xref: /openbmc/linux/drivers/spi/spi-intel.c (revision 6e9b7cd6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel PCH/PCU SPI flash driver.
4  *
5  * Copyright (C) 2016 - 2022, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8 
9 #include <linux/iopoll.h>
10 #include <linux/module.h>
11 
12 #include <linux/mtd/partitions.h>
13 #include <linux/mtd/spi-nor.h>
14 
15 #include <linux/spi/flash.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 
19 #include "spi-intel.h"
20 
21 /* Offsets are from @ispi->base */
22 #define BFPREG				0x00
23 
24 #define HSFSTS_CTL			0x04
25 #define HSFSTS_CTL_FSMIE		BIT(31)
26 #define HSFSTS_CTL_FDBC_SHIFT		24
27 #define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT)
28 
29 #define HSFSTS_CTL_FCYCLE_SHIFT		17
30 #define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31 /* HW sequencer opcodes */
32 #define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_RDSFDP	(0x05 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
39 #define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
40 
41 #define HSFSTS_CTL_FGO			BIT(16)
42 #define HSFSTS_CTL_FLOCKDN		BIT(15)
43 #define HSFSTS_CTL_FDV			BIT(14)
44 #define HSFSTS_CTL_SCIP			BIT(5)
45 #define HSFSTS_CTL_AEL			BIT(2)
46 #define HSFSTS_CTL_FCERR		BIT(1)
47 #define HSFSTS_CTL_FDONE		BIT(0)
48 
49 #define FADDR				0x08
50 #define DLOCK				0x0c
51 #define FDATA(n)			(0x10 + ((n) * 4))
52 
53 #define FRACC				0x50
54 
55 #define FREG(n)				(0x54 + ((n) * 4))
56 #define FREG_BASE_MASK			GENMASK(14, 0)
57 #define FREG_LIMIT_SHIFT		16
58 #define FREG_LIMIT_MASK			GENMASK(30, 16)
59 
60 /* Offset is from @ispi->pregs */
61 #define PR(n)				((n) * 4)
62 #define PR_WPE				BIT(31)
63 #define PR_LIMIT_SHIFT			16
64 #define PR_LIMIT_MASK			GENMASK(30, 16)
65 #define PR_RPE				BIT(15)
66 #define PR_BASE_MASK			GENMASK(14, 0)
67 
68 /* Offsets are from @ispi->sregs */
69 #define SSFSTS_CTL			0x00
70 #define SSFSTS_CTL_FSMIE		BIT(23)
71 #define SSFSTS_CTL_DS			BIT(22)
72 #define SSFSTS_CTL_DBC_SHIFT		16
73 #define SSFSTS_CTL_SPOP			BIT(11)
74 #define SSFSTS_CTL_ACS			BIT(10)
75 #define SSFSTS_CTL_SCGO			BIT(9)
76 #define SSFSTS_CTL_COP_SHIFT		12
77 #define SSFSTS_CTL_FRS			BIT(7)
78 #define SSFSTS_CTL_DOFRS		BIT(6)
79 #define SSFSTS_CTL_AEL			BIT(4)
80 #define SSFSTS_CTL_FCERR		BIT(3)
81 #define SSFSTS_CTL_FDONE		BIT(2)
82 #define SSFSTS_CTL_SCIP			BIT(0)
83 
84 #define PREOP_OPTYPE			0x04
85 #define OPMENU0				0x08
86 #define OPMENU1				0x0c
87 
88 #define OPTYPE_READ_NO_ADDR		0
89 #define OPTYPE_WRITE_NO_ADDR		1
90 #define OPTYPE_READ_WITH_ADDR		2
91 #define OPTYPE_WRITE_WITH_ADDR		3
92 
93 /* CPU specifics */
94 #define BYT_PR				0x74
95 #define BYT_SSFSTS_CTL			0x90
96 #define BYT_FREG_NUM			5
97 #define BYT_PR_NUM			5
98 
99 #define LPT_PR				0x74
100 #define LPT_SSFSTS_CTL			0x90
101 #define LPT_FREG_NUM			5
102 #define LPT_PR_NUM			5
103 
104 #define BXT_PR				0x84
105 #define BXT_SSFSTS_CTL			0xa0
106 #define BXT_FREG_NUM			12
107 #define BXT_PR_NUM			5
108 
109 #define CNL_PR				0x84
110 #define CNL_FREG_NUM			6
111 #define CNL_PR_NUM			5
112 
113 #define LVSCC				0xc4
114 #define UVSCC				0xc8
115 #define ERASE_OPCODE_SHIFT		8
116 #define ERASE_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
117 #define ERASE_64K_OPCODE_SHIFT		16
118 #define ERASE_64K_OPCODE_MASK		(0xff << ERASE_64K_OPCODE_SHIFT)
119 
120 /* Flash descriptor fields */
121 #define FLVALSIG_MAGIC			0x0ff0a55a
122 #define FLMAP0_NC_MASK			GENMASK(9, 8)
123 #define FLMAP0_NC_SHIFT			8
124 #define FLMAP0_FCBA_MASK		GENMASK(7, 0)
125 
126 #define FLCOMP_C0DEN_MASK		GENMASK(3, 0)
127 #define FLCOMP_C0DEN_512K		0x00
128 #define FLCOMP_C0DEN_1M			0x01
129 #define FLCOMP_C0DEN_2M			0x02
130 #define FLCOMP_C0DEN_4M			0x03
131 #define FLCOMP_C0DEN_8M			0x04
132 #define FLCOMP_C0DEN_16M		0x05
133 #define FLCOMP_C0DEN_32M		0x06
134 #define FLCOMP_C0DEN_64M		0x07
135 
136 #define INTEL_SPI_TIMEOUT		5000 /* ms */
137 #define INTEL_SPI_FIFO_SZ		64
138 
139 /**
140  * struct intel_spi - Driver private data
141  * @dev: Device pointer
142  * @info: Pointer to board specific info
143  * @base: Beginning of MMIO space
144  * @pregs: Start of protection registers
145  * @sregs: Start of software sequencer registers
146  * @master: Pointer to the SPI controller structure
147  * @nregions: Maximum number of regions
148  * @pr_num: Maximum number of protected range registers
149  * @chip0_size: Size of the first flash chip in bytes
150  * @locked: Is SPI setting locked
151  * @swseq_reg: Use SW sequencer in register reads/writes
152  * @swseq_erase: Use SW sequencer in erase operation
153  * @atomic_preopcode: Holds preopcode when atomic sequence is requested
154  * @opcodes: Opcodes which are supported. This are programmed by BIOS
155  *           before it locks down the controller.
156  * @mem_ops: Pointer to SPI MEM ops supported by the controller
157  */
158 struct intel_spi {
159 	struct device *dev;
160 	const struct intel_spi_boardinfo *info;
161 	void __iomem *base;
162 	void __iomem *pregs;
163 	void __iomem *sregs;
164 	struct spi_controller *master;
165 	size_t nregions;
166 	size_t pr_num;
167 	size_t chip0_size;
168 	bool locked;
169 	bool swseq_reg;
170 	bool swseq_erase;
171 	u8 atomic_preopcode;
172 	u8 opcodes[8];
173 	const struct intel_spi_mem_op *mem_ops;
174 };
175 
176 struct intel_spi_mem_op {
177 	struct spi_mem_op mem_op;
178 	u32 replacement_op;
179 	int (*exec_op)(struct intel_spi *ispi,
180 		       const struct spi_mem *mem,
181 		       const struct intel_spi_mem_op *iop,
182 		       const struct spi_mem_op *op);
183 };
184 
185 static bool writeable;
186 module_param(writeable, bool, 0);
187 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
188 
189 static void intel_spi_dump_regs(struct intel_spi *ispi)
190 {
191 	u32 value;
192 	int i;
193 
194 	dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
195 
196 	value = readl(ispi->base + HSFSTS_CTL);
197 	dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
198 	if (value & HSFSTS_CTL_FLOCKDN)
199 		dev_dbg(ispi->dev, "-> Locked\n");
200 
201 	dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
202 	dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
203 
204 	for (i = 0; i < 16; i++)
205 		dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
206 			i, readl(ispi->base + FDATA(i)));
207 
208 	dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
209 
210 	for (i = 0; i < ispi->nregions; i++)
211 		dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
212 			readl(ispi->base + FREG(i)));
213 	for (i = 0; i < ispi->pr_num; i++)
214 		dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
215 			readl(ispi->pregs + PR(i)));
216 
217 	if (ispi->sregs) {
218 		value = readl(ispi->sregs + SSFSTS_CTL);
219 		dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
220 		dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
221 			readl(ispi->sregs + PREOP_OPTYPE));
222 		dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
223 			readl(ispi->sregs + OPMENU0));
224 		dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
225 			readl(ispi->sregs + OPMENU1));
226 	}
227 
228 	dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
229 	dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
230 
231 	dev_dbg(ispi->dev, "Protected regions:\n");
232 	for (i = 0; i < ispi->pr_num; i++) {
233 		u32 base, limit;
234 
235 		value = readl(ispi->pregs + PR(i));
236 		if (!(value & (PR_WPE | PR_RPE)))
237 			continue;
238 
239 		limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
240 		base = value & PR_BASE_MASK;
241 
242 		dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
243 			i, base << 12, (limit << 12) | 0xfff,
244 			value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
245 	}
246 
247 	dev_dbg(ispi->dev, "Flash regions:\n");
248 	for (i = 0; i < ispi->nregions; i++) {
249 		u32 region, base, limit;
250 
251 		region = readl(ispi->base + FREG(i));
252 		base = region & FREG_BASE_MASK;
253 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
254 
255 		if (base >= limit || (i > 0 && limit == 0))
256 			dev_dbg(ispi->dev, " %02d disabled\n", i);
257 		else
258 			dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
259 				i, base << 12, (limit << 12) | 0xfff);
260 	}
261 
262 	dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
263 		ispi->swseq_reg ? 'S' : 'H');
264 	dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
265 		ispi->swseq_erase ? 'S' : 'H');
266 }
267 
268 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
269 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
270 {
271 	size_t bytes;
272 	int i = 0;
273 
274 	if (size > INTEL_SPI_FIFO_SZ)
275 		return -EINVAL;
276 
277 	while (size > 0) {
278 		bytes = min_t(size_t, size, 4);
279 		memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
280 		size -= bytes;
281 		buf += bytes;
282 		i++;
283 	}
284 
285 	return 0;
286 }
287 
288 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
289 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
290 				 size_t size)
291 {
292 	size_t bytes;
293 	int i = 0;
294 
295 	if (size > INTEL_SPI_FIFO_SZ)
296 		return -EINVAL;
297 
298 	while (size > 0) {
299 		bytes = min_t(size_t, size, 4);
300 		memcpy_toio(ispi->base + FDATA(i), buf, bytes);
301 		size -= bytes;
302 		buf += bytes;
303 		i++;
304 	}
305 
306 	return 0;
307 }
308 
309 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
310 {
311 	u32 val;
312 
313 	return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
314 				  !(val & HSFSTS_CTL_SCIP), 0,
315 				  INTEL_SPI_TIMEOUT * 1000);
316 }
317 
318 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
319 {
320 	u32 val;
321 
322 	return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
323 				  !(val & SSFSTS_CTL_SCIP), 0,
324 				  INTEL_SPI_TIMEOUT * 1000);
325 }
326 
327 static bool intel_spi_set_writeable(struct intel_spi *ispi)
328 {
329 	if (!ispi->info->set_writeable)
330 		return false;
331 
332 	return ispi->info->set_writeable(ispi->base, ispi->info->data);
333 }
334 
335 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
336 {
337 	int i;
338 	int preop;
339 
340 	if (ispi->locked) {
341 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
342 			if (ispi->opcodes[i] == opcode)
343 				return i;
344 
345 		return -EINVAL;
346 	}
347 
348 	/* The lock is off, so just use index 0 */
349 	writel(opcode, ispi->sregs + OPMENU0);
350 	preop = readw(ispi->sregs + PREOP_OPTYPE);
351 	writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
352 
353 	return 0;
354 }
355 
356 static int intel_spi_hw_cycle(struct intel_spi *ispi,
357 			      const struct intel_spi_mem_op *iop, size_t len)
358 {
359 	u32 val, status;
360 	int ret;
361 
362 	if (!iop->replacement_op)
363 		return -EINVAL;
364 
365 	val = readl(ispi->base + HSFSTS_CTL);
366 	val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
367 	val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
368 	val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
369 	val |= HSFSTS_CTL_FGO;
370 	val |= iop->replacement_op;
371 	writel(val, ispi->base + HSFSTS_CTL);
372 
373 	ret = intel_spi_wait_hw_busy(ispi);
374 	if (ret)
375 		return ret;
376 
377 	status = readl(ispi->base + HSFSTS_CTL);
378 	if (status & HSFSTS_CTL_FCERR)
379 		return -EIO;
380 	else if (status & HSFSTS_CTL_AEL)
381 		return -EACCES;
382 
383 	return 0;
384 }
385 
386 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
387 			      int optype)
388 {
389 	u32 val = 0, status;
390 	u8 atomic_preopcode;
391 	int ret;
392 
393 	ret = intel_spi_opcode_index(ispi, opcode, optype);
394 	if (ret < 0)
395 		return ret;
396 
397 	/*
398 	 * Always clear it after each SW sequencer operation regardless
399 	 * of whether it is successful or not.
400 	 */
401 	atomic_preopcode = ispi->atomic_preopcode;
402 	ispi->atomic_preopcode = 0;
403 
404 	/* Only mark 'Data Cycle' bit when there is data to be transferred */
405 	if (len > 0)
406 		val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
407 	val |= ret << SSFSTS_CTL_COP_SHIFT;
408 	val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
409 	val |= SSFSTS_CTL_SCGO;
410 	if (atomic_preopcode) {
411 		u16 preop;
412 
413 		switch (optype) {
414 		case OPTYPE_WRITE_NO_ADDR:
415 		case OPTYPE_WRITE_WITH_ADDR:
416 			/* Pick matching preopcode for the atomic sequence */
417 			preop = readw(ispi->sregs + PREOP_OPTYPE);
418 			if ((preop & 0xff) == atomic_preopcode)
419 				; /* Do nothing */
420 			else if ((preop >> 8) == atomic_preopcode)
421 				val |= SSFSTS_CTL_SPOP;
422 			else
423 				return -EINVAL;
424 
425 			/* Enable atomic sequence */
426 			val |= SSFSTS_CTL_ACS;
427 			break;
428 
429 		default:
430 			return -EINVAL;
431 		}
432 	}
433 	writel(val, ispi->sregs + SSFSTS_CTL);
434 
435 	ret = intel_spi_wait_sw_busy(ispi);
436 	if (ret)
437 		return ret;
438 
439 	status = readl(ispi->sregs + SSFSTS_CTL);
440 	if (status & SSFSTS_CTL_FCERR)
441 		return -EIO;
442 	else if (status & SSFSTS_CTL_AEL)
443 		return -EACCES;
444 
445 	return 0;
446 }
447 
448 static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
449 			       const struct spi_mem *mem)
450 {
451 	/* Pick up the correct start address */
452 	if (!mem)
453 		return 0;
454 	return (spi_get_chipselect(mem->spi, 0) == 1) ? ispi->chip0_size : 0;
455 }
456 
457 static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
458 			      const struct intel_spi_mem_op *iop,
459 			      const struct spi_mem_op *op)
460 {
461 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
462 	size_t nbytes = op->data.nbytes;
463 	u8 opcode = op->cmd.opcode;
464 	int ret;
465 
466 	writel(addr, ispi->base + FADDR);
467 
468 	if (ispi->swseq_reg)
469 		ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
470 					 OPTYPE_READ_NO_ADDR);
471 	else
472 		ret = intel_spi_hw_cycle(ispi, iop, nbytes);
473 
474 	if (ret)
475 		return ret;
476 
477 	return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
478 }
479 
480 static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
481 			       const struct intel_spi_mem_op *iop,
482 			       const struct spi_mem_op *op)
483 {
484 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
485 	size_t nbytes = op->data.nbytes;
486 	u8 opcode = op->cmd.opcode;
487 	int ret;
488 
489 	/*
490 	 * This is handled with atomic operation and preop code in Intel
491 	 * controller so we only verify that it is available. If the
492 	 * controller is not locked, program the opcode to the PREOP
493 	 * register for later use.
494 	 *
495 	 * When hardware sequencer is used there is no need to program
496 	 * any opcodes (it handles them automatically as part of a command).
497 	 */
498 	if (opcode == SPINOR_OP_WREN) {
499 		u16 preop;
500 
501 		if (!ispi->swseq_reg)
502 			return 0;
503 
504 		preop = readw(ispi->sregs + PREOP_OPTYPE);
505 		if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
506 			if (ispi->locked)
507 				return -EINVAL;
508 			writel(opcode, ispi->sregs + PREOP_OPTYPE);
509 		}
510 
511 		/*
512 		 * This enables atomic sequence on next SW sycle. Will
513 		 * be cleared after next operation.
514 		 */
515 		ispi->atomic_preopcode = opcode;
516 		return 0;
517 	}
518 
519 	/*
520 	 * We hope that HW sequencer will do the right thing automatically and
521 	 * with the SW sequencer we cannot use preopcode anyway, so just ignore
522 	 * the Write Disable operation and pretend it was completed
523 	 * successfully.
524 	 */
525 	if (opcode == SPINOR_OP_WRDI)
526 		return 0;
527 
528 	writel(addr, ispi->base + FADDR);
529 
530 	/* Write the value beforehand */
531 	ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
532 	if (ret)
533 		return ret;
534 
535 	if (ispi->swseq_reg)
536 		return intel_spi_sw_cycle(ispi, opcode, nbytes,
537 					  OPTYPE_WRITE_NO_ADDR);
538 	return intel_spi_hw_cycle(ispi, iop, nbytes);
539 }
540 
541 static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
542 			  const struct intel_spi_mem_op *iop,
543 			  const struct spi_mem_op *op)
544 {
545 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
546 	size_t block_size, nbytes = op->data.nbytes;
547 	void *read_buf = op->data.buf.in;
548 	u32 val, status;
549 	int ret;
550 
551 	/*
552 	 * Atomic sequence is not expected with HW sequencer reads. Make
553 	 * sure it is cleared regardless.
554 	 */
555 	if (WARN_ON_ONCE(ispi->atomic_preopcode))
556 		ispi->atomic_preopcode = 0;
557 
558 	while (nbytes > 0) {
559 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
560 
561 		/* Read cannot cross 4K boundary */
562 		block_size = min_t(loff_t, addr + block_size,
563 				   round_up(addr + 1, SZ_4K)) - addr;
564 
565 		writel(addr, ispi->base + FADDR);
566 
567 		val = readl(ispi->base + HSFSTS_CTL);
568 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
569 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
570 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
571 		val |= HSFSTS_CTL_FCYCLE_READ;
572 		val |= HSFSTS_CTL_FGO;
573 		writel(val, ispi->base + HSFSTS_CTL);
574 
575 		ret = intel_spi_wait_hw_busy(ispi);
576 		if (ret)
577 			return ret;
578 
579 		status = readl(ispi->base + HSFSTS_CTL);
580 		if (status & HSFSTS_CTL_FCERR)
581 			ret = -EIO;
582 		else if (status & HSFSTS_CTL_AEL)
583 			ret = -EACCES;
584 
585 		if (ret < 0) {
586 			dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
587 			return ret;
588 		}
589 
590 		ret = intel_spi_read_block(ispi, read_buf, block_size);
591 		if (ret)
592 			return ret;
593 
594 		nbytes -= block_size;
595 		addr += block_size;
596 		read_buf += block_size;
597 	}
598 
599 	return 0;
600 }
601 
602 static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
603 			   const struct intel_spi_mem_op *iop,
604 			   const struct spi_mem_op *op)
605 {
606 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
607 	size_t block_size, nbytes = op->data.nbytes;
608 	const void *write_buf = op->data.buf.out;
609 	u32 val, status;
610 	int ret;
611 
612 	/* Not needed with HW sequencer write, make sure it is cleared */
613 	ispi->atomic_preopcode = 0;
614 
615 	while (nbytes > 0) {
616 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
617 
618 		/* Write cannot cross 4K boundary */
619 		block_size = min_t(loff_t, addr + block_size,
620 				   round_up(addr + 1, SZ_4K)) - addr;
621 
622 		writel(addr, ispi->base + FADDR);
623 
624 		val = readl(ispi->base + HSFSTS_CTL);
625 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
626 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
627 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
628 		val |= HSFSTS_CTL_FCYCLE_WRITE;
629 
630 		ret = intel_spi_write_block(ispi, write_buf, block_size);
631 		if (ret) {
632 			dev_err(ispi->dev, "failed to write block\n");
633 			return ret;
634 		}
635 
636 		/* Start the write now */
637 		val |= HSFSTS_CTL_FGO;
638 		writel(val, ispi->base + HSFSTS_CTL);
639 
640 		ret = intel_spi_wait_hw_busy(ispi);
641 		if (ret) {
642 			dev_err(ispi->dev, "timeout\n");
643 			return ret;
644 		}
645 
646 		status = readl(ispi->base + HSFSTS_CTL);
647 		if (status & HSFSTS_CTL_FCERR)
648 			ret = -EIO;
649 		else if (status & HSFSTS_CTL_AEL)
650 			ret = -EACCES;
651 
652 		if (ret < 0) {
653 			dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
654 			return ret;
655 		}
656 
657 		nbytes -= block_size;
658 		addr += block_size;
659 		write_buf += block_size;
660 	}
661 
662 	return 0;
663 }
664 
665 static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
666 			   const struct intel_spi_mem_op *iop,
667 			   const struct spi_mem_op *op)
668 {
669 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
670 	u8 opcode = op->cmd.opcode;
671 	u32 val, status;
672 	int ret;
673 
674 	writel(addr, ispi->base + FADDR);
675 
676 	if (ispi->swseq_erase)
677 		return intel_spi_sw_cycle(ispi, opcode, 0,
678 					  OPTYPE_WRITE_WITH_ADDR);
679 
680 	/* Not needed with HW sequencer erase, make sure it is cleared */
681 	ispi->atomic_preopcode = 0;
682 
683 	val = readl(ispi->base + HSFSTS_CTL);
684 	val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
685 	val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
686 	val |= HSFSTS_CTL_FGO;
687 	val |= iop->replacement_op;
688 	writel(val, ispi->base + HSFSTS_CTL);
689 
690 	ret = intel_spi_wait_hw_busy(ispi);
691 	if (ret)
692 		return ret;
693 
694 	status = readl(ispi->base + HSFSTS_CTL);
695 	if (status & HSFSTS_CTL_FCERR)
696 		return -EIO;
697 	if (status & HSFSTS_CTL_AEL)
698 		return -EACCES;
699 
700 	return 0;
701 }
702 
703 static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
704 {
705 	op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ);
706 	return 0;
707 }
708 
709 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
710 				 const struct spi_mem_op *op)
711 {
712 	if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
713 	    iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
714 	    iop->mem_op.cmd.dtr != op->cmd.dtr ||
715 	    iop->mem_op.cmd.opcode != op->cmd.opcode)
716 		return false;
717 
718 	if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
719 	    iop->mem_op.addr.dtr != op->addr.dtr)
720 		return false;
721 
722 	if (iop->mem_op.data.dir != op->data.dir ||
723 	    iop->mem_op.data.dtr != op->data.dtr)
724 		return false;
725 
726 	if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
727 		if (iop->mem_op.data.buswidth != op->data.buswidth)
728 			return false;
729 	}
730 
731 	return true;
732 }
733 
734 static const struct intel_spi_mem_op *
735 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
736 {
737 	const struct intel_spi_mem_op *iop;
738 
739 	for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
740 		if (intel_spi_cmp_mem_op(iop, op))
741 			break;
742 	}
743 
744 	return iop->mem_op.cmd.opcode ? iop : NULL;
745 }
746 
747 static bool intel_spi_supports_mem_op(struct spi_mem *mem,
748 				      const struct spi_mem_op *op)
749 {
750 	struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
751 	const struct intel_spi_mem_op *iop;
752 
753 	iop = intel_spi_match_mem_op(ispi, op);
754 	if (!iop) {
755 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
756 		return false;
757 	}
758 
759 	/*
760 	 * For software sequencer check that the opcode is actually
761 	 * present in the opmenu if it is locked.
762 	 */
763 	if (ispi->swseq_reg && ispi->locked) {
764 		int i;
765 
766 		/* Check if it is in the locked opcodes list */
767 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
768 			if (ispi->opcodes[i] == op->cmd.opcode)
769 				return true;
770 		}
771 
772 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
773 		return false;
774 	}
775 
776 	return true;
777 }
778 
779 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
780 {
781 	struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
782 	const struct intel_spi_mem_op *iop;
783 
784 	iop = intel_spi_match_mem_op(ispi, op);
785 	if (!iop)
786 		return -EOPNOTSUPP;
787 
788 	return iop->exec_op(ispi, mem, iop, op);
789 }
790 
791 static const char *intel_spi_get_name(struct spi_mem *mem)
792 {
793 	const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
794 
795 	/*
796 	 * Return name of the flash controller device to be compatible
797 	 * with the MTD version.
798 	 */
799 	return dev_name(ispi->dev);
800 }
801 
802 static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
803 {
804 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
805 	const struct intel_spi_mem_op *iop;
806 
807 	iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
808 	if (!iop)
809 		return -EOPNOTSUPP;
810 
811 	desc->priv = (void *)iop;
812 	return 0;
813 }
814 
815 static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
816 				     size_t len, void *buf)
817 {
818 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
819 	const struct intel_spi_mem_op *iop = desc->priv;
820 	struct spi_mem_op op = desc->info.op_tmpl;
821 	int ret;
822 
823 	/* Fill in the gaps */
824 	op.addr.val = offs;
825 	op.data.nbytes = len;
826 	op.data.buf.in = buf;
827 
828 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
829 	return ret ? ret : len;
830 }
831 
832 static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
833 				      size_t len, const void *buf)
834 {
835 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
836 	const struct intel_spi_mem_op *iop = desc->priv;
837 	struct spi_mem_op op = desc->info.op_tmpl;
838 	int ret;
839 
840 	op.addr.val = offs;
841 	op.data.nbytes = len;
842 	op.data.buf.out = buf;
843 
844 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
845 	return ret ? ret : len;
846 }
847 
848 static const struct spi_controller_mem_ops intel_spi_mem_ops = {
849 	.adjust_op_size = intel_spi_adjust_op_size,
850 	.supports_op = intel_spi_supports_mem_op,
851 	.exec_op = intel_spi_exec_mem_op,
852 	.get_name = intel_spi_get_name,
853 	.dirmap_create = intel_spi_dirmap_create,
854 	.dirmap_read = intel_spi_dirmap_read,
855 	.dirmap_write = intel_spi_dirmap_write,
856 };
857 
858 #define INTEL_SPI_OP_ADDR(__nbytes)					\
859 	{								\
860 		.nbytes = __nbytes,					\
861 	}
862 
863 #define INTEL_SPI_OP_NO_DATA						\
864 	{								\
865 		.dir = SPI_MEM_NO_DATA,					\
866 	}
867 
868 #define INTEL_SPI_OP_DATA_IN(__buswidth)				\
869 	{								\
870 		.dir = SPI_MEM_DATA_IN,					\
871 		.buswidth = __buswidth,					\
872 	}
873 
874 #define INTEL_SPI_OP_DATA_OUT(__buswidth)				\
875 	{								\
876 		.dir = SPI_MEM_DATA_OUT,				\
877 		.buswidth = __buswidth,					\
878 	}
879 
880 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op)		\
881 	{								\
882 		.mem_op = {						\
883 			.cmd = __cmd,					\
884 			.addr = __addr,					\
885 			.data = __data,					\
886 		},							\
887 		.exec_op = __exec_op,					\
888 	}
889 
890 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl)	\
891 	{								\
892 		.mem_op = {						\
893 			.cmd = __cmd,					\
894 			.addr = __addr,					\
895 			.data = __data,					\
896 		},							\
897 		.exec_op = __exec_op,					\
898 		.replacement_op = __repl,				\
899 	}
900 
901 /*
902  * The controller handles pretty much everything internally based on the
903  * SFDP data but we want to make sure we only support the operations
904  * actually possible. Only check buswidth and transfer direction, the
905  * core validates data.
906  */
907 #define INTEL_SPI_GENERIC_OPS						\
908 	/* Status register operations */				\
909 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),	\
910 			      SPI_MEM_OP_NO_ADDR,			\
911 			      INTEL_SPI_OP_DATA_IN(1),			\
912 			      intel_spi_read_reg,			\
913 			      HSFSTS_CTL_FCYCLE_RDID),			\
914 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),	\
915 			      SPI_MEM_OP_NO_ADDR,			\
916 			      INTEL_SPI_OP_DATA_IN(1),			\
917 			      intel_spi_read_reg,			\
918 			      HSFSTS_CTL_FCYCLE_RDSR),			\
919 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),	\
920 			      SPI_MEM_OP_NO_ADDR,			\
921 			      INTEL_SPI_OP_DATA_OUT(1),			\
922 			      intel_spi_write_reg,			\
923 			      HSFSTS_CTL_FCYCLE_WRSR),			\
924 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSFDP, 1),	\
925 			      INTEL_SPI_OP_ADDR(3),			\
926 			      INTEL_SPI_OP_DATA_IN(1),			\
927 			      intel_spi_read_reg,			\
928 			      HSFSTS_CTL_FCYCLE_RDSFDP),		\
929 	/* Normal read */						\
930 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
931 			 INTEL_SPI_OP_ADDR(3),				\
932 			 INTEL_SPI_OP_DATA_IN(1),			\
933 			 intel_spi_read),				\
934 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
935 			 INTEL_SPI_OP_ADDR(3),				\
936 			 INTEL_SPI_OP_DATA_IN(2),			\
937 			 intel_spi_read),				\
938 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
939 			 INTEL_SPI_OP_ADDR(3),				\
940 			 INTEL_SPI_OP_DATA_IN(4),			\
941 			 intel_spi_read),				\
942 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
943 			 INTEL_SPI_OP_ADDR(4),				\
944 			 INTEL_SPI_OP_DATA_IN(1),			\
945 			 intel_spi_read),				\
946 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
947 			 INTEL_SPI_OP_ADDR(4),				\
948 			 INTEL_SPI_OP_DATA_IN(2),			\
949 			 intel_spi_read),				\
950 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
951 			 INTEL_SPI_OP_ADDR(4),				\
952 			 INTEL_SPI_OP_DATA_IN(4),			\
953 			 intel_spi_read),				\
954 	/* Fast read */							\
955 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
956 			 INTEL_SPI_OP_ADDR(3),				\
957 			 INTEL_SPI_OP_DATA_IN(1),			\
958 			 intel_spi_read),				\
959 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
960 			 INTEL_SPI_OP_ADDR(3),				\
961 			 INTEL_SPI_OP_DATA_IN(2),			\
962 			 intel_spi_read),				\
963 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
964 			 INTEL_SPI_OP_ADDR(3),				\
965 			 INTEL_SPI_OP_DATA_IN(4),			\
966 			 intel_spi_read),				\
967 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
968 			 INTEL_SPI_OP_ADDR(4),				\
969 			 INTEL_SPI_OP_DATA_IN(1),			\
970 			 intel_spi_read),				\
971 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
972 			 INTEL_SPI_OP_ADDR(4),				\
973 			 INTEL_SPI_OP_DATA_IN(2),			\
974 			 intel_spi_read),				\
975 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
976 			 INTEL_SPI_OP_ADDR(4),				\
977 			 INTEL_SPI_OP_DATA_IN(4),			\
978 			 intel_spi_read),				\
979 	/* Read with 4-byte address opcode */				\
980 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
981 			 INTEL_SPI_OP_ADDR(4),				\
982 			 INTEL_SPI_OP_DATA_IN(1),			\
983 			 intel_spi_read),				\
984 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
985 			 INTEL_SPI_OP_ADDR(4),				\
986 			 INTEL_SPI_OP_DATA_IN(2),			\
987 			 intel_spi_read),				\
988 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
989 			 INTEL_SPI_OP_ADDR(4),				\
990 			 INTEL_SPI_OP_DATA_IN(4),			\
991 			 intel_spi_read),				\
992 	/* Fast read with 4-byte address opcode */			\
993 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
994 			 INTEL_SPI_OP_ADDR(4),				\
995 			 INTEL_SPI_OP_DATA_IN(1),			\
996 			 intel_spi_read),				\
997 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
998 			 INTEL_SPI_OP_ADDR(4),				\
999 			 INTEL_SPI_OP_DATA_IN(2),			\
1000 			 intel_spi_read),				\
1001 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
1002 			 INTEL_SPI_OP_ADDR(4),				\
1003 			 INTEL_SPI_OP_DATA_IN(4),			\
1004 			 intel_spi_read),				\
1005 	/* Write operations */						\
1006 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1007 			 INTEL_SPI_OP_ADDR(3),				\
1008 			 INTEL_SPI_OP_DATA_OUT(1),			\
1009 			 intel_spi_write),				\
1010 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1011 			 INTEL_SPI_OP_ADDR(4),				\
1012 			 INTEL_SPI_OP_DATA_OUT(1),			\
1013 			 intel_spi_write),				\
1014 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1),		\
1015 			 INTEL_SPI_OP_ADDR(4),				\
1016 			 INTEL_SPI_OP_DATA_OUT(1),			\
1017 			 intel_spi_write),				\
1018 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),		\
1019 			 SPI_MEM_OP_NO_ADDR,				\
1020 			 SPI_MEM_OP_NO_DATA,				\
1021 			 intel_spi_write_reg),				\
1022 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),		\
1023 			 SPI_MEM_OP_NO_ADDR,				\
1024 			 SPI_MEM_OP_NO_DATA,				\
1025 			 intel_spi_write_reg),				\
1026 	/* Erase operations */						\
1027 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1028 			      INTEL_SPI_OP_ADDR(3),			\
1029 			      SPI_MEM_OP_NO_DATA,			\
1030 			      intel_spi_erase,				\
1031 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1032 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1033 			      INTEL_SPI_OP_ADDR(4),			\
1034 			      SPI_MEM_OP_NO_DATA,			\
1035 			      intel_spi_erase,				\
1036 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1037 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1),	\
1038 			      INTEL_SPI_OP_ADDR(4),			\
1039 			      SPI_MEM_OP_NO_DATA,			\
1040 			      intel_spi_erase,				\
1041 			      HSFSTS_CTL_FCYCLE_ERASE)			\
1042 
1043 static const struct intel_spi_mem_op generic_mem_ops[] = {
1044 	INTEL_SPI_GENERIC_OPS,
1045 	{ },
1046 };
1047 
1048 static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
1049 	INTEL_SPI_GENERIC_OPS,
1050 	/* 64k sector erase operations */
1051 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1052 			      INTEL_SPI_OP_ADDR(3),
1053 			      SPI_MEM_OP_NO_DATA,
1054 			      intel_spi_erase,
1055 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1056 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1057 			      INTEL_SPI_OP_ADDR(4),
1058 			      SPI_MEM_OP_NO_DATA,
1059 			      intel_spi_erase,
1060 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1061 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
1062 			      INTEL_SPI_OP_ADDR(4),
1063 			      SPI_MEM_OP_NO_DATA,
1064 			      intel_spi_erase,
1065 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1066 	{ },
1067 };
1068 
1069 static int intel_spi_init(struct intel_spi *ispi)
1070 {
1071 	u32 opmenu0, opmenu1, lvscc, uvscc, val;
1072 	bool erase_64k = false;
1073 	int i;
1074 
1075 	switch (ispi->info->type) {
1076 	case INTEL_SPI_BYT:
1077 		ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1078 		ispi->pregs = ispi->base + BYT_PR;
1079 		ispi->nregions = BYT_FREG_NUM;
1080 		ispi->pr_num = BYT_PR_NUM;
1081 		ispi->swseq_reg = true;
1082 		break;
1083 
1084 	case INTEL_SPI_LPT:
1085 		ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1086 		ispi->pregs = ispi->base + LPT_PR;
1087 		ispi->nregions = LPT_FREG_NUM;
1088 		ispi->pr_num = LPT_PR_NUM;
1089 		ispi->swseq_reg = true;
1090 		break;
1091 
1092 	case INTEL_SPI_BXT:
1093 		ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1094 		ispi->pregs = ispi->base + BXT_PR;
1095 		ispi->nregions = BXT_FREG_NUM;
1096 		ispi->pr_num = BXT_PR_NUM;
1097 		erase_64k = true;
1098 		break;
1099 
1100 	case INTEL_SPI_CNL:
1101 		ispi->sregs = NULL;
1102 		ispi->pregs = ispi->base + CNL_PR;
1103 		ispi->nregions = CNL_FREG_NUM;
1104 		ispi->pr_num = CNL_PR_NUM;
1105 		erase_64k = true;
1106 		break;
1107 
1108 	default:
1109 		return -EINVAL;
1110 	}
1111 
1112 	/* Try to disable write protection if user asked to do so */
1113 	if (writeable && !intel_spi_set_writeable(ispi)) {
1114 		dev_warn(ispi->dev, "can't disable chip write protection\n");
1115 		writeable = false;
1116 	}
1117 
1118 	/* Disable #SMI generation from HW sequencer */
1119 	val = readl(ispi->base + HSFSTS_CTL);
1120 	val &= ~HSFSTS_CTL_FSMIE;
1121 	writel(val, ispi->base + HSFSTS_CTL);
1122 
1123 	/*
1124 	 * Determine whether erase operation should use HW or SW sequencer.
1125 	 *
1126 	 * The HW sequencer has a predefined list of opcodes, with only the
1127 	 * erase opcode being programmable in LVSCC and UVSCC registers.
1128 	 * If these registers don't contain a valid erase opcode, erase
1129 	 * cannot be done using HW sequencer.
1130 	 */
1131 	lvscc = readl(ispi->base + LVSCC);
1132 	uvscc = readl(ispi->base + UVSCC);
1133 	if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1134 		ispi->swseq_erase = true;
1135 	/* SPI controller on Intel BXT supports 64K erase opcode */
1136 	if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1137 		if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1138 		    !(uvscc & ERASE_64K_OPCODE_MASK))
1139 			erase_64k = false;
1140 
1141 	if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1142 		dev_err(ispi->dev, "software sequencer not supported, but required\n");
1143 		return -EINVAL;
1144 	}
1145 
1146 	/*
1147 	 * Some controllers can only do basic operations using hardware
1148 	 * sequencer. All other operations are supposed to be carried out
1149 	 * using software sequencer.
1150 	 */
1151 	if (ispi->swseq_reg) {
1152 		/* Disable #SMI generation from SW sequencer */
1153 		val = readl(ispi->sregs + SSFSTS_CTL);
1154 		val &= ~SSFSTS_CTL_FSMIE;
1155 		writel(val, ispi->sregs + SSFSTS_CTL);
1156 	}
1157 
1158 	/* Check controller's lock status */
1159 	val = readl(ispi->base + HSFSTS_CTL);
1160 	ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1161 
1162 	if (ispi->locked && ispi->sregs) {
1163 		/*
1164 		 * BIOS programs allowed opcodes and then locks down the
1165 		 * register. So read back what opcodes it decided to support.
1166 		 * That's the set we are going to support as well.
1167 		 */
1168 		opmenu0 = readl(ispi->sregs + OPMENU0);
1169 		opmenu1 = readl(ispi->sregs + OPMENU1);
1170 
1171 		if (opmenu0 && opmenu1) {
1172 			for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1173 				ispi->opcodes[i] = opmenu0 >> i * 8;
1174 				ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1175 			}
1176 		}
1177 	}
1178 
1179 	if (erase_64k) {
1180 		dev_dbg(ispi->dev, "Using erase_64k memory operations");
1181 		ispi->mem_ops = erase_64k_mem_ops;
1182 	} else {
1183 		dev_dbg(ispi->dev, "Using generic memory operations");
1184 		ispi->mem_ops = generic_mem_ops;
1185 	}
1186 
1187 	intel_spi_dump_regs(ispi);
1188 	return 0;
1189 }
1190 
1191 static bool intel_spi_is_protected(const struct intel_spi *ispi,
1192 				   unsigned int base, unsigned int limit)
1193 {
1194 	int i;
1195 
1196 	for (i = 0; i < ispi->pr_num; i++) {
1197 		u32 pr_base, pr_limit, pr_value;
1198 
1199 		pr_value = readl(ispi->pregs + PR(i));
1200 		if (!(pr_value & (PR_WPE | PR_RPE)))
1201 			continue;
1202 
1203 		pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1204 		pr_base = pr_value & PR_BASE_MASK;
1205 
1206 		if (pr_base >= base && pr_limit <= limit)
1207 			return true;
1208 	}
1209 
1210 	return false;
1211 }
1212 
1213 /*
1214  * There will be a single partition holding all enabled flash regions. We
1215  * call this "BIOS".
1216  */
1217 static void intel_spi_fill_partition(struct intel_spi *ispi,
1218 				     struct mtd_partition *part)
1219 {
1220 	u64 end;
1221 	int i;
1222 
1223 	memset(part, 0, sizeof(*part));
1224 
1225 	/* Start from the mandatory descriptor region */
1226 	part->size = 4096;
1227 	part->name = "BIOS";
1228 
1229 	/*
1230 	 * Now try to find where this partition ends based on the flash
1231 	 * region registers.
1232 	 */
1233 	for (i = 1; i < ispi->nregions; i++) {
1234 		u32 region, base, limit;
1235 
1236 		region = readl(ispi->base + FREG(i));
1237 		base = region & FREG_BASE_MASK;
1238 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1239 
1240 		if (base >= limit || limit == 0)
1241 			continue;
1242 
1243 		/*
1244 		 * If any of the regions have protection bits set, make the
1245 		 * whole partition read-only to be on the safe side.
1246 		 *
1247 		 * Also if the user did not ask the chip to be writeable
1248 		 * mask the bit too.
1249 		 */
1250 		if (!writeable || intel_spi_is_protected(ispi, base, limit))
1251 			part->mask_flags |= MTD_WRITEABLE;
1252 
1253 		end = (limit << 12) + 4096;
1254 		if (end > part->size)
1255 			part->size = end;
1256 	}
1257 }
1258 
1259 static int intel_spi_read_desc(struct intel_spi *ispi)
1260 {
1261 	struct spi_mem_op op =
1262 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
1263 			   SPI_MEM_OP_ADDR(3, 0, 0),
1264 			   SPI_MEM_OP_NO_DUMMY,
1265 			   SPI_MEM_OP_DATA_IN(0, NULL, 0));
1266 	u32 buf[2], nc, fcba, flcomp;
1267 	ssize_t ret;
1268 
1269 	op.addr.val = 0x10;
1270 	op.data.buf.in = buf;
1271 	op.data.nbytes = sizeof(buf);
1272 
1273 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1274 	if (ret) {
1275 		dev_warn(ispi->dev, "failed to read descriptor\n");
1276 		return ret;
1277 	}
1278 
1279 	dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
1280 	dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
1281 
1282 	if (buf[0] != FLVALSIG_MAGIC) {
1283 		dev_warn(ispi->dev, "descriptor signature not valid\n");
1284 		return -ENODEV;
1285 	}
1286 
1287 	fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
1288 	dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
1289 
1290 	op.addr.val = fcba;
1291 	op.data.buf.in = &flcomp;
1292 	op.data.nbytes = sizeof(flcomp);
1293 
1294 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1295 	if (ret) {
1296 		dev_warn(ispi->dev, "failed to read FLCOMP\n");
1297 		return -ENODEV;
1298 	}
1299 
1300 	dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
1301 
1302 	switch (flcomp & FLCOMP_C0DEN_MASK) {
1303 	case FLCOMP_C0DEN_512K:
1304 		ispi->chip0_size = SZ_512K;
1305 		break;
1306 	case FLCOMP_C0DEN_1M:
1307 		ispi->chip0_size = SZ_1M;
1308 		break;
1309 	case FLCOMP_C0DEN_2M:
1310 		ispi->chip0_size = SZ_2M;
1311 		break;
1312 	case FLCOMP_C0DEN_4M:
1313 		ispi->chip0_size = SZ_4M;
1314 		break;
1315 	case FLCOMP_C0DEN_8M:
1316 		ispi->chip0_size = SZ_8M;
1317 		break;
1318 	case FLCOMP_C0DEN_16M:
1319 		ispi->chip0_size = SZ_16M;
1320 		break;
1321 	case FLCOMP_C0DEN_32M:
1322 		ispi->chip0_size = SZ_32M;
1323 		break;
1324 	case FLCOMP_C0DEN_64M:
1325 		ispi->chip0_size = SZ_64M;
1326 		break;
1327 	default:
1328 		return -EINVAL;
1329 	}
1330 
1331 	dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
1332 
1333 	nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
1334 	if (!nc)
1335 		ispi->master->num_chipselect = 1;
1336 	else if (nc == 1)
1337 		ispi->master->num_chipselect = 2;
1338 	else
1339 		return -EINVAL;
1340 
1341 	dev_dbg(ispi->dev, "%u flash components found\n",
1342 		ispi->master->num_chipselect);
1343 	return 0;
1344 }
1345 
1346 static int intel_spi_populate_chip(struct intel_spi *ispi)
1347 {
1348 	struct flash_platform_data *pdata;
1349 	struct spi_board_info chip;
1350 	int ret;
1351 
1352 	pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1353 	if (!pdata)
1354 		return -ENOMEM;
1355 
1356 	pdata->nr_parts = 1;
1357 	pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
1358 				    sizeof(*pdata->parts), GFP_KERNEL);
1359 	if (!pdata->parts)
1360 		return -ENOMEM;
1361 
1362 	intel_spi_fill_partition(ispi, pdata->parts);
1363 
1364 	memset(&chip, 0, sizeof(chip));
1365 	snprintf(chip.modalias, 8, "spi-nor");
1366 	chip.platform_data = pdata;
1367 
1368 	if (!spi_new_device(ispi->master, &chip))
1369 		return -ENODEV;
1370 
1371 	ret = intel_spi_read_desc(ispi);
1372 	if (ret)
1373 		return ret;
1374 
1375 	/* Add the second chip if present */
1376 	if (ispi->master->num_chipselect < 2)
1377 		return 0;
1378 
1379 	chip.platform_data = NULL;
1380 	chip.chip_select = 1;
1381 
1382 	if (!spi_new_device(ispi->master, &chip))
1383 		return -ENODEV;
1384 	return 0;
1385 }
1386 
1387 /**
1388  * intel_spi_probe() - Probe the Intel SPI flash controller
1389  * @dev: Pointer to the parent device
1390  * @mem: MMIO resource
1391  * @info: Platform specific information
1392  *
1393  * Probes Intel SPI flash controller and creates the flash chip device.
1394  * Returns %0 on success and negative errno in case of failure.
1395  */
1396 int intel_spi_probe(struct device *dev, struct resource *mem,
1397 		    const struct intel_spi_boardinfo *info)
1398 {
1399 	struct spi_controller *master;
1400 	struct intel_spi *ispi;
1401 	int ret;
1402 
1403 	master = devm_spi_alloc_master(dev, sizeof(*ispi));
1404 	if (!master)
1405 		return -ENOMEM;
1406 
1407 	master->mem_ops = &intel_spi_mem_ops;
1408 
1409 	ispi = spi_master_get_devdata(master);
1410 
1411 	ispi->base = devm_ioremap_resource(dev, mem);
1412 	if (IS_ERR(ispi->base))
1413 		return PTR_ERR(ispi->base);
1414 
1415 	ispi->dev = dev;
1416 	ispi->master = master;
1417 	ispi->info = info;
1418 
1419 	ret = intel_spi_init(ispi);
1420 	if (ret)
1421 		return ret;
1422 
1423 	ret = devm_spi_register_master(dev, master);
1424 	if (ret)
1425 		return ret;
1426 
1427 	return intel_spi_populate_chip(ispi);
1428 }
1429 EXPORT_SYMBOL_GPL(intel_spi_probe);
1430 
1431 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1432 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1433 MODULE_LICENSE("GPL v2");
1434