xref: /openbmc/linux/drivers/spi/spi-ingenic.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SPI bus driver for the Ingenic JZ47xx SoCs
4  * Copyright (c) 2017-2021 Artur Rojek <contact@artur-rojek.eu>
5  * Copyright (c) 2017-2021 Paul Cercueil <paul@crapouillou.net>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/iopoll.h>
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/regmap.h>
17 #include <linux/spi/spi.h>
18 
19 #define REG_SSIDR	0x0
20 #define REG_SSICR0	0x4
21 #define REG_SSICR1	0x8
22 #define REG_SSISR	0xc
23 #define REG_SSIGR	0x18
24 
25 #define REG_SSICR0_TENDIAN_LSB		BIT(19)
26 #define REG_SSICR0_RENDIAN_LSB		BIT(17)
27 #define REG_SSICR0_SSIE			BIT(15)
28 #define REG_SSICR0_LOOP			BIT(10)
29 #define REG_SSICR0_EACLRUN		BIT(7)
30 #define REG_SSICR0_FSEL			BIT(6)
31 #define REG_SSICR0_TFLUSH		BIT(2)
32 #define REG_SSICR0_RFLUSH		BIT(1)
33 
34 #define REG_SSICR1_FRMHL_MASK		(BIT(31) | BIT(30))
35 #define REG_SSICR1_FRMHL		BIT(30)
36 #define REG_SSICR1_LFST			BIT(25)
37 #define REG_SSICR1_UNFIN		BIT(23)
38 #define REG_SSICR1_PHA			BIT(1)
39 #define REG_SSICR1_POL			BIT(0)
40 
41 #define REG_SSISR_END			BIT(7)
42 #define REG_SSISR_BUSY			BIT(6)
43 #define REG_SSISR_TFF			BIT(5)
44 #define REG_SSISR_RFE			BIT(4)
45 #define REG_SSISR_RFHF			BIT(2)
46 #define REG_SSISR_UNDR			BIT(1)
47 #define REG_SSISR_OVER			BIT(0)
48 
49 #define SPI_INGENIC_FIFO_SIZE		128u
50 
51 struct jz_soc_info {
52 	u32 bits_per_word_mask;
53 	struct reg_field flen_field;
54 	bool has_trendian;
55 };
56 
57 struct ingenic_spi {
58 	const struct jz_soc_info *soc_info;
59 	struct clk *clk;
60 	struct resource *mem_res;
61 
62 	struct regmap *map;
63 	struct regmap_field *flen_field;
64 };
65 
66 static int spi_ingenic_wait(struct ingenic_spi *priv,
67 			    unsigned long mask,
68 			    bool condition)
69 {
70 	unsigned int val;
71 
72 	return regmap_read_poll_timeout(priv->map, REG_SSISR, val,
73 					!!(val & mask) == condition,
74 					100, 10000);
75 }
76 
77 static void spi_ingenic_set_cs(struct spi_device *spi, bool disable)
78 {
79 	struct ingenic_spi *priv = spi_controller_get_devdata(spi->controller);
80 
81 	if (disable) {
82 		regmap_clear_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
83 		regmap_clear_bits(priv->map, REG_SSISR,
84 				  REG_SSISR_UNDR | REG_SSISR_OVER);
85 
86 		spi_ingenic_wait(priv, REG_SSISR_END, true);
87 	} else {
88 		regmap_set_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN);
89 	}
90 
91 	regmap_set_bits(priv->map, REG_SSICR0,
92 			REG_SSICR0_RFLUSH | REG_SSICR0_TFLUSH);
93 }
94 
95 static void spi_ingenic_prepare_transfer(struct ingenic_spi *priv,
96 					 struct spi_device *spi,
97 					 struct spi_transfer *xfer)
98 {
99 	unsigned long clk_hz = clk_get_rate(priv->clk);
100 	u32 cdiv, speed_hz = xfer->speed_hz ?: spi->max_speed_hz,
101 	    bits_per_word = xfer->bits_per_word ?: spi->bits_per_word;
102 
103 	cdiv = clk_hz / (speed_hz * 2);
104 	cdiv = clamp(cdiv, 1u, 0x100u) - 1;
105 
106 	regmap_write(priv->map, REG_SSIGR, cdiv);
107 
108 	regmap_field_write(priv->flen_field, bits_per_word - 2);
109 }
110 
111 static void spi_ingenic_finalize_transfer(void *controller)
112 {
113 	spi_finalize_current_transfer(controller);
114 }
115 
116 static struct dma_async_tx_descriptor *
117 spi_ingenic_prepare_dma(struct spi_controller *ctlr, struct dma_chan *chan,
118 			struct sg_table *sg, enum dma_transfer_direction dir,
119 			unsigned int bits)
120 {
121 	struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
122 	struct dma_slave_config cfg = {
123 		.direction = dir,
124 		.src_addr = priv->mem_res->start + REG_SSIDR,
125 		.dst_addr = priv->mem_res->start + REG_SSIDR,
126 	};
127 	struct dma_async_tx_descriptor *desc;
128 	dma_cookie_t cookie;
129 	int ret;
130 
131 	if (bits > 16) {
132 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
133 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
134 		cfg.src_maxburst = cfg.dst_maxburst = 4;
135 	} else if (bits > 8) {
136 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
137 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
138 		cfg.src_maxburst = cfg.dst_maxburst = 2;
139 	} else {
140 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
141 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
142 		cfg.src_maxburst = cfg.dst_maxburst = 1;
143 	}
144 
145 	ret = dmaengine_slave_config(chan, &cfg);
146 	if (ret)
147 		return ERR_PTR(ret);
148 
149 	desc = dmaengine_prep_slave_sg(chan, sg->sgl, sg->nents, dir,
150 				       DMA_PREP_INTERRUPT);
151 	if (!desc)
152 		return ERR_PTR(-ENOMEM);
153 
154 	if (dir == DMA_DEV_TO_MEM) {
155 		desc->callback = spi_ingenic_finalize_transfer;
156 		desc->callback_param = ctlr;
157 	}
158 
159 	cookie = dmaengine_submit(desc);
160 
161 	ret = dma_submit_error(cookie);
162 	if (ret) {
163 		dmaengine_desc_free(desc);
164 		return ERR_PTR(ret);
165 	}
166 
167 	return desc;
168 }
169 
170 static int spi_ingenic_dma_tx(struct spi_controller *ctlr,
171 			      struct spi_transfer *xfer, unsigned int bits)
172 {
173 	struct dma_async_tx_descriptor *rx_desc, *tx_desc;
174 
175 	rx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_rx,
176 					  &xfer->rx_sg, DMA_DEV_TO_MEM, bits);
177 	if (IS_ERR(rx_desc))
178 		return PTR_ERR(rx_desc);
179 
180 	tx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_tx,
181 					  &xfer->tx_sg, DMA_MEM_TO_DEV, bits);
182 	if (IS_ERR(tx_desc)) {
183 		dmaengine_terminate_async(ctlr->dma_rx);
184 		dmaengine_desc_free(rx_desc);
185 		return PTR_ERR(tx_desc);
186 	}
187 
188 	dma_async_issue_pending(ctlr->dma_rx);
189 	dma_async_issue_pending(ctlr->dma_tx);
190 
191 	return 1;
192 }
193 
194 #define SPI_INGENIC_TX(x)							\
195 static int spi_ingenic_tx##x(struct ingenic_spi *priv,				\
196 			     struct spi_transfer *xfer)				\
197 {										\
198 	unsigned int count = xfer->len / (x / 8);				\
199 	unsigned int prefill = min(count, SPI_INGENIC_FIFO_SIZE);		\
200 	const u##x *tx_buf = xfer->tx_buf;					\
201 	u##x *rx_buf = xfer->rx_buf;						\
202 	unsigned int i, val;							\
203 	int err;								\
204 										\
205 	/* Fill up the TX fifo */						\
206 	for (i = 0; i < prefill; i++) {						\
207 		val = tx_buf ? tx_buf[i] : 0;					\
208 										\
209 		regmap_write(priv->map, REG_SSIDR, val);			\
210 	}									\
211 										\
212 	for (i = 0; i < count; i++) {						\
213 		err = spi_ingenic_wait(priv, REG_SSISR_RFE, false);		\
214 		if (err)							\
215 			return err;						\
216 										\
217 		regmap_read(priv->map, REG_SSIDR, &val);			\
218 		if (rx_buf)							\
219 			rx_buf[i] = val;					\
220 										\
221 		if (i < count - prefill) {					\
222 			val = tx_buf ? tx_buf[i + prefill] : 0;			\
223 										\
224 			regmap_write(priv->map, REG_SSIDR, val);		\
225 		}								\
226 	}									\
227 										\
228 	return 0;								\
229 }
230 SPI_INGENIC_TX(8)
231 SPI_INGENIC_TX(16)
232 SPI_INGENIC_TX(32)
233 #undef SPI_INGENIC_TX
234 
235 static int spi_ingenic_transfer_one(struct spi_controller *ctlr,
236 				    struct spi_device *spi,
237 				    struct spi_transfer *xfer)
238 {
239 	struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
240 	unsigned int bits = xfer->bits_per_word ?: spi->bits_per_word;
241 	bool can_dma = ctlr->can_dma && ctlr->can_dma(ctlr, spi, xfer);
242 
243 	spi_ingenic_prepare_transfer(priv, spi, xfer);
244 
245 	if (ctlr->cur_msg_mapped && can_dma)
246 		return spi_ingenic_dma_tx(ctlr, xfer, bits);
247 
248 	if (bits > 16)
249 		return spi_ingenic_tx32(priv, xfer);
250 
251 	if (bits > 8)
252 		return spi_ingenic_tx16(priv, xfer);
253 
254 	return spi_ingenic_tx8(priv, xfer);
255 }
256 
257 static int spi_ingenic_prepare_message(struct spi_controller *ctlr,
258 				       struct spi_message *message)
259 {
260 	struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
261 	struct spi_device *spi = message->spi;
262 	unsigned int cs = REG_SSICR1_FRMHL << spi->chip_select;
263 	unsigned int ssicr0_mask = REG_SSICR0_LOOP | REG_SSICR0_FSEL;
264 	unsigned int ssicr1_mask = REG_SSICR1_PHA | REG_SSICR1_POL | cs;
265 	unsigned int ssicr0 = 0, ssicr1 = 0;
266 
267 	if (priv->soc_info->has_trendian) {
268 		ssicr0_mask |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
269 
270 		if (spi->mode & SPI_LSB_FIRST)
271 			ssicr0 |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB;
272 	} else {
273 		ssicr1_mask |= REG_SSICR1_LFST;
274 
275 		if (spi->mode & SPI_LSB_FIRST)
276 			ssicr1 |= REG_SSICR1_LFST;
277 	}
278 
279 	if (spi->mode & SPI_LOOP)
280 		ssicr0 |= REG_SSICR0_LOOP;
281 	if (spi->chip_select)
282 		ssicr0 |= REG_SSICR0_FSEL;
283 
284 	if (spi->mode & SPI_CPHA)
285 		ssicr1 |= REG_SSICR1_PHA;
286 	if (spi->mode & SPI_CPOL)
287 		ssicr1 |= REG_SSICR1_POL;
288 	if (spi->mode & SPI_CS_HIGH)
289 		ssicr1 |= cs;
290 
291 	regmap_update_bits(priv->map, REG_SSICR0, ssicr0_mask, ssicr0);
292 	regmap_update_bits(priv->map, REG_SSICR1, ssicr1_mask, ssicr1);
293 
294 	return 0;
295 }
296 
297 static int spi_ingenic_prepare_hardware(struct spi_controller *ctlr)
298 {
299 	struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
300 	int ret;
301 
302 	ret = clk_prepare_enable(priv->clk);
303 	if (ret)
304 		return ret;
305 
306 	regmap_write(priv->map, REG_SSICR0, REG_SSICR0_EACLRUN);
307 	regmap_write(priv->map, REG_SSICR1, 0);
308 	regmap_write(priv->map, REG_SSISR, 0);
309 	regmap_set_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
310 
311 	return 0;
312 }
313 
314 static int spi_ingenic_unprepare_hardware(struct spi_controller *ctlr)
315 {
316 	struct ingenic_spi *priv = spi_controller_get_devdata(ctlr);
317 
318 	regmap_clear_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE);
319 
320 	clk_disable_unprepare(priv->clk);
321 
322 	return 0;
323 }
324 
325 static bool spi_ingenic_can_dma(struct spi_controller *ctlr,
326 				struct spi_device *spi,
327 				struct spi_transfer *xfer)
328 {
329 	struct dma_slave_caps caps;
330 	int ret;
331 
332 	ret = dma_get_slave_caps(ctlr->dma_tx, &caps);
333 	if (ret) {
334 		dev_err(&spi->dev, "Unable to get slave caps: %d\n", ret);
335 		return false;
336 	}
337 
338 	return !caps.max_sg_burst ||
339 		xfer->len <= caps.max_sg_burst * SPI_INGENIC_FIFO_SIZE;
340 }
341 
342 static int spi_ingenic_request_dma(struct spi_controller *ctlr,
343 				   struct device *dev)
344 {
345 	ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
346 	if (!ctlr->dma_tx)
347 		return -ENODEV;
348 
349 	ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
350 
351 	if (!ctlr->dma_rx)
352 		return -ENODEV;
353 
354 	ctlr->can_dma = spi_ingenic_can_dma;
355 
356 	return 0;
357 }
358 
359 static void spi_ingenic_release_dma(void *data)
360 {
361 	struct spi_controller *ctlr = data;
362 
363 	if (ctlr->dma_tx)
364 		dma_release_channel(ctlr->dma_tx);
365 	if (ctlr->dma_rx)
366 		dma_release_channel(ctlr->dma_rx);
367 }
368 
369 static const struct regmap_config spi_ingenic_regmap_config = {
370 	.reg_bits = 32,
371 	.val_bits = 32,
372 	.reg_stride = 4,
373 	.max_register = REG_SSIGR,
374 };
375 
376 static int spi_ingenic_probe(struct platform_device *pdev)
377 {
378 	const struct jz_soc_info *pdata;
379 	struct device *dev = &pdev->dev;
380 	struct spi_controller *ctlr;
381 	struct ingenic_spi *priv;
382 	void __iomem *base;
383 	int ret;
384 
385 	pdata = of_device_get_match_data(dev);
386 	if (!pdata) {
387 		dev_err(dev, "Missing platform data.\n");
388 		return -EINVAL;
389 	}
390 
391 	ctlr = devm_spi_alloc_master(dev, sizeof(*priv));
392 	if (!ctlr) {
393 		dev_err(dev, "Unable to allocate SPI controller.\n");
394 		return -ENOMEM;
395 	}
396 
397 	priv = spi_controller_get_devdata(ctlr);
398 	priv->soc_info = pdata;
399 
400 	priv->clk = devm_clk_get(dev, NULL);
401 	if (IS_ERR(priv->clk)) {
402 		return dev_err_probe(dev, PTR_ERR(priv->clk),
403 				     "Unable to get clock.\n");
404 	}
405 
406 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &priv->mem_res);
407 	if (IS_ERR(base))
408 		return PTR_ERR(base);
409 
410 	priv->map = devm_regmap_init_mmio(dev, base, &spi_ingenic_regmap_config);
411 	if (IS_ERR(priv->map))
412 		return PTR_ERR(priv->map);
413 
414 	priv->flen_field = devm_regmap_field_alloc(dev, priv->map,
415 						   pdata->flen_field);
416 	if (IS_ERR(priv->flen_field))
417 		return PTR_ERR(priv->flen_field);
418 
419 	platform_set_drvdata(pdev, ctlr);
420 
421 	ctlr->prepare_transfer_hardware = spi_ingenic_prepare_hardware;
422 	ctlr->unprepare_transfer_hardware = spi_ingenic_unprepare_hardware;
423 	ctlr->prepare_message = spi_ingenic_prepare_message;
424 	ctlr->set_cs = spi_ingenic_set_cs;
425 	ctlr->transfer_one = spi_ingenic_transfer_one;
426 	ctlr->mode_bits = SPI_MODE_3 | SPI_LSB_FIRST | SPI_LOOP | SPI_CS_HIGH;
427 	ctlr->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
428 	ctlr->max_dma_len = SPI_INGENIC_FIFO_SIZE;
429 	ctlr->bits_per_word_mask = pdata->bits_per_word_mask;
430 	ctlr->min_speed_hz = 7200;
431 	ctlr->max_speed_hz = 54000000;
432 	ctlr->num_chipselect = 2;
433 	ctlr->dev.of_node = pdev->dev.of_node;
434 
435 	if (spi_ingenic_request_dma(ctlr, dev))
436 		dev_warn(dev, "DMA not available.\n");
437 
438 	ret = devm_add_action_or_reset(dev, spi_ingenic_release_dma, ctlr);
439 	if (ret) {
440 		dev_err(dev, "Unable to add action.\n");
441 		return ret;
442 	}
443 
444 	ret = devm_spi_register_controller(dev, ctlr);
445 	if (ret)
446 		dev_err(dev, "Unable to register SPI controller.\n");
447 
448 	return ret;
449 }
450 
451 static const struct jz_soc_info jz4750_soc_info = {
452 	.bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 17),
453 	.flen_field = REG_FIELD(REG_SSICR1, 4, 7),
454 	.has_trendian = false,
455 };
456 
457 static const struct jz_soc_info jz4780_soc_info = {
458 	.bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32),
459 	.flen_field = REG_FIELD(REG_SSICR1, 3, 7),
460 	.has_trendian = true,
461 };
462 
463 static const struct of_device_id spi_ingenic_of_match[] = {
464 	{ .compatible = "ingenic,jz4750-spi", .data = &jz4750_soc_info },
465 	{ .compatible = "ingenic,jz4780-spi", .data = &jz4780_soc_info },
466 	{}
467 };
468 MODULE_DEVICE_TABLE(of, spi_ingenic_of_match);
469 
470 static struct platform_driver spi_ingenic_driver = {
471 	.driver = {
472 		.name = "spi-ingenic",
473 		.of_match_table = spi_ingenic_of_match,
474 	},
475 	.probe = spi_ingenic_probe,
476 };
477 
478 module_platform_driver(spi_ingenic_driver);
479 MODULE_DESCRIPTION("SPI bus driver for the Ingenic JZ47xx SoCs");
480 MODULE_AUTHOR("Artur Rojek <contact@artur-rojek.eu>");
481 MODULE_AUTHOR("Paul Cercueil <paul@crapouillou.net>");
482 MODULE_LICENSE("GPL");
483