xref: /openbmc/linux/drivers/spi/spi-intel.c (revision 43f173e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel PCH/PCU SPI flash driver.
4  *
5  * Copyright (C) 2016 - 2022, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8 
9 #include <linux/iopoll.h>
10 #include <linux/module.h>
11 
12 #include <linux/mtd/partitions.h>
13 #include <linux/mtd/spi-nor.h>
14 
15 #include <linux/spi/flash.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 
19 #include "spi-intel.h"
20 
21 /* Offsets are from @ispi->base */
22 #define BFPREG				0x00
23 
24 #define HSFSTS_CTL			0x04
25 #define HSFSTS_CTL_FSMIE		BIT(31)
26 #define HSFSTS_CTL_FDBC_SHIFT		24
27 #define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT)
28 
29 #define HSFSTS_CTL_FCYCLE_SHIFT		17
30 #define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31 /* HW sequencer opcodes */
32 #define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
39 
40 #define HSFSTS_CTL_FGO			BIT(16)
41 #define HSFSTS_CTL_FLOCKDN		BIT(15)
42 #define HSFSTS_CTL_FDV			BIT(14)
43 #define HSFSTS_CTL_SCIP			BIT(5)
44 #define HSFSTS_CTL_AEL			BIT(2)
45 #define HSFSTS_CTL_FCERR		BIT(1)
46 #define HSFSTS_CTL_FDONE		BIT(0)
47 
48 #define FADDR				0x08
49 #define DLOCK				0x0c
50 #define FDATA(n)			(0x10 + ((n) * 4))
51 
52 #define FRACC				0x50
53 
54 #define FREG(n)				(0x54 + ((n) * 4))
55 #define FREG_BASE_MASK			0x3fff
56 #define FREG_LIMIT_SHIFT		16
57 #define FREG_LIMIT_MASK			(0x03fff << FREG_LIMIT_SHIFT)
58 
59 /* Offset is from @ispi->pregs */
60 #define PR(n)				((n) * 4)
61 #define PR_WPE				BIT(31)
62 #define PR_LIMIT_SHIFT			16
63 #define PR_LIMIT_MASK			(0x3fff << PR_LIMIT_SHIFT)
64 #define PR_RPE				BIT(15)
65 #define PR_BASE_MASK			0x3fff
66 
67 /* Offsets are from @ispi->sregs */
68 #define SSFSTS_CTL			0x00
69 #define SSFSTS_CTL_FSMIE		BIT(23)
70 #define SSFSTS_CTL_DS			BIT(22)
71 #define SSFSTS_CTL_DBC_SHIFT		16
72 #define SSFSTS_CTL_SPOP			BIT(11)
73 #define SSFSTS_CTL_ACS			BIT(10)
74 #define SSFSTS_CTL_SCGO			BIT(9)
75 #define SSFSTS_CTL_COP_SHIFT		12
76 #define SSFSTS_CTL_FRS			BIT(7)
77 #define SSFSTS_CTL_DOFRS		BIT(6)
78 #define SSFSTS_CTL_AEL			BIT(4)
79 #define SSFSTS_CTL_FCERR		BIT(3)
80 #define SSFSTS_CTL_FDONE		BIT(2)
81 #define SSFSTS_CTL_SCIP			BIT(0)
82 
83 #define PREOP_OPTYPE			0x04
84 #define OPMENU0				0x08
85 #define OPMENU1				0x0c
86 
87 #define OPTYPE_READ_NO_ADDR		0
88 #define OPTYPE_WRITE_NO_ADDR		1
89 #define OPTYPE_READ_WITH_ADDR		2
90 #define OPTYPE_WRITE_WITH_ADDR		3
91 
92 /* CPU specifics */
93 #define BYT_PR				0x74
94 #define BYT_SSFSTS_CTL			0x90
95 #define BYT_FREG_NUM			5
96 #define BYT_PR_NUM			5
97 
98 #define LPT_PR				0x74
99 #define LPT_SSFSTS_CTL			0x90
100 #define LPT_FREG_NUM			5
101 #define LPT_PR_NUM			5
102 
103 #define BXT_PR				0x84
104 #define BXT_SSFSTS_CTL			0xa0
105 #define BXT_FREG_NUM			12
106 #define BXT_PR_NUM			6
107 
108 #define CNL_PR				0x84
109 #define CNL_FREG_NUM			6
110 #define CNL_PR_NUM			5
111 
112 #define LVSCC				0xc4
113 #define UVSCC				0xc8
114 #define ERASE_OPCODE_SHIFT		8
115 #define ERASE_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
116 #define ERASE_64K_OPCODE_SHIFT		16
117 #define ERASE_64K_OPCODE_MASK		(0xff << ERASE_64K_OPCODE_SHIFT)
118 
119 /* Flash descriptor fields */
120 #define FLVALSIG_MAGIC			0x0ff0a55a
121 #define FLMAP0_NC_MASK			GENMASK(9, 8)
122 #define FLMAP0_NC_SHIFT			8
123 #define FLMAP0_FCBA_MASK		GENMASK(7, 0)
124 
125 #define FLCOMP_C0DEN_MASK		GENMASK(3, 0)
126 #define FLCOMP_C0DEN_512K		0x00
127 #define FLCOMP_C0DEN_1M			0x01
128 #define FLCOMP_C0DEN_2M			0x02
129 #define FLCOMP_C0DEN_4M			0x03
130 #define FLCOMP_C0DEN_8M			0x04
131 #define FLCOMP_C0DEN_16M		0x05
132 #define FLCOMP_C0DEN_32M		0x06
133 #define FLCOMP_C0DEN_64M		0x07
134 
135 #define INTEL_SPI_TIMEOUT		5000 /* ms */
136 #define INTEL_SPI_FIFO_SZ		64
137 
138 /**
139  * struct intel_spi - Driver private data
140  * @dev: Device pointer
141  * @info: Pointer to board specific info
142  * @base: Beginning of MMIO space
143  * @pregs: Start of protection registers
144  * @sregs: Start of software sequencer registers
145  * @master: Pointer to the SPI controller structure
146  * @nregions: Maximum number of regions
147  * @pr_num: Maximum number of protected range registers
148  * @chip0_size: Size of the first flash chip in bytes
149  * @locked: Is SPI setting locked
150  * @swseq_reg: Use SW sequencer in register reads/writes
151  * @swseq_erase: Use SW sequencer in erase operation
152  * @atomic_preopcode: Holds preopcode when atomic sequence is requested
153  * @opcodes: Opcodes which are supported. This are programmed by BIOS
154  *           before it locks down the controller.
155  * @mem_ops: Pointer to SPI MEM ops supported by the controller
156  */
157 struct intel_spi {
158 	struct device *dev;
159 	const struct intel_spi_boardinfo *info;
160 	void __iomem *base;
161 	void __iomem *pregs;
162 	void __iomem *sregs;
163 	struct spi_controller *master;
164 	size_t nregions;
165 	size_t pr_num;
166 	size_t chip0_size;
167 	bool locked;
168 	bool swseq_reg;
169 	bool swseq_erase;
170 	u8 atomic_preopcode;
171 	u8 opcodes[8];
172 	const struct intel_spi_mem_op *mem_ops;
173 };
174 
175 struct intel_spi_mem_op {
176 	struct spi_mem_op mem_op;
177 	u32 replacement_op;
178 	int (*exec_op)(struct intel_spi *ispi,
179 		       const struct spi_mem *mem,
180 		       const struct intel_spi_mem_op *iop,
181 		       const struct spi_mem_op *op);
182 };
183 
184 static bool writeable;
185 module_param(writeable, bool, 0);
186 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
187 
188 static void intel_spi_dump_regs(struct intel_spi *ispi)
189 {
190 	u32 value;
191 	int i;
192 
193 	dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
194 
195 	value = readl(ispi->base + HSFSTS_CTL);
196 	dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
197 	if (value & HSFSTS_CTL_FLOCKDN)
198 		dev_dbg(ispi->dev, "-> Locked\n");
199 
200 	dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
201 	dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
202 
203 	for (i = 0; i < 16; i++)
204 		dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
205 			i, readl(ispi->base + FDATA(i)));
206 
207 	dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
208 
209 	for (i = 0; i < ispi->nregions; i++)
210 		dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
211 			readl(ispi->base + FREG(i)));
212 	for (i = 0; i < ispi->pr_num; i++)
213 		dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
214 			readl(ispi->pregs + PR(i)));
215 
216 	if (ispi->sregs) {
217 		value = readl(ispi->sregs + SSFSTS_CTL);
218 		dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
219 		dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
220 			readl(ispi->sregs + PREOP_OPTYPE));
221 		dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
222 			readl(ispi->sregs + OPMENU0));
223 		dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
224 			readl(ispi->sregs + OPMENU1));
225 	}
226 
227 	dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
228 	dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
229 
230 	dev_dbg(ispi->dev, "Protected regions:\n");
231 	for (i = 0; i < ispi->pr_num; i++) {
232 		u32 base, limit;
233 
234 		value = readl(ispi->pregs + PR(i));
235 		if (!(value & (PR_WPE | PR_RPE)))
236 			continue;
237 
238 		limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
239 		base = value & PR_BASE_MASK;
240 
241 		dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
242 			i, base << 12, (limit << 12) | 0xfff,
243 			value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
244 	}
245 
246 	dev_dbg(ispi->dev, "Flash regions:\n");
247 	for (i = 0; i < ispi->nregions; i++) {
248 		u32 region, base, limit;
249 
250 		region = readl(ispi->base + FREG(i));
251 		base = region & FREG_BASE_MASK;
252 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
253 
254 		if (base >= limit || (i > 0 && limit == 0))
255 			dev_dbg(ispi->dev, " %02d disabled\n", i);
256 		else
257 			dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
258 				i, base << 12, (limit << 12) | 0xfff);
259 	}
260 
261 	dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
262 		ispi->swseq_reg ? 'S' : 'H');
263 	dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
264 		ispi->swseq_erase ? 'S' : 'H');
265 }
266 
267 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
268 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
269 {
270 	size_t bytes;
271 	int i = 0;
272 
273 	if (size > INTEL_SPI_FIFO_SZ)
274 		return -EINVAL;
275 
276 	while (size > 0) {
277 		bytes = min_t(size_t, size, 4);
278 		memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
279 		size -= bytes;
280 		buf += bytes;
281 		i++;
282 	}
283 
284 	return 0;
285 }
286 
287 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
288 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
289 				 size_t size)
290 {
291 	size_t bytes;
292 	int i = 0;
293 
294 	if (size > INTEL_SPI_FIFO_SZ)
295 		return -EINVAL;
296 
297 	while (size > 0) {
298 		bytes = min_t(size_t, size, 4);
299 		memcpy_toio(ispi->base + FDATA(i), buf, bytes);
300 		size -= bytes;
301 		buf += bytes;
302 		i++;
303 	}
304 
305 	return 0;
306 }
307 
308 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
309 {
310 	u32 val;
311 
312 	return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
313 				  !(val & HSFSTS_CTL_SCIP), 0,
314 				  INTEL_SPI_TIMEOUT * 1000);
315 }
316 
317 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
318 {
319 	u32 val;
320 
321 	return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
322 				  !(val & SSFSTS_CTL_SCIP), 0,
323 				  INTEL_SPI_TIMEOUT * 1000);
324 }
325 
326 static bool intel_spi_set_writeable(struct intel_spi *ispi)
327 {
328 	if (!ispi->info->set_writeable)
329 		return false;
330 
331 	return ispi->info->set_writeable(ispi->base, ispi->info->data);
332 }
333 
334 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
335 {
336 	int i;
337 	int preop;
338 
339 	if (ispi->locked) {
340 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
341 			if (ispi->opcodes[i] == opcode)
342 				return i;
343 
344 		return -EINVAL;
345 	}
346 
347 	/* The lock is off, so just use index 0 */
348 	writel(opcode, ispi->sregs + OPMENU0);
349 	preop = readw(ispi->sregs + PREOP_OPTYPE);
350 	writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
351 
352 	return 0;
353 }
354 
355 static int intel_spi_hw_cycle(struct intel_spi *ispi,
356 			      const struct intel_spi_mem_op *iop, size_t len)
357 {
358 	u32 val, status;
359 	int ret;
360 
361 	if (!iop->replacement_op)
362 		return -EINVAL;
363 
364 	val = readl(ispi->base + HSFSTS_CTL);
365 	val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
366 	val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
367 	val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
368 	val |= HSFSTS_CTL_FGO;
369 	val |= iop->replacement_op;
370 	writel(val, ispi->base + HSFSTS_CTL);
371 
372 	ret = intel_spi_wait_hw_busy(ispi);
373 	if (ret)
374 		return ret;
375 
376 	status = readl(ispi->base + HSFSTS_CTL);
377 	if (status & HSFSTS_CTL_FCERR)
378 		return -EIO;
379 	else if (status & HSFSTS_CTL_AEL)
380 		return -EACCES;
381 
382 	return 0;
383 }
384 
385 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
386 			      int optype)
387 {
388 	u32 val = 0, status;
389 	u8 atomic_preopcode;
390 	int ret;
391 
392 	ret = intel_spi_opcode_index(ispi, opcode, optype);
393 	if (ret < 0)
394 		return ret;
395 
396 	/*
397 	 * Always clear it after each SW sequencer operation regardless
398 	 * of whether it is successful or not.
399 	 */
400 	atomic_preopcode = ispi->atomic_preopcode;
401 	ispi->atomic_preopcode = 0;
402 
403 	/* Only mark 'Data Cycle' bit when there is data to be transferred */
404 	if (len > 0)
405 		val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
406 	val |= ret << SSFSTS_CTL_COP_SHIFT;
407 	val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
408 	val |= SSFSTS_CTL_SCGO;
409 	if (atomic_preopcode) {
410 		u16 preop;
411 
412 		switch (optype) {
413 		case OPTYPE_WRITE_NO_ADDR:
414 		case OPTYPE_WRITE_WITH_ADDR:
415 			/* Pick matching preopcode for the atomic sequence */
416 			preop = readw(ispi->sregs + PREOP_OPTYPE);
417 			if ((preop & 0xff) == atomic_preopcode)
418 				; /* Do nothing */
419 			else if ((preop >> 8) == atomic_preopcode)
420 				val |= SSFSTS_CTL_SPOP;
421 			else
422 				return -EINVAL;
423 
424 			/* Enable atomic sequence */
425 			val |= SSFSTS_CTL_ACS;
426 			break;
427 
428 		default:
429 			return -EINVAL;
430 		}
431 	}
432 	writel(val, ispi->sregs + SSFSTS_CTL);
433 
434 	ret = intel_spi_wait_sw_busy(ispi);
435 	if (ret)
436 		return ret;
437 
438 	status = readl(ispi->sregs + SSFSTS_CTL);
439 	if (status & SSFSTS_CTL_FCERR)
440 		return -EIO;
441 	else if (status & SSFSTS_CTL_AEL)
442 		return -EACCES;
443 
444 	return 0;
445 }
446 
447 static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
448 			       const struct spi_mem *mem)
449 {
450 	/* Pick up the correct start address */
451 	if (!mem)
452 		return 0;
453 	return mem->spi->chip_select == 1 ? ispi->chip0_size : 0;
454 }
455 
456 static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
457 			      const struct intel_spi_mem_op *iop,
458 			      const struct spi_mem_op *op)
459 {
460 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
461 	size_t nbytes = op->data.nbytes;
462 	u8 opcode = op->cmd.opcode;
463 	int ret;
464 
465 	writel(addr, ispi->base + FADDR);
466 
467 	if (ispi->swseq_reg)
468 		ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
469 					 OPTYPE_READ_NO_ADDR);
470 	else
471 		ret = intel_spi_hw_cycle(ispi, iop, nbytes);
472 
473 	if (ret)
474 		return ret;
475 
476 	return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
477 }
478 
479 static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
480 			       const struct intel_spi_mem_op *iop,
481 			       const struct spi_mem_op *op)
482 {
483 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
484 	size_t nbytes = op->data.nbytes;
485 	u8 opcode = op->cmd.opcode;
486 	int ret;
487 
488 	/*
489 	 * This is handled with atomic operation and preop code in Intel
490 	 * controller so we only verify that it is available. If the
491 	 * controller is not locked, program the opcode to the PREOP
492 	 * register for later use.
493 	 *
494 	 * When hardware sequencer is used there is no need to program
495 	 * any opcodes (it handles them automatically as part of a command).
496 	 */
497 	if (opcode == SPINOR_OP_WREN) {
498 		u16 preop;
499 
500 		if (!ispi->swseq_reg)
501 			return 0;
502 
503 		preop = readw(ispi->sregs + PREOP_OPTYPE);
504 		if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
505 			if (ispi->locked)
506 				return -EINVAL;
507 			writel(opcode, ispi->sregs + PREOP_OPTYPE);
508 		}
509 
510 		/*
511 		 * This enables atomic sequence on next SW sycle. Will
512 		 * be cleared after next operation.
513 		 */
514 		ispi->atomic_preopcode = opcode;
515 		return 0;
516 	}
517 
518 	/*
519 	 * We hope that HW sequencer will do the right thing automatically and
520 	 * with the SW sequencer we cannot use preopcode anyway, so just ignore
521 	 * the Write Disable operation and pretend it was completed
522 	 * successfully.
523 	 */
524 	if (opcode == SPINOR_OP_WRDI)
525 		return 0;
526 
527 	writel(addr, ispi->base + FADDR);
528 
529 	/* Write the value beforehand */
530 	ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
531 	if (ret)
532 		return ret;
533 
534 	if (ispi->swseq_reg)
535 		return intel_spi_sw_cycle(ispi, opcode, nbytes,
536 					  OPTYPE_WRITE_NO_ADDR);
537 	return intel_spi_hw_cycle(ispi, iop, nbytes);
538 }
539 
540 static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
541 			  const struct intel_spi_mem_op *iop,
542 			  const struct spi_mem_op *op)
543 {
544 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
545 	size_t block_size, nbytes = op->data.nbytes;
546 	void *read_buf = op->data.buf.in;
547 	u32 val, status;
548 	int ret;
549 
550 	/*
551 	 * Atomic sequence is not expected with HW sequencer reads. Make
552 	 * sure it is cleared regardless.
553 	 */
554 	if (WARN_ON_ONCE(ispi->atomic_preopcode))
555 		ispi->atomic_preopcode = 0;
556 
557 	while (nbytes > 0) {
558 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
559 
560 		/* Read cannot cross 4K boundary */
561 		block_size = min_t(loff_t, addr + block_size,
562 				   round_up(addr + 1, SZ_4K)) - addr;
563 
564 		writel(addr, ispi->base + FADDR);
565 
566 		val = readl(ispi->base + HSFSTS_CTL);
567 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
568 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
569 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
570 		val |= HSFSTS_CTL_FCYCLE_READ;
571 		val |= HSFSTS_CTL_FGO;
572 		writel(val, ispi->base + HSFSTS_CTL);
573 
574 		ret = intel_spi_wait_hw_busy(ispi);
575 		if (ret)
576 			return ret;
577 
578 		status = readl(ispi->base + HSFSTS_CTL);
579 		if (status & HSFSTS_CTL_FCERR)
580 			ret = -EIO;
581 		else if (status & HSFSTS_CTL_AEL)
582 			ret = -EACCES;
583 
584 		if (ret < 0) {
585 			dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
586 			return ret;
587 		}
588 
589 		ret = intel_spi_read_block(ispi, read_buf, block_size);
590 		if (ret)
591 			return ret;
592 
593 		nbytes -= block_size;
594 		addr += block_size;
595 		read_buf += block_size;
596 	}
597 
598 	return 0;
599 }
600 
601 static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
602 			   const struct intel_spi_mem_op *iop,
603 			   const struct spi_mem_op *op)
604 {
605 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
606 	size_t block_size, nbytes = op->data.nbytes;
607 	const void *write_buf = op->data.buf.out;
608 	u32 val, status;
609 	int ret;
610 
611 	/* Not needed with HW sequencer write, make sure it is cleared */
612 	ispi->atomic_preopcode = 0;
613 
614 	while (nbytes > 0) {
615 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
616 
617 		/* Write cannot cross 4K boundary */
618 		block_size = min_t(loff_t, addr + block_size,
619 				   round_up(addr + 1, SZ_4K)) - addr;
620 
621 		writel(addr, ispi->base + FADDR);
622 
623 		val = readl(ispi->base + HSFSTS_CTL);
624 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
625 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
626 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
627 		val |= HSFSTS_CTL_FCYCLE_WRITE;
628 
629 		ret = intel_spi_write_block(ispi, write_buf, block_size);
630 		if (ret) {
631 			dev_err(ispi->dev, "failed to write block\n");
632 			return ret;
633 		}
634 
635 		/* Start the write now */
636 		val |= HSFSTS_CTL_FGO;
637 		writel(val, ispi->base + HSFSTS_CTL);
638 
639 		ret = intel_spi_wait_hw_busy(ispi);
640 		if (ret) {
641 			dev_err(ispi->dev, "timeout\n");
642 			return ret;
643 		}
644 
645 		status = readl(ispi->base + HSFSTS_CTL);
646 		if (status & HSFSTS_CTL_FCERR)
647 			ret = -EIO;
648 		else if (status & HSFSTS_CTL_AEL)
649 			ret = -EACCES;
650 
651 		if (ret < 0) {
652 			dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
653 			return ret;
654 		}
655 
656 		nbytes -= block_size;
657 		addr += block_size;
658 		write_buf += block_size;
659 	}
660 
661 	return 0;
662 }
663 
664 static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
665 			   const struct intel_spi_mem_op *iop,
666 			   const struct spi_mem_op *op)
667 {
668 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
669 	u8 opcode = op->cmd.opcode;
670 	u32 val, status;
671 	int ret;
672 
673 	writel(addr, ispi->base + FADDR);
674 
675 	if (ispi->swseq_erase)
676 		return intel_spi_sw_cycle(ispi, opcode, 0,
677 					  OPTYPE_WRITE_WITH_ADDR);
678 
679 	/* Not needed with HW sequencer erase, make sure it is cleared */
680 	ispi->atomic_preopcode = 0;
681 
682 	val = readl(ispi->base + HSFSTS_CTL);
683 	val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
684 	val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
685 	val |= HSFSTS_CTL_FGO;
686 	val |= iop->replacement_op;
687 	writel(val, ispi->base + HSFSTS_CTL);
688 
689 	ret = intel_spi_wait_hw_busy(ispi);
690 	if (ret)
691 		return ret;
692 
693 	status = readl(ispi->base + HSFSTS_CTL);
694 	if (status & HSFSTS_CTL_FCERR)
695 		return -EIO;
696 	if (status & HSFSTS_CTL_AEL)
697 		return -EACCES;
698 
699 	return 0;
700 }
701 
702 static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
703 {
704 	op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ);
705 	return 0;
706 }
707 
708 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
709 				 const struct spi_mem_op *op)
710 {
711 	if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
712 	    iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
713 	    iop->mem_op.cmd.dtr != op->cmd.dtr ||
714 	    iop->mem_op.cmd.opcode != op->cmd.opcode)
715 		return false;
716 
717 	if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
718 	    iop->mem_op.addr.dtr != op->addr.dtr)
719 		return false;
720 
721 	if (iop->mem_op.data.dir != op->data.dir ||
722 	    iop->mem_op.data.dtr != op->data.dtr)
723 		return false;
724 
725 	if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
726 		if (iop->mem_op.data.buswidth != op->data.buswidth)
727 			return false;
728 	}
729 
730 	return true;
731 }
732 
733 static const struct intel_spi_mem_op *
734 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
735 {
736 	const struct intel_spi_mem_op *iop;
737 
738 	for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
739 		if (intel_spi_cmp_mem_op(iop, op))
740 			break;
741 	}
742 
743 	return iop->mem_op.cmd.opcode ? iop : NULL;
744 }
745 
746 static bool intel_spi_supports_mem_op(struct spi_mem *mem,
747 				      const struct spi_mem_op *op)
748 {
749 	struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
750 	const struct intel_spi_mem_op *iop;
751 
752 	iop = intel_spi_match_mem_op(ispi, op);
753 	if (!iop) {
754 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
755 		return false;
756 	}
757 
758 	/*
759 	 * For software sequencer check that the opcode is actually
760 	 * present in the opmenu if it is locked.
761 	 */
762 	if (ispi->swseq_reg && ispi->locked) {
763 		int i;
764 
765 		/* Check if it is in the locked opcodes list */
766 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
767 			if (ispi->opcodes[i] == op->cmd.opcode)
768 				return true;
769 		}
770 
771 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
772 		return false;
773 	}
774 
775 	return true;
776 }
777 
778 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
779 {
780 	struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
781 	const struct intel_spi_mem_op *iop;
782 
783 	iop = intel_spi_match_mem_op(ispi, op);
784 	if (!iop)
785 		return -EOPNOTSUPP;
786 
787 	return iop->exec_op(ispi, mem, iop, op);
788 }
789 
790 static const char *intel_spi_get_name(struct spi_mem *mem)
791 {
792 	const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master);
793 
794 	/*
795 	 * Return name of the flash controller device to be compatible
796 	 * with the MTD version.
797 	 */
798 	return dev_name(ispi->dev);
799 }
800 
801 static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
802 {
803 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
804 	const struct intel_spi_mem_op *iop;
805 
806 	iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
807 	if (!iop)
808 		return -EOPNOTSUPP;
809 
810 	desc->priv = (void *)iop;
811 	return 0;
812 }
813 
814 static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
815 				     size_t len, void *buf)
816 {
817 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
818 	const struct intel_spi_mem_op *iop = desc->priv;
819 	struct spi_mem_op op = desc->info.op_tmpl;
820 	int ret;
821 
822 	/* Fill in the gaps */
823 	op.addr.val = offs;
824 	op.data.nbytes = len;
825 	op.data.buf.in = buf;
826 
827 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
828 	return ret ? ret : len;
829 }
830 
831 static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
832 				      size_t len, const void *buf)
833 {
834 	struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master);
835 	const struct intel_spi_mem_op *iop = desc->priv;
836 	struct spi_mem_op op = desc->info.op_tmpl;
837 	int ret;
838 
839 	op.addr.val = offs;
840 	op.data.nbytes = len;
841 	op.data.buf.out = buf;
842 
843 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
844 	return ret ? ret : len;
845 }
846 
847 static const struct spi_controller_mem_ops intel_spi_mem_ops = {
848 	.adjust_op_size = intel_spi_adjust_op_size,
849 	.supports_op = intel_spi_supports_mem_op,
850 	.exec_op = intel_spi_exec_mem_op,
851 	.get_name = intel_spi_get_name,
852 	.dirmap_create = intel_spi_dirmap_create,
853 	.dirmap_read = intel_spi_dirmap_read,
854 	.dirmap_write = intel_spi_dirmap_write,
855 };
856 
857 #define INTEL_SPI_OP_ADDR(__nbytes)					\
858 	{								\
859 		.nbytes = __nbytes,					\
860 	}
861 
862 #define INTEL_SPI_OP_NO_DATA						\
863 	{								\
864 		.dir = SPI_MEM_NO_DATA,					\
865 	}
866 
867 #define INTEL_SPI_OP_DATA_IN(__buswidth)				\
868 	{								\
869 		.dir = SPI_MEM_DATA_IN,					\
870 		.buswidth = __buswidth,					\
871 	}
872 
873 #define INTEL_SPI_OP_DATA_OUT(__buswidth)				\
874 	{								\
875 		.dir = SPI_MEM_DATA_OUT,				\
876 		.buswidth = __buswidth,					\
877 	}
878 
879 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op)		\
880 	{								\
881 		.mem_op = {						\
882 			.cmd = __cmd,					\
883 			.addr = __addr,					\
884 			.data = __data,					\
885 		},							\
886 		.exec_op = __exec_op,					\
887 	}
888 
889 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl)	\
890 	{								\
891 		.mem_op = {						\
892 			.cmd = __cmd,					\
893 			.addr = __addr,					\
894 			.data = __data,					\
895 		},							\
896 		.exec_op = __exec_op,					\
897 		.replacement_op = __repl,				\
898 	}
899 
900 /*
901  * The controller handles pretty much everything internally based on the
902  * SFDP data but we want to make sure we only support the operations
903  * actually possible. Only check buswidth and transfer direction, the
904  * core validates data.
905  */
906 #define INTEL_SPI_GENERIC_OPS						\
907 	/* Status register operations */				\
908 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),	\
909 			      SPI_MEM_OP_NO_ADDR,			\
910 			      INTEL_SPI_OP_DATA_IN(1),			\
911 			      intel_spi_read_reg,			\
912 			      HSFSTS_CTL_FCYCLE_RDID),			\
913 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),	\
914 			      SPI_MEM_OP_NO_ADDR,			\
915 			      INTEL_SPI_OP_DATA_IN(1),			\
916 			      intel_spi_read_reg,			\
917 			      HSFSTS_CTL_FCYCLE_RDSR),			\
918 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),	\
919 			      SPI_MEM_OP_NO_ADDR,			\
920 			      INTEL_SPI_OP_DATA_OUT(1),			\
921 			      intel_spi_write_reg,			\
922 			      HSFSTS_CTL_FCYCLE_WRSR),			\
923 	/* Normal read */						\
924 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
925 			 INTEL_SPI_OP_ADDR(3),				\
926 			 INTEL_SPI_OP_DATA_IN(1),			\
927 			 intel_spi_read),				\
928 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
929 			 INTEL_SPI_OP_ADDR(3),				\
930 			 INTEL_SPI_OP_DATA_IN(2),			\
931 			 intel_spi_read),				\
932 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
933 			 INTEL_SPI_OP_ADDR(3),				\
934 			 INTEL_SPI_OP_DATA_IN(4),			\
935 			 intel_spi_read),				\
936 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
937 			 INTEL_SPI_OP_ADDR(4),				\
938 			 INTEL_SPI_OP_DATA_IN(1),			\
939 			 intel_spi_read),				\
940 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
941 			 INTEL_SPI_OP_ADDR(4),				\
942 			 INTEL_SPI_OP_DATA_IN(2),			\
943 			 intel_spi_read),				\
944 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
945 			 INTEL_SPI_OP_ADDR(4),				\
946 			 INTEL_SPI_OP_DATA_IN(4),			\
947 			 intel_spi_read),				\
948 	/* Fast read */							\
949 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
950 			 INTEL_SPI_OP_ADDR(3),				\
951 			 INTEL_SPI_OP_DATA_IN(1),			\
952 			 intel_spi_read),				\
953 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
954 			 INTEL_SPI_OP_ADDR(3),				\
955 			 INTEL_SPI_OP_DATA_IN(2),			\
956 			 intel_spi_read),				\
957 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
958 			 INTEL_SPI_OP_ADDR(3),				\
959 			 INTEL_SPI_OP_DATA_IN(4),			\
960 			 intel_spi_read),				\
961 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
962 			 INTEL_SPI_OP_ADDR(4),				\
963 			 INTEL_SPI_OP_DATA_IN(1),			\
964 			 intel_spi_read),				\
965 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
966 			 INTEL_SPI_OP_ADDR(4),				\
967 			 INTEL_SPI_OP_DATA_IN(2),			\
968 			 intel_spi_read),				\
969 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
970 			 INTEL_SPI_OP_ADDR(4),				\
971 			 INTEL_SPI_OP_DATA_IN(4),			\
972 			 intel_spi_read),				\
973 	/* Read with 4-byte address opcode */				\
974 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
975 			 INTEL_SPI_OP_ADDR(4),				\
976 			 INTEL_SPI_OP_DATA_IN(1),			\
977 			 intel_spi_read),				\
978 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
979 			 INTEL_SPI_OP_ADDR(4),				\
980 			 INTEL_SPI_OP_DATA_IN(2),			\
981 			 intel_spi_read),				\
982 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
983 			 INTEL_SPI_OP_ADDR(4),				\
984 			 INTEL_SPI_OP_DATA_IN(4),			\
985 			 intel_spi_read),				\
986 	/* Fast read with 4-byte address opcode */			\
987 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
988 			 INTEL_SPI_OP_ADDR(4),				\
989 			 INTEL_SPI_OP_DATA_IN(1),			\
990 			 intel_spi_read),				\
991 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
992 			 INTEL_SPI_OP_ADDR(4),				\
993 			 INTEL_SPI_OP_DATA_IN(2),			\
994 			 intel_spi_read),				\
995 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
996 			 INTEL_SPI_OP_ADDR(4),				\
997 			 INTEL_SPI_OP_DATA_IN(4),			\
998 			 intel_spi_read),				\
999 	/* Write operations */						\
1000 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1001 			 INTEL_SPI_OP_ADDR(3),				\
1002 			 INTEL_SPI_OP_DATA_OUT(1),			\
1003 			 intel_spi_write),				\
1004 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1005 			 INTEL_SPI_OP_ADDR(4),				\
1006 			 INTEL_SPI_OP_DATA_OUT(1),			\
1007 			 intel_spi_write),				\
1008 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1),		\
1009 			 INTEL_SPI_OP_ADDR(4),				\
1010 			 INTEL_SPI_OP_DATA_OUT(1),			\
1011 			 intel_spi_write),				\
1012 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),		\
1013 			 SPI_MEM_OP_NO_ADDR,				\
1014 			 SPI_MEM_OP_NO_DATA,				\
1015 			 intel_spi_write_reg),				\
1016 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),		\
1017 			 SPI_MEM_OP_NO_ADDR,				\
1018 			 SPI_MEM_OP_NO_DATA,				\
1019 			 intel_spi_write_reg),				\
1020 	/* Erase operations */						\
1021 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1022 			      INTEL_SPI_OP_ADDR(3),			\
1023 			      SPI_MEM_OP_NO_DATA,			\
1024 			      intel_spi_erase,				\
1025 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1026 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1027 			      INTEL_SPI_OP_ADDR(4),			\
1028 			      SPI_MEM_OP_NO_DATA,			\
1029 			      intel_spi_erase,				\
1030 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1031 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1),	\
1032 			      INTEL_SPI_OP_ADDR(4),			\
1033 			      SPI_MEM_OP_NO_DATA,			\
1034 			      intel_spi_erase,				\
1035 			      HSFSTS_CTL_FCYCLE_ERASE)			\
1036 
1037 static const struct intel_spi_mem_op generic_mem_ops[] = {
1038 	INTEL_SPI_GENERIC_OPS,
1039 	{ },
1040 };
1041 
1042 static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
1043 	INTEL_SPI_GENERIC_OPS,
1044 	/* 64k sector erase operations */
1045 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1046 			      INTEL_SPI_OP_ADDR(3),
1047 			      SPI_MEM_OP_NO_DATA,
1048 			      intel_spi_erase,
1049 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1050 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1051 			      INTEL_SPI_OP_ADDR(4),
1052 			      SPI_MEM_OP_NO_DATA,
1053 			      intel_spi_erase,
1054 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1055 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
1056 			      INTEL_SPI_OP_ADDR(4),
1057 			      SPI_MEM_OP_NO_DATA,
1058 			      intel_spi_erase,
1059 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1060 	{ },
1061 };
1062 
1063 static int intel_spi_init(struct intel_spi *ispi)
1064 {
1065 	u32 opmenu0, opmenu1, lvscc, uvscc, val;
1066 	bool erase_64k = false;
1067 	int i;
1068 
1069 	switch (ispi->info->type) {
1070 	case INTEL_SPI_BYT:
1071 		ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1072 		ispi->pregs = ispi->base + BYT_PR;
1073 		ispi->nregions = BYT_FREG_NUM;
1074 		ispi->pr_num = BYT_PR_NUM;
1075 		ispi->swseq_reg = true;
1076 		break;
1077 
1078 	case INTEL_SPI_LPT:
1079 		ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1080 		ispi->pregs = ispi->base + LPT_PR;
1081 		ispi->nregions = LPT_FREG_NUM;
1082 		ispi->pr_num = LPT_PR_NUM;
1083 		ispi->swseq_reg = true;
1084 		break;
1085 
1086 	case INTEL_SPI_BXT:
1087 		ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1088 		ispi->pregs = ispi->base + BXT_PR;
1089 		ispi->nregions = BXT_FREG_NUM;
1090 		ispi->pr_num = BXT_PR_NUM;
1091 		erase_64k = true;
1092 		break;
1093 
1094 	case INTEL_SPI_CNL:
1095 		ispi->sregs = NULL;
1096 		ispi->pregs = ispi->base + CNL_PR;
1097 		ispi->nregions = CNL_FREG_NUM;
1098 		ispi->pr_num = CNL_PR_NUM;
1099 		erase_64k = true;
1100 		break;
1101 
1102 	default:
1103 		return -EINVAL;
1104 	}
1105 
1106 	/* Try to disable write protection if user asked to do so */
1107 	if (writeable && !intel_spi_set_writeable(ispi)) {
1108 		dev_warn(ispi->dev, "can't disable chip write protection\n");
1109 		writeable = false;
1110 	}
1111 
1112 	/* Disable #SMI generation from HW sequencer */
1113 	val = readl(ispi->base + HSFSTS_CTL);
1114 	val &= ~HSFSTS_CTL_FSMIE;
1115 	writel(val, ispi->base + HSFSTS_CTL);
1116 
1117 	/*
1118 	 * Determine whether erase operation should use HW or SW sequencer.
1119 	 *
1120 	 * The HW sequencer has a predefined list of opcodes, with only the
1121 	 * erase opcode being programmable in LVSCC and UVSCC registers.
1122 	 * If these registers don't contain a valid erase opcode, erase
1123 	 * cannot be done using HW sequencer.
1124 	 */
1125 	lvscc = readl(ispi->base + LVSCC);
1126 	uvscc = readl(ispi->base + UVSCC);
1127 	if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1128 		ispi->swseq_erase = true;
1129 	/* SPI controller on Intel BXT supports 64K erase opcode */
1130 	if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1131 		if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1132 		    !(uvscc & ERASE_64K_OPCODE_MASK))
1133 			erase_64k = false;
1134 
1135 	if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1136 		dev_err(ispi->dev, "software sequencer not supported, but required\n");
1137 		return -EINVAL;
1138 	}
1139 
1140 	/*
1141 	 * Some controllers can only do basic operations using hardware
1142 	 * sequencer. All other operations are supposed to be carried out
1143 	 * using software sequencer.
1144 	 */
1145 	if (ispi->swseq_reg) {
1146 		/* Disable #SMI generation from SW sequencer */
1147 		val = readl(ispi->sregs + SSFSTS_CTL);
1148 		val &= ~SSFSTS_CTL_FSMIE;
1149 		writel(val, ispi->sregs + SSFSTS_CTL);
1150 	}
1151 
1152 	/* Check controller's lock status */
1153 	val = readl(ispi->base + HSFSTS_CTL);
1154 	ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1155 
1156 	if (ispi->locked && ispi->sregs) {
1157 		/*
1158 		 * BIOS programs allowed opcodes and then locks down the
1159 		 * register. So read back what opcodes it decided to support.
1160 		 * That's the set we are going to support as well.
1161 		 */
1162 		opmenu0 = readl(ispi->sregs + OPMENU0);
1163 		opmenu1 = readl(ispi->sregs + OPMENU1);
1164 
1165 		if (opmenu0 && opmenu1) {
1166 			for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1167 				ispi->opcodes[i] = opmenu0 >> i * 8;
1168 				ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1169 			}
1170 		}
1171 	}
1172 
1173 	if (erase_64k) {
1174 		dev_dbg(ispi->dev, "Using erase_64k memory operations");
1175 		ispi->mem_ops = erase_64k_mem_ops;
1176 	} else {
1177 		dev_dbg(ispi->dev, "Using generic memory operations");
1178 		ispi->mem_ops = generic_mem_ops;
1179 	}
1180 
1181 	intel_spi_dump_regs(ispi);
1182 	return 0;
1183 }
1184 
1185 static bool intel_spi_is_protected(const struct intel_spi *ispi,
1186 				   unsigned int base, unsigned int limit)
1187 {
1188 	int i;
1189 
1190 	for (i = 0; i < ispi->pr_num; i++) {
1191 		u32 pr_base, pr_limit, pr_value;
1192 
1193 		pr_value = readl(ispi->pregs + PR(i));
1194 		if (!(pr_value & (PR_WPE | PR_RPE)))
1195 			continue;
1196 
1197 		pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1198 		pr_base = pr_value & PR_BASE_MASK;
1199 
1200 		if (pr_base >= base && pr_limit <= limit)
1201 			return true;
1202 	}
1203 
1204 	return false;
1205 }
1206 
1207 /*
1208  * There will be a single partition holding all enabled flash regions. We
1209  * call this "BIOS".
1210  */
1211 static void intel_spi_fill_partition(struct intel_spi *ispi,
1212 				     struct mtd_partition *part)
1213 {
1214 	u64 end;
1215 	int i;
1216 
1217 	memset(part, 0, sizeof(*part));
1218 
1219 	/* Start from the mandatory descriptor region */
1220 	part->size = 4096;
1221 	part->name = "BIOS";
1222 
1223 	/*
1224 	 * Now try to find where this partition ends based on the flash
1225 	 * region registers.
1226 	 */
1227 	for (i = 1; i < ispi->nregions; i++) {
1228 		u32 region, base, limit;
1229 
1230 		region = readl(ispi->base + FREG(i));
1231 		base = region & FREG_BASE_MASK;
1232 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1233 
1234 		if (base >= limit || limit == 0)
1235 			continue;
1236 
1237 		/*
1238 		 * If any of the regions have protection bits set, make the
1239 		 * whole partition read-only to be on the safe side.
1240 		 *
1241 		 * Also if the user did not ask the chip to be writeable
1242 		 * mask the bit too.
1243 		 */
1244 		if (!writeable || intel_spi_is_protected(ispi, base, limit))
1245 			part->mask_flags |= MTD_WRITEABLE;
1246 
1247 		end = (limit << 12) + 4096;
1248 		if (end > part->size)
1249 			part->size = end;
1250 	}
1251 }
1252 
1253 static int intel_spi_read_desc(struct intel_spi *ispi)
1254 {
1255 	struct spi_mem_op op =
1256 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
1257 			   SPI_MEM_OP_ADDR(3, 0, 0),
1258 			   SPI_MEM_OP_NO_DUMMY,
1259 			   SPI_MEM_OP_DATA_IN(0, NULL, 0));
1260 	u32 buf[2], nc, fcba, flcomp;
1261 	ssize_t ret;
1262 
1263 	op.addr.val = 0x10;
1264 	op.data.buf.in = buf;
1265 	op.data.nbytes = sizeof(buf);
1266 
1267 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1268 	if (ret) {
1269 		dev_warn(ispi->dev, "failed to read descriptor\n");
1270 		return ret;
1271 	}
1272 
1273 	dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
1274 	dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
1275 
1276 	if (buf[0] != FLVALSIG_MAGIC) {
1277 		dev_warn(ispi->dev, "descriptor signature not valid\n");
1278 		return -ENODEV;
1279 	}
1280 
1281 	fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
1282 	dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
1283 
1284 	op.addr.val = fcba;
1285 	op.data.buf.in = &flcomp;
1286 	op.data.nbytes = sizeof(flcomp);
1287 
1288 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1289 	if (ret) {
1290 		dev_warn(ispi->dev, "failed to read FLCOMP\n");
1291 		return -ENODEV;
1292 	}
1293 
1294 	dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
1295 
1296 	switch (flcomp & FLCOMP_C0DEN_MASK) {
1297 	case FLCOMP_C0DEN_512K:
1298 		ispi->chip0_size = SZ_512K;
1299 		break;
1300 	case FLCOMP_C0DEN_1M:
1301 		ispi->chip0_size = SZ_1M;
1302 		break;
1303 	case FLCOMP_C0DEN_2M:
1304 		ispi->chip0_size = SZ_2M;
1305 		break;
1306 	case FLCOMP_C0DEN_4M:
1307 		ispi->chip0_size = SZ_4M;
1308 		break;
1309 	case FLCOMP_C0DEN_8M:
1310 		ispi->chip0_size = SZ_8M;
1311 		break;
1312 	case FLCOMP_C0DEN_16M:
1313 		ispi->chip0_size = SZ_16M;
1314 		break;
1315 	case FLCOMP_C0DEN_32M:
1316 		ispi->chip0_size = SZ_32M;
1317 		break;
1318 	case FLCOMP_C0DEN_64M:
1319 		ispi->chip0_size = SZ_64M;
1320 		break;
1321 	default:
1322 		return -EINVAL;
1323 	}
1324 
1325 	dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
1326 
1327 	nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
1328 	if (!nc)
1329 		ispi->master->num_chipselect = 1;
1330 	else if (nc == 1)
1331 		ispi->master->num_chipselect = 2;
1332 	else
1333 		return -EINVAL;
1334 
1335 	dev_dbg(ispi->dev, "%u flash components found\n",
1336 		ispi->master->num_chipselect);
1337 	return 0;
1338 }
1339 
1340 static int intel_spi_populate_chip(struct intel_spi *ispi)
1341 {
1342 	struct flash_platform_data *pdata;
1343 	struct spi_board_info chip;
1344 	int ret;
1345 
1346 	pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1347 	if (!pdata)
1348 		return -ENOMEM;
1349 
1350 	pdata->nr_parts = 1;
1351 	pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
1352 				    sizeof(*pdata->parts), GFP_KERNEL);
1353 	if (!pdata->parts)
1354 		return -ENOMEM;
1355 
1356 	intel_spi_fill_partition(ispi, pdata->parts);
1357 
1358 	memset(&chip, 0, sizeof(chip));
1359 	snprintf(chip.modalias, 8, "spi-nor");
1360 	chip.platform_data = pdata;
1361 
1362 	if (!spi_new_device(ispi->master, &chip))
1363 		return -ENODEV;
1364 
1365 	/* Add the second chip if present */
1366 	if (ispi->master->num_chipselect < 2)
1367 		return 0;
1368 
1369 	ret = intel_spi_read_desc(ispi);
1370 	if (ret)
1371 		return ret;
1372 
1373 	chip.platform_data = NULL;
1374 	chip.chip_select = 1;
1375 
1376 	if (!spi_new_device(ispi->master, &chip))
1377 		return -ENODEV;
1378 	return 0;
1379 }
1380 
1381 /**
1382  * intel_spi_probe() - Probe the Intel SPI flash controller
1383  * @dev: Pointer to the parent device
1384  * @mem: MMIO resource
1385  * @info: Platform specific information
1386  *
1387  * Probes Intel SPI flash controller and creates the flash chip device.
1388  * Returns %0 on success and negative errno in case of failure.
1389  */
1390 int intel_spi_probe(struct device *dev, struct resource *mem,
1391 		    const struct intel_spi_boardinfo *info)
1392 {
1393 	struct spi_controller *master;
1394 	struct intel_spi *ispi;
1395 	int ret;
1396 
1397 	master = devm_spi_alloc_master(dev, sizeof(*ispi));
1398 	if (!master)
1399 		return -ENOMEM;
1400 
1401 	master->mem_ops = &intel_spi_mem_ops;
1402 
1403 	ispi = spi_master_get_devdata(master);
1404 
1405 	ispi->base = devm_ioremap_resource(dev, mem);
1406 	if (IS_ERR(ispi->base))
1407 		return PTR_ERR(ispi->base);
1408 
1409 	ispi->dev = dev;
1410 	ispi->master = master;
1411 	ispi->info = info;
1412 
1413 	ret = intel_spi_init(ispi);
1414 	if (ret)
1415 		return ret;
1416 
1417 	ret = devm_spi_register_master(dev, master);
1418 	if (ret)
1419 		return ret;
1420 
1421 	return intel_spi_populate_chip(ispi);
1422 }
1423 EXPORT_SYMBOL_GPL(intel_spi_probe);
1424 
1425 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1426 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1427 MODULE_LICENSE("GPL v2");
1428