret;
706 
707 	status = readl(ispi->base + HSFSTS_CTL);
708 	if (status & HSFSTS_CTL_FCERR)
709 		return -EIO;
710 	if (status & HSFSTS_CTL_AEL)
711 		return -EACCES;
712 
713 	return 0;
714 }
715 
716 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
717 				 const struct spi_mem_op *op)
718 {
719 	if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
720 	    iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
721 	    iop->mem_op.cmd.dtr != op->cmd.dtr ||
722 	    iop->mem_op.cmd.opcode != op->cmd.opcode)
723 		return false;
724 
725 	if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
726 	    iop->mem_op.addr.dtr != op->addr.dtr)
727 		return false;
728 
729 	if (iop->mem_op.data.dir != op->data.dir ||
730 	    iop->mem_op.data.dtr != op->data.dtr)
731 		return false;
732 
733 	if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
734 		if (iop->mem_op.data.buswidth != op->data.buswidth)
735 			return false;
736 	}
737 
738 	return true;
739 }
740 
741 static const struct intel_spi_mem_op *
742 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
743 {
744 	const struct intel_spi_mem_op *iop;
745 
746 	for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
747 		if (intel_spi_cmp_mem_op(iop, op))
748 			break;
749 	}
750 
751 	return iop->mem_op.cmd.opcode ? iop : NULL;
752 }
753 
754 static bool intel_spi_supports_mem_op(struct spi_mem *mem,
755 				      const struct spi_mem_op *op)
756 {
757 	struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
758 	const struct intel_spi_mem_op *iop;
759 
760 	iop = intel_spi_match_mem_op(ispi, op);
761 	if (!iop) {
762 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
763 		return false;
764 	}
765 
766 	/*
767 	 * For software sequencer check that the opcode is actually
768 	 * present in the opmenu if it is locked.
769 	 */
770 	if (ispi->swseq_reg && ispi->locked) {
771 		int i;
772 
773 		/* Check if it is in the locked opcodes list */
774 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
775 			if (ispi->opcodes[i] == op->cmd.opcode)
776 				return true;
777 		}
778 
779 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
780 		return false;
781 	}
782 
783 	return true;
784 }
785 
786 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
787 {
788 	struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
789 	const struct intel_spi_mem_op *iop;
790 
791 	iop = intel_spi_match_mem_op(ispi, op);
792 	if (!iop)
793 		return -EOPNOTSUPP;
794 
795 	return iop->exec_op(ispi, mem, iop, op);
796 }
797 
798 static const char *intel_spi_get_name(struct spi_mem *mem)
799 {
800 	const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
801 
802 	/*
803 	 * Return name of the flash controller device to be compatible
804 	 * with the MTD version.
805 	 */
806 	return dev_name(ispi->dev);
807 }
808 
809 static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
810 {
811 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
812 	const struct intel_spi_mem_op *iop;
813 
814 	iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
815 	if (!iop)
816 		return -EOPNOTSUPP;
817 
818 	desc->priv = (void *)iop;
819 	return 0;
820 }
821 
822 static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
823 				     size_t len, void *buf)
824 {
825 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
826 	const struct intel_spi_mem_op *iop = desc->priv;
827 	struct spi_mem_op op = desc->info.op_tmpl;
828 	int ret;
829 
830 	/* Fill in the gaps */
831 	op.addr.val = offs;
832 	op.data.nbytes = len;
833 	op.data.buf.in = buf;
834 
835 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
836 	return ret ? ret : len;
837 }
838 
839 static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
840 				      size_t len, const void *buf)
841 {
842 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
843 	const struct intel_spi_mem_op *iop = desc->priv;
844 	struct spi_mem_op op = desc->info.op_tmpl;
845 	int ret;
846 
847 	op.addr.val = offs;
848 	op.data.nbytes = len;
849 	op.data.buf.out = buf;
850 
851 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
852 	return ret ? ret : len;
853 }
854 
855 static const struct spi_controller_mem_ops intel_spi_mem_ops = {
856 	.supports_op = intel_spi_supports_mem_op,
857 	.exec_op = intel_spi_exec_mem_op,
858 	.get_name = intel_spi_get_name,
859 	.dirmap_create = intel_spi_dirmap_create,
860 	.dirmap_read = intel_spi_dirmap_read,
861 	.dirmap_write = intel_spi_dirmap_write,
862 };
863 
864 #define INTEL_SPI_OP_ADDR(__nbytes)					\
865 	{								\
866 		.nbytes = __nbytes,					\
867 	}
868 
869 #define INTEL_SPI_OP_NO_DATA						\
870 	{								\
871 		.dir = SPI_MEM_NO_DATA,					\
872 	}
873 
874 #define INTEL_SPI_OP_DATA_IN(__buswidth)				\
875 	{								\
876 		.dir = SPI_MEM_DATA_IN,					\
877 		.buswidth = __buswidth,					\
878 	}
879 
880 #define INTEL_SPI_OP_DATA_OUT(__buswidth)				\
881 	{								\
882 		.dir = SPI_MEM_DATA_OUT,				\
883 		.buswidth = __buswidth,					\
884 	}
885 
886 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op)		\
887 	{								\
888 		.mem_op = {						\
889 			.cmd = __cmd,					\
890 			.addr = __addr,					\
891 			.data = __data,					\
892 		},							\
893 		.exec_op = __exec_op,					\
894 	}
895 
896 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl)	\
897 	{								\
898 		.mem_op = {						\
899 			.cmd = __cmd,					\
900 			.addr = __addr,					\
901 			.data = __data,					\
902 		},							\
903 		.exec_op = __exec_op,					\
904 		.replacement_op = __repl,				\
905 	}
906 
907 /*
908  * The controller handles pretty much everything internally based on the
909  * SFDP data but we want to make sure we only support the operations
910  * actually possible. Only check buswidth and transfer direction, the
911  * core validates data.
912  */
913 #define INTEL_SPI_GENERIC_OPS						\
914 	/* Status register operations */				\
915 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),		\
916 			 SPI_MEM_OP_NO_ADDR,				\
917 			 INTEL_SPI_OP_DATA_IN(1),			\
918 			 intel_spi_read_reg),				\
919 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),		\
920 			 SPI_MEM_OP_NO_ADDR,				\
921 			 INTEL_SPI_OP_DATA_IN(1),			\
922 			 intel_spi_read_reg),				\
923 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),		\
924 			 SPI_MEM_OP_NO_ADDR,				\
925 			 INTEL_SPI_OP_DATA_OUT(1),			\
926 			 intel_spi_write_reg),				\
927 	/* Normal read */						\
928 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
929 			 INTEL_SPI_OP_ADDR(3),				\
930 			 INTEL_SPI_OP_DATA_IN(1),			\
931 			 intel_spi_read),				\
932 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
933 			 INTEL_SPI_OP_ADDR(3),				\
934 			 INTEL_SPI_OP_DATA_IN(2),			\
935 			 intel_spi_read),				\
936 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
937 			 INTEL_SPI_OP_ADDR(3),				\
938 			 INTEL_SPI_OP_DATA_IN(4),			\
939 			 intel_spi_read),				\
940 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
941 			 INTEL_SPI_OP_ADDR(4),				\
942 			 INTEL_SPI_OP_DATA_IN(1),			\
943 			 intel_spi_read),				\
944 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
945 			 INTEL_SPI_OP_ADDR(4),				\
946 			 INTEL_SPI_OP_DATA_IN(2),			\
947 			 intel_spi_read),				\
948 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
949 			 INTEL_SPI_OP_ADDR(4),				\
950 			 INTEL_SPI_OP_DATA_IN(4),			\
951 			 intel_spi_read),				\
952 	/* Fast read */							\
953 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
954 			 INTEL_SPI_OP_ADDR(3),				\
955 			 INTEL_SPI_OP_DATA_IN(1),			\
956 			 intel_spi_read),				\
957 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
958 			 INTEL_SPI_OP_ADDR(3),				\
959 			 INTEL_SPI_OP_DATA_IN(2),			\
960 			 intel_spi_read),				\
961 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
962 			 INTEL_SPI_OP_ADDR(3),				\
963 			 INTEL_SPI_OP_DATA_IN(4),			\
964 			 intel_spi_read),				\
965 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
966 			 INTEL_SPI_OP_ADDR(4),				\
967 			 INTEL_SPI_OP_DATA_IN(1),			\
968 			 intel_spi_read),				\
969 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
970 			 INTEL_SPI_OP_ADDR(4),				\
971 			 INTEL_SPI_OP_DATA_IN(2),			\
972 			 intel_spi_read),				\
973 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
974 			 INTEL_SPI_OP_ADDR(4),				\
975 			 INTEL_SPI_OP_DATA_IN(4),			\
976 			 intel_spi_read),				\
977 	/* Read with 4-byte address opcode */				\
978 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
979 			 INTEL_SPI_OP_ADDR(4),				\
980 			 INTEL_SPI_OP_DATA_IN(1),			\
981 			 intel_spi_read),				\
982 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
983 			 INTEL_SPI_OP_ADDR(4),				\
984 			 INTEL_SPI_OP_DATA_IN(2),			\
985 			 intel_spi_read),				\
986 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
987 			 INTEL_SPI_OP_ADDR(4),				\
988 			 INTEL_SPI_OP_DATA_IN(4),			\
989 			 intel_spi_read),				\
990 	/* Fast read with 4-byte address opcode */			\
991 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
992 			 INTEL_SPI_OP_ADDR(4),				\
993 			 INTEL_SPI_OP_DATA_IN(1),			\
994 			 intel_spi_read),				\
995 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
996 			 INTEL_SPI_OP_ADDR(4),				\
997 			 INTEL_SPI_OP_DATA_IN(2),			\
998 			 intel_spi_read),				\
999 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
1000 			 INTEL_SPI_OP_ADDR(4),				\
1001 			 INTEL_SPI_OP_DATA_IN(4),			\
1002 			 intel_spi_read),				\
1003 	/* Write operations */						\
1004 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1005 			 INTEL_SPI_OP_ADDR(3),				\
1006 			 INTEL_SPI_OP_DATA_OUT(1),			\
1007 			 intel_spi_write),				\
1008 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1009 			 INTEL_SPI_OP_ADDR(4),				\
1010 			 INTEL_SPI_OP_DATA_OUT(1),			\
1011 			 intel_spi_write),				\
1012 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1),		\
1013 			 INTEL_SPI_OP_ADDR(4),				\
1014 			 INTEL_SPI_OP_DATA_OUT(1),			\
1015 			 intel_spi_write),				\
1016 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),		\
1017 			 SPI_MEM_OP_NO_ADDR,				\
1018 			 SPI_MEM_OP_NO_DATA,				\
1019 			 intel_spi_write_reg),				\
1020 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),		\
1021 			 SPI_MEM_OP_NO_ADDR,				\
1022 			 SPI_MEM_OP_NO_DATA,				\
1023 			 intel_spi_write_reg),				\
1024 	/* Erase operations */						\
1025 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1026 			      INTEL_SPI_OP_ADDR(3),			\
1027 			      SPI_MEM_OP_NO_DATA,			\
1028 			      intel_spi_erase,				\
1029 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1030 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1031 			      INTEL_SPI_OP_ADDR(4),			\
1032 			      SPI_MEM_OP_NO_DATA,			\
1033 			      intel_spi_erase,				\
1034 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1035 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1),	\
1036 			      INTEL_SPI_OP_ADDR(4),			\
1037 			      SPI_MEM_OP_NO_DATA,			\
1038 			      intel_spi_erase,				\
1039 			      HSFSTS_CTL_FCYCLE_ERASE)			\
1040 
1041 static const struct intel_spi_mem_op generic_mem_ops[] = {
1042 	INTEL_SPI_GENERIC_OPS,
1043 	{ },
1044 };
1045 
1046 static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
1047 	INTEL_SPI_GENERIC_OPS,
1048 	/* 64k sector erase operations */
1049 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1050 			      INTEL_SPI_OP_ADDR(3),
1051 			      SPI_MEM_OP_NO_DATA,
1052 			      intel_spi_erase,
1053 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1054 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1055 			      INTEL_SPI_OP_ADDR(4),
1056 			      SPI_MEM_OP_NO_DATA,
1057 			      intel_spi_erase,
1058 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1059 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
1060 			      INTEL_SPI_OP_ADDR(4),
1061 			      SPI_MEM_OP_NO_DATA,
1062 			      intel_spi_erase,
1063 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1064 	{ },
1065 };
1066 
1067 static int intel_spi_init(struct intel_spi *ispi)
1068 {
1069 	u32 opmenu0, opmenu1, lvscc, uvscc, val;
1070 	bool erase_64k = false;
1071 	int i;
1072 
1073 	switch (ispi->info->type) {
1074 	case INTEL_SPI_BYT:
1075 		ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1076 		ispi->pregs = ispi->base + BYT_PR;
1077 		ispi->nregions = BYT_FREG_NUM;
1078 		ispi->pr_num = BYT_PR_NUM;
1079 		ispi->swseq_reg = true;
1080 		break;
1081 
1082 	case INTEL_SPI_LPT:
1083 		ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1084 		ispi->pregs = ispi->base + LPT_PR;
1085 		ispi->nregions = LPT_FREG_NUM;
1086 		ispi->pr_num = LPT_PR_NUM;
1087 		ispi->swseq_reg = true;
1088 		break;
1089 
1090 	case INTEL_SPI_BXT:
1091 		ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1092 		ispi->pregs = ispi->base + BXT_PR;
1093 		ispi->nregions = BXT_FREG_NUM;
1094 		ispi->pr_num = BXT_PR_NUM;
1095 		erase_64k = true;
1096 		break;
1097 
1098 	case INTEL_SPI_CNL:
1099 		ispi->sregs = NULL;
1100 		ispi->pregs = ispi->base + CNL_PR;
1101 		ispi->nregions = CNL_FREG_NUM;
1102 		ispi->pr_num = CNL_PR_NUM;
1103 		erase_64k = true;
1104 		break;
1105 
1106 	default:
1107 		return -EINVAL;
1108 	}
1109 
1110 	/* Try to disable write protection if user asked to do so */
1111 	if (writeable && !intel_spi_set_writeable(ispi)) {
1112 		dev_warn(ispi->dev, "can't disable chip write protection\n");
1113 		writeable = false;
1114 	}
1115 
1116 	/* Disable #SMI generation from HW sequencer */
1117 	val = readl(ispi->base + HSFSTS_CTL);
1118 	val &= ~HSFSTS_CTL_FSMIE;
1119 	writel(val, ispi->base + HSFSTS_CTL);
1120 
1121 	/*
1122 	 * Determine whether erase operation should use HW or SW sequencer.
1123 	 *
1124 	 * The HW sequencer has a predefined list of opcodes, with only the
1125 	 * erase opcode being programmable in LVSCC and UVSCC registers.
1126 	 * If these registers don't contain a valid erase opcode, erase
1127 	 * cannot be done using HW sequencer.
1128 	 */
1129 	lvscc = readl(ispi->base + LVSCC);
1130 	uvscc = readl(ispi->base + UVSCC);
1131 	if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1132 		ispi->swseq_erase = true;
1133 	/* SPI controller on Intel BXT supports 64K erase opcode */
1134 	if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1135 		if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1136 		    !(uvscc & ERASE_64K_OPCODE_MASK))
1137 			erase_64k = false;
1138 
1139 	if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1140 		dev_err(ispi->dev, "software sequencer not supported, but required\n");
1141 		return -EINVAL;
1142 	}
1143 
1144 	/*
1145 	 * Some controllers can only do basic operations using hardware
1146 	 * sequencer. All other operations are supposed to be carried out
1147 	 * using software sequencer.
1148 	 */
1149 	if (ispi->swseq_reg) {
1150 		/* Disable #SMI generation from SW sequencer */
1151 		val = readl(ispi->sregs + SSFSTS_CTL);
1152 		val &= ~SSFSTS_CTL_FSMIE;
1153 		writel(val, ispi->sregs + SSFSTS_CTL);
1154 	}
1155 
1156 	/* Check controller's lock status */
1157 	val = readl(ispi->base + HSFSTS_CTL);
1158 	ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1159 
1160 	if (ispi->locked && ispi->sregs) {
1161 		/*
1162 		 * BIOS programs allowed opcodes and then locks down the
1163 		 * register. So read back what opcodes it decided to support.
1164 		 * That's the set we are going to support as well.
1165 		 */
1166 		opmenu0 = readl(ispi->sregs + OPMENU0);
1167 		opmenu1 = readl(ispi->sregs + OPMENU1);
1168 
1169 		if (opmenu0 && opmenu1) {
1170 			for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1171 				ispi->opcodes[i] = opmenu0 >> i * 8;
1172 				ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1173 			}
1174 		}
1175 	}
1176 
1177 	if (erase_64k) {
1178 		dev_dbg(ispi->dev, "Using erase_64k memory operations");
1179 		ispi->mem_ops = erase_64k_mem_ops;
1180 	} else {
1181 		dev_dbg(ispi->dev, "Using generic memory operations");
1182 		ispi->mem_ops = generic_mem_ops;
1183 	}
1184 
1185 	intel_spi_dump_regs(ispi);
1186 	return 0;
1187 }
1188 
1189 static bool intel_spi_is_protected(const struct intel_spi *ispi,
1190 				   unsigned int base, unsigned int limit)
1191 {
1192 	int i;
1193 
1194 	for (i = 0; i < ispi->pr_num; i++) {
1195 		u32 pr_base, pr_limit, pr_value;
1196 
1197 		pr_value = readl(ispi->pregs + PR(i));
1198 		if (!(pr_value & (PR_WPE | PR_RPE)))
1199 			continue;
1200 
1201 		pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1202 		pr_base = pr_value & PR_BASE_MASK;
1203 
1204 		if (pr_base >= base && pr_limit <= limit)
1205 			return true;
1206 	}
1207 
1208 	return false;
1209 }
1210 
1211 /*
1212  * There will be a single partition holding all enabled flash regions. We
1213  * call this "BIOS".
1214  */
1215 static void intel_spi_fill_partition(struct intel_spi *ispi,
1216 				     struct mtd_partition *part)
1217 {
1218 	u64 end;
1219 	int i;
1220 
1221 	memset(part, 0, sizeof(*part));
1222 
1223 	/* Start from the mandatory descriptor region */
1224 	part->size = 4096;
1225 	part->name = "BIOS";
1226 
1227 	/*
1228 	 * Now try to find where this partition ends based on the flash
1229 	 * region registers.
1230 	 */
1231 	for (i = 1; i < ispi->nregions; i++) {
1232 		u32 region, base, limit;
1233 
1234 		region = readl(ispi->base + FREG(i));
1235 		base = region & FREG_BASE_MASK;
1236 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1237 
1238 		if (base >= limit || limit == 0)
1239 			continue;
1240 
1241 		/*
1242 		 * If any of the regions have protection bits set, make the
1243 		 * whole partition read-only to be on the safe side.
1244 		 *
1245 		 * Also if the user did not ask the chip to be writeable
1246 		 * mask the bit too.
1247 		 */
1248 		if (!writeable || intel_spi_is_protected(ispi, base, limit))
1249 			part->mask_flags |= MTD_WRITEABLE;
1250 
1251 		end = (limit << 12) + 4096;
1252 		if (end > part->size)
1253 			part->size = end;
1254 	}
1255 }
1256 
1257 static int intel_spi_read_desc(struct intel_spi *ispi)
1258 {
1259 	struct spi_mem_op op =
1260 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
1261 			   SPI_MEM_OP_ADDR(3, 0, 0),
1262 			   SPI_MEM_OP_NO_DUMMY,
1263 			   SPI_MEM_OP_DATA_IN(0, NULL, 0));
1264 	u32 buf[2], nc, fcba, flcomp;
1265 	ssize_t ret;
1266 
1267 	op.addr.val = 0x10;
1268 	op.data.buf.in = buf;
1269 	op.data.nbytes = sizeof(buf);
1270 
1271 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1272 	if (ret) {
1273 		dev_warn(ispi->dev, "failed to read descriptor\n");
1274 		return ret;
1275 	}
1276 
1277 	dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
1278 	dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
1279 
1280 	if (buf[0] != FLVALSIG_MAGIC) {
1281 		dev_warn(ispi->dev, "descriptor signature not valid\n");
1282 		return -ENODEV;
1283 	}
1284 
1285 	fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
1286 	dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
1287 
1288 	op.addr.val = fcba;
1289 	op.data.buf.in = &flcomp;
1290 	op.data.nbytes = sizeof(flcomp);
1291 
1292 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1293 	if (ret) {
1294 		dev_warn(ispi->dev, "failed to read FLCOMP\n");
1295 		return -ENODEV;
1296 	}
1297 
1298 	dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
1299 
1300 	switch (flcomp & FLCOMP_C0DEN_MASK) {
1301 	case FLCOMP_C0DEN_512K:
1302 		ispi->chip0_size = SZ_512K;
1303 		break;
1304 	case FLCOMP_C0DEN_1M:
1305 		ispi->chip0_size = SZ_1M;
1306 		break;
1307 	case FLCOMP_C0DEN_2M:
1308 		ispi->chip0_size = SZ_2M;
1309 		break;
1310 	case FLCOMP_C0DEN_4M:
1311 		ispi->chip0_size = SZ_4M;
1312 		break;
1313 	case FLCOMP_C0DEN_8M:
1314 		ispi->chip0_size = SZ_8M;
1315 		break;
1316 	case FLCOMP_C0DEN_16M:
1317 		ispi->chip0_size = SZ_16M;
1318 		break;
1319 	case FLCOMP_C0DEN_32M:
1320 		ispi->chip0_size = SZ_32M;
1321 		break;
1322 	case FLCOMP_C0DEN_64M:
1323 		ispi->chip0_size = SZ_64M;
1324 		break;
1325 	default:
1326 		return -EINVAL;
1327 	}
1328 
1329 	dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
1330 
1331 	nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
1332 	if (!nc)
1333 		ispi->master->num_chipselect = 1;
1334 	else if (nc == 1)
1335 		ispi->master->num_chipselect = 2;
1336 	else
1337 		return -EINVAL;
1338 
1339 	dev_dbg(ispi->dev, "%u flash components found\n",
1340 		ispi->master->num_chipselect);
1341 	return 0;
1342 }
1343 
1344 static int intel_spi_populate_chip(struct intel_spi *ispi)
1345 {
1346 	struct flash_platform_data *pdata;
1347 	struct spi_board_info chip;
1348 	int ret;
1349 
1350 	pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1351 	if (!pdata)
1352 		return -ENOMEM;
1353 
1354 	pdata->nr_parts = 1;
1355 	pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
1356 				    sizeof(*pdata->parts), GFP_KERNEL);
1357 	if (!pdata->parts)
1358 		return -ENOMEM;
1359 
1360 	intel_spi_fill_partition(ispi, pdata->parts);
1361 
1362 	memset(&chip, 0, sizeof(chip));
1363 	snprintf(chip.modalias, 8, "spi-nor");
1364 	chip.platform_data = pdata;
1365 
1366 	if (!spi_new_device(ispi->master, &chip))
1367 		return -ENODEV;
1368 
1369 	/* Add the second chip if present */
1370 	if (ispi->master->num_chipselect < 2)
1371 		return 0;
1372 
1373 	ret = intel_spi_read_desc(ispi);
1374 	if (ret)
1375 		return ret;
1376 
1377 	chip.platform_data = NULL;
1378 	chip.chip_select = 1;
1379 
1380 	if (!spi_new_device(ispi->master, &chip))
1381 		return -ENODEV;
1382 	return 0;
1383 }
1384 
1385 /**
1386  * intel_spi_probe() - Probe the Intel SPI flash controller
1387  * @dev: Pointer to the parent device
1388  * @mem: MMIO resource
1389  * @info: Platform specific information
1390  *
1391  * Probes Intel SPI flash controller and creates the flash chip device.
1392  * Returns %0 on success and negative errno in case of failure.
1393  */
1394 int intel_spi_probe(struct device *dev, struct resource *mem,
1395 		    const struct intel_spi_boardinfo *info)
1396 {
1397 	struct spi_controller *master;
1398 	struct intel_spi *ispi;
1399 	int ret;
1400 
1401 	master = devm_spi_alloc_master(dev, sizeof(*ispi));
1402 	if (!master)
1403 		return -ENOMEM;
1404 
1405 	master->mem_ops = &intel_spi_mem_ops;
1406 
1407 	ispi = spi_master_get_devdata(master);
1408 
1409 	ispi->base = devm_ioremap_resource(dev, mem);
1410 	if (IS_ERR(ispi->base))
1411 		return PTR_ERR(ispi->base);
1412 
1413 	ispi->dev = dev;
1414 	ispi->master = master;
1415 	ispi->info = info;
1416 
1417 	ret = intel_spi_init(ispi);
1418 	if (ret)
1419 		return ret;
1420 
1421 	ret = devm_spi_register_master(dev, master);
1422 	if (ret)
1423 		return ret;
1424 
1425 	return intel_spi_populate_chip(ispi);
1426 }
1427 EXPORT_SYMBOL_GPL(intel_spi_probe);
1428 
1429 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1430 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1431 MODULE_LICENSE("GPL v2");
1432